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ABSTRACT
We aim to provide table answers to keyword queries using a knowl-
edge base. For queries referring to multiple entities, like “Wash-
ington cities population” and “Mel Gibson movies”, it is better to
represent each relevant answer as a table which aggregates a set of
entities or joins of entities within the same table scheme or pattern.
In this paper, we study how to find highly relevant patterns in a
knowledge base for user-given keyword queries to compose table
answers. A knowledge base is modeled as a directed graph called
knowledge graph, where nodes represent its entities and edges rep-
resent the relationships among them. Each node/edge is labeled
with type and text. A pattern is an aggregation of subtrees which
contain all keywords in the texts and have the same structure and
types on node/edges. We propose efficient algorithms to find pat-
terns that are relevant to the query for a class of scoring functions.
We show the hardness of the problem in theory, and propose path-
based indexes that are affordable in memory. Two query-processing
algorithms are proposed: one is fast in practice for small queries
(with small numbers of patterns as answers) by utilizing the in-
dexes; and the other one is better in theory, with running time linear
in the sizes of indexes and answers, which can handle large queries
better. We also conduct extensive experimental study to compare
our approaches with a naive adaption of known techniques.

1. INTRODUCTION
Users often look for information about sets of entities, e.g., in

the form of tables [27, 41, 35]. For example, an analyst wants a
list of companies that produces database software along with their
annual revenues for the purpose of market research. Or a student
wants a list of universities in a particular county along with their
enrollment numbers, tuition fees and financial endowment in order
to choose which universities to seek admission in.

To provide such services, some works leverage the vast corpus
of HTML tables available on the Web, trying to interpret them, and
return relevant ones in response to keyword queries [27, 41, 35, 44].
There are also two such commercial table search engines: Google
∗Part of the work was done during employment at Microsoft Re-
search.

Tables [3] and Microsoft’s Excel PowerQuery [2]. Our work is
complementary to this line, and aims to compose tables in response
to keyword queries from patterns in knowledge bases when the de-
sired tables are not available or of low quality in the corpus.

There are abundant sources of high-quality structured data, called
knowledge bases: DBPedia [1], Freebase [6], and Yago [9] are ex-
amples of knowledge bases containing information on general top-
ics, while there are also specialized one like IMDB [7] and DBLP
[8]. A knowledge base contains information about individual enti-
ties together with attributes representing relationships among them.
We can model a knowledge base as a directed graph, called knowl-
edge graph, with nodes representing entities of different types and
edges representing relationships, i.e., attributes, among entities.

We can find the subtrees of the knowledge graph that contain
all the keywords and return them in ranked order (refer to Yu et
al. [46] and Liu et al. [32] for comprehensive surveys, and Sec-
tion 6 for detailed discussion). However, it is not adequate when the
user’s query is to look for a table of entities. As has been noticed
in [42], the returned subtrees with a heterogeneous mass of shapes
might correspond to different interpretations of the query, and the
subtrees corresponding to certain desired interpretation may not ap-
pear contiguously in the ranked order. If the user wants to explore
all subtrees of the desired interpretation, she has to examine all the
returned subtrees and manually gather those corresponding to the
interpretation. This is extremely labor intensive. So we propose to
automatically aggregate the subtrees that contain all the keywords
into distinct interpretations and produce a ranked list of such aggre-
gations. Structural pattern of a subtree together with the mapping
from the keywords to its nodes/edges represents an interpretation
of the query, called tree pattern. We aggregate the subtrees based
on tree patterns. Our work sharply contrasts earlier works on rank-
ing subtrees. To the best of our knowledge, this is the first work on
finding aggregations of subtrees on graphs for keyword queries.

In this paper, we propose and study the problem of finding rele-
vant aggregations of subtrees in the knowledge graph for a given
keyword query. Each answer to the keyword query is a set of
subtrees – each subtree containing all keywords and satisfying the
same tree pattern. Such an aggregation of subtrees can be output
as a table of entity joins, where each row corresponds to a subtree.
When there are multiple possible tree patterns, they are enumerated
and ranked by their relevance to the query.

EXAMPLE 1.1. (Motivation Example) Figure 1(a)-(c) is a small
piece of a knowledge base with three entities. For each entity (e.g.,
“SQL Server”, “Microsoft”, and “Bill Gates”), we know its type
(e.g., Software, Company, and Person, respectively), and a list of
attributes (left column in Figure 1(a)-(c)) together with their val-
ues (right column). The value of an attribute may either refer to
another entity, e.g., “Developer” of “SQL Server” is “Microsoft”,
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SQL Server (Software)
Developer: Microsoft
Genre: Relational Database
Written in: C++
. . . : . . .

(a) Entity “SQL Server”

Microsoft (Company)
Founder: Bill Gates, Paul Allen
Products: Windows, Bing, . . .
Revenue: US$ 77 billion
. . . : . . .

(b) Entity “Microsoft”

Bill Gates (Person)
Alma mater: Harvard University
Residence: Medina, WA, US
Spouse: Melinda Gates
. . . : . . .

(c) Entity “Bill Gates”

Genre
Developer

Revenue

US$ 77 billion

Revenue

US$ 37 billion

Knowledge Graph

GenreDeveloper

Relational database O-R database

RevenuePublisher

Systems and 
Handbook of

1st Row 2nd Row

Book

Springer US$ 1 billion
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v11
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(d) Part of a knowledge graph derived from the knowledge base in (a)-(c), and subtrees
(T1-T3) matching to query “database software company revenue”

Figure 1: (a)-(c) Entities/Attributes in Knowledge Base, (d) Knowledge Graph, Query, and Subtrees
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(a) Tree pattern P1
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*
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*

Book

(b) Tree pattern P2

Figure 2: Tree patterns for (a) {T1, T2} and (b) {T3}
or be plain text, e.g., “Revenue” of “Microsoft” is “US$ 77 bil-
lion”. Such a knowledge base can be extracted from the Web like
infoboxes in Wikipedia [5], or from datasets like Freebase [6].
Knowledge graph. A knowledge base can be modeled as a direct
graph and Figure 1(d) shows part of such a knowledge graph. Each
entity corresponds to a node labeled with its type. Each attribute
of an entity corresponds to a directed edge, also labeled with its
attribute type, from the entity to some other entity or plain text.
Queries, Subtrees, and Tree Patterns. Consider a keyword query
“database software company revenue”. Three subtrees (T1, T2,
and T3) matching the keywords are shown using dashed rectangles
in Figure 1(d). In subtrees T1 and T2, “database” is contained in
the text of the some entities; “software” and “company” match to
the types’ names; and “revenue” matches to an attribute. Also, the
structures of T1 and T2 are identical in terms of the types of both
nodes and edges, so they belong to the same pattern in Figure 2(a).
Similarly, T3 belongs to the tree pattern in Figure 2(b).
Tree patterns as answers. A tree pattern corresponds to a possi-
ble interpretation of a keyword query, by specifying the structure of
subtrees as well as how the keywords are mapped to the nodes or
edges. For example, the tree pattern P1 in Figure 2(a) interprets the
query as: the revenue of some company which develops database
software; and P2 in Figure 2(b) means: the revenue of some com-
pany which publishes books about database software. Subtrees of
the same tree pattern can be aggregated into a table as one an-
swer to the query, where each row corresponds to a subtree. For
example, subtrees (T1 and T2) of the pattern in Figure 2(a) can be
assembled into the table (the first and second rows) in Figure 3.

Contributions. First, we propose the problem of finding relevant
tree patterns in a knowledge graph. We define tree patterns as an-
swers to a keyword query in a knowledge graph. A class of scoring
functions is introduced to measure the relevance of a pattern.

There are usually many tree patterns for a keyword query. We
need efficient algorithms to enumerate these patterns and find the
top-k. We then analyze the hardness of the problem in theory. The
hardness comes from “counting the number of paths between two
nodes in the graph”, which inspires us to design two types of path-
pattern based inverted indexes: paths starting from a node/edge
containing some keyword and following certain pattern are aggre-
gated and materialized in the index in memory. When processing
an online queries, by specifying the word and/or the path pattern, a
search algorithm can retrieve the corresponding set of paths.

Two algorithms for finding the relevant tree patterns for a key-
word query are proposed based on such indexes.

The first one enumerates the combinations of root-leaf path pat-
terns in tree patterns, retrieves paths from the index for each path
pattern, and joins them together on the root node to get the set of
subtrees satisfying each tree pattern. Its worst-case running time
is exponential in both the index size and the output size: when
there are m keywords and each has p path patterns in the index,
we need to check all the pm combinations in the worst case; but
it is possible that there is no subtree satisfying any of these tree
patterns. Although join operations are wasted on such “empty pat-
terns”, the advantage of this algorithm is that no online aggregation
is required, as all subtrees with the same tree pattern are generated
at one time. So it performs well in practice most of the time.

The second algorithm tries to avoid unnecessary join operations
by first identifying all candidate roots with the help of path indexes.
Each candidate root reaches every keyword through at least one
path pattern, so there must be some tree pattern containing a subtree
with this root. Those subtrees are enumerated and aggregated for
each candidate root. The running time of this algorithm can be
shown to be linear in the index size and the output size. To further
speed it up, we can sample a random subset of candidate roots (e.g.,
10% of them), and obtain an estimated score for each pattern based
on them. Only for the patterns with the highest top-k estimated
scores, we retrieve the complete set of subtrees, and compute the
exact scores for ranking. Note that when we apply such sampling
techniques, there might be errors in the top-k tree patterns. But we
will show that the error can be bounded in theory, and demonstrate
the effectiveness of this sampling technique in experiments.

We compare our algorithms with a straightforward adaption of
previous techniques on finding subtrees in database graphs (e.g.,
[11, 13, 18, 25]) in experiments. We adapt their algorithms to enu-
merate all subtrees each containing all keywords as the first step.
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Software Genre Company Revenue
SQL Server Relational database Microsoft US$ 77 billion
Oracle DB O-R database Oracle US$ 37 billion

. . . . . . . . . . . .

Figure 3: Example of a table aggregating subtrees of the tree
pattern in Figure 2(a)

The second step is to aggregate those subtrees into a ranked list of
tree patterns. Note that no ranking is required for the first step so
the adapted enumeration algorithm is efficient, but the bottleneck
lies on the second step. Efforts along this line are not helpful in
solving our problem because they aim to find highly relevant sub-
trees while we aim to find highly relevant tree patterns.
Organization. Section 2 formally defines the concept of tree pat-
terns as answers to keyword queries, and gives the problem state-
ment. A baseline approach and hardness result are given at the end
of Section 2. In Section 3, we introduce the index structures in-
spired by the hardness result. Two search algorithms based on the
proposed path indexes are introduced in Section 4. Experimental
results and discussions are in Section 5, followed by the discussion
of related work in Section 6, and conclusion in Section 7.

2. MODEL AND PROBLEM
We first formally define the graph model of a knowledge base

used in this work, called knowledge graph. The model itself is
not new but it servers as a general platform where our techniques
introduced later can be applied. We then define tree patterns, each
of which is an answer to a keyword query and aggregates a set
of valid subtrees in the knowledge graph. We also introduce the
class of scoring functions we use to measure the relevance of a
tree pattern to a query. Finally, we formally define the problem of
finding top-k tree patterns in a knowledge base using keywords.

2.1 Knowledge Graph
A knowledge base consists of a collection of entities V and a

collection of attributesA. Each entity v ∈ V has values on a subset
of attributes, denoted by A(v), and for each attribute A ∈ A(v),
we use v.A to denote its value. The value v.A could be either
another entity or free text. Each entity v ∈ V is labeled with a type
τ(v) ∈ C, where C is the set of all types in the knowledge base.

It is natural to model the knowledge base as a knowledge graph
G, with each entity in V as a node, and each pair (v, u) as a di-
rected edge in E iff v.A = u for some attribute A ∈ A(v). Each
node v is labeled by its entity type τ(v) = C ∈ C and each edge
e = (v, u) is labeled by the attribute type A iff v.A = u, de-
noted by α(e) = A ∈ A. So we denote a knowledge graph by
G = (V, E , τ, α) with τ and α as node type and edge type, respec-
tively. There is text description for each entity/node type C, en-
tity/node v, and attribute/edge type A, denoted by C.text, v.text,
and A.text, respectively. In the rest of this paper, w.l.o.g., we as-
sume that the value of an entity v’s attribute is always an entity in
V , because if v.A is plain text, we can create a dummy entity with
text description exactly the same as the plain text.

EXAMPLE 2.1. (Knowledge Graph) Figure 1(d) shows part of
the knowledge graph derived from the knowledge base in Figure 1(a)-
(c). Each node is labeled with its type τ(v) in the upper part, and
its text description is shown in the lower part. For nodes derived
from plain text, their types are omitted in the graph. Each edge e is
labeled with the attribute type α(e). Note that there could be more
than one entity referred in the value of an attribute, e.g., attribute
“Products” of entity “Microsoft”. In that case, we can create mul-
tiple edges with the same label (attribute type) “Products” pointing
to different entities, e.g., “Windows” and “Bing”.

2.2 Finding d­Height Tree Patterns
Now we are ready to define tree patterns, i.e., answers for a given

keyword query q = {w1,w2, . . . ,wm} in a knowledge graph G =
(V, E , τ, α). Simply put, a valid subtree w.r.t. the query q is a
subtree in G containing all keywords in the text description of its
node, node type, or edge type. A tree pattern aggregates a set of
valid subtrees with the same i) tree structures, ii) entity types and
edge types, and iii) positions where keywords are matched.

2.2.1 Valid Subtrees for Keyword Queries
We first formally define a valid subtree (T, f) w.r.t. a keyword

query q in a knowledge graph G. It satisfies three conditions:

i) (Tree Structure) T is a directed rooted subtree of G, i.e., it
has a root r and there is a directed path from r to every leaf.

ii) (Keyword Mapping) There is a mapping f : q → V(T ) ∪
E(T ) from words in q to nodes and edges in the subtree T ,
s.t., each word w ∈ q appears in the text description of a
node or node type if f(w) ∈ V(T ), and appears in the text
description of an edge type if f(w) ∈ E(T ).

iii) (Minimality) For any leaf v ∈ V with edge ev ∈ E pointing
to v, there exists w ∈ q s.t. f(w) = v or f(w) = ev .

Condition ii) ensures that all words appear in subtree T and speci-
fies where they appear. Condition iii) ensures that T is minimal in
the sense that, under the current mapping f (from words to nodes
or edges wherever they appear), removing any leaf node from T
will make it invalid. We will also refer to a valid subtree (T, f) as
T if the mapping f is clear from the context.

EXAMPLE 2.2. (Valid Subtree) Consider a keyword query q:
“database software company revenue” (w1-w4). T1 in Figure 1(d)
is a valid subtree w.r.t. q. The associated mapping f from keywords
to nodes in T1 is: f(w1) = v2 (appearing in the text description
of node), f(w2) = v1 (appearing in the node type), f(w3) = v3
(appearing in the node type), and f(w4) = (v3, v4) (appearing
in the attribute type). T1 is minimal and attaching any edge like
(v1, v6) or (v3, v11) to T1 will make it invalid (violating condition
iii)). Similarly, T2 and T3 are also valid subtrees w.r.t. q.

2.2.2 Tree Patterns: Aggregations of Subtrees
Consider a valid subtree (T, f) w.r.t. a keyword query q with the

mapping f : q → V(T ) ∪ E(T ). Before defining the tree pattern
of (T, f) for q, we first define path patterns.
Path patterns. For each word w ∈ q, if w is matched to some
node v = f(w), let T (w) be the path from the root r to the node
v: v1e1v2e2 . . . el−1vl, where v1 = r, vl = v, and ei is the edge
from vi to vi+1. The path pattern for w is the concatenation of
node/edge types on the path T (w), i.e.,

pattern(T (w)) = τ(v1)α(e1)τ(v2)α(e2) . . . α(el−1)τ(vl),

from node v1 to node vl. Similarly, if w is matched to some edge
e = f(w), then the path pattern

pattern(T (w)) = τ(v1)α(e1)τ(v2)α(e2) . . . α(el)

is the concatenation of node/edge types on the path T (w) from
node v1 = r to edge el = e. The length of a path pattern, de-
noted by |pattern(T (w))|, is the number of nodes on path T (w).
Tree patterns. The tree pattern of a valid subtree T w.r.t. q =
{w1, w2, . . . , wm} is a vector with the ith entry as the path pattern
of the root-leaf path containing the ith keyword wi, denoted as

pattern(T ) = (pattern(T (w1)), . . . , pattern(T (wm))). (1)

The height of a tree pattern, denoted by H(pattern(T )), is the
max length of the path patterns, i.e., maxi |pattern(T (wi))|.
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Valid subtrees can be considered as ordered trees. To check
whether patterns of two valid subtrees T1 and T2 w.r.t. query q are
identical, we only need to check whether the path patterns are iden-
tical, pattern(T1(wi)) = pattern(T2(wi)), for each word wi ∈ q.
This can be done in linear time, because even without precompu-
tation, each path pattern can be obtained by retrieving the types of
node/edge on the path in order from the root v1 to a leaf vl or el.

Conceptually, valid subtrees can be grouped by their patterns.
For a tree pattern P , let trees(P, q) be the set of all valid subtrees
with the same pattern P w.r.t. a keyword query q, i.e., trees(P, q) =
{T | pattern(T ) = P}. trees(P, q) is also written as trees(P ) if
the query q is clear from the context.

EXAMPLE 2.3. (Tree Patterns as Answers) Let’s continue with
Example 2.2. Tree pattern P1 = pattern(T1) w.r.t. query q is vi-
sualized in Figure 2(a). In particular, for w4 = “Revenue” ∈ q,
we have T1(w4) = v1(v1, v3)v3(v3, v4), and pattern(T1(w4)) =
(Software) (Developer) (Company) (Revenue). Similarly, for word
w1, we have pattern(T1(w1)) = (Software) (Genre) (Model), for
w2, pattern(T1(w2)) = (Software), and pattern(T1(w3)) = (Soft-
ware) (Developer) (Company). Combining them together, we get
the tree pattern P1 in Figure 2(a). It is easy to see that, in Fig-
ure 1(d), T1 and T2 have the identical tree pattern P1, and the tree
pattern of T3 is P2, which is illustrated in Figure 2(b).

Convert tree patterns into table answers. Once we have the tree
pattern P , it is not hard to convert trees in trees(P ) into a table
answer. For each tree T ∈ trees(P ), create a row in the following
way: for each word w ∈ q and path T (w) = v1e1v2e2 . . . el−1vl,
create l columns with values v1, v2, . . ., vl and column names
τ(v1), τ(v1)α(e1)τ(v2), . . ., and τ(vl−1)α(el−1)τ(vl), respec-
tively. From the definition of tree patterns, we know all the rows
created in this way have the same set of columns and this can be put
and shown in a uniform table scheme. If an edge ei = (vi, vi+1)
appears in more than one root-leaf path (for different words w’s),
only one column needs to be created with name τ(vi)α(ei)τ(vi+1)
and value vi+1. Figure 3 shows the table answer derived from tree
pattern P1 in Figure 2(a). How to name and order columns in the ta-
ble answers in a more user-friendly way is also an important issue,
but it is out of scope of this paper and requires more user study. The
rest of this paper will focus on how to find and rank tree patterns as
it is the most challenging part of our problem.

2.2.3 Relevance Scores of Tree Patterns
There could be numerous tree patterns w.r.t. a given keyword

query q, so we need to define scoring functions to measure their
relevance. We will define a general class of scoring functions, the
higher the more relevant, which can be handled by our algorithms
introduced later. First, the relevance score of a tree pattern is an ag-
gregation of relevance scores of valid subtrees that satisfy this pat-
tern, e.g., sum, average, and max of scores, or count of trees. Sum
of scores and count of trees prefer tree patterns with more valid
subtrees, while average and max prefer tree patterns with highly
relevant individual subtrees. There is no global rule on which one
is better, and the choice should be made based on extensive user
study/feedback, which is out of the scope of this paper. We use
sum of scores in the following part, but our approaches can be also
extended to other aggregation functions.

score(P, q) =
∑

T∈trees(P )

score(T, q). (2)

The relevance score score(T, q) of an individual valid subtree
w.r.t. q may depend on several factors: 1) score1(T, q): size of

T , we prefer small trees that represent compact relationship; 2)
score2(T, q): importance score of nodes in T , we prefer more im-
portant nodes (e.g., with higher PageRank scores) to be included
in T ; and 3) score3(T, q): how well the keywords match the text
description in T . Putting them together, we have

score(T, q) = score1(T, q)
z1 ·score2(T, q)z2 ·score3(T, q)z3 , (3)

where z1, z2, and z3 are constants that determine the weights of fac-
tors. These constants need to be tuned in practical system through
user study. For the completeness, we give examples for scoring
functions score1, score2, and score3 below. But note that they can
also be replaced by other functions and more can be inserted into
(3) if needed – our search algorithms introduced later still work.

To measure the size of T , let z1 = −1 and

score1(T, q) =
∑
w∈q

score1(T (w),w) =
∑
w∈q

|T (w)|, (4)

where |T (w)| is the number of nodes on the path T (w).
To measure how significant nodes of T are, let z2 = 1 and

score2(T, q) =
∑
w∈q

score2(T (w),w) =
∑
w∈q

PR(f(w)), (5)

where PR(f(w)) is the PageRank score of the node that contains
word w ∈ q (or, of the node that has an out-going edge contain
word w, if f(w) is an edge). The PageRank score PR(v) of a node
v is computed using the iterative method: the initial value of PR(v)
is set to 1/|V| for all v ∈ V; and in each iteration, PR(v) is updated

PR(v)← 1− a

|V| + a
∑

(u,v)∈E

PR(u)

OutDegree(u)
,

where a = 0.85 is the damping factor. The computation ends when
PR(v) changes less than 10−8 during a iteration for all v ∈ V .

To measure how well the keywords match the text description in
T , let z3 = 1 and

score3(T, q) =
∑
w∈q

score3(T (w),w) =
∑
w∈q

sim(w, f(w)), (6)

where sim(w, f(w)) is the Jaccard similarity between w and the
text description on the entity (type) or the attribute type of f(w).

EXAMPLE 2.4. (Relevance Score) Comparing the two tree pat-
terns P1 and P2 in Figure 2 w.r.t. the query q in Example 2.2, which
one is more relevant to q? First, consider valid subtrees T1, T2 ∈
trees(P1) and T3 ∈ trees(P2) in Figure 1(d), T3 is smaller than
T1 and T2 – to measure the sizes, score1(T1, q) = score1(T2, q) =
2 + 1 + 2 + 3 = 8, and score1(T3, q) = 1 + 1 + 2 + 3 = 7.
Second, assuming all nodes have the same PageRank scores 1,
we have score2(T1, q) = score2(T2, q) = score2(T3, q) = 4.
Third, considering the similarity between keywords and text de-
scription in valid subtrees T1, T2, and T3, we have score3(T1, q) =
score3(T2, q) = 1

2
+ 1 + 1 + 1 = 3.5 and score3(T3, q) =

1
6
+ 1

6
+1+1 = 2.33. It can be found that while the scoring function

prefers smaller trees, it also prefers tree patterns with more valid
subtrees and subtrees matching to keywords in text description with
higher similarity. So we have score(P1, q) > score(P2, q) with
z1 = −1 and z2 = z3 = 1.

2.2.4 Problem Statement
We now formally define the d-height tree pattern problem to be

solved in the rest of this paper: given a keyword query q in a knowl-
edge graph G, the d-height tree pattern problem is to find all tree
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patterns P , with height at most d, w.r.t. q. Users are usually inter-
ested in the top-k answers, so we focus on generating d-height tree
patterns with the top-k highest relevance scores score(P, q)’s.

We introduce the height threshold d of tree patterns for consid-
erations of both search accuracy and efficiency. First, more com-
pact answers (i.e., patterns with lower heights or tables with smaller
numbers of columns) are usually more meaningful to users. Sec-
ond, as keyword search is an online service, bounded height d en-
sures in-time response. The setting of d is independent on the num-
ber of keywords in the query, as it bounds the length of path from
the root to each keyword. Such thresholds also appear in earlier
work, e.g., [20] as tree size constraint, and more recent work [25]
as radius constraint, for similar considerations. Experimental study
about the impact of d will be reported in Section 5.1.

2.3 Enumeration­Aggregation Approach and
Hardness Result

An obvious baseline that adapts previous works on finding sub-
trees in RDB graph using keywords (e.g., [11, 13, 18, 25]) for our
problem is called enumeration-aggregation approach. First, in the
enumeration step, individual valid subtrees of height at most d are
generated one by one with an adaption of the backward search al-
gorithm in [11]. No ranking or order of the generated subtrees is
required, so the adapted algorithm in this step can ensure that, with
proper preprocessing, the time needed to generate the i-th individ-
ual valid subtree is linear to the size of this tree, which is the best
we can expect for an enumeration algorithm. Second, in the aggre-
gation step, these valid subtrees are grouped by their tree patterns.
Group-by in the second step is the bottleneck of this approach, but
as the tree pattern of a subtree can be efficiently computed as dis-
cussed in Section 2.2.2, we can optimize this step using an efficient
in-memory dictionary from tree patterns to valid subtrees.

Carefully-designed top-k search strategies in [11, 13, 18, 25]
does not help for producing top-k tree patterns, because i) no mat-
ter in which order the valid subtrees are generated, a highly relevant
tree pattern may appear at the end of this order (for example, it is
possible that each valid subtree of the tree pattern has low rele-
vance, but the tree pattern has a high aggregate score because there
are many such subtrees); and ii) optimization for the top-k incurs
additional cost (our baseline described above avoids to do so).

If we know the total number of tree patterns in advance, the
enumeration-aggregation approach can early terminate as soon as
we collect enough number of tree patterns during the enumeration.
However, the hardness result below implies that it is impossible.

THEOREM 1. (Counting Complexity) The problem of count-
ing the number of tree patterns with height at most d for a keyword
query q in a knowledge graph (COUNTPAT) is #P-Complete.

#P-Completeness is an analogue of NP-Completeness for count-
ing problems. Our proof uses a reduction from the #P-Complete
problem s-t PATHS [40]. Details are in the full version [4].

The hardness result and the reduction inspire us to precompute
and index path patterns, as introduced next in Section 3.

3. INDEXING PATH PATTERNS
We propose a path-pattern based index, and it will be used to

design efficient search algorithms introduced later in Section 4.
In the index, for each keyword w, we materialize all paths start-

ing from some node (root) r in the knowledge graph G, following
certain pattern P , and ending at a node or an edge containing w.
Recall that a word w may be contained in the text description of
a node or the type of a node/edge. These paths are grouped by
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Figure 4: Indexing patterns of paths ending at each word w
with length no more than d

word pattern root path
database (Software)(Genre)(Model) v1 v1v2

database (Software)(Genre)(Model) v7 v7v9

database (Software)(Reference)(Book) v1 v1v12

database (Book) v12 v12
· · · · · · · · · · · ·
(a) Pattern-first path index for word “database”.
word root pattern path
database v1 (Software)(Genre)(Model) v1v2

database v1 (Software)(Reference)(Book) v1v12

database v7 (Software)(Genre)(Model) v7v9

database v12 (Book) v12
· · · · · · · · · · · ·
(b) Root-first path index for word “database”.

Figure 5: Examples of two types of path indexes for the knowl-
edge graph in Figure 1(d)

root r and pattern P . Only paths with length at most d need to be
stored if we are considering the d-height tree pattern problem. De-
pending on the needs of algorithms (introduced in Sections 4.1 and
4.2), these paths are either sorted by patterns first and then roots
(pattern-first path index in Figure 4(a)), or by roots first and then
patterns (root-first path index in Figure 4(b)).

The pattern-first path index (Figure 4(a)) provides the following
methods to access the paths:

• Patterns(w): get all patterns following which some root can
reach some node/edge containing w.
• Roots(w, P ): get all roots which reach some node/edge con-

taining w through some path with pattern P .
• Paths(w, P, r): get all paths with pattern P starting at root

r and ending at some node/edge containing w.

Similarly, the root-first path index (Figure 4(b)) provides the fol-
lowing methods to access the paths:

• Roots(w): get all root nodes which can reach some node/edge
containing w.
• Patterns(w, r): get all patterns following which the root r

can reach some node/edge containing w.
• Paths(w, r): get all paths which start at root r and end at

some node/edge containing w.
• Paths(w, r, P ): get all paths with pattern P starting at root

r and ending at some node/edge containing w.

Following is a tiny example of how to access these two different
types of indexes.

EXAMPLE 3.1. For the knowledge graph in Figure 1(d), Fig-
ure 5 shows the two types of indexes on word w = “database”.

For the pattern-first path index in Figure 5(a), Patterns(w) re-
turns three patterns. Consider the pattern P = (Software) (Refer-
ence) (Book), Roots(w, P ) returns one root {v1}.
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For the root-first path index in Figure 5(b), Roots(w) returns
three roots {v1, v7, v12}. Patterns(w, v1) returns two patterns.
Consider the pattern P = (Software) (Genre) (Model) in particu-
lar, Paths(w, v1, P ) returns only one path {v1v2}.

Index Construction
To construct the indexes for a (user-specified) height threshold d,
for each possible root r, we use DFS to find all paths p starting
from r and ending at some node t/edge e with length no more than
d. Let text(p) be the set of words in the text description or type
of the node t/edge e, and recall pattern(p) is the path pattern of p.
The index construction process is illustrated in Algorithm 1: each
path p, together with its starting node r and pattern P , is inserted
into proper positions of the two indexes in lines 5-6 (we use “+” to
denote the insertion of an element into a dictionary).

The same set of paths are stored in these two types of indexes,
but in different orders. We can use dictionary data structures, such
as hash tables, to support the access methods Roots(), Patterns(),
and Paths() (in constant time). But to improve the efficiency of the
access methods in practice, we then sort and store paths sequen-
tially in memory: by patterns first and then roots for pattern-first
path index as in Figure 4(a), or by roots first and then patterns for
root-first path index as in Figure 4(b). Also, we store pointers point-
ing to the beginning of a list of paths with the same root r and/or
pattern P to support the above access methods,

Note that the terms like |T (w)|, PR(f(w)), and sim(w, f(w))
in the relevance-scoring functions (4)-(6) can be precomputed and
stored in the path index as well, so that the overall score (2) can be
computed efficiently online for a tree pattern.

Input: knowledge graph G and height threshold d

1: For each node r in the knowledge graph G
2: For each path p starting from r with length ≤ d
3: Let P be pattern(p), the path pattern of p
4: For each word w in text(p)
5: Construct pattern-first path index:

Patterns(w)← Patterns(w) + P ;
Roots(w, P )← Roots(w, P ) + r;
Paths(w, P, r)← Paths(w, P, r) + p.

6: Construct root-first path index:
Roots(w)← Roots(w) + r;
Patterns(w, r)← Patterns(w, r) + P ;
Paths(w, r, P )← Paths(w, r, P ) + p.
(Paths(w, r) is supported by enumerating P
and accessing Paths(w, r, P ) for each P )

Algorithm 1: Constructing the two types of indexes

We can show that the size of our index is bounded by the total
number of paths with length at most d and the size of text on entities
and attributes. As these paths can be enumerated in linear time, the
time to compute our path index is linear in the total number of paths
and the size of text, with a logarithmic factor for sorting.

THEOREM 2. (Index Cost) Let P be the set of paths in the in-
dex (with length at most d). For each s-t path p ∈ P , let |p| be its
length, text(p) be the text on the node t, and |text(p)| be the num-
ber of words in the text. Then both the root-first and the pattern-first
path indexes need space O(

∑
p∈P |p| · |text(p)|), and can be con-

structed in linear time O(log |P|
∑

p∈P |p| · |text(p)|).

In practice, to handle synonyms, every word has its stemmed ver-
sion and synonyms in our index pointing to the same path-pattern
entry. The size of the index does not increase much.

4. SEARCHING WITH PATH INDEX
Two search algorithms for the d-height tree pattern problem are

introduced in Sections 4.1 and 4.2: the first one performs well in
practice but has exponential running time in the worst case; and the
second one provides provable performance guarantee and can be
further speedup using sampling techniques. Both of them utilize
the path-pattern based index introduced in Section 3.

4.1 Pattern Enumeration­Join Approach
From the definition of a tree pattern in Equation (1), we can see

that it is composed of m path patterns if there are m keywords
in the query. Our first algorithm enumerates the combinations of
these m path patterns in a tree pattern using the pattern-first path
index (Figure 4(a)); for each combination, retrieve paths with these
patterns from the index, and join them at the root to check whether
the tree pattern is empty (i.e., whether there is any valid subtree
with this pattern). For each nonempty one, the valid subtrees in
trees(P ) and its score are then computed using the same index.

The algorithm, named as PATTERNENUM, is described in Algo-
rithm 2. It first enumerates the root type of a tree pattern in line 2.
For each root type C, it then enumerates the combinations of path
patterns starting from C and ending at keywords wi’s in lines 4-8.
Each combination of m path patterns forms a tree pattern P , but
it might be empty. So lines 5-6 check whether trees(P ) is empty
again using the path index in lines 7-8. For each nonempty tree
pattern, its score and the valid subtrees in trees(P ) are computed
and inserted into the queue Q in line 8. After every root type is
considered, the top-k d-height tree patterns in Q can be output.

Input: knowledge graph G, with pattern-first path index, and key-
word query q = {w1, . . . ,wm}
1: Initialize a queue Q of tree patterns, ranked by scores.
2: For each type C ∈ C
3: Let PatternsC(wi) be the set of path patterns

rooted at the type C in Patterns(wi)
4: For each tree pattern P = (P1, . . . , Pm)

∈ PatternsC(w1)× . . .× PatternsC(wm)
Check whether trees(P ) is empty:

5: Compute candidate roots R←
∩m

i=1 Roots(wi, Pi)
6: If R ̸= ∅ then
7: trees(P )←

∪
r∈R Paths(w1, P1, r)
× . . .× Paths(wm, Pm, r);

8: Compute score(P, q) and insert P into queue Q
(only need to maintain k tree patterns in Q)

9: Return the top-k tree patterns in Q and valid subtrees.

Algorithm 2: PATTERNENUM: finding top-k tree patterns and
valid subtrees for a keyword query

EXAMPLE 4.1. Consider a query “database software company
revenue” with four keywords w1-w4 in the knowledge graph in Fig-
ure 1(d). When the root type C = Software, we have two path
patterns (Software) (Genre) (Model) and (Software) (Reference)
(Book) from PatternsC(w1), as in Figure 5(a). To form the tree
pattern in Figure 2(a), in line 4, we pick the first path pattern from
PatternsC(w1), (Software) from PatternsC(w2), (Software) (De-
veloper) (Company) from PatternsC(w3), and (Software) (Devel-
oper) (Company) (Revenue) from PatternsC(w4). We then find
this tree pattern is not empty, and paths in the index with these pat-
terns can be joined at nodes v1 and v7, forming two valid subtrees
T1 and T2, respectively, in Figure 1(d).
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In the experiments, we will show that PATTERNENUM is effi-
cient especially for queries which have relatively small numbers of
tree patterns and valid subtrees. The advantage of this algorithm is
that valid subtrees with the same pattern are generated at one time,
so no online aggregation is needed. The path index has materi-
alized aggregations of paths which can be used to check whether a
tree pattern is empty and to generate valid subtrees. Also, it keeps at
most k tree patterns and the corresponding valid subtrees in mem-
ory and thus has very small memory footprint.

However, in the worst case, its running time is still exponen-
tial both in the size of index and in the number of valid subtrees,
mainly because unnecessary costly set-intersection operators are
wasted on empty tree patterns (line 5). Consider such a worst-
case example: In a knowledge graph, we have two nodes r1 and
r2 with the same type C; r1 points to p nodes v1, . . . , vp of types
C1, . . . , Cp through edges of types A1, . . . , Ap; and r2 points to
another p nodes vp+1, . . . , v2p of types Cp+1, . . . , C2p through
edges of types Ap+1, . . . , A2p. We have two words w1 and w2,
w1 appearing in v1, . . . , vp and w2 appearing in vp+1, . . . , v2p. To
answer the query {w1,w2}, algorithm PATTERNENUM enumer-
ates a total of p2 combined tree patterns (CAiCi, CAjCj)’s for
i = 1, . . . , p and j = p + 1, . . . , 2p, but they are all empty. So its
running time is Θ(p2) or Θ(pm) in general for m keywords, where
p is in the same order as the size of the index.

4.2 Linear­Time Enumeration Approach
We now introduce an algorithm to enumerate tree patterns for a

given keyword using the root-first path index (Figure 4(b)). This
algorithm is optimal for enumeration in the sense that its running
time is linear in the size of the index and linear in the size of the an-
swers (all valid subtrees). We prove its correctness and complexity.
We will also introduce how to extend it for finding the top-k, and
how to further speed it up using sampling techniques.

The algorithm, LINEARENUM in Algorithm 3, is based on the
following idea: instead of enumerating all the tree patterns directly,
we first find all possible roots for valid subtrees, and then assemble
the trees from paths with these roots by looking up the path index.

These candidate roots, denoted as R, can be found based on the
simple fact that a node in the knowledge graph is the root of some
valid subtree if and only if it can reach every keyword at some
node. So the set R can be obtained by taking the intersection of
Roots(w1), . . . ,Roots(wm) from the root-first path index (line 1).

For each candidate root r, recall that, using the path index, we
can retrieve all patterns following which r can reach keyword wi at
some node by calling Patterns(wi, r). So pick any pattern Pi ∈
Patterns(wi, r) for each wi, P = (P1, . . . , Pm) is a nonempty
tree pattern (i.e., trees(P ) ̸= ∅). Line 7 of subroutine EXPAND-
ROOT in Algorithm 3 gets all such patterns. Each P must be
nonempty (with at least one valid subtree), because by picking any
path pi from Paths(wi, r, Pi) for each Pi, we can get a valid sub-
tree (p1, . . . , pm) with pattern P , as in line 10. Note that valid
subtrees with pattern P may be under different roots, so we need a
dictionary, TreeDict in line 11, to maintain and aggregate the valid
subtrees along the whole process. Finally, TreeDict[P ] is the set
of valid subtrees with pattern P as returned in lines 5-6.

EXAMPLE 4.2. Consider a query “database software company
revenue” with four keywords w1-w4 in the knowledge graph in Fig-
ure 1(d). The candidate roots we get are {v1, v7, v12} (line 1
of Algorithm 3). For v1 and w1 = “database”, we can get two
path patterns from Patterns(w1, v1): (Software) (Genre) (Model),
and (Software) (Reference) (Book). Picking the first one, together
with patterns (Software), (Software) (Developer) (Company), and

(Software) (Develop) (Company) (Revenue) for the other three key-
words “software”, “company”, ‘revenue”, respectively, we can get
the tree pattern in Figure 2(a) (one of T obtained in line 7). This
pattern must be nonempty, because we can find a valid subtree un-
der v1 by assembling the four paths v1v2, v1, v1v3, and v1v3v4
into a subtree T1 in Figure 1(d) (line 10).

Another valid subtree, T2 in Figure 1(d), with the same pattern
can be found later when candidate root v7 is considered. They are
both maintained in the dictionary TreeDict.

Input: knowledge graph G, root-first path indexes, and keyword
query q = {w1, . . . ,wm}
1: Compute candidate roots R←

∩m
i=1 Roots(wi).

2: Initialize a dictionary TreeDict[].
3: For each candidate root r ∈ R
4: Call EXPANDROOT(r, TreeDict[]).
5: For each tree pattern P , trees(P )← TreeDict[P ].
6: Return tree patterns and valid subtrees in trees(·).

Subroutine EXPANDROOT(root r, dictionary TreeDict[])
Pattern Product:

7: T ← Patterns(w1, r)× . . .× Patterns(wm, r);
8: For each tree pattern P = (P1, . . . , Pm) ∈ T

Path Product:
9: For each (p1, . . . , pm) ∈

Paths(w1, r, P1)× . . .× Paths(wm, r, Pm)
10: Construct tree T from the m paths p1, . . . , pm;
11: TreeDict[P ]← TreeDict[P ]

∪
{T}.

Algorithm 3: LINEARENUM: enumerating all tree patterns and
valid subtrees for a keyword query

LINEARENUM is optimal in the worst case because it does not
waste time on invalid (empty) tree patterns. Every tree pattern it
tries in line 8 has at least one valid subtree. And to generate each
valid subtree, the time it needs is linear in its tree size (line 10). We
formally present its correctness and complexity as follows.

THEOREM 3. (Running Time and Correctness) For a key-
word query {w1, . . . ,wm} against a knowledge graph G, let Si be
the size of the path index for word wi, and let N be the total num-
ber of valid subtrees. LINEARENUM can correctly enumerate all
tree patterns and valid subtrees in time O

(
N · d ·m+

∑m
i=1 Si

)
.

4.2.1 Partitioning by Types to Find Top­k
Now we introduce how to extend LINEARENUM in Algorithm 3

to find the top-k tree patterns (with the highest scores). A naive
method is to compute the score score(P, q) for every tree pattern
after we run LINEARENUM for the given keyword query q on the
knowledge graph G. An obvious deficiency of this method is that
the dictionary TreeDict[] used in Algorithm 3 could be very large
(may not fit in memory and may incur higher random-access cost
for lookups and insertions), as it keeps every tree patterns and as-
sociated valid subtrees, but we only require the top-k.

A better idea is to apply LINEARENUM for candidate roots with
the same type at one time. For each type C, we apply LINEARENUM
only for candidate roots with type C (only line 3 of Algorithm 3
needs to be changed); then compute the scores of resulting tree pat-
terns/answers but only keep the top-k tree patterns; and repeat the
process for another root type. In this way, the size of the dictionary
TreeDict[] is upper-bounded by the number of valid subtrees with
roots of the same type, which is usually much smaller than the total
number of valid subtrees in the whole knowledge graph.
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For example, for the knowledge graph and the keyword query in
Figure 1(d), the tree pattern P1 in Figure 2(a) is found and scored
when we apply LINEARENUM for the type “Software”, and P2 in
Figure 2(b) is found when “Book” is the root type.

This idea, together with the sampling technique introduced a bit
later, will be integrated into LINEARENUM-TOPK in Algorithm 4
for finding the top-k d-height tree patterns.

Input: knowledge graph G, with both path indexes, and keyword
query q = {w1, . . . ,wm}
Parameters: sampling threshold Λ and sampling rate ρ

1: Initialize a queue Q of tree patterns, ranked by scores.
2: For each type C among all types C
3: Compute candidate roots of type C:

R = (
∩m

i=1 Roots(wi))
∩

C;
4: Compute the number of valid subtrees rooted in R:

NR =
∑

r∈R

∏m
i=1 |Paths(wi, r)|;

5: If NR ≥ Λ let rate = ρ else rate = 1;
6: Initialize dictionary TreeDict[];
7: For each candidate root r ∈ R,
8: With probability rate,

call EXPANDROOT(r,TreeDict[]);
9: For each tree pattern P rooted at C in TreeDict

10: Compute estimated score ŝ(P, q) (≈ score(P, q))
from sample valid subtrees in TreeDict[P ];

11: For each P with the top-k estimated score ŝ,
Compute the exact score score(P, q) and
insert P into the queue Q (with size at most k);

12: Return the top-k tree patterns in Q and valid subtrees.

Algorithm 4: LINEARENUM-TOPK (Λ, ρ): partitioning by types
and sampling roots to find the top-k tree patterns

4.2.2 Speedup by Sampling
The two most costly steps in LINEARENUM are in subroutine

EXPANDROOT: i) the enumeration of tree patterns in the prod-
uct of Patterns(wi, r)’s (line 7); and ii) the enumeration of valid
subtrees in the product of Paths(wi, r, Pi)’s (line 9). Too many
valid subtrees could be generated and inserted into the dictionary
TreeDict[] which is costly in both time and space. Now we intro-
duce how to use sampling techniques to find the top-k tree patterns
more efficiently (but with probabilistic errors).
Estimating scores using samples. Instead of computing the valid
subtrees for every root candidate (as EXPANDROOT in Algorithm 3),
we do so only for a random subset of candidate roots – each can-
didate root is selected with probability ρ. Equivalently, for each
tree pattern P , only a random subset of valid subtrees in trees(P )
are retrieved (kept in TreeDict[P ]), and we can use this random
subset to estimate score(P, q) as ŝ(P, q). We then only maintain
tree patterns with the top-k estimated scores, without keeping the
complete set of valid subtrees in trees(P ) for each. Finally, we
compute the exact scores and the complete sets of valid subtrees
only for the estimated top-k, and re-rank them before outputting.

The detailed algorithm, called LINEARENUM-TOPK, is described
in Algorithm 4. In addition to the input knowledge graph and key-
word query, we have two more parameters Λ and ρ. We first enu-
merate the type of roots in a tree pattern in line 2. For each type,
similarly as LINEARENUM, candidate roots of this are computed
in line 3. We can compute the number of valid subtrees (possibly
from different tree patterns) with these roots as NR in line 4, with-
out really enumerating them. To this end, we only need to get the
number of paths starting from each candidate root r and ending at

each keyword wi. Only when the number of valid subtrees is no
less than Λ, we apply the root sampling technique in lines 7-8 with
rate = ρ (otherwise rate = 1): for each candidate root r, with
probability rate, we compute the valid subtrees under it and insert
them into the dictionary TreeDict[] (subroutine EXPANDROOT in
Algorithm 3 is re-used for this purpose). After all candidate roots
of a type are considered, in lines 9-10, we can compute the esti-
mated score as ŝ(P, q) for each tree pattern P in TreeDict. Only
for tree patterns with the top-k estimated scores, we compute their
valid subtrees with exact scores and insert them into a global queue
Q in line 11 to find the global top-k tree patterns.

The running time of LINEARENUM-TOPK can be controlled by
parameters Λ and ρ. Sampling threshold Λ specifies for which
types of roots, we sample the valid subtrees to estimate the pattern
scores. By setting Λ = +∞ and ρ = 1 (no sampling at all), we
can get the exact top-k. When Λ < +∞ and ρ < 1, the algorithm
is speedup but there might be errors in the top-k answers. In the
experiments, we will show that even when ρ = 0.1 (i.e., use 10%
valid subtrees to estimate the pattern scores), we can get reasonably
precise top-k tree patterns while the algorithm is speedup roughly
10 times. The theoretical analysis about the running time and pre-
cision of LINEARENUM-TOPK are in the following two theorems.

THEOREM 4. (Running Time) For a keyword query {w1, . . . ,
wm} in a knowledge graph G, let Si be the size of the path index
for word wi, let N be the total number of valid subtrees, and let |C|
be the total number of types. LINEARENUM-TOPK needs time:
O
(
min(Λ · |C|, N) · d ·m+ ρ ·N · d ·m+

∑m
i=1 Si +N · log k

)
.

(Correctness) When Λ = +∞ and ρ = 1 (no sampling), the
algorithm output the correct top-k tree patterns.

We establish the pairwise precision of LINEARENUM-TOPK:
for two tree patterns P1 and P2 with exact scores score(P1, q) >
score(P2, q) in the general form of (2), how likely we would order
them incorrectly, ŝ(P1, q) < ŝ(P2, q), according to the estimated
scores obtained from a random sample of valid subtrees (so that P1

might be missed from the top-k output by the algorithm).

THEOREM 5. (Precision) For a query q and tree patterns P1

and P2 with scores s1 = score(P1, q) and s2 = score(P2, q) s.t.
s1 > s2, if LINEARENUM-TOPK runs with Λ = 0 (alway sam-
pling) and sampling rate ρ < 1, then ŝ(P1, q) < ŝ(P2, q) (P1 is
incorrectly ranked lower than P2 in estimation) with probability

Pr[error] ≤ exp

(
−2
(
s1 − s2
s1 + s2

)2

· ρ2
)
. (7)

To prove the above theorem, we note that the score score(Pi, q)
can be decomposed among all candidate roots, i.e., rewritten as

si = score(Pi, q) =
∑

T∈trees(Pi)

score(T, q) =
∑
r∈V

∑
T∈treesr(Pi)

score(T, q),

where treesr(Pi) is the set of valid subtrees with pattern Pi and
rooted at node r. Let si(r) =

∑
T∈treesr(Pi)

score(T, q) be the
sum of relevance scores of all valid subtrees rooted at r for pattern
Pi, and thus si =

∑
r si(r). In order to compare s1 and s2, we can

compare
∑

r∈R+ s1(r) and
∑

r∈R+ s2(r) on a random subset R+

of all candidate roots (sampled in line 8 of LINEARENUM-TOPK
with rate ρ). Using Hoeffding’s inequality [15], we can bound the
probability that we make mistakes by a term that is exponentially
small in the sampling rate ρ and the difference between s1 and s2.
Detailed proof can be found in the full version of this paper [4].

The theorem has two direct implications which are consistent to
our intuition: i) the error probability decreases when the (relative)
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d = 2 d = 3 d = 4

Time (s) 43 502 7,011
Size (MB) 229 2,633 34,485

Figure 6: Index construction cost on Wiki for different d

difference between score(P1, q) and score(P2, q) becomes larger;
and ii) the error probability is smaller for higher sampling rate ρ
(exponentially in ρ2). They partly explain why the sampling tech-
nique works well in practice, as shown in Section 5.2.
How to set sampling threshold and sampling rate. Intuitively,
the sampling threshold Λ determines when to sample, i.e., for each
entity type, applying the sampling technique when the number of
valid subtrees with roots of this type is no less than Λ; and the
sampling rate ρ determines the sample size for each root type.

A global sampling threshold Λ can be set regardless of the query
and the number of valid subtrees w.r.t. it. The rationale is that,
when the number of entity types is fixed, if the number of valid
subtrees rooted in a type is less than Λ, sampling is not necessary
(sampling rate set to 1 in line 5 of Algorithm 4) because comput-
ing the exact scores is not expensive anyway. On the other hand,
when the number of valid subtrees rooted in a type is at least Λ,
we sample a fixed portion (ρ) of them to estimate the scores, and
Theorem 5 provides a guarantee of precision w.r.t. ρ. So Λ and ρ
can be set regardless of the queries, but they do rely on users’ pref-
erence (trade-off between the response time of the system and the
precision) for fixed scheme of the knowledge graph.

5. EXPERIMENTS
The following approaches for the d-height tree pattern problem

are implemented in C#. They are evaluated on a machine with 2.4
GHz Intel CPUs and 96 GB memory, under Windows Server.

Baseline: The baseline approach described in Section 2.3.
PETopK: Our first algorithm, the pattern enumeration-join ap-

proach PATTERNENUM described in Section 4.1.
LETopK: Our second algorithm, LINEARENUM-TOPK, described

in Section 4.2. Recall that, when the two parameters sampling
threshold Λ = +∞ and sampling rate ρ = 1, it gets exact top-
k answers; and otherwise, it gets approximate top-k.
Datasets. We compare the algorithms on two real-life datasets,
Wiki [5] and IMDB [7]. The Wiki dataset contains 1.89 million
entities. The type of each entity and its attributes are extracted
from its infobox block on the top-right of its page. There are a total
of 3424 types. The corresponding knowledge graph contains 34.99
million edges. The IMDB dataset contains 7 types of 6.58 million
entities, with 79.42 million directed edges in the knowledge graph.
Queries. We randomly selected a total of 500 queries from Bing’s
log for experiments on Wiki. The numbers of keywords in the
queries vary from 1 to 10, and for each we have 50 queries. For
IMDB, we randomly constructed 500 queries from IMDB’s vocab-
ulary. Again, the numbers of keywords in the queries are from 1
to 10, and for each there are 50 queries. When we report the run-
ning time of an algorithm for a set of queries, we report the min /
average / max execution time in the form of error bars.
Index size and height threshold d. We build the path indexes
described in Section 3 with different height thresholds d = 2, 3,
and 4 for the Wiki dataset. The time needed to construct them and
their sizes are reported in Figure 6. Both the time and the size
increase exponentially in d mainly because the number of possible
tree patterns increases exponentially. For IMDB, the knowledge
graph contains only paths of length at most three, and the size of
the indexes is 0.8 GB. All the indexes are stored in memory.
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Figure 7: Execution time and number of tree patterns (with
height at most d) for different height threshold d on Wiki
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Figure 8: Execution time and number of tree patterns with
height at most d on IMDB

5.1 Performance of Exact Algorithms
We first compare different approaches when the exact top-k tree

patters are desired. No sampling is used in LETopK (Λ = +∞ and
ρ = 1). We use k = 100 by default and Exp-IV is about varying k.
Exp-I: Varying height threshold d and number of tree patterns.
We first vary the height threshold d for the Wiki dataset. When d
increases, the number of paths with length at most d increases sig-
nificantly, and as a result, for a fixed query, the number of valid
subtrees and tree patterns also increase significantly. From Fig-
ure 7, we can see that the number of tree patterns increases from
[10, 104] to [10, 108] for d = 2, 3, 4. For each d, we study how the
number of tree patterns affect the execution time of query process-
ing. The 500 queries on Wiki are partitioned into different groups
based on the total number of possible tree patterns that can be found
for each query, e.g., group 102 contains all queries with 10 – 99 tree
patterns. The results are reported in Figure 7.

It can be seen that larger d greatly affects the performance of our
algorithms, with a larger number of possible tree patterns as the ma-
jor reason. Overall, LETopK is faster than Baseline, and PETopK
is the fastest among the three algorithms. We want to emphasize
that the advantage of LETopK in practice mainly relies on the sam-
pling technique. But sampling is disabled for now to compare exact
top-k algorithms, and will be discussed in Section 5.2.

In terms of the answer quality, on one hand, d should be large
enough to ensure that we explore enough number of interpretations
for the query; and on the other hand, if d is too large, some large
tree patterns that correspond to loose relationship among keywords
may appear among the top answers, which actually deteriorate the
answer quality. Similar finding was also made in [25] for ranking
individual subtrees. In our case, when d = 3, the best interpreta-
tions (tree patterns) of the queries on Wiki can be found at an aver-
age ranking of 2.797. We will miss some of them for d = 2. But
for d = 4, the (same) best interpretations have an average ranking
of 12.514. So we use d = 3 in the rest experiments for Wiki.

In IMDB, the max length of directed paths is three, so d = 3
suffices (since tree patterns here have heights at most 3). The re-
sults are reported in Figure 8 for d = 3. The set of answers and
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Figure 9: Execution time for different queries
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Figure 10: Execution time on Wiki datasets of different sizes

execution time will be exactly the same for d > 3. Similar to the
results in Wiki, while the number of possible tree patterns affects
execution time, PETopK is the fastest one on average.
Exp-II: Varying number of valid subtrees. Besides the num-
ber of tree patterns, another important parameter about a keyword
query is how many valid subtrees in total can be found in the knowl-
edge graph. This parameter may affect the performance of algo-
rithms a lot. For example, Theorem 3 indicates that the running
time of LETopK is linear in this number. So we partition queries
into different groups based on how many valid subtrees a query has
in total (e.g., group 103 contains all queries with 100 – 999 valid
subtrees). Figure 9 reports the execution time when varying the
number of valid subtrees on both Wiki and IMDB.

Again, LETopK is faster than Baseline, and PETopK is the
fastest among the three algorithms. The execution time of Base-
line and LETopK is bound by the time on building the dictionary
TreeDict. LETopK is faster than Baseline as a result of the “par-
titioning by types” technique in Section 4.2.1. PETopK is usually
the fastest since the pattern-first path index it uses allows it to avoid
the time consuming dictionary building and online aggregation.
Exp-III: Varying size of knowledge graph. We study the scal-
ability of different algorithms on the Wiki dataset by varying the
number entities and types in the knowledge graph. We randomly
select a subset of entities from the Wiki dataset, and construct the
induced subgraph of the original knowledge graph w.r.t. the se-
lected subset of entities. The execution time of each algorithm on
the induced knowledge graphs for different numbers (10%-100%)
of entities is shown in Figure 10. The execution time of each algo-
rithm increases (almost) linearly as the number of entities increases
from 10% to 100% of the entities in the Wiki dataset.

Similar results are found for varying numbers of entity types in
the knowledge graph. Details are omitted for the space limit.
Exp-IV: Varying parameter k. The value of k has very little im-
pact on the execution time of our algorithms. For each tree pattern,
it takes O(log k) operations to insert it to the priority queue of size
k, while the number of operations required to find it is independent
of k (which is usually much larger than O(log k)). Thus, the exe-
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Figure 12: Performance of LETopK with different sampling
rate ρ (for Λ = 105, k = 100). The circles on curves in Fig-
ure 12(a) mark the execution time of PETopK.

cution time is dominated by the aggregation/enumeration of valid
subtrees, and is almost not affected by the value of k.

5.2 Performance of Sampling Algorithm
Now we study the performance of the sampling technique used

in LETopK. Execution time and precision are the two measures that
we are interested in. The precision here is defined as the ratio be-
tween the number of truely top-k answers found by LETopK (with
sampling) and k. We focus on Wiki, since the number of valid sub-
trees is usually much smaller on IMDB (so sampling is not useful
there). We selected three queries with different numbers of valid
subtrees. The numbers of valid subtrees / tree patterns for them are
(2,479,899 / 314,614), (819,739 / 61,967) and (540,849 / 32,300).
Exp-V: Varying sampling threshold Λ. Recall that the sampling
threshold Λ determines when to sample: for each entity type, ap-
plying the sampling technique when the number of valid subtrees
with roots of this type is no less than Λ; and the sampling rate ρ
determines the sample size for each root type. The performance of
LETopK for different sampling threshold is reported in Figure 11
for ρ = 0.01 and 0.1. Overall, both the execution time and the pre-
cision increase when the sampling threshold increases. We mark
the execution time of PETopK in Figure 11. LETopK is slower
than PETopK for a very large sampling threshold (e.g., 107) but
becomes faster when the threshold is less than or equal to 105. In
the next experiment, we will fix Λ = 105 (as a balance between
efficiency and precision), and vary the sampling rate.
Exp-VI: Varying sampling rate ρ. The performance of LETopK
for different sampling rate is in Figure 12. The circle on the execu-
tion time curve for each query is the execution time of PETopK.

For queries with larger numbers of valid subtrees (query 1 and
query 2), LETopK becomes much (5x-20x) faster than PETopK
when a smaller sampling rate is used (e.g., 0.2 for query 1 and
query 2), while preserving reasonably high precision (above 80%).

For the query with a smaller number of valid subtrees (query 3),
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Figure 13: Average coverage of individual relevant trees in top-
k tree patterns, and new tree patterns found in top-k

the performance of PETopK is on a par with LETopK. The reason
is that, for LETopK, the sampling threshold Λ = 105 is large in
comparison to the number of valid subtrees (540,849 for query 3)
– so only for a few entity types where the numbers of valid sub-
trees rooted are larger than 105, the sampling technique is enabled.
As a result, only when the sampling rate used in LETopK is small
enough (≤ 0.05), LETopK is faster than PETopK, but the preci-
sion of LETopK is still consistently stable at round 0.95 (because
sampling is enabled only for a small number of root types).

5.3 Individual Trees v.s. Tree Patterns
Recall the major motivation of this paper is to search tree patterns

when the users want to find table answers (each represented as a set
of subtrees with the same tree pattern) using keywords. We are not
excluding individual best valid subtrees. But we aim to provide an
additional module for the search engine to produce and rank highly
relevant tree patterns (table answers). This new module could co-
exist with the individual-page ranking module or individual-tree
ranking module. Which module we want the search engine to direct
users to automatically according to the query intention analysis and
how to mix individual valid subtrees with tree patterns to provide a
universal ranking are both open problems. It will be an interesting
future work to address them using extensive user study.

We compute a separate list of individual top-k valid subtrees,
based on their tree scores in Equation (3). For the 500 keyword
queries on Wiki, we calculate the average coverage of the individ-
ual top-k subtrees in top-k tree patterns (each as one row in some
aggregated table), and the average percentage of top-k patterns that
cannot be found in the individual top-k subtrees. The results are
reported in Figure 13, for k varying from 10 to 100. Because of
their “singular” patterns (i.e., only a small number of valid subtrees
have the same pattern), around half of the individual top-k subtrees
are lost in the top-k tree patterns. At the same time, up to 70% of
the top-k tree patterns are new to the individual top-k subtrees.
Case study. We consider the query “XBox Game” in the Wiki
dataset to compare the individual top valid subtrees and the top tree
patterns in Figures 14-15. Both individual subtrees and tree pat-
terns are shown as tables with column names as edge(attribute)/node
types and row cells as entities. The top-1 individual valid sub-
tree for “XBox Game” finds the entity “XBox”, because of its
relatively high PageRank score, with one additional edge/attribute
containing the keyword “game”. The top-2 finds a bigger sub-
tree with “DVD” as the root and two branches “DVD-usage-XBox”
and “DVD-owners-Sony-products-video game”, and it ranks high
mainly because of the high PageRank score of “DVD”. The top-3
finds a singular entity with “XBox” appearing in the entity name
and “Game” in the entity type. Of course, when the user’s inten-
tion is to find “a list of XBox games” by issuing this query, the tree
pattern/table answer shown in Figure 15 is better; and when the in-
tention is to find “popular XBox game”, the top-1 individual valid
subtree in Figure 14 is also a good candidate. Top-2 and top-3 valid
subtrees are the cases when a top individual subtree is lost in our

Top-1
information appliance top game
Xbox Halo 2

Top-2
storage medium usage owners/creators products
DVD Xbox Sony video game

Top-3
video game online service
Xbox Live Arcade

Figure 14: Top individual valid subtrees for “XBox Game”

Top-1

video game platform
Halo 2 Xbox
GTA: San Andreas Xbox
Painkiller Xbox
... ...

Figure 15: Top-1 tree pattern for “XBox Game”

top-k tree pattern answers because of the singularity of its pattern
(no other valid subtree has the same pattern).

6. RELATED WORK
Searching and ranking tables. As search engines are able to keep
more and more tables from the Web, there have been efforts to uti-
lize these tables. On one hand, Web tables can be leveraged and re-
turned directly as answers in response to keyword queries [27, 41,
35, 44]. On the other hand, Web tables can be used to understand
keyword queries better through mapping query words to attributes
of tables [37] and to provide direct answers to fact lookup queries
[45]. Different from the above works, in this paper, we focus on
the scenarios when relevant and complete tables are not available
for user-given keyword queries, and our goal is to compose tables
online as answers to those queries.
Searching subtrees/subgraphs in RDB. Previous studies on key-
word search in RDB extend ranking documents/webpages into rank-
ing substructures of joining tuples which together contain all key-
words in a query. They model an RDB as a graph, where tu-
ples/tables are nodes and foreign-key links are edges. Each answer
to a keyword query in such a graph could be either a subtree ([10],
[20], etc.) or a subgraph ([36], [25], etc.) with all the keywords
contained. There are two lines of works with the same goal of find-
ing and ranking these answers. The first line materializes the RDB
graph and proposes indexes and/or algorithms to enumerate top-k
subtrees or subgraphs [11, 21, 22, 13, 18, 17, 25], etc. The second
line first enumerates possible join trees/plans (candidate networks)
based on the database schema and then evaluates them using SQL
to obtain the answers [10, 20, 19, 28, 33, 36, 34], etc. Yu et al. [46]
provide a comprehensive survey on these two lines.

Our enumeration-aggregation baseline borrows ideas from the
first line of previous works. It essentially first enumerates valid
subtrees in our knowledge graph and groups them by their tree pat-
terns. But this method is deficient because the bottleneck now is
the grouping step instead of the enumeration step. The second line
of works (candidate network enumeration-evaluation) are not ap-
plicable in our problem because the schema of a knowledge base is
usually much larger than the schema of an RDB, and thus the first
step, candidate network enumeration, becomes the bottleneck. [23]
analyzes the complexity of this subproblem and proposes a novel
parameterized algorithm which is interesting in theory.
Keyword search in XML data. Another important line of works
are to search LCAs (lowest common ancestors) in XML trees using
keywords, [26, 43, 38, 30], etc. The general goal is to find low-
est common ancestors of groups of nodes containing the keywords
in the query. These LCAs, together with keyword-node matches
sometimes, are returned as answers to the keyword query. Various
strategies to identify relevant matches by imposing constraints on
answers are developed, such as meaningful LCA [26], smallest LCA
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[43, 38], and MaxMatch [30]. LCA-based approaches are not ap-
plicable in our problem for two reasons: i) our goal is to find and
rank tree patterns, each of which aggregates a group of subtrees ac-
cording to the node/edge types on the paths from the root to each
leaf containing a keyword, instead of individual roots/matches as
in LCA approaches – if we enumerate all LCA matches and group
them by patterns, it would be equivalent to our baseline; and ii)
LCA is not well defined in our knowledge graph with cycles.

In addition, XSeek [29] tries to infer users’ intention by cate-
gorizing keywords in the query into predicates and return nodes.
And [31] defines an equivalence relationship among query results
on XML based on the classification of predicates and return nodes
of keywords. [32] provides a comprehensive survey on this line.
Keyword search in RDF graphs. Our knowledge graph can be
considered as an RDF graph. Previous works on keyword search
in RDF graphs extend the two lines of works on keyword search
in RDBMS. For example, [39] assume that user-given keyword
queries implicitly represent structured triple-pattern queries over
RDF. They aim to find the top-k structured queries that are relevant
to a keyword query, which essentially extends the candidate net-
work enumeration problem in RDBMS to RDF. [16] and [12] study
ranking models and algorithms for the results of those structured
queries over RDF. [24] tries to find the top-k entities that are reach-
able from all the keywords in the query over RDF. [42] proposes a
new summarization language which improves result understanding
and query refinement. It takes all the answers (subgraphs in RDF)
to structured queries as input and output a summarization which is
as concise as possible and satisfies certain coverage constraint.
Searching aggregations in multidimensional data. A major mo-
tivation of our work is that a meaningful answer to a keyword query
may be a collection of tuples/tuple joins, which need to be aggre-
gated before being output. This idea is also explored in multidi-
mensional text data by [14, 47]. With a different data model and
application scenarios, an answer there is a “group-by” on a subset
of dimensions such that all keywords are contained in the aggre-
gated tuples. In [47], how to enumerate all valid and minimal an-
swers is studied, and in [14], scoring models for those answers and
efficient algorithms to find the top-k are proposed.

7. CONCLUSIONS
We introduce the d-height tree pattern problem in a knowledge

base for keyword search. Formal models of tree patterns are de-
fined to aggregate subtrees in a knowledge graph which contain
all keywords in a query. Such tree patterns can be used to bet-
ter understand the semantics of keyword queries and to compose
table answers for users. We propose path-based indexes and ef-
ficient algorithms to find tree patterns for a given keyword query.
To further speed up query processing, a sampling-based approach
is introduced to provide approximate top-k with higher efficiency.
Our approaches are evaluated using real-life datasets.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. It is easy to show that COUNTPAT is in #P, because
for any tree pattern we can verify whether it is valid in polynomial
time. To complete the proof, we need to prove its #P-hardness by
a reduction from the s-t PATHS problem: counting the number of
simple paths from node s to t in a directed graph G = (V, E),
which is proved to be #P-Complete in [40].

For any instance of s-t PATHS in a directed graph G = (V, E),
we first create a knowledge graph G2 = (V2, E2, τ, α) as follows: i)
create two copies of the directed graph G, denoted by (V ′, E ′) and
(V ′′, E ′′), and let s′/s′′ and t′/t′′ be the corresponding nodes of s
and t, respectively, in the two copies; ii) create a “root” node r and
two directed edges (r, s′) and (r, s′′); iii) let V2 = V ′ + V ′′ + {r}
and E2 = E ′ + E ′′ + {(r, s′), (r, s′′)}; and iv) let types τ on the
nodes and attributes α on the edges be unique, and text descriptions
on nodes/edges (types) be unique. Second, let q be a keyword query
with the two words from the text in entities corresponding to t′ and
t′′. We can show that the answer to the s-t PATHS instance with
input G is N iff the answer to the COUNTPAT instance with input
G2, q, and d = |V|+ 1 is N2. So the proof is completed.

B. PROOF OF THEOREM 5

PROOF. For pattern Pi (i = 1 or 2), from the definition, we can
decompose its score si = score(Pi, q) among all candidate roots:

si = score(Pi, q) =
∑

T∈trees(Pi)

score(T, q) =
∑
r∈V

∑
T∈treesr(Pi)

score(T, q)

=
∑
r∈V

si(r), (8)

where treesr(Pi) is the set of valid subtrees with pattern Pi and
rooted at node r, and si(r) =

∑
T∈treesr(Pi)

score(T, q) is the sum
of relevance scores of all valid subtrees rooted at r for pattern Pi.
When treesr(Pi) = ∅, define si(r) = 0. We suppose s1 > s2.

When LINEARENUM-TOPK runs with parameter Λ = 0, we
get a random subset of candidate roots R+ ⊆ V across different
root types, such that each candidate root is selected into R+ with
probability ρ (line 8). Then we can estimate score(Pi, q) as:

ŝ(Pi, q) =
1

ρ

∑
r∈R+

si(r).

It is not hard to show that E [̂s(Pi, q)] = score(Pi, q) = si.
Now define |V| independent random variables:

X(r) =

{
s1(r)− s2(r) with probability ρ;
0 with probability 1− ρ.

From the definitions, we have

Pr [̂s(P1, q) < ŝ(P2, q)] = Pr

 ∑
r∈R+

s1(r) <
∑

r∈R+

s2(r)


= Pr

 ∑
r∈R+

(s1(r)− s2(r)) < 0


= Pr

[∑
r∈V

X(r) < 0

]
. (9)
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Figure 16: Execution time for queries with different numbers
of keywords in Wiki dataset

From the linearity of expectation and Equation (8), we can show
that E

[∑
r∈V X(r)

]
= (s1 − s2) · ρ. So we have

Pr

[∑
r∈V

X(r) < 0

]

=Pr

[∑
r∈V

X(r)− E

[∑
r∈V

X(r)

]
< −(s1 − s2) · ρ

]

≤ exp

(
− 2((s1 − s2) · ρ)2∑

r∈V(s1(r)− s2(r))2

)
(10)

≤ exp

(
− 2((s1 − s2) · ρ)2(∑

r∈V(s1(r) + s2(r))
)2
)

(11)

=exp

(
−2
(
s1 − s2
s1 + s2

)2

· ρ2
)
. (12)

(11) is because of the inequality:
∑

i(xi − yi)
2 ≤ (

∑
i xi +∑

i yi)
2 for xi, yi ≥ 0. (12) is directly from Equation (8). And

(10) is from Hoeffding’s inequality in the following lemma where
we have each independent random variable X(r) bounded between
s1(r)− s2(r) and 0, and set t = (s1 − s2) · ρ.

LEMMA 6. (Hoeffding’s Inequality [15]) Let X1, X2, . . . , Xn

be independent bounded random variables such that Xi ∈ [ai, bi]
with probability 1. Then for any t > 0, we have

Pr

[
n∑

i=1

Xi − E

[
n∑

i=1

Xi

]
≤ −t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Putting (9) and (12) together, the proof is completed.

C. ADDITIONAL EXPERIMENTS
Exp-A-I: Varying number of keywords. The performance of our
algorithms is not sensitive to the number of keywords in a query.
In Wiki dataset, we evaluate the 500 queries, in which the number
of keywords vary from 1 to 10. We plot the min / average / max
execution time of our algorithms in Wiki for different numbers of
keywords in Figure 16. We find that the performance of our algo-
rithms does not deteriorate for more keywords (sometimes they are
even faster). The reason is as follows: while the time complexity of
both PETopK and LETopK increases as the number of keywords
increases, the real bottleneck is the number of valid subtrees. For
PETopK, with more keywords, line 5 of Algorithm 2 is more likely
to generate less number of candidate roots, and thus line 7 gener-
ates less number of valid subtrees. For LETopK, as can be seen in
Theorem 3, its complexity is linear in the number of keywords (m)
but the dominating factor is the number of valid subtrees (N ).
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