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ABSTRACT

“Robert” and “Bob” refer to the same first name but are
textually far apart. Traditional string similarity functions
do not allow a flexible way to account for such synonyms,
abbreviations and aliases. Recently, string transformations
have been proposed as a mechanism to make matching ro-
bust to such variations. However, in many domains, iden-
tifying an appropriate set of transformations is challenging
as the space of possible transformations is large. In this
paper, we investigate the problem of leveraging examples of
matching strings to learn string transformations. We formu-
late an optimization problem where we are required to learn
a concise set of transformations that explain most of the dif-
ferences. We propose a greedy approximation algorithm for
this NP-hard problem. Our experiments over real-life data
illustrate the benefits of our approach.

1. INTRODUCTION

Record matching [7] is the well-known problem of match-
ing records that represent the same real-world entity and is
an important step in the data cleaning process. An example
of record matching is identifying the customer record in a
data warehouse from the customer information such as name
and address in a sales record. Due to various reasons such as
erroneous data entry and different formatting conventions,
the name and address information could be represented dif-
ferently in the two records, making the task of matching
them challenging.

Most approaches to record matching [7] rely on textual
similarity of the records, typically computed using a simi-
larity function such as edit distance and jaccard similarity,
to determine if two records are matches or not. However,
textual similarity can be an imperfect indicator of whether
or not two records are matches; in particular, two match-
ing records can be textually dissimilar. A common reason
why this happens is alternate representations for the same
concept or entity; for example, the first name Robert can
be written as Bob, and United States of America can be
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abbreviated to USA.

Prior work [1, 7, 13] has recognized the importance of
such representational variations for record matching and
has proposed several techniques for incorporating a priori
knowledge of such variations into record matching process.
They have also demonstrated that exploiting variations us-
ing these techniques can significantly improve the quality
of record matching. Following [1, 7], we use string trans-
formations to refer to such alternate representations. We
use the notation x — y (e.g., Robert — Bob) to denote a
transformation.

While previous work [1, 7, 13] describes how a set of trans-
formations can be exploited for record matching, it does not
address how to identify suitable transformations in a record
matching setting. For a real-world record matching task,
hundreds of string transformations could be relevant and it
is a challenging task for a programmer to compile the set of
relevant transformations.

For example, consider the task of compiling transforma-
tions for matching citations such as those shown in Figure 1.
A number of transformations are relevant to this matching
task. These include conference and journal abbreviations
(VLDB — Very Large Data Bases), subject related abbre-
viations (Soft — Software), date related variations (Nov —
November, and ’76 — 1976), number related abbreviations
(8th — Eighth), and a large number of variations which
do not fall into any particular class (pp — pages, eds —
editors). Figure 2 shows a partial list of transformations
that are relevant to matching in the domain of organization
names. (These transformations were in fact generated using
the techniques presented in this paper.) As is apparent, this
list is a potpourri of many kinds of transformations such as
state abbreviations and school related variations. Manually
compiling such a list is a challenging task.

For some popular domains such as US addresses, there are
standard pre-compiled sets of transformations [17]. Trans-
formations can also be obtained from online sources—for
example, we can use DBLP [5] to compile a set of confer-
ence abbreviations. While these are indeed valuable sources,
they are rarely comprehensive for a given record matching
task. As a concrete example, while the precompiled set of
transformations provided by USPS covers variations relat-
ing to street name endings (e.g., Ave — Avenue), it does
not cover variations relating to street names (e.g., Univ —
University and 5th — Fifth).

The above scenarios argue the need for other ways of ob-
taining transformations. In this paper, we consider the ap-
proach of learning transformations from user-provided ex-
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Figure 1: Matches from citation domain
co —  company indep —  independent st —  saint sd —  school district
corp — corporation assoc — associates sch —  school univ. — university
inc —  incorporated assoc — association cmt —  community nw — northwest
dist — district 1td —  limited tech —  technology hosp — hospital
ctr —  center dept —  department PA — pennsylvania | intl —  international
mfg —  manufacturing | cond — conditioning | bros —  brothers a c — a/c

Figure 2: Example rules relevant to organization names, learned using techniques presented in this paper

amples of matching strings. The idea is that by drawing
examples from the data sets being matched, we can identify
transformations that are appropriate for the matching task
at hand. We argue that such an approach is useful because
it is easier for a record matching programmer to provide
examples compared to manually compiling lists of transfor-
mations. We believe, with the exception of [12], there is
very little previous work that addresses this problem. We
discuss [12] in more detail later in this section and defer a
more detailed discussion of related work to Section 6.

Overview and Contributions

As observed earlier, a transformation introduces textual dif-
ferences between two matching records, and this observation
suggests that we can analyze textual differences between two
matching strings (records) to identify transformations. In-
formally, the difference between two strings is parts of one
string that is not present in the other, and vice-versa. Con-
sider, for example, the pair of strings E1 from address do-
main shown in Figure 3. The difference between the two
strings is highlighted in bold and corresponds to the trans-
formation Highway — Hwy.

There are at least two reasons why building on this in-
tuition is challenging: First, more than one transforma-
tion could contribute to differences between two matching
strings. For example, many transformations such as (Proc
— Proceedings), (11th — Eleventh), and (pp — Pages)
contribute to the differences between the pair of strings
Cl in Figure 1. It is not obvious how we can syntacti-
cally analyze the difference between the two strings and at-
tribute them to the “correct” set of transformations above
and not to a completely meaningless set of transformations
such as (Proc — Proceedings of the Eleventh)and (11th
— Int. Conf.). Second, not all differences between two
matching strings are attributable to meaningful transforma-
tions. For example, no meaningful transformation (in the
sense of alternate representations) accounts for the presence

of the word Pittsburgh on the right string of C1 and its
absence on the left.

In order to learn meaningful transformations, we analyze
a large number of matching strings and seek a concise set
of syntactic rules (candidate transformations) of the form
r — y that can be used to account for a large part of the
differences between each pair of matching strings. Infor-
mally, a rule such as Proc — Proceedings is likely to be in
such a concise set, since we expect it to “occur” in a large
number of matching strings and so can be used to account
for a large part of the differences between matching strings.
On the other hand, a rule such as 11th — Int. Conf., is
unlikely to be part of such a concise set since we expect it
to occur in few matching strings. In summary, we expect
our concise set of syntactic rules to mostly correspond to
semantically meaningful transformations.

The rule learning problem that we present in Section 2.2
is a formalization of the above ideas and has connections to
the Minimum Description Length (MDL) principle [9]. We
show that the formal learning problem is NP-hard and we
provide a simple greedy algorithm in Section 3. The greedy
algorithm is an %(1— e%) approximation under reasonable as-
sumptions, and we demonstrate empirically that it produces
useful, meaningful transformations in practice. Further, the
greedy algorithm is linear in the input size which allows us
to easily scale with the number of examples.

We note that while [12] takes a similar approach of an-
alyzing differences to identify transformations, the candi-
date rules that they consider are entire differences between
matching strings. For example, the candidate rule for
matches C1 in Figure 1 would be Proc. 11th ICSE ...
In: Proceedings of the Eleventh .... In other words,
[12] does not consider the option of accounting for differences
between matches using multiple transformations. This as-
pect of the problem formulation is essential to identify trans-
formations for complex domains such as citations. We also
note that most of the technical complexity of our problem

—



Id | Left

Right

E1 | 60460 Highway 50 Olathe CO

60460 Hwy 50 Olathe CO

E2 | 60460 Highway 50 (PO Box 2239) Olathe | 60460 Hwy 50 Olathe CO

E3 | 599 N E 83rd St Redmond WA

599 Northeast 83rd St Redmond

E4 | 1932 Univ Ave Madison WI

1932 University Ave Madison WI

Figure 3: Matches from address domain

formulation arises precisely due to this component.

In Section 4, we discuss how our solution for the transfor-
mation learning problem can be leveraged for a given record
matching task. In particular, we discuss heuristics for gener-
ating large number of example matching strings using lim-
ited input from a domain expert, and discuss approaches
for validating the learned transformations before deploying
them for record matching. We note in this context that the
techniques presented in this paper exploit positive examples
and not negative examples (i.e., examples of strings that are
not matches). Developing techniques that exploit negative
examples is an interesting direction of future work.

We conduct a detailed empirical investigation of our algo-
rithm (Section 5) across a variety of real-world data sets. We
study various aspects of the algorithm including the qual-
ity of output transformations, their impact on the quality
of record matching and the impact of the number of input
examples. Finally, we discuss related work in Section 6 and
conclude in Section 7.

2. PRELIMINARIES

This section provides a brief overview of the record match-
ing problem and then formulates the transformation learning
problem, which is the main focus of this paper.

2.1 Record Matching

The record matching problem is the problem of identify-
ing, given two input relations R and S, all pairs of records
(r,s) € R x S that match, i.e., correspond to the same real-
world entity. The notion of a match is human-defined and
lacks a precise formal characterization.

Current approaches to record matching typically involve a
design phase where a record matching program is developed
using input from a domain expert and an execution phase
where the designed program is evaluated over the inputs R
and S [7, 11]. A record matching program can be fairly com-
plex: Apart from the input relations R and S, the program
can take as auxiliary inputs a variety of domain knowledge
and it can be structured as a complex operator tree of ba-
sic record matching primitives such as segmentations and
similarity joins. Most of these details are orthogonal to the
results of this paper. For the purposes of this paper, we
view a record matching program as a black box that can
benefit from a set of transformations as an auxiliary input.
The details of how transformations are used within a record
matching program are also orthogonal to the discussion here.

Our overall goal is to identify transformations relevant
to a given record matching problem. Reasoning formally
whether or not a transformation is relevant to a given record
matching task seems challenging since a record matching
program can use a transformation in fairly complicated ways.
We instead formulate and study the simpler problem of
learning transformations from a given set of example match-

ing strings. In Section 4, we discuss heuristic approaches to
use our solution to the simpler problem to identify transfor-
mations relevant a given record matching task; the heuristic
approaches essentially provide techniques for generating ex-
ample matching strings.

2.2 Transformation Learning Problem

The input to the transformation learning problem consists
of a set of NV positive examples, BT = {(X,,Y;) : i € [1, N]},
where X; and Y; are matching strings from some domain
such as addresses or organization names. Our high-level
goal is to learn transformations from these examples.

We assume all of our strings are sequences of basic units
called tokens; we typically use words as our tokens. For
a string X, |X| denotes the number of tokens in X; X|[i]
denotes the ith token in X, with X[1] being the first to-
ken; X[i,7] (1 < i < j < |X|) denotes the subsequence
X[i]--- X[j]. Whitespace and punctuations serve as delim-
iters for tokenization and do not themselves form part of a
token. For example, if we denote the left string of example
E2 in Figure 3 by X, then |X| =7 and X[4,6] = ( PO, Box,
2239 ).

We now build on the informal discussion of Section 1 and
formalize the transformation learning problem. Consider an
example pair (X;,Y;). Since X; and Y; are matching strings,
we expect the tokens in X; to be related to tokens in Y;. For
example, in Example E2 of Figure 3, the tokens 60460, 50,
Olathe on the Left are related to identical tokens on the
Right, and the token Highway on the Left is related to the
token Hwy in the right. Figure 4 shows this relation pictori-
ally. As the above example suggests, a simple and common
kind of relationship is the identity relationship, which arises
when the same token is present in both X; and Y;. A second
kind of relationship arises due to transformations, i.e., when
a sequence of tokens in Y; is an alternate representation of
a sequence of tokens in X;. We now introduce a series of
definitions that capture the syntactic structure of relating
tokens in matching strings. We use these definitions later in
our problem formulation.

A rule is defined using a pair of strings = and y and is
denoted z — y. The rule z — y can be used to relate
string « and string y. A rule has the syntactic structure of a
transformation, but is different from a transformation. For
example, PO Box 2239 — CO is a valid rule, while it would
be meaningless as a transformation. To illustrate the use of
rules to relate tokens, we can use the rule (Highway — Hwy)
to relate the 2nd token on the left and the 2nd token on the
right in Figure 4. As another example, we can use the rule
(0lathe — Olathe) to relate the 7th token on the left and
the 4th token on the right. The definition of rule application
formalizes relating tokens using rules.

DEFINITION 1. A rule application over a pair of strings
(X,Y) is a three tuple (x — y,1,j), where x — y is a rule
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60460
Highway \ 60460
50 \ Hwy
PO \ 50
Box Olathe
2239 / co
Olathe

Figure 4: The correct alignment of tokens of the
pair E2 of Figure 3

such that x = X[i,i + |z| — 1] and y = Y[j,7 + |y| — 1].
We say that the above rule application covers the tokens
X[i],..., X[i+]|z|—1] and the tokens Y[j],...,Y[j+]|y|—1].
d

ExaMpPLE 1. The two rule applications over the strings
in Figure 4 we informally described above are (Highway —
Hwy,2,2) and (0lathe — Olathe,7,4). Both of these rule
applications cover two tokens. The rule application (60460
Highway — Olathe CO,1,4) covers 4 tokens. O

DEFINITION 2. An alignment of a pair of strings (X,Y)
is a set of non-overlapping rule applications over (X,Y).
Two rule applications over the same pair of strings are non-
overlapping if the set of tokens they cover do mot overlap.
O

ExaMPLE 2. The alignment corresponding to Figure 4 is:
{(60460 — 60460,1,1), (Highway — Hwy,2,2),
(50 — 50,3,3), ( Olathe — 0Olathe,7,4). Another align-
ment is the set: {(60460 — Olathe CO,1,4), (Highway —
60460,2,1)}. O

An alignment specifies how we can relate two matching
strings using a collection of rule applications. We com-
ment on two important aspects of our definition of align-
ment. First, our definition includes a constraint that two
rule applications in an alignment cannot overlap. This is
a natural constraint that is typically satisfied by the “cor-
rect” way of relating tokens in matching strings (hereafter,
correct alignment). This constraint is satisfied by the align-
ment shown in Figure 4 and the reader can verify that this
is the case for all of the examples in Figures 1 and 3. This
constraint is important for learning high quality transforma-
tions as we argue shortly. However, much of the complexity
of the transformation learning problem also arises due to
this constraint.

Second, our definition of alignment does not impose an
ordering constraint over its rule applications. In partic-
ular, a valid alignment can contain two rule applications
(z — y,4,7) and (z' — y',7',5’) where i < ¢ and j > j
to be part of an alignment. (The second alignment in Ex-
ample 2 is an instance of such an alignment.) We do not

Id | Left Right

1 1st Ave N E | North East First Avenue
2 2nd Ave N 2nd Avenue North

3 3rd Ave E 3rd Avenue East

Figure 5: Sample matching pairs used in Example 3

impose the ordering constraint since imposing it might pre-
clude correct alignments. For example, in Example C1 of
Figure 1 the token pp of the left is related to the token
Pages of the right, but the token pp occurs before the token
IEEE and token Pages occurs after the token IEEE, so the
correct alignment for this pair of matching strings does not
satisfy the ordering constraint. This aspect of our defini-
tion of alignment is in the spirit of current approaches to
record matching which give less importance to token order-
ing and use order-independent similarity functions such as
cosine and jaccard [7].

We use Align(X,Y) to denote the set of possible align-
ments for a given pair of strings (X,Y). The size of
Align(X,Y) can be very large; if |X| = |Y| = n, then
|Align(X,Y)| = Q(2"*"), i.e., more than doubly exponen-
tial in the sizes of X and Y.

We now present our problem formulation. Using the ob-
servation that tokens in matching strings are related by
transformations (we can view identity relations as being re-
lated by trivial transformations such as 0lathe — Olathe),
a natural approach to identifying transformations would be
to seek a rule collection R with the property that every pair
of matching strings (X;,Y;) € E* can be completely aligned
using only rules in R. A complete alignment of (X;,Y;) is
one that covers every token in X; and Y;. Clearly, there are
many rule collections with this property and most of them do
not contain meaningful transformations. However, we can
argue using Occam’s Razor principle that the smallest such
rule collection is likely to contain rules that are meaningful
transformations. The following example gives intuition why
Occam’s Razor is a useful heuristic for our problem.

ExXAMPLE 3. Consider the sample matching pairs shown
in Figure 5. If we restrict ourselves to small rules of the
formx — vy, |z| =1, |y| = 1, we can verify that the smallest
set of rules that completely align all three matching pairs
consists of: (1st — First), (Ave — Avenue), (N — North),
(E — East), (2nd — 2nd), (3rd — 3rd). Clearly, these rules
correspond to meaningful transformations. The small rules
restriction was necessary only because this was a “toy” input
with only three matching pairs. Without this restriction, we
could have aligned the matching pairs using just three rules,
where each rule corresponds to an entire pair (e.g., 2nd Ave
N — 2nd Avenue North). O

Occam’s Razor principle and the related Minimum De-
scription Length (MDL) principle [9] are well-known heuris-
tics for the model selection problem, which is the problem of
picking the best explanation (model) for a set of data obser-
vations from among a given set of competing explanations.
A well-known example of a model selection problem is the
problem of picking the best regular expression that explains
(contains) a set of example strings [8]. Informally, Occam’s
Razor principle says that the best model is the simplest. We
can view our problem as a model selection problem where



Id | Left Right

1 1st Ave N E North East First Avenue
2 2nd Ave N Apt 5 | 2nd Avenue North

3 3rd Ave E 3rd Avenue East

Figure 6: Sample matching pairs used in Example 4

the rules (transformations) comprise a model that explains
the data (pairs of matching strings).

There are two issues with the problem formulation that
seeks the smallest rule collection R* that can be used to
completely align all input matching pairs. First, even as-
suming R* contains correct transformations, many of them
are likely to be trivial identity transformations such as 2nd
— 2nd in Example 3, which are of little value for record
matching. To address this issue, we modify our problem
formulation to take as input a set of known transformations
(which can include the class of identity transformations and
possibly others), and produce as output the smallest rule
collection, which along with the known transformations, can
be used to completely align the input matching pairs. With
this formulation, an algorithm for our problem gets credit
only for discovering unknown rules, not for producing trivial
identity rules.

Second, the complete alignment requirement in the prob-
lem formulation can lead to the inclusion of incorrect rules
in R*, since the correct alignment of a pair of strings is
often not a complete alignment (e.g., the alignment in Fig-
ure 4). To address this issue, we study the dual version of
the problem: For a fixed input parameter k, find a collec-
tion of k rules R*, |R*| = k, that can be used to align the
input strings the most. In other words, we no longer require
the alignments to be complete, but we seek to maximize the
number of tokens covered by the alignments. The following
example illustrates this variant:

EXAMPLE 4. Consider the sample matching pairs shown
in Figure 6. These are identical to those in Figure 5 except
for the second pair. To be able to completely align the second
pair, we need to include some rule involving Apt, and any
such rule would not be a meaningful transformation. How-
ever, in the dual version with k = 1, the output is the single
rule (Ave — Avenue) which has mazimum “coverage” of 6
tokens. As we increase k to 3, the output expands to include
the rules (E — East) and (N — North). If we increase k
to 4, the output can include an incorrect rule (Apt — 2nd)
depending on how we break ties.

Informally, as we increase the value of k, Occam’s heuris-
tic suggests that the correct rules (transformations) would
appear in the output before the incorrect rules, so by pick-
ing a “good” value of k we can identify high quality trans-
formations. For a given input, a good value of k£ can be
determined empirically as we describe in Section 4. We now
formalize coverage of a rule collection and formally state the
transformation learning problem.

DEFINITION 3. We define the coverage of an alignment
A € Align(X,Y), denoted Cov(A, X,Y), as the number of
tokens of X and Y covered by the rule applications in A.

Formally,

Cov(A, X, V)= Y Ja[+]yl

(z—y,i,5) €A

Given a collection of rules R, the coverage of the collection of
rules for a given pair, also denoted Cov(R,X,Y) is defined
as the mazximum coverage of an alignment that uses only
rules in R. Formally,

Cov(R,X,Y) dof max

Cov(A, X,Y)
A:(r,i,j) EA=TER

Finally, the coverage of a collection of rules R over a given
set of input ezamples E*, denoted Cov(R,E™), is defined
as the sum of coverage of R for each pair of strings in E7:

Cov(R,E™) of Z

(X, Y)eE+

Cov(R,X,Y)

We define weighted versions of the coverage definitions above
using a weight function w that maps tokens to non-negative
real values; for a token t, w(t) denotes the weight of the
token. In order to define the weighted coverages, we simply
define |z| to be the sum of weights of the tokens in x. Unless
qualified otherwise, a reference to coverage in the rest of the
paper means the unweighted version, not the weighted one.
O

EXAMPLE 5. Let R; denote the collection consisting of
all possible single token identity rules, i.e., Rt = {x — x :
|z| = 1}. Then the coverage of R1 for the pair in Figure 4 is
6, which happens to be the coverage of the alignment { (60460
— 60460, 1,1), (50 — 50,3,3), ( 0lathe — Olathe,7,4).0

Top-k Rule Learning Problem: Given a prior collection
of rules R,, an input set of example matches E*, and a
positive integer k, identify a set of k rules Rs, |Rs| = k,
that maximizes the coverage of R, URs over E*.

3. RULE LEARNING ALGORITHM

In this section, we present algorithms and hardness results
for the top-k rule learning problem introduced in Section 2.2.

The top-k rule learning problem is NP-hard, even for the
special case where the prior set of rules R, is empty. The
problem remain NP-hard even if we restrict ourselves to a
simple class of rules called unit rules; a unit rule is a rule
x — y with the property |z| = |y| = 1. (We call a non-unit
rule, a multi-rule.)

THEOREM 1. For a given input set of examples E, find-
ing a set of k rules R that mazimizes coverage Cov(R, E1)
is NP-hard. The problem remains NP-hard even if we re-
strict ourselves to unit rules.

Proof: The proof is by reduction from a variant of set-cover.
Consider m sets S1,...,Sm such that S; CU and U;S; =U
for some universe Y. The problem of selecting k sets from
among these m sets such that the size of their union is max-
imized is known to be NP-hard. We construct an instance
of the top-k rule learning problem from an instance of this
set-cover variant as follows: We map each set S; to a dis-
tinct token ts;, and let top be a special token that is not
equal to any ts;. We construct a pair (Xe, Ye) correspond-
ing to each element e € . For each set S; containing e, X,



INPUT: Examples ET = {(X;,Y;) : i € [1, N]}, rules Rp, and k
1. Fori=1...N
2 A; = FINDBESTALIGNMENT(Rp, X;,Y;)
3. Fori=1...N
4. C; = GENCANDRULEAPPL(A;, X;,Y;)
5. Rs=¢
6. j=1...k
7 r = FINDBESTRULE(C1, ...,CN, A1,..., AN)
8 // Optional: Validate rule r
9

. Rs =Rs+r
10. Fori=1...N
11. A; = UPDATEALIGNMENT(A;, r)
12. C; = C;— FINDOVERLAPRULEAPPL(C;, A;)

13. Output Rg

Figure 7: Greedy algorithm

contains the corresponding token ¢,; (in some arbitrary po-
sition); Y. contains a single token to. The input to the top-k
rule learning problem consists of E* = {(X,,Y.) : e € U}.
We can show that if OPT denotes the maximum size of the
union of k sets for the instance of the set-cover problem,
then the maximum coverage of k unit rules for the instance
of the top-k rule learning problem is 2-OPT, and vice-versa,
which establishes the NP-hardness. a

We next present a simple greedy algorithm for the top-
k rule learning problem. Informally, the greedy algorithm
starts with an initial alignment of the input examples us-
ing prior rules alone. It then iterates k steps, and at each
step picks the “best” rule that can be used to increase the
alignment the most. Figure 7 presents a pseudo-code of the
greedy algorithm. We first discuss the steps of the greedy
algorithm before analyzing its performance.

Finding initial alignment (Steps 1-2): For each (X;,Y;), the
greedy algorithm computes an alignment A; with maximum
coverage (best alignment) using the prior rules R, alone.
Computing this alignment turns out to be theoretically hard:

THEOREM 2. For a given collection of rules R and pair
(X,Y), computing Cov(R,X,Y) is NP-hard.

(Recall that Cov(R,X,Y) is simply the coverage of the best
alignment of the pair (X,Y’) using rules in R alone.) Com-
puting the best alignment becomes tractable if all the rules
in the collection are unit rules.

THEOREM 3. If all the rules in a collection R are unit
rules, Cov(R,X,Y) for a pair (X,Y) can be computed in
O(n**7%) time.

Proof: The problem of computing Cov(R,X,Y) can be
shown to be equivalent to the problem of maximum bipartite
matching, from which the time-complexity follows. a

In record matching applications, the strings X; and Y;
are typically short token sequence (5-10 tokens). We can use
this observation along with the result of Theorem 3 to derive
an algorithm for computing the best alignment that works
well in practice and handles arbitrary rules (not just unit
rules). This algorithm enumerates all possible alignments
using multirules alone; for each enumerated alignment, the
algorithm extends the alignment by adding unit rule appli-
cations to maximize coverage. The latter step can be done
efficiently using bipartite matching (Theorem 3). The algo-
rithm outputs the alignment with maximum coverage among

GENCANDRULEAPPL(A;, X;,Y;):

Output set of all possible rule applications
(x — y,p,q) such that = = X;[p,p + l] and
y = Yi[q,q + ly] for some Il ,l, > 0 and none of the
tokens X;[pl,..., Xi[p + lz], Yilq],...,Yi[qg + Iy] are
covered by rule applications in A;.

Figure 8: Generating candidate rules

FINDBESTRULE(C1,...,CN, A1, ..., AN):

Return rule r that maximizes ), Sup(r, A;,C;).

Figure 9: Finding best rule

all the alignments produced in the above steps. If the num-
ber of alignments involving multirules is small, which is the
case when |X;| and |Y;| are small, the overall algorithm is
efficient. Also, note that finding the best alignment is even
simpler if all the rules in R, are identity rules.

Generate Candidate Rule Applications (Steps 3-4): Next,
the greedy algorithm considers each alignment A; computed
in Steps 1-2, and generates all possible rule applications
(r,p,q) that do not overlap with rules applications in A;.
Figure 8 contains the formal specification of the subroutine
to generate candidate rule applications. This is exactly the
set of rule applications that when added to alignment A;
increase the coverage of A;. We can show that r ¢ R,
since otherwise A; would not be the alignment with maxi-
mum coverage. The generated rule applications are stored
in the variable C;. The candidate generation algorithm can
be suitably changed to allow only rules from a particular
class. For example, we could disallow rules with large token
sequences, i.e., rules of the form z — y where |z| > L or
ly| > L for some threshold L.

EXAMPLE 6. Consider example E1 of Figure 3 and let R,
denote the set of all identity rules. The best alignment of the
pair of strings in E1 involving only identity rules is {(60460
— 60460,1,1), (50 — 50,3,3), ( 0lathe — Olathe,4,4),
(C0 — C0,5,5)}. The only candidate rule application for this
pair is (Highway — Hwy, 2,2). FEzample E2 has 10 candidate
rule applications. Some example candidate rule applications
are: (Highway — CO0,2,5), (PO Box 2239 — C0,4,5), and
PO Box — Hwy ,4,2). O

Finding the best rule (Steps 6-7): Next, the greedy algorithm
iteratively picks k rules. At each step, it picks the rule that
increases the coverage of the current alignment (A1, ..., An)
the most. We define the support of a rule r € C; for a
given alignment A; of (X;,Y;), denoted Sup(r,C;, A;) to
be the maximum increase in alignment coverage we can
achieve by adding rule applications involving only r. For-
mally, Sup(r,C;, A;) is defined as maxa,, (Cov(A; U Ar;) —
Cov(A;)), where AU Ar; is a valid alignment and Ar; is
a set of rule applications € C; involving only rule 7. The
subroutine FINDBESTRULE (Figure 9) returns the rule with
the maximum support across all input examples.

Update Alignments and Candidate Rule Applications (Steps
10-12): After picking each rule r in Step 7, the greedy al-
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Figure 10: Input pairs used in Example 7
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Figure 11: Example 7: A; and C; at step 7 for j =1

gorithm updates in Step 11 the current set of alignments
Ai,...,An by adding the maximum number of rule appli-
cations involving r. Note that the increase in the coverage
of all these alignments is exactly identical, by definition, to
the sum of support of the rule »r computed in the previous
invocation of FINDBESTRULE. Finally, in Step 12, the algo-
rithm updates the current set of candidate rule applications
Ci,...,Cn by removing rule applications that overlap with
the current alignments A1, ..., An; these are the rule appli-
cations that overlap with the rule applications involving r
that were added in the immediately preceding Step 11.

EXAMPLE 7. We illustrate the execution of the greedy al-
gorithm for the input examples shown in Figure 10. Let R,
be the set of all identity rules. Column A; of Figure 11
shows the best alignment for each input using the identity
rules. (Since there is no ambiguity we only show the rules r
and not the positions p and q of a rule application (r,p,q)
in Figures 11 and 12.) Column C; of Figure 11 shows the
candidate rule applications for these alignments. The best
rule in the first iteration of the greedy algorithm (j = 1)
is B — b which has a support of 2 for each input exam-
ple for a total support of 6. Column A; of Figure 12 shows
the updated alignments A; after adding rule applications in-
volving the rule B — b. Column C; of Figure 12 shows the
updated candidate rule applications that reflect the addition
of the rule applications involving B — b. Note that any rule
applications involving B or b has been removed from C; in
Figure 12 compared to Figure 11. The best rule in the second
iteration of the algorithm is D — d which has a total support
of 4. Therefore if k = 2, the greedy algorithm produces the
two rules B — b and D — d as output. a

Analysis of the Greedy Algorithm

We analyze the performance of the greedy algorithm by com-
paring the coverage of the rules returned by the algorithm
and the rules returned by an optimal algorithm. We be-
gin by considering a special case of the top-k rule learning
problem with R, = ¢ and restricting the class of rules to be
just unit rules. For this case, we can prove that the greedy
algorithm is an %(1 — 6%) approximation.

THEOREM 4. Consider an instance of the top-k rule learn-
ing problem with R, = ¢ and let the space of rules be just

i A Cs
1 g‘—’AvC—’CvB_’ D—uzD—d
9| E—E, F—F G—
G,B—b
3 ;)4—>A,F—>F,B—> D—d

Figure 12: Example 7: A; and C; at step 7 for j =2

unit Tules. Let Rgay and Ropt respectively denote the set
of k rules returned by the greedy algorithm and an opti-
mal algorithm for the above instance. Then, Cov(Rgay) >
%(1 — €%)C’ov(Ropt).

The proof of the theorem uses ideas from the analysis
of the greedy algorithm for the submodular function opti-
mization problem [10]; we note however that the coverage
function is not submodular. We can show that the greedy
algorithm can be implemented in time linear in the input
size and the parameter k, assuming that the input strings
X; and Y; are “small”.

THEOREM 5. The running time of the greedy algorithm is
O(N +k), where N is the number of input examples in E*.

4. INTEGRATION WITH RECORD
MATCHING PROCESS

In Sections 2 and 3, we studied the problem of learn-
ing transformations from a given set of example matching
strings. In this section, we discuss how we can leverage our
solution for the transformation learning problem for record
matching. We consider two questions: (1) Given a spe-
cific record matching problem, how do we identify examples
of matching strings that form the input to the transforma-
tion learning module? (2) What kind of validation by a
domain expert is needed for learned transformations before
deploying them for record matching? The techniques that
we present in this section are preliminary and heuristic in
nature, and we hope to refine them further in future work.

4.1 Source of Examples

A straightforward way of obtaining example pairs of
matching records (strings) is to use labeling by a domain
expert. However, our approach to learning transformations
relies exclusively on positive examples and can benefit signif-
icantly from a large number of examples, as our experiments
demonstrate (see Section 5). We now discuss a heuristic ap-
proach for generating large number of examples using lim-
ited input from a domain expert. A similar approach is used
in [12].

Since our approach relies on multiple examples, we note
that a few wrong examples are unlikely to significantly affect
the quality of the learned transformations. This observation
suggests the following approach to generating a large num-
ber of matching examples: We design a traditional record
matching program without any use of transformations. Such
a record matching program can be a simple approximate
string join or a more sophisticated program learned using
inputs from a domain expert [3]. We execute this record



matching program over the input tables and use the output
matching records (strings) as input to our transformation
learning module.

We study this approach empirically in Section 5. We start
with a simple record matching program, learn transforma-
tions using the output of this program, and use the trans-
formations as an input into the same program. We find
that this approach significantly improves the overall record
matching recall.

4.2 Validation of Transformations

Since the notion of a transformation is informal (as op-
posed to the formal notion of a rule), some of the learned
transformations may be incorrect. We discuss approaches
for handling imprecision in the learned transformations. We
study these approaches empirically in Section 5.

The simplest approach is to have a domain expert review
the learned transformations and discard the ones marked
incorrect. This review can happen in an online or an of-
fline fashion. In the former, a reviewer accepts/rejects rules
based on their correctness, in Step 8 of the greedy algo-
rithm (Figure 7). A rejected rule is removed from further
consideration and Steps 9-12 are not executed for such a
rule. Alternately, the review may be done offline after the
algorithm produces its complete output. However, this ap-
proach (online or offline) seems feasible when the number of
learned transformations is modest, e.g., in the hundreds.

A second approach is to use the learned transformations
directly for record matching. While this approach obviates
the need for human input for reviewing transformations, in-
correct transformations might reduce record matching qual-
ity. However, a drop in the precision of record matching can
be detected by a domain expert by reviewing a sample of
matched records. For the semantics proposed in [1], each
pair of matched records has an associated set of transfor-
mations that contribute to the matching of the records. If a
transformation contributes to many incorrect matches and
few correct matches, it can be used as evidence that the
transformation is incorrect. Exploring other approaches to
validation is part of our ongoing work.

S. EMPIRICAL EVALUATION

We now discuss our empirical evaluation of the techniques
described in the paper. The goals of our evaluation are as
follows.

1. To study the impact of transformation learning on the
quality of record matching.

2. To compare the quality of transformation rules gen-
erated by our algorithm with alternatives (described
later in this section).

3. To study how the number of input examples impacts
the quality of transformation rules output.

4. To understand the efficiency of our greedy algorithm
as a function of the number of input examples.

5.1 Data

We use two real world data sets for our evaluation. One
consists of a set of names and addresses of (organizational)
customers of Microsoft Corporation. We call this the
Customer data set. Each address is segmented into the

Data Set | Cardinality | No. of Examples
Customer 1 Million 15,000
Citation 1.3 Million 100,000

Figure 13: Data Sets

columns street, city and postal code. The organization name
is a single attribute. Each attribute is quite short — the
names have an average length of 22 characters and addresses,
16. We have two such feeds of data and the task is to iden-
tify pairs that represent the same real-world customer. Each
of the tables consists of one million rows.

The second data set, Citation is a collection of citations
from a well-known publication database. (The examples in
Figure 1 were from this data set.) This table consists of 1.3
million rows. There is only attribute containing a citation
string of the kind shown in Figure 1. The record matching
task here is to find pairs of strings that refer to the same
real world citation. Compared to the customer data set,
each attribute here is longer, with an average length of 170
characters.

5.2 Source of Examples

We use the method described in Section 4.1, namely a
simple similarity join on the underlying tables to generate
examples. The similarity join is configured to achieve 95%
output precision. Note that the output could contain mul-
tiple columns. We project along h columns (without du-
plicate elimination) to generate column-specific examples.
This translates to 15000 examples for the Customer data
set. For the Citation data set, we use a random sample of
100,000 output matches. These specifications are tabulated
in Figure 13.

5.3 Algorithms

We first briefly describe some of our implementation de-
tails. We tokenize the strings into words and use the
weighted version of the greedy algorithm described in Fig-
ure 7 with idf (inverse document frequency) weights for
words. In order to improve the precision of the transforma-
tion rules returned, we use simple filters based on how often
the antecedent and precedent of a rule x — y co-occur. We
refer to our algorithm as Greedy.

As noted above, one of the goals of our study is to com-
pare our greedy algorithm with alternative approaches. We
consider two alternatives.

One is an approach where we simply return candidate
pairs that have a large support. More precisely, we generate
candidate rules (until step 4 in Figure 7) and then outputs
rules based on support by repeatedly calling the procedure
FINDBESTRULE in Figure 7. We refer to this algorithm as
Support. Note that the main difference from our algorithm
is that the current alignment is not modified. Thus, com-
paring our algorithm to Support illustrates the role of align-
ment.

The other algorithm is based on the previously proposed
solution [12] to learn transformations from examples. The
approach is similar to Support above, except that we use
mutual information [12] instead of support. We note that
the space of candidate transformations considered in [12] is
more limited than ours (discussed in Section 1). We however
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use the same space of candidate rules that is considered by
Greedy. We refer to this algorithm as MutInf.

5.4 Comparing Rule Quality

We compare the quality of transformation rules output
by the three algorithms described above. We vary the total
number of rules generated. At each point, we compute the
number of correct rules via human evaluation (we use ran-
dom sampling when the number of rules is large). Note that
the number of correct rules corresponds to recall whereas
the number of incorrect rules corresponds to precision.

We then find how many incorrect rules are generated for
a given target of correct rules. We plot this relationship
for the three algorithms in Figure 14. The figure on the
right is a zoom-in of the figure on the left around the origin.
The X-axis shows the target number of correct rules and the
Y-axis shows the accompanying number of incorrect rules.
Observe that a smaller slope in this graph indicates higher
rule quality (fewer incorrect rules for a given number of cor-
rect rules).

We find that Greedy generates over 1000 rules at an overall
precision of 76%. In contrast, both Support and MutInf
have significantly poorer quality. In order to generate 500
rules, Support yields a precision of 17% and MutInf yields a
precision of 13%. Thus even though 100s of valid rules are
obtained, they require significantly higher validation effort.
Observe from the figure on the right that the quality of
Greedy is the best starting at around 25 rules.

Since the overall number of rules generated is smaller for
the Customer data, we analyze the rule quality differently.
We generate a minimum number of rules for each algorithm
and measure the number of correct and incorrect rules for
each algorithm. Figure 15 shows the plot. For MutInf, we
consider two rule-sets each containing 100 and 50 rules. For
both Support and MutInf, the precision drops off signifi-
cantly once we increase k beyond what is shown in the fig-
ure. Observe that both the precision and recall of Greedy is
again significantly better. Greedy has a precision of 79.8%
whereas Support has a precision of 67.5% and MutInf has
precisions of 58% and 66% for k = 100 and 50 respectively.

5.5 Impact on Record Matching Quality

We next study the impact of learning transformations on
the quality of record matching. The record matching im-
plementation consists of a similarity join where we have the
ability to take transformations as input and the underlying
similarity function is jaccard similarity [1]. The only record
matching input that is varied is the set of transformations.
We generate examples by invoking a record matching oper-
ation with no transformations at a lower threshold (0.6 in
our experiments). These examples are used to generate up
to 1000 transformations for each joining column.

We compute the output of three sets of transformations:
(1) the empty set (“No Tran”), (2) use all generated trans-
formations without human review (“All Tran”), and (3) per-
form a human evaluation to prune any incorrect transforma-
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tions (“Pruned Tran”). We use the standard quality met- 800
rics of precision — the fraction of records matched that are S 700
correct matches and recall measured by the total number of g- 600
matches returned in the output. Note that the precision can S
be evaluated by examining a random sample of the output. g 500
We compare the output of the three sets of transforma- £ 400
tions above as follows. We perform the similarity join (with g 300
each rule-set) at various thresholds ranging from 0.6 to 1. ko
We then find the number of matches returned for various £ 200
values of output precision. § 100
Figure 16 shows the result of our experiments on the Cus- 0|
tomers and Citation data sets. The X-axis shows the pre-
cision and the Y-axis shows the corresponding number of 100 1000 10000 100000
matches found (recall). We note the following points from Num input matches

this Figure.

1. The transformation rules improve the overall record
matching quality significantly. For example, at 98%
precision, we obtain 7.34% more matches using trans-
formations on the Customers data, and 11.53% more
matches on the Citation data. This trend holds for all
values of precision in the above Figure.

2. In the Citation data set, using the learned transfor-
mations without any human intervention produces the
highest recall whereas in the Customers data set, the
human intervention helps improve the recall. This
shows that the “incorrect” transformations (as defined
by human review) do sometimes have the benefit of
resulting in more correct matching records. However,
in the Customer dataset including all transformations
without human review brings down the quality of
record matching due to incorrect transformations.

5.6 Input Example Cardinality

As discussed in Section 2.2, our algorithm potentially
needs a large number of input examples in order to gen-
erate even 100 transformation rules. We empirically inves-
tigate this hypothesis over the Citation data set. We con-
sider subsets of the 100,000 example matches of increasing
cardinality. For each subset, we find the (largest) number
of transformations generated with a precision of 80%. Fig-
ure 17 shows the plot where we have the number of input
examples on the X-axis and the number of transformations
on the Y-axis.

Figure 17: No. of Rules Vs Input Cardinality (Ci-
tation Data)

We observe that the number of transformations returned
increases sharply. We get virtually no transformations from
100 input examples. On the other hand, the number of
transformations returned using 1000 examples is 16 which
increases to 310 with 10000 examples.

5.7 Execution Efficiency

Finally, we study the running time of our greedy algo-
rithm. As noted in Section 3, the algorithm is linear which
allows it to scale well with the number of examples. We
empirically study the performance of our algorithm with
increasing number of input examples. We use subsets of
increasing cardinality drawn from matches on the Citation
data set. Figure 18 shows the running times for various
numbers of input examples. We observe a linear increase in
running times as the number of input examples grows. This
is as expected from our analysis in Section 3.

6. RELATED WORK

Record matching is an active area of research with lot
of prior work; see [7, 11] for extensive surveys. A signif-
icant portion of research on record matching has focused
on designing appropriate similarity functions such as edit
distance, jaccard similarity, cosine similarity, and HMM?25.
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A basic limitation of most of them is that they have lim-
ited customizability. For example, edit distance can han-
dle typographic errors and jaccard can handle token inser-
tions/deletions, but these similarity functions can not cap-
ture other kinds of variations.

In a previous paper [1], we propose a framework for pro-
grammable similarity where traditional similarity function is
combined with a user-specified set of transformations to de-
rive a most customized similarity function. Other techniques
for handling transformations include standardization, where
input records are preprocessed to change all occurrences of
variations (e.g., US, United States, USA) to a canonical form
(e.g., USA). Traditional record matching techniques are then
used over the standardized records. Minton et al [13] pro-
pose a machine learning based approach to using transfor-
mations, where labeled examples are used to learn which ap-
plications of transformations are most useful for matching a
pair of records. All of these papers assume that transforma-
tions are provided as an explicit input. We believe that [12]
is the only prior work that considers the problem of learn-
ing transformations, which, as we discussed in Section 1 has
several limitations compared to our approach in this paper.
Concurrent to this work, Chaudhuri et al [4] consider the
problem of determining whether or not two strings are syn-
onymous using information from web pages.

Recent work [6, 15] in record matching has proposed tech-
niques that exploit relationships to learn representational
variations. These techniques can reason that if two publica-
tions are duplicates and one has a venue VLDB 2009 and the
other Very Large Data Bases ’09, then these two strings
should represent the same concept since each publication
has a unique venue. Again, like [12], these techniques can-
not “peek” into strings and identify transformations such as
VLDB — Very Large Data Bases and 09 — 2009.

Our techniques for learning transformations is a design
tool for record matching and therefore this work is related
to work on other design tools [3, 14] which learn record
matching programs using user-labeled data.

In machine learning literature, Brill and Moore [2] con-
sider the related problem of learning spelling corrections.
Given a word such as detabases, the goal is to identify cor-
rected words such as databases. The overall approach is
to learn from example pairs of misspelt and correct words
various patterns for misspelling. In a linguistic setting, Tur-
ney et al [16] uses word co-occurrence based information

retrieval results to identify synonyms.

7. CONCLUSION

In this paper, we studied how we can leverage examples of
matching strings to learn string transformations of the form
Bob — Robert. We analyzed the differences between the
strings and used the hypothesis that consistent differences
occurring across many examples is indicative of a transfor-
mation rule. Based on this intuition, we formulated a rule
learning problem where we seek a concise set of transfor-
mation rules that accounts for a large number of differences.
We proposed a greedy algorithm to solve this NP-hard prob-
lem which yields a factor §(1 — e%) approximation for an
important class of transformation rules, namely unit rules.
This algorithm is linear in the input size which allows us to
scale easily with the number of input examples. Our empiri-
cal study established that this greedy algorithm yields more
rules at a higher precision than simpler frequency-based al-
ternatives. We also found a significant impact on record
matching quality.

Several questions remain open. It is not clear what is
the level of human intervention necessary with the trans-
formations learned. Sometimes it helps improve the record
matching quality as expected but sometimes it does not.
This happens because transformation rules that are deemed
incorrect by human evaluation do result in improving the
record matching quality. Another question that remains
unanswered is how this transformation learning tool will in-
teract with other record matching design tools that help
choose the similarity functions and set appropriate thresh-
olds. We hope to address these questions in future work.
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