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Abstract. There are endless possibilities for the next generation of mo-
bile social applications that automatically determine your social context.
A key element of such applications is ubiquitous and precise sensing of
the people you interact with. Existing techniques that rely on deployed
infrastructure to determine proximity are limited in availability and ac-
curacy. Virtual Compass is a peer-based relative positioning system that
relies solely on the hardware and operating system support available on
commodity mobile handhelds. It uses multiple radios to detect nearby
mobile devices and places them in a two-dimensional plane. It uses adap-
tive scanning and out-of-band coordination to explore trade-offs between
energy consumption and the latency in detecting movement. We have im-
plemented Virtual Compass on mobile phones and laptops, and we eval-
uate it using a sample application that senses social interactions between
Facebook friends.

1 Introduction

Imagine a suite of social applications running on your mobile phone which senses
your precise social context, predicts future context, and logs and recalls social
interactions. The possibilities for such applications are myriad [1], from alerting
you about an impending contact with a business associate and reminding you
of their personal details, to a game that utilizes the relative physical positioning
of its players, or a service that tracks the frequency and tenor of interactions
among colleagues and friends.

These next generation applications will use continual sensing of social context
at an extremely fine granularity. Recent examples of mobile social applications
include Loopt [2] which displays the location of a user’s friends and Dodgeball [3]
which finds friends of friends within a 10 block radius. Unfortunately, these
and other widely deployed technologies that implement localization on mobile
handhelds are limited by accuracy, coverage and energy consumption.

The most widely used localization technology in mobile handsets is GPS,
but it rarely works indoors. Furthermore, its accuracy degrades in urban envi-
ronments, and the energy consumed by GPS devices is a significant deterrent.
Cell-tower based localization [4] is widely available but can provide very poor
accuracy without a fingerprint profile, or outside city centers. Wi-Fi localization,
when available, provides reasonable accuracy in dense urban environments, but
is also much less effective in other areas [5].

People spend the majority of their time indoors. As a result, many of the most
common opportunities for social interaction occur in indoor environments such



as offices, hotels, malls, restaurants, music and sports venues, and conferences.
In these environments, to detect the interaction with, or even the opportunity to
interact with someone requires relatively fine-grained location accuracy. Even in
environments where indoor Wi-Fi based localization schemes [6] could provide
the needed coverage and accuracy, most of today’s environments do not have this
infrastructure deployed and the barriers to deployment lead us to believe that
this will be the case for some time to come. Techniques that rely on ultrasound or
detecting the phase offset of transmitted radio waves [7] are difficult to implement
using the hardware and APIs available on commodity mobile phones.

We present the design and implementation of Virtual Compass, a peer-based
localization system for mobile phones. Virtual Compass does not require any
infrastructure support, but instead uses multiple, common radio technologies to
create a neighbor graph: a fine grained map of the relative spatial relationships
between nearby peers. Virtual Compass allows nearby devices to communicate
directly, and provides multi-hop relaying so that the neighbor graph can include
others who are not within direct communication range.

Virtual Compass leverages short-range radio technologies, such as Bluetooth
and Wi-Fi, available in today’s mobile handhelds. These radios consume a signif-
icant amount of energy during scanning, and we consider energy management as
a fundamental design pillar. Hence, Virtual Compass includes three techniques
to reduce energy consumption: 1) use of adaptive scanning triggered on topology
changes to update the neighbor graph; 2) selection of the appropriate radio based
on its energy consumption characteristics; and 3) using the wide-area wireless
network when available with a cloud-based service to assist with coordination
and notification of potential changes to the neighbor graph.

Mobile social applications are heavily driven by the relative positioning of
people, and less by absolute location. Sensing the precise placement of individ-
uals relative to one another yields the social context needed for many useful
applications, and the quality of location information produced by Virtual Com-
pass increases as the density of devices increases.

We have implemented Virtual Compass on Windows based mobile phones
and laptops. Through extensive experimentation we evaluate the latency, loca-
tion accuracy, and energy consumption characteristics of Virtual Compass as
a function of system scale. In a typical experiment we found the average error
in spatial placement of nine nodes in a 100m2 area was 1.9 meters. We show
significant accuracy gains in simultaneously using multiple radios for distance
estimation, and our algorithm for spatial placement. Additionally, we are able
to locate a new device within 25 seconds of its arrival. Applying our energy
conservation techniques yields four-fold to nine-fold improvements in battery
lifetime over a naive scheme that does not use any energy management. We also
present the design and evaluation of a sample application built on top of Virtual
Compass.

2 Related Work

As a key ingredient for sensing, localization has been the subject of extensive
work, both core technologies, and systems that leverage and reason about loca-
tion. A comprehensive review of localization research is in [8]. Here, we compare



and contrast our work by broadly dividing the corpus of prior work into two
categories: infrastructure-based and peer-based, and review the most relevant.

Infrastructure-based localization techniques can be broadly classified by their
core technology: GSM [9, 10, 5], Wi-Fi [11, 12, 6], GPS, ultrasound with RF [13,
14], Infrared [15], RFID [16], and UWB [17]. The most successful techniques
have leveraged infrastructure that was put in place for other reasons (GSM and
Wi-Fi localization) and it seems likely that peer-based localization will follow
a similar trend relying on technologies such as Wi-Fi and Bluetooth. GPS is
the only exception, but it is unique in that it only works outdoors. Several
industrial startups [3, 2, 18, 19] have cropped up which use localization to support
social applications, relying on the infrastructure-based localization support in
mobile phones which is typically Wi-Fi-, GSM- or GPS-based. However, such
schemes are limited in coverage and accuracy, making it impossible to support
the full range of social applications—especially in situations that require fine-
grained proximity information. For example, Wi-Fi localization requires a dense
deployment of access points and accurate profiling (not available in many indoor
scenarios), and GSM localization can exhibit poor accuracy without a detailed
profile or away from dense urban areas.

Peer-based localization techniques attempt to either infer the proximity of a
pair of devices, or infer the actual distances between multiple devices and place
them in a virtual map. Proximity-based placement schemes such as Humming-
bird [20] and NearMe [21] detect if two devices are within 30 to 100 meters of
each other. Beep Beep [22] achieves high accuracy using sound, but does not spa-
tially place more than two nodes, nor nodes that are out of earshot. BlueHoo [23]
uses Bluetooth discovery to detect friends within Bluetooth range and People-
Tones [24] uses GSM-based relative positioning. Virtual Compass measures the
distances between multiple nearby nodes, uses multi-hop communication to ex-
pand coverage, and spatially places them relative to each other on a 2D plane.
Moreover, our system uses algorithms which balance energy consumption with
low-latency and accurate localization. Relate [25] and DOLPHIN [26] rely on cus-
tom ultrasound hardware which is typically unavailable in commodity devices.
RIPS [7] requires signal processing of received radio waves, which is possible on
custom hardware such as MICA2 motes but hard to do with off the shelf mobile
phones and standard SDKs. MSP [27] uses sensor event distribution to locate
nodes in a static sensor network. Bulusu [28], Sextant [29] and Calibree [30] use
the location of a subset of nodes (e.g. equipped with GPS units) to derive the
locations of a larger set of nodes. LOCALE [31] also uses GPS equipped nodes
to locate other nodes using dead reckoning. Our goal is to design a peer-based
localization system that works in the absence of fixed infrastructure or reference
points, which can be hard to obtain using GPS in indoor settings.

Moore et al. [32], Spotlight [33], and Vivaldi [34] address the problem of plac-
ing nodes relative to each other in a multi-dimensional plane. Moore et al. [32]
and Spotlight [33] use custom sensors for relative localization while Virtual Com-
pass focuses on commodity cellular phones. While their algorithms can be used
in Virtual Compass, we use a simpler Vivaldi [34] variant in our implementation.
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Fig. 2: An example of using RSSI measurements

from multiple radios (Bluetooth and Wi-Fi) to re-

duce the error in computing distance.

3 Peer Localization

The goal of Virtual Compass is to generate a two-dimensional layout of nearby
mobile devices. It uses radios that allow peer-to-peer communication, such as Wi-
Fi and Bluetooth, to exchange messages directly between devices. This exchange
serves two purposes. Each pair of devices that are in communication range uses
the received signal strength of these messages to estimate the distance between
them. The message itself contains the list of neighbors and their distances, which
allows nodes that are further away to map devices that are not in their immediate
communication range. Virtual Compass leverages the collective knowledge of
distances between peers learned in this way to calculate the 2D layout.

Figure 1 shows an example. Mobile node A periodically sends messages to
its neighbors B, C, and D. Each of these nodes uses the received signal strength
indication (RSSI) of these messages to calculate its distance to A, as described
in § 3.1. The nodes exchange these messages on multiple radios to reduce the
inherent error of distance estimation via RSSI, as described in § 3.2. They embed
these distances in the messages that are exchanged between neighbors so that
each node discovers the distances between other nodes. So in this way, C learns
of the distance between A and D. Furthermore, nodes such as E that are far away
can learn where A, B and D are. Virtual Compass solves the constraints imposed
by these distances to create a relative map using the technique in § 3.3. Note
that the underlying RSSI-based mechanism detects distance but not direction.

3.1 Estimating Distance

In Virtual Compass, nodes periodically exchange messages on radios with omni-
directional antennas. § 5 describes these messages in detail. We use the RSSI
of these messages to estimate the distance between sender and receiver. Even
though we rely on RSSI, if techniques such as propagation time become feasible,
Virtual Compass can easily use them instead. While translating RSSI to distance
has been studied in prior work [35, 36], Virtual Compass enhances that work by
incorporating the uncertainty in distance measurements to provide two benefits.
First, as Virtual Compass is meant to be used in a broad range of unknown
environments, modeling the uncertainty reduces the dependence on the environ-
ment in which the measurements were taken. Secondly, and more importantly,
the error model provides a basis for composing information from different radios.
To translate each RSSI reading to a distance estimate with an error bound, we



use empirical models that we built by running several propagation experiments
in two indoor office environments at Microsoft Research Redmond, and Univer-
sity of Massachusetts Amherst (details of the experiments can be found in our
technical report [37]). We have evaluated our distance estimation scheme in § 6.

3.2 Using Multiple Radios

To reduce the error in estimating distance from RSSI, Virtual Compass uses
multiple peer-to-peer radios simultaneously. For ease of exposition, we describe
how our scheme works for two radios, Wi-Fi and Bluetooth. This approach works
for any radio with an RSSI to distance conversion, or when using more than two
radios.

Consider Figure 2 where a node receives a message from the sender over
Bluetooth and one over Wi-Fi and attempts to calculate the distance between
the two nodes. Let RSSI1 be the RSSI of the message received over Bluetooth,
and RSSI2 be the RSSI of the message received over Wi-Fi. We obtain a distance
estimate for each, x1 and x2 (see [37] for details). We also obtain the uncertainties
(error), u1 and u2, each of which is the distance between the 10th and 90th

percentiles for the measured model. The goal of the composition is to combine
the two sources of information in order to reduce uncertainty in measurement.
The mid-point of the two RSSI distance estimates is P = (x1 + x2)/2. We apply
a displacement from P for each measurement, which are F1 = (P − x1) ∗ u1/2
and F2 = (P −x2)∗u2/2. Intuitively, the sum of the forces should push the node
in the direction of a source which has a smaller uncertainty in measurement. The
final estimate of the distance is given by the midpoint displaced by a normalized
sum of displacements D = P + 2(F1 + F2)/(u1 + u2). The normalization ensures
that the estimate of distance always falls within the range of estimates given
by the two RSSI readings. In the rare case where the uncertainties from the
two readings do not intersect, we simply use P as the final distance. We have
evaluated our multi-radio composition scheme in § 6.

In this way, each pair of nodes that can directly communicate with each other
estimate the distances between them, while reducing error. These distances are
embedded in the messages that are exchanged between them so that ultimately,
each node knows the distances between any two nodes that can communicate
in the vicinity. The next step in Virtual Compass is to calculate a 2D spatial
placement of these nodes that satisfies these distance constraints.

3.3 Spatial Placement

Consider a 2D Euclidean space where each node’s position is determined by its
(x, y) coordinates. Each distance estimate rij between nodes i and j forms a con-
straint: (xi−xj)2 +(yi−yj)2 = r2

ij . An optimal algorithm would simultaneously
solve this set of non-linear (quadratic) constraints to calculate coordinates for
peer nodes. However, this is known to be NP-Hard [38]. Furthermore, since the
distances between nodes are measured independently and are subject to error,
it is possible in some cases that there is no solution that satisfies all the distance
constraints.

We instead use the Vivaldi [34] method to calculate node positions. Vivaldi
uses estimates of distances between nodes to calculate a force vector, and then



Algorithm 1 Spatial placement for calculating rough 2D coordinates during Phase 1 for a node

Input: Set of constraints C = {C1, ..., Cn}, Ci = (x− xi)
2 + (y − yi)

2 = r2
i

loop
For every pair of constraints (Ci, Cj), find intersection points (x1, y1) and (x2, y2)

end loop
P = {{(x1

1, y1
1), (x1

2, y1
2)}, ..., {(xk

1 , yk
1 ), (xk

2 , yk
2 )}} (set of intersection coordinates).

Initialize solution set S = {(x1
1, y1

1)}
loop

For each element E = {(xj
1, yj

1), (xj
2, yj

2)} ∈ P

S = S ∪ arg min{
∑

(xj,yj)∈S

√
(xj

1 − xj)2 + (yj
1 − yj)2,

∑
(xj,yj)∈S

√
(xj

2 − xj)2 + (yj
2 − yj)2}

end loop

return Node coordinate: ((1/|S|) ·
∑

xi∈S
xi, (1/|S|) ·

∑
yi∈S

yi)

iteratively improves each node’s coordinates by moving it along the resulting
force. Vivaldi has been shown to produce good results with little computation
overhead. However, the choice of starting all nodes at the origin can sometimes
lead to local minima or a large number of iterations to converge. Hence, to pro-
duce a relative map of all nodes, we first calculate a very approximate but quick
placement in phase 1, and then feed that to a simple Vivaldi implementation in
phase 2 for iterative refinement.

Phase 1 calculates an approximate set of coordinates that will help Vivaldi
converge faster and to more accurate results in phase 2. Consider the example
where node A is calculating a placement for itself with respect to 2 other nodes
B and C and begins by placing itself at the origin. It finds the peer, B, that is
the smallest distance (r1) away, and places it at (0, r1). Next, we choose node
C that is constrained by both A and B. The algorithm Virtual Compass uses
to place C is defined in Algorithm 1. We run this algorithm multiple times with
different constraint orderings and we use an average of the coordinates from each
iteration as the starting placement for phase 2. Experimentally, we determined
that 10 iterations produces a sufficiently accurate initial placement with little
impact on run time. While we could have used other algorithms, the goal of this
phase is to produce a starting point for Vivaldi that is more reasonable than the
origin for all nodes.

Phase 2 uses the coordinates from phase 1 as the starting placement and uses
a simple implementation of Vivaldi [34] to iteratively refine the coordinates to
reduce the error between the placement and the measured pairwise distances. In
each iteration, Vivaldi calculates forces that are applied between nodes – each
force represents the difference between the measured distance between a pair of
nodes and their distance in the virtual coordinate space. The resulting force on
each node then determines the direction and amount of movement for the node
in the virtual coordinate space. This process is repeated in each iteration. We
have experimentally determined that 100 iterations produces accurate results
with extremely marginal benefit from additional iterations. In § 6, we present
the latency overhead of this computation, and it is dwarfed by the network
communication time.

As an example, consider node A at (x1, y1) with a neighbor B whose coordi-
nates are (x2, y2). The measured distance between them is r12. The magnitude
of the force F between them as applied on A is r12 −

√
(x1 − x2)2 + (y1 − y2)2



Radio Power (mW) Lifetime (hours)
GSM (idle) 24.4 203.0
Bluetooth (idle) 45.5 109.8
Bluetooth (scanning) 507.6 9.8
Wi-Fi (idle) 849.9 5.9
Wi-Fi (scanning) 1305.4 3.8
GPS (idle) 859.9 5.8
GPRS (transfers) 1031.2 4.8
HSDPA (transfers) 1099.6 4.5

Table 1: Energy consumption of radios on fully-charged HTC Touch Cruise phones.

and its direction is given by the unit vector ((x1 − x2), (y1 − y2)). There may
be other forces applied on A (due to measured distances to other neighbors),
and we calculate the resulting single force [34]. The coordinates for A are then
changed in this iteration to (x1 + Fx ∗ t, y1 + Fy ∗ t), where Fx and Fy are the
components of F in the x and y direction and t is a constant. For Virtual Com-
pass we experimented with different values of t and found t = 0.1 works best in
our environment. Applying a force at each node that is proportional to the error
minimizes the mean-square error and converges to a set of coordinates which
satisfy the distance constraints (see [34] for proof).

4 Energy-Efficient Peer Localization

As with any system targeted at mobile devices, energy consumption is a critical
concern. If the lifetime of the device is severely impacted, users will eschew appli-
cations that rely on our system. Virtual Compass depends on frequent commu-
nication between peers to provide timely updates to changes in the social graph.
As has been observed in prior work [39], communication consumes a significant
portion of a mobile phone’s energy budget. To place our work in a common
frame of reference, we include Table 1 which shows the energy consumption of
our implementation platform. With no communication, a typical phone will last
for 203 hours on a single battery charge. However, if it continuously scans for
other peer devices, the battery is completely exhausted within 10 hours when
using Bluetooth, and under 4 hours using Wi-Fi.

To mitigate this, Virtual Compass must balance the energy devoted to sensing
and maintaining the social graph against the accuracy of the system. Scans that
are too frequent will drain energy, and scans that are too infrequent will increase
the latency for peer localization – device arrival or departure will go undetected
until the next scan interval. Virtual Compass uses three techniques to reduce
the number of scans without significantly degrading localization accuracy.

4.1 Adaptive Bluetooth Scanning

We observe that repeated scans are unnecessary in a static environment, such
as when there are no other devices around, or when none are moving. Virtual
Compass uses this observation to adapt the scan interval. Every device keeps
track of changes in its neighbor graph and accordingly adjusts its scan interval
– aggressively scanning the environment when the neighbor graph changes, and
increasing the scan interval otherwise. To track the change in its neighbor graph,
a device calculates the number of one hop, N1 (2 paths in Figure 3), and two
hop paths, N2 (1 path in Figure 3), that have changed between successive scans.
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We compute a change metric as p ∗ N1 + (1 − p) ∗ N2, where p is a constant.
When this metric is less than a threshold x, we increase the inter-scan interval
by 10 seconds. If the metric is above a threshold y, we halve the scan interval.
We do not scan more frequently than once every 10 seconds and we do not allow
the scan interval to increase beyond 10 minutes. We use values of 0.9, 1 and 1
for p, x and y respectively. While these values are arbitrary and could be tied
to an application, they work well in our experiments. The results of a simple
experiment showing the behavior of this technique are shown in Figure 4. The
scan interval additively increases until new devices are introduced or removed
in the neighbor graph, at which point the scan interval is halved. This method
can be easily extended to other metrics. For instance, an application may care
about sensing small changes in the distance between peers or may want to weight
different peers based on their significance in the social network.

Between two successive scans, which can be as long as 10 minutes, we leave
the Bluetooth radio on since the idle energy consumption of Bluetooth is small
(see Table 1). Moreover, with the Bluetooth radio on, it can respond to its peer’s
scans and the corresponding neighborhood graph is always complete. In contrast,
the idle power consumption for Wi-Fi is comparable to scanning. Therefore, the
radio needs to be turned off between scans. However, this implies that adaptive
scanning for Wi-Fi is infeasible—if different peers wake up at different times,
their scans will result in incomplete neighbor graphs. Therefore, for Wi-Fi we
periodically (every 1 minute at wall clock time) turn on the radio and put it
in scan mode. Mobile phones synchronize their wall clock time with the cellular
infrastructure. Even if disconnected from the cellular network, clock drift in the
order of one or two seconds is not a significant issue since Wi-Fi scanning takes
several seconds (see § 6).

4.2 Cloud Coordination

There are significant periods of time when a device is completely alone. Figure 5
shows how often Bluetooth scans by 150 participants [40] found other devices. On
average, each mobile phone found no other Bluetooth devices 41% of the time.
While it is possible that other devices were present but did not have Bluetooth
discovery enabled, or were discoverable over the longer range of Wi-Fi, this
finding fuels our belief that there are periods of time when a device is completely
alone. Hence we can save energy on devices during these periods by keeping Wi-
Fi off and not initiating Bluetooth scans until a new device arrives. However,
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the primary challenge is to detect device arrival without using Bluetooth and
Wi-Fi. We observe that many mobile devices are almost always connected to
the Internet via a cellular data connection such as 3G. Hence, a simple service
running on the Internet can inform the device when there are other devices in
the vicinity.

In Virtual Compass, each mobile device uploads its approximate geographic
location to this service. This location is calculated using low-energy, coarse
grained GSM localization. The list of GSM cellular towers that are in the vicinity
and the RSSI values are used to compute a rough geographic location. Each time
its location changes, the device updates the service. When the device believes it
is alone (no neighbors in Bluetooth and Wi-Fi scans), it will periodically ask this
Web service whether there are any other devices in the vicinity running Virtual
Compass. If there are no peers around it, the device will keep its Wi-Fi radio
off and not scan on Bluetooth. Otherwise, it adjusts its scan interval and Wi-Fi
wakeup interval as described previously. Since periodic polling on a radio such
as 3G consumes a considerable amount of energy, Virtual Compass uses a push-
based technique to notify the device when other nodes are around. Inspired by
Cell2Notify [41], a Virtual Compass device uploads a Request-for-Notification
(RFN) bit to the Web service when it thinks it is alone. For each device with
the RFN bit set, the Web service keeps track of other device arrivals in the
vicinity of the sleeping device and will notify it, which then resumes Wi-Fi and
Bluetooth scanning. We describe our implementation of this notification in the
next section.

4.3 Leveraging Application Behavior

In addition to exploiting user mobility to reduce energy consumption, a cloud
service allows us to also exploit application behavior. Some applications that
use peer localization may not need the neighbor graph maintained all the time,
even though the applications are still running. For example, an application that
shows the user a map of nearby friends and how to get to them does not need
the neighbor graph if the user is not interacting with the phone. Scanning in this
scenario wastes energy. However, not scanning, and hence not participating in
multi-hop discovery, could degrade localization accuracy for other devices where
their users are actively interacting with the phone. We suspect that there are
significant periods of time when every phone in the vicinity is simultaneously
not in use. To detect this scenario, Virtual Compass detects when the back-light
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for the screen on a mobile device turns off. We then assume that the user is
not using the application and upload this bit of information to the Web service
along with the device’s rough geographic location. When Virtual Compass polls
the Web service to find out how many devices are in the vicinity or uses the
notification service, it also learns how many of them have the back-light on. If
no devices are actively being used, then it keeps the Wi-Fi radio off and does not
scan on Bluetooth. If any one device in the vicinity has the back-light on, then
it resumes normal discovery behavior. Unfortunately, if an application uses peer
localization to log social interaction in the background, instead of displaying an
interactive map, then this technique cannot be used.

5 Implementation

We have implemented Virtual Compass on the Windows Mobile 6.0 operating
system that runs on a variety of mobile phones. While we have also ported Virtual
Compass to the Windows Vista operating system, we focus on the mobile phone
version in this section. Virtual Compass runs entirely at the application layer,
and does not require modifications to the Bluetooth and Wi-Fi drivers, nor to
the network stack. Our software architecture, depicted in Figure 6, consists of
four main components: native radio modules, cloud services, peer localization
service and applications.

Native radio modules: Virtual Compass interacts with many radios (GPS,
Bluetooth, Wi-Fi, and GSM) using native APIs exposed by the Windows Mobile
OS. To access the Wi-Fi radio when the device is in suspension state S3, we use a
PPN UNATTENDED state. This consumes slightly more energy than S3, but allows
us to access the Wi-Fi radio.

For device discovery and propagating the neighbor graph, as described in
§ 3, Virtual Compass requires every device to periodically broadcast its ID and
the IDs of and distance to each of its peers. The application layer provides the
ID to be used in Virtual Compass. To broadcast this information without the
additional latency of explicitly forming a network, we use the Beacon-Stuffing
approach [42] for Wi-Fi, and a similar technique for Bluetooth. Our beacon for-
mats for Bluetooth and Wi-Fi are in Figure 7. For Bluetooth beacons we modify
the 2048 bytes available for the device name, while for Wi-Fi beacons we embed
this information in the 32 byte SSID. The small size of the Wi-Fi SSID limits
the size of the neighbor graph that can be encoded in the beacon. To solve this
problem, we could use two techniques proposed by Beacon-Stuffing [42]: use 256



byte IE blobs, or fragment large strings across beacons that are then reassem-
bled at the receiver. We have not implemented either solution, and in our current
implementation, we limit the neighbor graph embedded in beacons to immedi-
ate one-hop peers, thus effectively limiting peer localization to a maximum of
two-hops.

One problem with using the Bluetooth radio for peer localization is that
it may interfere with Bluetooth headset usage during phone conversations. A
scan in the middle of a conversation will disrupt the phone call. To avoid this
problem, we trap the incoming phone call and phone call talking events from the
Windows Mobile OS and stop Bluetooth scanning if either event is active. We
resume scanning once these events have ended.

Cloud services: Virtual Compass uses the SQL Server Database Service
(SSDS)[43] over the Internet for coordinating Wi-Fi radio wake-ups and Blue-
tooth scans, as described in § 4.2. SSDS has the following components: (a) Au-
thority: this is the top-most level of containment hierarchy under which all the
data for a particular SSDS login is stored. (b) Container: an authority is a collec-
tion of containers. (c) Entities: each entity inside a container stores any number
of user-defined properties and values. Virtual Compass uses a single author-
ity, under which there is a separate container for each geographic region, under
which there is a separate entity for each device. The peer localization service
moves the device’s entity to the appropriate container based on cellular tower
IDs and RSSIs from the GSM radio and updates a bit indicating whether the
screen back-light is on. Virtual Compass can use a push (notification-based) and
polling scheme to download information on neighbor positions. For polling it
periodically downloads the contents of the containers to determine if it is alone.

When using the notification scheme, each Virtual Compass device uploads
its current position based on cell tower IDs and RSSIs. When a device does not
find any neighbors on a Bluetooth and Wi-Fi scan it uploads a RFN (Request for
Notification) bit and the device’s phone number to the cloud and stops scanning
on Bluetooth and switches off Wi-Fi. A notification service runs on an Internet
server which constantly downloads the location of all Virtual Compass devices
using SSDS. It calculates whether any Virtual Compass device is near a node
with its RFN bit set. If so, it uses a Skype client on the server to make a phone
call to the device using a special caller ID number. The device traps the incoming
phone call event, and if it recognizes the special caller ID number, it ends the
call and resumes scanning on Bluetooth and Wi-Fi.

Peer localization service: The location service runs the distance estimation
and spatial placement algorithms from § 3 to produce a 2D map of where peer
devices are. The distance estimation model that we use to convert a RSSI mea-
surement to distance and uncertainty is described in our technical report [37]. We
used extensive measurements in two office environments at Microsoft Research
Redmond, and University of Massachusetts Amherst to derive these models. The
service also manages the Wi-Fi radio sleep and scan schedule, Bluetooth scan-
ning interval and interfaces with the cloud services to reduce energy consumption
as described in § 4. It feeds the entire map to the application layer.

Applications: We have implemented the FriendMeter application using Vir-
tual Compass. FriendMeter uses Virtual Compass to sense the distances between
the user and her friends who are in the vicinity. Several applications such as gam-



ing and file transfer amongst friends can be considered as instances of Friend-
Meter. FriendMeter is designed with two purposes in mind – a short-term use
and a long-term use for the sensed information. In the short-term, the results
from Virtual Compass are used to show the user a map that can be used to find
and meet her friends. In the long-term, the time-varying distances measured be-
tween the user and her friends can be used to infer social interactions. These
inferences can be used to cluster friends in social applications, such as Facebook,
based on proximity. Each friend can be metered by the amount of physical social
interaction. Our implementation shows the user a map and records a history of
the map, but currently does not alter their friends list.

FriendMeter uses the Facebook API to connect to Facebook, authenticate
the user and get her list of friends. It uses a unique numerical Facebook login
id—provided by Facebook as the mobile device’s ID. This facilitates identifying
the user on each peer device, but as we note in § 7, there are some privacy im-
plications. FriendMeter displays a map of all the user’s friends in the vicinity.
It also displays the photographs of the nearby users and their interests, hob-
bies, and other information. Screen shots from the application are in Figure 8.
Even though the underlying peer localization service provides a map with many
devices, FriendMeter filters out those that are not in the user’s friend list.

6 System Evaluation

We evaluate the performance of Virtual Compass by focusing on the following
three key questions: (1) How accurate are Virtual Compass’s distance estimates
and spatial placement? (2) How much energy does Virtual Compass consume?
(3) How quickly does Virtual Compass adapt to changes (e.g., when a new
device arrives, or one departs)? In answering these questions, we also examine
the impact of scale: how does the number of devices affect Virtual Compass?

Experimental Setup: We evaluate Virtual Compass on the Windows Mobile
and Windows Vista operating systems. Our testbed consists of ten devices – an
HTC TyTNII mobile phone, an HTC Touch Cruise mobile phone, four laptops,
and four desktops. All ten devices have IEEE 802.11b and Bluetooth interfaces,
and are connected to the Internet via 3G cellular on the phones or Ethernet
on the laptops and desktops. In most experiments, we deploy the devices in a
100m2 indoor office area, but we also evaluate larger areas of 900m2 and 2500m2

where indicated. Many experiments involve statically-placed nodes, but in those
evaluating latency, we move a device into or out of the deployment area. When
evaluating energy consumption, we measure the lifetime of the fully charged
mobile phones while running Virtual Compass and leaving the GSM radio on.

Accuracy of Localization: The primary goal of Virtual Compass is to accu-
rately localize nearby peers. We evaluate this accuracy in two ways – (1) error
in pairwise distance between nodes – what is the difference between the physical
distance and the distance that Virtual Compass predicts? (2) spatial placement:
for a number of nodes, how different is the 2D placement that Virtual Com-
pass presents from their actual placement?

Pairwise distance accuracy: Figure 9 shows how well Virtual Compass esti-
mates the distance between two nodes as their physical distance is varied. Virtual
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Fig. 10: CDF of the error in distance.

System Average Error (meters)
Bluetooth 3.40

Wi-Fi 3.91
Virtual Compass 1.41

Table 2: Average error for nine devices in a 100m2 indoor area reported by the different systems.

Compass comes very close to perfectly estimating distance. When Virtual Com-
pass does deviate from the actual distance, it does so by a small amount as the
error bars indicate. Figure 10 shows the CDF of this error over a large number
of placements. The median error is only 0.9 meters, and over 90% of the time,
the error is under 2.7 meters. To examine why Virtual Compass is so accurate in
pairwise distance estimation, we present Table 2, which shows the advantage of
our multi-radio approach. If Virtual Compass were to use only Bluetooth radios,
the average error would be quite high at 3.40 meters, or 3.91 with just Wi-Fi
radios. However, by simultaneously using both Bluetooth and Wi-Fi, Virtual
Compass reduces the average error to 1.41 meters.
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Figure 11, we calculate the average error in 2D

placement as we vary the number of devices.

Spatial placement accuracy: We evaluate spatial placement in Figure 11.
Virtual Compass’s 2D spatial placement (dark dots) almost exactly matches the
actual placement (light dots) – the average distance between a light dot and the
corresponding dark dot is 1.9 meters. Our accuracy is dependent on two factors
: our multi-radio RSSI-based distance estimation, and our 2D spatial placement
algorithm. To tease apart these two factors, we applied our 2D spatial placement
to the actual pairwise distances between these nodes (as opposed to the RSSI-
based estimates) and the average error is 0.6 meters.
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The accuracy of our 2D placement algorithm also depends on the density
of devices – the more devices we have, the more constraints we have that al-
low the placement to converge faster. In Figure 12, we repeat our placement
experiments while varying the number of devices, and the placement of these
devices. As the number of devices is lowered, the error increases because every
node is constrained by fewer neighbors. With just 2 nodes (with one placed at
the origin), the average error is purely a reflection of the RSSI-based distance
estimation error.

Energy Consumption: While accuracy in localization is the primary goal of
Virtual Compass, energy consumption is a critical concern for mobile devices. We
now evaluate the benefits of the energy saving techniques from § 4. Figure 13
shows the lifetime as the number of nearby peers is varied. The “no energy
mgmnt” bars, the lifetime of a mobile phone with Wi-Fi and Bluetooth always
on and scanning every 1 minute and 10 seconds respectively is dismal, at 4.8
hours with no peers and 3.8 hours with 9 peers. The slight drop in lifetime with
the number of peers is because Virtual Compass has to connect over Bluetooth
to every peer to get the RSSI value (this is a limitation of the Windows Mobile
Bluetooth API). However, when we turn Wi-Fi on and off every 1 minute and
adaptively change the Bluetooth scan interval, we see significant energy savings
in the “adaptive scan” bars, from 18.0 hours with no peers to 14.8 hours with
9 peers. Even though the devices do not move, there is a drop in lifetime with
the number of peers because of the Bluetooth connect issue and because with
more devices, variations in the environment can temporarily appear as slight
neighbor graph changes. When we include the cloud coordination scheme in the
“adaptive scan + cloud” bars, the lifetime actually reduces. Periodically polling
the Web service when alone (0 peers) is a significant drain on the battery. Even
when not alone, our devices keep uploading their location to the Web service
because of variations in the RSSI from GSM cell towers and re-association with a
different GSM cell tower, despite the nodes being static in this experiment. GSM
localization that is more robust to such variations should help. In Figure 14, we
show the advantage of using a notification system instead of polling. When there
are no other devices around, the savings are tremendous – lifetime increases from
15.7 hours to 35 hours. Since there are no devices around, the device keeps Wi-Fi
off and does not scan over Bluetooth, and does not need to poll the service over
3G.



back-light optimization lifetime (hours)
off 12.07
on 15.42

Table 3: This figure shows the lifetime of Virtual

Compass on a fully-charged mobile phone, with

the back-light optimization from § 4.3 turned off

or on. We used a synthetic workload based on the

Reality Mining data [44] to emulate phone usage.

Density Lifetime 1-hop 2-hop 3-hop
(meter2) (hours) peers peers peers

100 11.19 9 0 0
900 11.92 5 4 0

2500 12.05 5 3 1

Table 4: This Figure shows the lifetime of Virtual

Compass on a fully-charged mobile phone, with 9

peers nearby, across different sizes of regions. In

each experiment, the devices did not move.

We now evaluate the improvement offered by the back-light optimization
from § 4.3. The previous experiments do not use this optimization because we
lack accurate usage models of our application. Hence in Table 3, we present
an evaluation of this optimization based on emulation of the Reality Mining
data [44]. The data covers a large number of users across many days and indicates
when their phones are idle versus in use. We pick 10 users at random and focus
on their behavior for a random day. For periods of time when all the devices
are idle, we follow our technique from § 4.3 and keep Wi-Fi off and do not scan
on Bluetooth. We repeat these emulations multiple times by picking 3 different
days at random, and 3 different sets of 10 users, and present average numbers in
Table 3. While this emulation may not perfectly match real usage, these results
show that this optimization has the potential to increase lifetime by 30%.

Finally, we present Table 4 where we evaluate the energy consumption of
Virtual Compass as we vary the density of deployment. The lifetime does not
significantly vary with density. There is a slight increase in lifetime as density
decreases, and this is because there are fewer peers that are directly reachable
over Bluetooth, and hence fewer connections need to be setup to measure RSSI.

Latency: Latency is another important metric – Virtual Compass should sense
changes in the neighbor graph fast enough for applications that want to de-
tect social interactions, and for those that provide maps in real-time to users.
Figure 15 shows the overhead of different components of Virtual Compass. Blue-
tooth scanning is particularly slow, and we discuss this in more detail in § 7.
Bluetooth pairing is needed to work around a limitation of the Bluetooth in-
terface in Windows Mobile. The Windows Vista Bluetooth stack does pass up
RSSI values from a Bluetooth scan without having to pair and connect, and so
we are confident that this problem is not inherent to Bluetooth.

The time taken to detect the arrival of a new peer depends not only on the
latency of Wi-Fi and Bluetooth scans, but also on how reliable scanning is. In
Table 5, we present the probability of finding a peer device with a Bluetooth
scan, Wi-Fi scan and both. Bluetooth is particularly poor because when two
adjacent devices are scanning (and hence frequency-hopping) simultaneously,
the probability of both being on the same channel and hence discovering each
other is very low. This problem is specific to Bluetooth, as the stability of Wi-
Fi is much higher. Since Virtual Compass uses both radios, it can detect the
presence of a peer device more reliably than either alone.

We now evaluate how quickly Virtual Compass detects peer movement. In
particular, we consider: (1) time elapsed between a peer entering the vicinity of
a device and the peer showing up on the map, and (2) time elapsed between a
peer leaving the vicinity and it disappearing from the map. We evaluate both
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System Neighbor graph stability
Bluetooth 14%

Wi-Fi 90%
Virtual Compass 94%

Table 5: This figure shows the stability of the

neighbor graph when using just Bluetooth, just

Wi-Fi, or both. We placed 2 devices 10m apart,

and ran experiments for 2 hours.
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latencies in Figure 16. The latency of detecting a new peer is dominated by the
frequency of scanning – in steady state, Bluetooth scanning occurs once every
10 minutes, but Wi-Fi occurs every minute. Since the graph shows the average
across many runs, the average latency for detecting a new peer is 30 seconds,
because of Wi-Fi scanning. Peer departure can be a higher latency operation as
the number of peers increases because all peers have to remove the exiting peer
from their neighbor graph, else it will still appear in the map due to multi-hop
discovery. Hence Bluetooth’s slower scan time dominates peer departure latency.

Reducing the scan interval of Wi-Fi and Bluetooth can reduce latency, but
it comes at the cost of energy. Figure 17 explores this trade-off. The second
set of bars at 11.36 hours corresponds to the 5 peers bars from Figure 16. We
can double the lifetime to 23.28 hours at the cost of doubling latency. However,
halving the lifetime to 6.35 hours does not significantly reduce latency. Hence
we believe that our choice of the Wi-Fi wake-up and scan interval of 1 minute
and the Bluetooth limits of 10 seconds to 10 minutes offer the best trade-off.

7 Discussion

We now discuss performance optimizations for Virtual Compass.
Improving accuracy: While Virtual Compass uses a single RSSI-distance pro-

file, we could use different profiles for different environments, such as outdoors
versus indoors. This would require a mobile device to determine if it is outdoors,
and then apply the corresponding RSSI-distance profile. We are exploring two



ways to solve the problem of detecting that the user is outdoors. First, if a GPS
signal is available, then we can assume the user is outdoors. Second, we can use
user feedback.

Reducing Latency: Virtual Compass’s latency in detecting node movement is
significantly impacted by Bluetooth scanning. Two devices that simultaneously
scan over Bluetooth can miss each other because each may use a different fre-
quency hopping sequence such that the two devices never end up on the same
channel at the same time. To alleviate this problem, we are investigating certain
Bluetooth 1.2 chipsets that allows enhanced inquiry which is supposed to make
discovery reliable and fast (less than 5 seconds).

Reducing energy consumption: Not all mobile devices have similar energy
budgets. A laptop has a larger battery than a mobile phone. Furthermore, some
environments may have desktops with wireless interfaces. We posit that it is ben-
eficial for mobile phones to offload the task of aggressively scanning for device
movement to nomadic infrastructure that is energy rich. The nomadic infras-
tructure can scan very frequently, and if it detects that a new device has come
into range, or a device has moved or left, then it can signal other devices to scan
and re-compute the neighbor graph. We are presently investigating schemes for
efficiently offloading computation to more powerful infrastructure.

Privacy and security: There are privacy and security issues that we have not
addressed in Virtual Compass. In our current implementation, a user’s numeric
Facebook ID is her mobile device’s ID in peer localization. In our application,
she only sees her Facebook friends. However, our underlying peer localization
component has a complete map of all the devices in the vicinity. A wily user could
potentially misuse this information. As a solution, we could use a periodically
changing random number for the device ID. Each device would register this ID
with an applet on Facebook. Any device that wants to discover the user identity
will have to query the applet, which can verify if that user is a friend.

8 Conclusion

Most of today’s mobile social applications use absolute location to locate nearby
peers, which is often difficult to obtain with reasonable accuracy in indoor envi-
ronments. In this paper, we describe Virtual Compass, a peer-based localization
system for mobile phones, which provides relative positioning by placing peers
in a 2D plane without requiring any infrastructure support. Virtual Compass
enables many emerging mobile applications that want the ability to sense social
interactions: it provides the distance between different people which can then be
combined with external information about those people’s social relationships.
A key area of future work is to use this information to build applications that
automatically infer of social context of such interactions.

Virtual Compass leverages the multiple radios available on today’s smart-
phones to provide the accuracy needed for the above applications. It uses several
energy management techniques that frugally use radios without compromising
location accuracy. We have implemented Virtual Compass for Windows Mobile
phones. We have implemented a simple application, FriendMeter, which uses
Virtual Compass to sense the distances between a user and her Facebook friends
who are in the vicinity. We evaluate Virtual Compass on a nine node testbed,



and our results show that it places a device with an average distance error of
only 1.9 meters. Virtual Compass’s energy management algorithms produce a
battery lifetime that is four to nine times that of a device that does not use
sophisticated energy management to provide peer localization.
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