
Can we contain Internet worms?

Manuel Costa1;2, Jon Crowcroft1, Miguel Castro2 and Antony Rowstron2

1University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UKfManuel.Costa,Jon.Crowcroftg@cl.cam.ac.uk
2Microsoft Research Ltd., 7 J J Thomson Avenue, Cambridge, CB3 0FB, UKfmanuelc,mcastro,antrg@microsoft.com

ABSTRACT
Worm containment must be automatic because worms can
spread too fast for humans to respond. Recent work has pro-
posed a network centric approach to automate worm contain-
ment: network traffic is analyzed to derive a packet classifier
that blocks (or rate-limits) worm propagation. This approach
has fundamental limitations because the analysis has no in-
formation about the application vulnerabilities exploited by
worms. This paper proposes Vigilante, a new host centric ap-
proach for automatic worm containment that addresses these
limitations. Vigilante relies on collaborative worm detection
at end hosts in the Internet but does not require hosts to trust
each other. Hosts detect worms by analysing attempts to in-
fect applications and broadcast self-certifying alerts (SCAs)
when they detect a worm. SCAs are automatically generated
machine-verifiable proofs of vulnerability; they can be inde-
pendently and inexpensively verified by any host. Hosts can
use SCAs to generate filters or patches that prevent infec-
tion. We present preliminary results showing that Vigilante
can effectively contain fast spreading worms that exploit un-
known vulnerabilities.

1. INTRODUCTION
Worms can spread too fast for humans to respond [16, 22],

for example, the Slammer worm infected more than 90% of
vulnerable hosts in 10 minutes [15]. Recent work [11, 21,
13, 29] has proposed anetwork centric approach to auto-
mate worm containment that relies on heuristics to analyze
network traffic and to derive a packet classifier that blocks
(or rate-limits) forwarding of worm packets. For example,
EarlyBird [21] assumes that identical byte strings in many
packets from different flows are indicative of worm activity
and block packets containing those strings.

The network centric approach has fundamental limitations
because it is limited to heuristics that attempt to distinguish
normal traffic from worm traffic. Since there is no informa-
tion about the software vulnerabilities exploited by worms
at the network level, these heuristics are prone to both false
positives and false negatives. False positives can lead to
network outages and false negatives allow worms to escape
containment. For example, the heuristics in [11, 21, 13]
can block normal traffic when attackers send suspect pack-
ets with strings that are common in normal traffic, and they

cannot block polymorphic worms1, which mutate their code
each time they infect a new machine.

This paper proposes Vigilante, a newhost centric approach
for automatic worm containment that addresses the limita-
tions of the network centric approach. Vigilante relies on
collaborative worm detection at end hosts in the Internet but
does not require hosts to trust each other. The hosts anal-
yse attempts to infect applications and gather detailed in-
formation about the vulnerabilities exploited by worms to
eliminate false positives. Hosts use this information to au-
tomatically generate self-certifying alerts (SCAs) that they
broadcast to other hosts. SCAs are machine-verifiable proofs
of vulnerability; they prove that an application is vulnerable
and they can be independently and inexpensively verified by
any host. Hosts use SCAs to analyze the vulnerable applica-
tion and generate filters or patches to prevent infection.

We show that it is possible to implement general host-
based detection engines, for example, we propose a dynamic
dataflow analysis technique that can detect attempts to ex-
ploit a broad class of vulnerabilities without false negatives
and without requiring access to application source code. Ad-
ditionally, we describe a scalable overlay for broadcasting
SCAs that ensures an SCA reaches all hosts with high prob-
ability even if the worm is detected by a small number of
hosts. This is important to reduce the probability of false
negatives; it enables a large-scale collaborative detection sys-
tem that is hard to attack and allows different hosts to run
different detection engines to spread detection load and in-
crease detection coverage. Our preliminary experimental re-
sults show that Vigilante can effectively contain fast spread-
ing worms that exploit unknown vulnerabilities.

Section 2 discusses the limitations of the network centric
approach and Section 3 discusses how they are overcome by
Vigilante. Section 4 describes our implementation. Section
5 presents some preliminary results and Section 6 concludes.

2. NETWORK CENTRIC CONTAINMENT
Containment systems based oncontent signatures assume

that the contents of worm messages match a signature, for
example, that messages contain a particular byte string. Worm
signatures have traditionally been generated by humans but

1We will use the term polymorphic to refer to polymorphic, meta-
morphic and oligomorphic worms [25]



there are several recent proposals to generate signatures au-
tomatically [13, 11, 21]. These systems generate signatures
for unknown worms by identifying common byte strings in
suspicious network flows. They differ in the way they clas-
sify network flows as suspicious but they all generate signa-
tures that are byte strings. They can use systems like Cisco’s
NBAR [24], Bro [18], or Snort [19] to block flows that con-
tain the signature before they reach vulnerable hosts.

Automatic worm containment systems based on byte-string
signatures are unable to contain polymorphic worms. These
worms change the content of their probe messages constantly
by using techniques such as encryption and code obfusca-
tion [25]. Since there is little invariant content across dif-
ferent messages, any signature will be either too long or too
short. Signatures that are too long cannot contain worm traf-
fic and signatures that are too short will block normal traffic.
Worm writers can use readily available tools [26] to create
polymorphic worms. These containment systems are also
prone to false positives, for example, an attacker can block
normal traffic by generating traffic that is classified as sus-
picious and contains a byte string that is common in normal
traffic. False positives are also possible in the absence of
attacks [21]. This is a major barrier to automation; these
systems are likely to require human intervention to whitelist
signatures that are common in normal traffic.

Another approach to contain worms is based on block-
ing or rate limiting traffic from hosts that exhibitabnormal
communication patterns. The rationale is that infected hosts
must propagate the worm by communicating with other hosts.
Worms that propagate fast must initiate connections to other
hosts at a high rate. Snort [19] and Network Security Moni-
tor [8] are based on this observation; they detect worm traffic
by monitoring the rate at which unique destination addresses
are contacted and block the sender. These approaches can
generate false positives and worms that initiate connections
just below the rate limit can escape containment.

Other systems are based on the observation that worms
that scan random addresses to find vulnerable hosts are likely
to target many invalid addresses. For example, Bro [18] uses
a configurable threshold on the number of failed connections
and Weaver [29] uses a threshold on the ratio of failed to
successful connections. Traffic from hosts that exceed these
thresholds is blocked. These systems are also prone to false
positives and false negatives. For example, an attacker can
perform scanning with a fake source address to block traffic
from that address. Worms can also evade containment by
using techniques that do not cause connection failures; topo-
logical, meta-server, passive and target-list worms [28] all
use non-scanning techniques.

These network centric worm containment systems are ef-
fective against previous worms. However, worm writers can
easily increase the sophistication of worms to evade these
containment systems.

3. VIGILANTE’S DESIGN
The host centric approach can gather detailed informa-

tion about vulnerabilities by analyzing the worm infection

process inside applications running at hosts. It can avoid
the limitations of the network centric approach because it
does not rely on the characteristics of the traffic induced by
worms, for example, it can detect polymorphic worms and
worms that disguise as normal traffic.

It is easy to avoid false positives in host-based worm de-
tection but it can be prone to false negatives. For exam-
ple, due to narrow coverage all buffer overflow detection en-
gines studied in [30] were unable to detect certain variants
of buffer overflow attacks. It is possible to implement host-
based detection engines [10, 1] with broad coverage that de-
tect infection attempts with low false negatives and virtu-
ally no false positives but the overhead of detection usually
grows with the degree of coverage. It would be possible to
run these expensive engines continuously on a few dedicated
hosts but this centralization would result in false negatives
because worms can simply avoid the detectors during prop-
agation.

Vigilante relies on a large scale collaborative worm de-
tection architecture to overcome these problems: every host
can be a detector and detectors broadcast an alert to other
hosts when they detect a worm outbreak. The architecture
allows different hosts to run different detection engines [30,
3, 12, 10, 7, 1] to increase detection coverage and it enables
detectors to run expensive engines with broad coverage be-
cause it spreads detection load. For example, a host that
does not normally run a database server can run an expen-
sive engine to detect attempts to exploit vulnerabilities in a
honeypot version of the database server; it will incur little
or no overhead for doing so but a production database server
would incur an unacceptable overhead. Another alternative
is for hosts to run expensive detection engines when they are
idle or even to use dedicated hosts. Additionally, this de-
centralized architecture makes it hard for attackers to evade
detection and offers no centralized target for attacks.

Cooperation is important for detection but it is unreason-
able to assume that all detectors are trusted in a large scale
system. Vigilante introduces self-certifying alerts (SCAs) to
eliminate the need for trusting detectors. SCAs are machine-
verifiable proofs of vulnerability; they prove that an applica-
tion is vulnerable. Any host can verify an SCA by using
information in the SCA to reproduce the infection process.
While the detection mechanisms can be computationally ex-
pensive, verification is inexpensive. By decoupling vulnera-
bility detection from verification, SCAs allow a large num-
ber of hosts to cooperate in worm detection without trusting
each other.

Worm alerts must be broadcast to all hosts that may be
running the vulnerable program. For the cooperative worm
detection architecture to be effective, the broadcast mecha-
nism must ensure that the SCA reaches all hosts before they
become infected with high probability even if the worm is
detected by a small number of hosts. It must also withstand
denial of service attacks aimed at blocking the propagation
of alerts. Anti-virus vendors use centralized services to dis-
tribute virus signatures but these are vulnerable to targetted
denial of service attacks and it is unclear whether they would



withstand the load generated by an acute worm outbreak.
Vigilante uses a flooding protocol on a secure overlay [2]
that is scalable and resilient to attacks. Other alert distri-
bution mechanisms are possible, for example, IP multicast
could be used inside corporate networks but it is not widely
deployed on the Internet.

Hosts must protect themselves from infection after receiv-
ing an alert but, to prevent denial of service attacks, they
do not invest any effort in generating protection mechanisms
before they verify the SCA (which is inexpensive). SCAs
are vulnerability-centric; they identify a software vulnera-
bility rather than a particular worm. Knowing the vulnera-
bility allows hosts to generate local countermeasures to pro-
tect themselves from all worms exploiting that vulnerability.
One simple protection is to stop the vulnerable application,
which is extreme but may be justifiable in some safety crit-
ical settings. A better option is to use the information in
the SCA to analyse the vulnerable application and generate
patches or filters to prevent infection without stopping the
application.

Some concurrent work [20] has proposed a related host
centric approach to automate worm containment. But it pro-
poses a different architecture where each organization runs
a trusted central service that generates patches automatically
using a set of heuristics to modify vulnerable source code.
We believe that Vigilante’s architecture is more resilientto
attack because it is fully decentralized. Since all hosts coop-
erate in detection and all hosts can protect themselves from
infection, there are no preferential targets for attack. Addi-
tionally, Vigilante’s architecture increases detection cover-
age because it spreads detection load and allows hosts to run
diverse detection engines. The key enabling concept for Vig-
ilante’s architecture is self-certifying alerts, which ismissing
in [20].

4. VIGILANTE’S IMPLEMENTATION
This section discusses our initial implementation of Vigi-

lante and some variations we plan to explore.

4.1 Self-Certifying Alerts
Self-certifying alerts identify a software vulnerabilityand

include information that allows recipients to efficiently check
the authenticity of the vulnerability claim. The current im-
plementation of Vigilante generates an SCA by logging non-
deterministic events that cause a program to reach a dis-
allowed state and it verifies SCAs by replaying events and
checking if the program reaches the disallowed state.

We model the execution of a program as a piecewise de-
terministic process [6]. The execution is a sequence of in-
tervals, each starting with a non-deterministic event (e.g. re-
ceiving a message). Since execution within an interval is
deterministic, logging all non-deterministic events enables
a complete replay of the execution. Techniques to log and
replay non-deterministic events are available from the fault
tolerance literature [6, 5]. Replaying the execution that ex-
hibits the vulnerable behaviour allows the node receiving the
alert to check its authenticity.

It is important to note that the sequence of events in an
SCA does not need to match the events logged during the
attack. The host that prepares the SCA can remove events
that are not necessary to reach the disallowed state and it
can replace the worm code by something inocuous. Since
worms are likely to exploit vulnerabilities that do not re-
quire a long interaction with the vulnerable program, the se-
quence of non-deterministic events that needs to be included
in SCAs is likely to be short. For many previous worms, a
single receive event is sufficient.

Since many worms exploit vulnerabilities that provide an
attacker with arbitrary control over the execution of a pro-
gram, we use an SCA for this type of vulnerability as a run-
ning example. We call this type of vulnerabilityArbitrary
Execution Control (AEC).

Any self-certifying alert contains: an identification of the
vulnerable program, a vulnerability type, an event list, and
optional verification hints. This optional information facili-
tates checking, for example, the SCA for an AEC specifies
where the value that will be loaded into the program counter
is in the list of non-deterministic events, e.g., in which mes-
sage and at which offset.

4.2 Detection
There are several general detection mechanisms [10, 1]

that hosts can deploy in detectors. We describe a novel mech-
anism to detect Arbitrary Execution Control vulnerabilities
that uses dynamic data flow analysis.

Many worms inject code into a vulnerable program and
force it to execute that code. Another common attack mech-
anism is to control the execution of the vulnerable program
remotely without injecting any new code, for example, forc-
ing a program to call the system() function in the C runtime.
We use dynamic data flow to detect attempts to exploit these
AEC vulnerabilities. The idea is to track the flow of data
received in input operations (e.g. data received from net-
work connections) and block(i) any execution of that data
and(ii) any loads of that data into the program counter. This
prevents execution of remotely loaded code and remote exe-
cution control.

Our current implementation uses binary re-writing at load
time to implement this dynamic dataflow analysis. We in-
strument every control transfer instruction (e.g. RET, CALL,
JMP on x86 CPUs) and every data-movement instruction
(e.g. MOV, MOVS, PUSH, POP on x86 CPUs) to keep track
of which memory locations and CPU registers are dirty with
data received from input operations. We keep a bitmap with
one bit per 4K memory page, which is set if any location
in the page is dirty. For every dirty page we keep an ad-
ditional bitmap with one bit per memory location. We also
keep an additional bitmap with a bit per CPU register to keep
track of which registers are dirty. The dynamic dataflow al-
gorithm is very simple: whenever an instruction that moves
data from a destination to a source is executed, the destina-
tion becomes dirty if the source is dirty or it becomes clean
otherwise. Whenever an input operation is performed (e.g.
receiving data from a network connection), the memory lo-
cations where the data is written are marked dirty. The in-



strumented control flow instructions signal an infection at-
tempt when dirty data is about to be executed or loaded into
the program counter.

Dynamic dataflow analysis can prevent problems with pre-
vious detection tools [30] because it has broader coverage.
For example, tools that rely on detecting writes to the return
address in the stack are unable to detect attacks that over-
write a function pointer. Dynamic dataflow analysis does
not rely on detecting overwrite of any specific data struc-
ture. Furthermore, it does not require access to the source
code and it works with self-modifying and dynamically gen-
erated code.

There are some attacks that dynamic dataflow analysis
cannot detect, for example, attacks that exploit backdoors
in programs or weak passwords. We are currently extending
the implementation to detect attacks that overwrite the argu-
ments of system calls. The idea is to block invocation of dan-
gerous system calls with dirty arguments that have not been
checked by the program. This approach is superior to wrap-
ping approaches that compare system call arguments with
known bad values because it is more general.

Hardware implementations of mechanisms similar to dy-
namic dataflow analysis [23, 4] have been proposed concur-
rently with our work. Vigilante’s cooperative detection ar-
chitecture enables a software-only implementation because
it spreads detection load. Additionally, we exploit the flex-
ibility of software to extend the analysis to detect attacks
that overwrite system call arguments and to aid in generat-
ing SCAs (as described in the next section).

4.3 Alert Generation
When a vulnerability is detected, the host generates an

SCA: it generates the summarized event list, removes any
information that is not essential to trigger the vulnerability
from the events (e.g., the worm code) and generates addi-
tional hints to aid verification.

As a concrete example, we describe the generation of an
SCA for an AEC using dynamic dataflow analysis. The de-
tector logs non-deterministic events and it intercepts execu-
tion when there is an infection attempt (just before the worm
code gains control as described before). The detector starts
by determining the event in the log that is the source of the
dirty address that was about to be executed or loaded into
the program counter. Searching through all the events in the
log for the specific byte pattern in the address can lead to
false matches. Instead, we augment the dynamic data flow
analysis to track the origin of dirty data; rather than usinga
single bit to indicate if a memory location or register is dirty,
we use an integer that identifies the input event where dirty
data came from. Removing unnecessary data from the event
that triggers the vulnerability can be achieved by verifying
which portions of event data determine the execution path
that triggers the vulnerability.

To reduce the number of events in the alert, we can replay
the execution with an increasingly larger suffix of the log and
check for the error condition. This strategy is effective for
current worms because they trigger vulnerabilities with the
last few packets received over a network connection. Fur-

ther research is required to analyze potential attacks against
this alert generation algorithm and to devise additional alert
generation algorithms.

4.4 Alert Verification
Verifying an SCA entails replaying the execution that ex-

hibits the vulnerable behaviour. The process of verifica-
tion is much more efficient than detection and generation of
SCAs. For example to verify an AEC alert, a host will:

1. load the vulnerable program as a suspended process

2. load aVerified function into the suspended pro-
cess’ address space

3. use the verification hint in the SCA to locate the event
and offset of the illegal address identified during de-
tection and replace the illegal address by the address
of theVerified function

4. replay the execution to force the vulnerable program to
jump to theVerified function.

It is important that the verification process be run inside a
sandboxing environment [5] so that any possible malicious
side effects are neutralized. We are currently exploring for-
mal mechanisms similar to Proof-Carrying Code [17] to ver-
ify SCAs. The aim is to express the vulnerability as a logic
formula and to verify that the preconditions described in the
SCA imply the vulnerability. This could allow SCA verifi-
cation without running the vulnerable program in a sandbox.

4.5 Resilient Diffusion of Alerts
After an SCA has been created, it needs to be rapidly and

resiliently distributed to all other nodes that are runningthe
vulnerable program. We are currently evaluating a flood-
ing protocol to distribute SCAs on a secure structured over-
lay [2]. Hosts in Vigilante are assigned a certified randomId
by a certification authority to prevent attackers from choos-
ing their identifiers or obtaining many identifiers. Addition-
ally, the identifier of a host determines its set of neighbors
in the overlay, which prevents attackers from increasing the
fraction of hosts that point to them. Vigilante disseminates
an SCA by forwarding it over all overlay neighbor links.

Vigilante imposes some additional requirements on the
overlay: (i) we need to protect the overlay against denial of
service, and(ii) worms should be prevented from propagat-
ing over the overlay. We protect against denial of service by
bounding the rate at which a host may insert messages into
the overlay through each of its neighbor links. This is effec-
tive because the constraints on neighbor identifiers make it
hard for an attacker to change overlay neighbors. We limit
membership information leakage by ensuring that Vigilante
runs a dedicated overlay and by exploiting the constraints
on neighbor identifiers. When nodeX requests information
from nodeY , nodeY only returns information to nodeX
that it knows nodeX requires to maintain the overlay. Ad-
ditionally, it is important to avoid exposing the identities of
all overlay neighbors when a host is compromised. This can
be achieved, for example, by running the overlay inside the



mov al,byte ptr [netbuf] //move first byte into AL
mov cl,0x31 //move 0x31 into CL
cmp al,cl //compare AL to CL
jne out //jump if not equal
xor eax,eax //move 0x0 into EAX
loop:
mov byte ptr [esp+eax+4],cl //move byte into

//stack-based buffer
mov cl,byte ptr [eax+netbuf+1]//move next byte into CL
inc eax //increment EAX
test cl,cl //test if CL is equal to 0x0
jne loop //jump if not equal
out:

Figure 1: Vulnerable code.

operating system kernel, a virtual machine monitor (VMM)
or a hardware chip depending on the level of protection re-
quired.

4.6 Local countermeasures
Upon receiving an SCA, hosts can take local action to

protect themselves. Hosts can generate patches that correct
low-level coding defects or simply stop vulnerable applica-
tions. However, our preferred approach is for hosts to gener-
ate vulnerability-specific filters installed immediately above
the network stack of the hosts [27]. These filters can use ap-
plication state to decide when to drop incoming traffic and
they are resilient to polymorphic worms. The host can gen-
erate the conditions for a filter by analyzing the vulnerable
execution path identified by the SCA; it can check which
bytes in a message determine the execution path that leads
to infection and which conditions on those bytes are tested
in that execution path.

We will use the vulnerable code in Figure 1 to illustrate
how filters can be generated. The code starts by compar-
ing the first byte of the message in the network buffer with
a constant (0x31). If it matches, the bytes in the network
buffer are copied to a stack-based buffer until a zero byte is
found. This is a potential buffer overflow that could over-
write the return address on the stack and it is representative
of vulnerabilities in string libraries.

Vigilante can generate a filter for this vulnerability by run-
ning the SCA verification procedure until the dirty data that
will be loaded into the program counter or executed is writ-
ten. During this execution Vigilante tracks how each dirty
memory position or register value is computed from the in-
put message and records all the tests performed. For ex-
ample, after executing the first four instructions Vigilante
would determine the condition that the first byte in the mes-
sage should be equal to 0x31. Similarly, executing the loop
would derive conditions on a sequence of bytes in the net-
work buffer being different from zero. Applying a filter with
these conditions to incoming messages would not generate
false positives and would block all worm variants exploiting
this vulnerability.

We are investigating how to generalize this mechanism
to produce filters without false negatives in more complex
cases by eliminating conditions that are not decisive to reach
the vulnerable code and by analyzing alternative paths to the
vulnerability.

5. EVALUATION
This section presents results of experiments to evaluate the

performance of Vigilante, under realistic scenarios.
Network topology We used a simple packet-level dis-

crete event simulator that supports different network topolo-
gies. Our experiments use a transit-stub topology generated
using the Georgia Tech topology generator [31]. It has 5050
routers arranged hierarchically, with 10 transit domains at
the top level with an average of 5 routers in each. Each tran-
sit router has an average of 10 stub domains attached, with an
average of 10 routers each. The delay between core routers
is computed by the topology generator and routing is per-
formed using the routing policy weights of the graph gener-
ator. Vigilante hosts run the secure version of Pastry [2] and
are attached to randomly selected stub routers by a LAN link
with a delay of 1ms. The Pastry configuration usesb = 1,
l = 32, since this provides a good balance between perfor-
mance and overhead for this application.

Detection and Verification We implemented detection
with dynamic dataflow analysis using the Nirvana runtime
analysis system [14]. Our preliminary tests show that we
can detect vulnerabilities such as the ones described in [30].
The performance overhead of our unoptimized implemen-
tation is high (approximately a factor of 50). Even with
this high overhead, dynamic dataflow analysis can effec-
tively be used to detect worms because Vigilante’s archi-
tecture spreads detection load. We expect to achieve much
lower overheads by optimizing our implementation. We ran
preliminary tests of the operational alert verification mecha-
nism using the Microsoft SQL Server database and the Slam-
mer worm. Having prepared a SQL Server process with the
injectedverified routine, the process of verification en-
tails only forcing SQL Server to jump to that routine by re-
playing the receive event of the message in an SCA. The
process takes a few milliseconds.

Worm propagation model We model worm propagation
using the epidemic model described in [9]. The model as-
sumes a network ofN nodes and an average infection rate of
β. If we represent the total number of infected nodes at time
t as It , the system is described by the following equation:
dIt
dt = β It(1� It

N )
Containing the Slammer outbreak Figure 2 plots the

fraction of hosts that survive an attack by a worm similar to
Slammer, as a function of the fraction of hosts that are capa-
ble of detecting the worm. We simulate a population of 100
000 vulnerable hosts of which 10 are initially infected. We
assume that detectors are randomly placed, since hosts can
decide independently which (if any) detection mechanisms
to use. We setβ = 0:117, which is believed to approximate
Slammers observed behaviour on the Internet [15]. This
means that every 8.5 seconds the number of infected ma-
chines doubles (Slammer has been described in [15] as the
fastest computer worm in history). Whenever a worm probe
reaches a detector, it generates an SCA in 5 seconds and
then starts its propagation using the Pastry overlay (prelimi-
nary experiments with SQL Server show that we can gener-
ate SCAs in less than 1 second, assuming the host is other-



SQL Slammer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.002 0.004 0.006 0.008 0.01

fraction detectors

fr
ac

tio
n 

su
rv

iv
ed

Figure 2: Fraction of survivors for SQL Slammer.

wise idle, but we believe more research is needed to simulate
attacks on the SCA generation procedure). The SCA for the
vulnerability exploited by Slammer is only 159 bytes. We
also assume that even before the worm attack, 10 percent of
the hosts are malicious. If a host is malicious or infected it
does not propagate SCAs. Each data point in the graph is the
worst case of 20 runs, using distinct random placements for
the detectors. The graph shows that a very small fraction of
detectors (0.001) is enough to contain the worm infection to
less than 10 percent of the vulnerable population.

6. CONCLUSIONS
We believe that network centric approaches to automate

worm containment have fundamental limitations because there
is no information about the vulnerabilities exploited by worms
at the network level. Vigilante adopts a host centric approach
to automate worm containment that addresses the limitations
of the network centric approach by analyzing infection at-
tempts inside applications running at end hosts. Vigilante
contains worms using a large scale collaborative architec-
ture to detect worms and to propagate worm alerts. Self-
certifying alerts are the fundamental concept that enables
this architecture; it eliminates the need for hosts to trusteach
other and enables hosts to run diverse detection engines and
to spread detection load. Hosts can also use SCAs to gen-
erate filters or patches that protect themselves from infec-
tion. Our preliminary experimental results show that Vigi-
lante can contain very fast spreading worms such as Slam-
mer.

7. REFERENCES
[1] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko

Stefanovic, and Dino Dai Zov. Randomized instruction set emulation
to disrupt binary code injection attacks. InCCS, Washington D.C.,
USA, October 2003.

[2] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, AntonyRowstron,
and Dan S. Wallach. Security for structured peer-to-peer overlay
networks. InOSDI, Boston, USA, December 2002.

[3] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Wadpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic
detection and prevention of buffer-overrun attacks. In7th USENIX
Security Symposium, San Antonio, USA, January 1998.

[4] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data
attack prevention orthogonal to memory model. InMICRO-37,
Portland, OR, USA, December 2004.

[5] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine logging
and replay. InOSDI, Boston, USA, December 2002.

[6] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing
systems.ACM Computing Surveys, 34(3):375–408, September 2002.

[7] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. InSNDSS, pages 191–206,
San Diego, USA, February 2003.

[8] L. T. Heberlein, G. Dias, Levitt K, B. Mukerjeeand J. Wood, and
D. Wolber. A network security monitor. InProceedings of the IEEE
Symposium on Research in Privacy, 1990.

[9] H. W. Hethcote. The mathematics of infectious deseases.SIAM
Review, 42(4):599–653, 2000.

[10] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis.
Countering code-injection attacks with instruction-set randomization.
In CCS, Washington D.C., USA, October 2003.

[11] H. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. InProceedings of the 13th USENIX
Security Symposium, San Diego, USA, August 2004.

[12] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe.
Secure execution via program shepherding. InUSENIX Security
Symposium, San Francisco, USA, August 2002.

[13] C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion
detection signatures using honeypots. InHotNets-II, Cambridge,
USA, November 2003.

[14] Microsoft. Nirvana: A runtime analysis infrastructure.
http://research.microsoft.com/bit/.

[15] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the slammer worm.IEEE
Security and Privacy, 1(4):33–39, July 2003.

[16] David Moore, Colleen Shannon, Geoffrey Voelker, and Stefan
Savage. Internet quarantine: Requirements for containing
self-propagating code. InInfocom, San Francisco, USA, April 2003.

[17] George C. Necula and Peter Lee. Safe kernel extensions without
run-time checking. InOSDI, Seattle, USA, October 1996.

[18] Vern Paxson. Bro. a system for detecting network intruders in real
time.Computer Networks, 31(23-24):2435–2463, December 1999.

[19] M. Roesch. Snort: Lightweight intrusion detection fornetworks. In
Proceedings of the 13th Conference on Systems Administration,
Seattle, USA, November 1999.

[20] Stelios Sidiroglou and Angelos D. Keromytis. Countering network
worms through automatic patch generation.IEEE Security and
Privacy, 2005.

[21] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage.
The earlybird system for real-time detection of unknown worms.
Technical Report CS2003-0761, University of California, San Diego,
August 2003.

[22] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the
internet in your spare time. InUSENIX Security Symposium 2002,
San Francisco, USA, August 2002.

[23] G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. InASPLOS XI,
Boston, MA, USA, October 2004.

[24] Cisco Systems. Network-based application recognition.
[25] Peter Szor and Peter Ferrie. Hunting for metamorphic. In Virus

Bulletin Conference, Prague, September 2001.
[26] theo detristan, tyll ulenspiegel, yannmalcom, and mynheer

superbus von underduk. Polymorphic shellcode engine using
spectrum analysis.Phrack, 11(49), August 2003.

[27] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known
vulnerability exploits. InSIGCOMM, Portland, USA, August 2004.

[28] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A
taxonomy of computer worms. InThe First ACM Workshop on Rapid
Malcode (WORM), 2003.

[29] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of
scanning worms. InProceedings of the 13th USENIX Security
Symposium, San Diego, USA, August 2004.

[30] John Wilander and Mariam Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention. InNDSS,
pages 149–162, San Diego, California, February 2003.

[31] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. InINFOCOM96, San Francisco, California, 1996.


