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1 Introduction

This paper revisits a classic question: how can a machine
specify a computation to another one and then, without
executing the computation, check that the other machine
carried it out correctly? The applications of such a primi-
tive include cloud computing (a computationally limited
device offloads processing to the cloud [11] but does not
assume the cloud’s correctness [12]); volunteer comput-
ing (some 30 projects use the BOINC [1] software plat-
form to leverage volunteers’ spare cycles, but some “vol-
unteers” return wrong answers [2]); and high-assurance
computing (a machine may be remotely deployed and
subject to physical tampering).

Today, a common way to verify computations is repli-
cation [9, 17, 23, 27]. However, replication may not be
viable (say if the performing computer is an embed-
ded robot). It also requires assumptions about failure
independence. Another technique is auditing [17, 24],
but if the performer understands the computation bet-
ter than the requester, the performer can alter strate-
gic bits, undetected by an audit. A final technique is
trusted computing [10, 21, 26, 28, 29], but it assumes
that some component—the hardware, the hypervisor, a
higher layer—is not physically altered. Can we instead
make no correctness assumptions about the performer?

In theory, such unconditional verification has been
achievable since the 1980s, using both interactive
proofs [15] and probabilistically checkable proofs
(PCPs) [3, 5]. Informally, the central theorem in the area
states that a client can—with a suitably encoded proof
and under a negligible chance of viewing a wrong answer
as correct—check an answer’s correctness in constant
time [3]. Unfortunately, this astonishing body of theory
is considered by folklore to be impractical. This skepti-
cism is well-founded: it is based on the complexity of
the algorithms and long experience trying to use general-
purpose cryptographic results in practical systems.

This brings us to the purpose of this paper, which is
to propose a new line of systems research: using the ma-
chinery of PCPs, can we build a system that (a) has prac-
tical performance, (b) is simple to implement, and (c)
provides unconditional guarantees? Note that (a) and (b)
contrast with PCPs as used in the theory literature and (c)
contrasts with current systems approaches. To illustrate
the promise of this line of research, we do the following:

(1) Identify work in the PCP literature that provides
a base for systems research (§3.1–§3.2). We first looked
to the PCP literature, then observed that efficient argu-
ment systems [19, 22] (PCP variants in which the server
proves that it has a proof by answering questions interac-

tively) are promising, and then noticed that a particular
argument system [18] could lead to a practical solution.

(2) Refine the approach of [18] into a design that is
practical over a limited domain (§3.3). We applied re-
finements to shrink program encoding (via arithmetic cir-
cuits instead of Boolean circuits), enable batched proofs
(which enhances performance for computations that can
be decomposed into parallel pieces), and improve amor-
tization (by moving more of the work to a setup phase).
These innovations are essential to practical performance.

(3) Implement this design to demonstrate its practical-
ity (§4). To our knowledge, PCP theory has never before
found its way into any efficient implementation. Thus,
we believe that our implementation, though limited, is a
contribution. Our implementation is also comparatively
simple; it could conceivably be formally verified.

(4) Articulate a research agenda for extending the
reach of our approach (§5). Our ultimate goal is a prac-
tical system for general-purpose verified computation.

The four contributions above provide a concrete founda-
tion for our position, which is that PCP-based verifiable
computation can be a systems problem, not just a the-
ory problem. We need this foundation because PCPs are
thought to be impractical; indeed, our prior designs were
too expensive by over 11 orders of magnitude. Even our
prototype achieves goals (a)–(c) above only over a lim-
ited domain.

Our initial demonstration is m × m matrix multiplica-
tion over (large) finite fields. We chose this as our core
example for two reasons. First, matrix multiplication was
our initial test: it’s parallelizable and efficiently encod-
able as a circuit, so we knew that if we couldn’t make
it perform well, we were out of business. Beyond that,
matrix multiplication has practical significance. It is a
core primitive in many applications: image processing
(e.g., filtering, rotation, scaling), signal processing (e.g.,
Kalman filtering), data mining (e.g., recommendation en-
gines based on collaborative filtering [6]), etc.

Fortunately, our results for this computation are en-
couraging. In our implementation, the client’s measured
work per computation is Km2 operations, with K on the
order of several hundred (the exact value depends on the
desired confidence), and the server’s is roughly 12m4 op-
erations Thus, relative to the naive m3 algorithm, the pro-
totype’s costs at the client are cheaper than computing lo-
cally for m > K (which holds for even small image files).
The situation with the server is grimmer. Its costs are un-
doubtedly high: a factor of 12m greater than (naively)
executing the computation with no verification.

Nevertheless, we are willing to label this practical, for
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two reasons. First, one should expect a cost for provable
assurance, and a linear factor (with good constants) is
perhaps tolerable. Second, our view may be colored by
our prior designs: the worst of them called for m9 server
work with constants greater than 1016 (seriously). We
have made a lot of progress since then, and we no longer
worry about being laughed out of the room.

Apart from the server’s cost, our scheme has other sig-
nificant restrictions. The most serious is the program en-
coding: while arithmetic circuits achieve efficiency com-
parable to a C program for many linear algebra computa-
tions, they are much less efficient for computations that
have many conditionals and control flow. Moreover, our
performance relies on the circuit being efficiently decom-
posable into independent parallel-executable chunks.
Another issue is that our scheme requires an expensive
one-time setup phase, the cost of which is amortized over
all instances of the same computation; while reasonable
in some scenarios, this is obviously not ideal for generic
outsourced computation. Finally, for smaller computa-
tions (e.g., m×m matrix multiplication for m < K), even
the online phase is more expensive for the verifier than
executing the computation locally, which undermines the
usual motivation for verified computations: saving the
client work [10, 12, 14, 26].

However, even for small computations, our scheme
could be useful in certain operating regimes. If comput-
ing remotely is unavoidable (because of the deployment
scenario), if the server is expensive, and if the context
is mission-critical, then assurance is important. In these
circumstances, the client’s verification work is permitted
to cost more than computing locally (within reason), and
an expensive pre-deployment step is acceptable.

2 Related work
As mentioned above, replication and trusted hardware
rely on assumptions about the remote computer, in con-
trast to our goal of unconditional verification. The intro-
duction also mentioned auditing, and here we highlight
the contrast between spot-checking and PCP-based guar-
antees. Unless the audit coverage is nearly perfect (which
degenerates to executing the computation), a performing
computer that alters a key bit (e.g., in an intermediate
step) is unlikely to be detected. Under PCPs, however,
any deviation from a correct answer (even in a single
bit!) is detectable with high probability with only a small
number of queries to the proof. This unintuitive aspect of
PCPs is described further in Section 3.1.

The potential of PCPs and interactive proofs to serve
as a foundation for verified computations has long been
known to theorists [3, 5, 8, 15]. We borrow from this
theory, but our goal is a practical system, which has bi-
ased our choice of techniques. For instance, we built
upon [18], which admits a remarkably easy implemen-

tation, rather than an intricate scheme by Goldwasser et
al. [14] even though it is asymptotically more efficient.

For verified computations, theorists have also turned
to secure multi-party protocols, where parties compute
an agreed-upon function of private data, revealing only
the result [32]. These protocols alone do not provide ver-
ifiable computations, but Gennaro et al. [12] combine
Yao’s construction with Gentry’s homomorphic encryp-
tion [13] to provide verifiable non-interactive computing.
However, Gentry’s scheme is not yet practical on today’s
computers, and secure multi-party protocols themselves
are prohibitive [20]. An efficient version of these tech-
niques specialized to arithmetic circuits [16] has differ-
ent asymptotics (significantly more work for the verifier,
better overall burden) than our approach, and it is unclear
if it is amenable to the amortizations we rely on.

Some approaches to verified computation work over
specific problem domains [4, 31]. For that matter,
Freivalds’ technique [25] verifies a matrix multiplication
in O(m2) time with a randomized algorithm. However,
our ultimate goal is to support arbitrary functions, so we
head in a different direction from special-purpose proto-
cols.

3 Approach
We first sketch a totally impractical scheme and then
sketch a series of refinements that reduce it to practice.

3.1 Verified computations and PCPs

We wish to implement the following protocol: A com-
puter we control, the verifier, sends a program Ψ and an
input x to a remote computer, the prover. The prover re-
turns a result y and a proof P, where P establishes that
y is the result of running Ψ on x. Moreover, it must be
cheaper to check P than to compute y locally. Such asym-
metric checking is precisely what PCPs enable.

Since many PCP constructions are geared to proving
the satisfiability of Boolean circuits, we now cast our
problem in this language.1 There is a Boolean circuit B
(which depends on Ψ, x, and y) such that B is satisfiable
(that is, evaluates to 1) iff y is the correct output of Ψ
run on x. Assume for now that the prover and verifier can
each efficiently derive B, given Ψ, x, and y. Then, if the
prover could prove that B is satisfiable, the verifier would
know that y is the correct output of Ψ run on x. Of course,
the assignment ~a (that is, the values of all of the wires in
B) constitutes an (obvious) proof that B is satisfiable: the
verifier could check ~a against every gate in B.

The remarkable content of the PCP theorem, however,
is that there is a proof, P, that the verifier can check by
examining only a constant number of bits of P. Specif-
ically, for any satisfiable Boolean circuit B, there is a

1A Boolean circuit is a set of interconnected gates, each with input
wires and an output wire, with wires taking 0/1 values.
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proof that convinces a constant-time verifier; if B is not
satisfiable, then the probability that such a verifier will
accept B as satisfiable is upper-bounded by a negligible
constant—for any purported proof.

We want to emphasize the power and somewhat
counter-intuitive nature of this theory. One way to un-
derstand it is that the information content in the assign-
ment ~a is spread over the proof, which acts as an error-
correcting code. Thus, even if y differs from the correct
output by a single bit (or if one bit is flipped in the inter-
mediate computation), thereby making B not satisfiable,
the verifier will catch this fact with high probability.

Unfortunately, this approach is totally impractical:
• The proof is too long. It is much too large for the ver-

ifier to handle, or for the prover to compute.
• The protocol is too complicated. State-of-the-art PCP

protocols [7] partially address the concern about
proof length, but they are so intricate that a bug-
free implementation is unlikely. Unfortunately, in this
context, even small bugs can be security-critical.

• The phrasing of the computation is too primitive.
Even if they have simple control flow, most general-
purpose computations are far longer when expressed
as Boolean circuits than in, say, C++. Such expansion
translates into prohibitive implementation expense.

The rest of this section addresses the above issues in turn.

3.2 Argument systems

A key refinement was proposed by Kilian [19], who con-
structed an efficient argument system. Kilian observed
that the verifier need not receive the proof and instead
can ask the prover to send the bits of the proof only at the
locations where the verifier will check the proof. To pre-
vent the prover from changing answers to later queries to
spuriously match earlier answers, the verifier requires the
prover to cryptographically commit to the proof. This in-
teractive approach alleviates the verifier’s burden in deal-
ing with the proof. The prover, however, must now pay
for the proof (as before) and the substantial overhead of
the (Merkle tree) commitment scheme.

We next turn to work by Ishai et al. [18], who had
a key insight: for the purposes of an argument system,
one can avoid the efficient PCP constructions, which are
complex, by exploiting the interactive nature of the pro-
tocol. That is, since we’re not shipping the proof around,
we can do much better by using that fact from the begin-
ning. In more detail, Ishai et al. use a simple PCP con-
struction from [3] (also described in [7, 18]) in which
the proof is a linear function; querying the proof means
asking the prover to evaluate the function at a verifier-
chosen point. If written down fully, the proof would be
exponentially-sized: it would be the function’s values at
every point in the domain. However, the prover does not

materialize the proof; it derives the coefficients for its
linear function while executing the computation.

For this approach to work, the prover must not modify
the function during the protocol. Thus, Ishai et al. pro-
pose a primitive: commitment to a linear function. The
idea is that the prover pre-evaluates the function at points
chosen by the verifier, and then the prover’s subsequent
responses must be consistent with this pre-evaluation.

The advantages of the Ishai et al. scheme are twofold.
First, it is very simple (as least compared to other PCP-
based protocols). Second, it admits a version that has an
expensive setup phase but is efficient during normal use.
This version can be made practical through various re-
finements, which we describe in the next subsection.

3.3 Our refinements

Our version and the base protocol [18] have the same
structure, which we outline immediately below.

Setup phase (one time):
1. Verifier sends to prover a circuit, C, that encodes Ψ.

2. Verifier generates random encoded query helper vec-
tors and sends them to prover.

Online phase (for each computation instance):
1. Verifier sends input, x, to prover, which executes Ψ

on x and returns answer, y.

2. At verifier’s request, prover issues a linear commit-
ment to a proof for the following statement: When
C is augmented with input x and purported output y,
that new circuit (which is akin to B in §3.1) is satisfi-
able. If true, this statement means that Ψ run on input
x truly produces the claimed y.

3. Verifier asks prover to respond to the encoded queries.
If the proof is correct, a correct verifier certainly ac-
cepts the prover’s responses and declares y to be cor-
rect. If the proof or purported output is incorrect, the
verifier rejects y with high probability.

Before describing our refinements, we answer a natu-
ral question: if the verifier must send C (or write it down),
then how can this process save the verifier work? The an-
swer is amortization. The verifier pays once to material-
ize C, which is roughly as much work as executing C (or
Ψ). The verifier then retains only a digest of C. In the
online phase, the verifier augments the digest with x and
y, and this augmented digest allows the verifier to query
the prover and check its results.

(1) Program encoding. We reworked the scheme to en-
code computations as tailored arithmetic circuits, instead
of Boolean circuits. The input and output wires of arith-
metic circuits take values from a large set (e.g., a finite
field or the integers), and the gates are low-level opera-
tions like AND or ADD. In our tailoring, gates can also
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encapsulate a single-output degree-2 function of poten-
tially many inputs (e.g., a dot product). Note that a gate
here does not represent a low-level hardware element but
rather a modular piece of the computation that enters the
verification algorithm as an algebraic constraint.

Although unsurprising theoretically, this refinement is
critical practically. For parallelizable numerical compu-
tations (e.g., matrix multiplication or FFT), arithmetic
circuits can be tailored until they cost nothing: as we
demonstrate empirically in §4, executing matrix multipli-
cation as a circuit costs the same as a C++ implementa-
tion (so the overhead in this case derives only from prov-
ing and verifying). Even computations not so amenable
to tailoring are vastly more concise when represented as
arithmetic circuits than as Boolean circuits.

To give a sense of our savings in getting to this no-
overhead point for matrix multiplication, the move from
a Boolean to a non-tailored arithmetic circuit saves, for a
fixed m, four orders of magnitude in the number of circuit
wires and eight orders of magnitude in the prover’s work
(which is quadratic in the number of wires). We decrease
the proof work by another factor of m2 with dot product
gates (the tailored gates reduce the number of wires from
m3 +2m2 to 2m2, lowering the number of required prover
operations from more than m6 to 4m4).

(2) Decomposition and batching. If a computation has
modular components (e.g., the m2 dot products in matrix
multiplication), the prover can separately encode these
sub-computations and, with a small change to the proof
encoding, allow them to be verified in batch. The prover’s
work then goes from quadratic in the computation size
to (a) quadratic in the sub-computation size plus (b) a
cost for combining. For matrix multiplication, the con-
stant factor saved is two orders of magnitude. The veri-
fier, however, pays for this approach (but far less than if
it computed locally).

(3) Optimization of cryptographic primitives. To ex-
tract query responses from the prover while hiding the
queries themselves, the base scheme uses homomorphic
encryption. This primitive, though powerful, is fairly
expensive, and the base scheme invokes it incessantly.
Our refinement is to eliminate these invocations with a
special-purpose protocol that blinds queries, radically re-
ducing the prover’s costs (by a huge constant).

(4) Amortization and query reuse. Ishai et al. sketched
an amortization scheme and a way to trade costs between
the online phase and the setup phase. This suggestion
inspired us. However, the original did not work out the
details, and it required either frequent instances of the
setup phase or unacceptably long latency (since verifica-
tion could happen only once per setup instance). In con-
trast, we developed a precise specification of an amorti-
zation scheme with a one-time setup (we reuse queries

Resource (A) General (B) Matrix multiplication
Baseline CPU N/A m3

Circuit CPU d · c m3

Verifier CPU (online) O((|x|+|y|)·d) (7m2 + 44m + 52) · r
Prover CPU (online) O((n2 + c) · d) 12m4 + m3 + 360m2r
Network (online) O(d) (60 + 60m) · r

Verifier CPU (setup) O(n2 + d) 23 · (4m2 + 2m) · r + m2

Prover storage O(n2 + d) 30 · (4m2 + 2m) · r + 2m2

Figure 1—Costs in our scheme for (A) any computation ex-
pressed as an arithmetic circuit and (B) tailored m × m matrix
multiplication. Column (A) gives asymptotic bounds; column
(B) gives exact counts. The CPU lines refer to number of opera-
tions; network and storage are in terms of 4-byte words. x is the
computation’s input, y its output. d ≥ 1 is the number of sub-
computations. c denotes the number of operations in each sub-
computation, and n the number of wires in a sub-computation.
For column (B), the sub-computations are dot products, and
the operations counted are field multiplications only (not ad-
ditions). Thus, d = m2, c = m, and n = 2m. (We omit ad-
ditions for simplicity and because multiplications are far more
expensive. However, the vertical comparison is still apples-to-
apples.) Derivations are in [30].

by keeping them hidden, using the primitive from (3)).

The sketch above is detailed in [30]. We have proved
the completeness and soundness of (1) and (2), but (3)
and (4) are only heuristics for now.

4 Are the costs plausible?
We now assess the costs of our scheme, first analyti-
cally and then by measuring a C++ prototype. Our ex-
ample computation is matrix multiplication over the field
GF(232), and our baseline for comparison is this compu-
tation when executed as a compiled C++ program.

Figure 1 lists the costs. The parameter r relates to error
probability: a correct verifier always classifies a correct
output as such but, with probability p, fails to detect an
incorrect output. If executed once, the scheme sketched
in §3 has p < 7

8 . To make the overall error, e, negligible,
the verifier and prover repeat the scheme r times in par-
allel.2 For example, e < 3 · 10−5 for r ≈ 80. Note that
reducing e further is relatively inexpensive. For example,
when m = 200, to bound e by 10−4, 10−6, and 10−9, the
verifier’s estimated CPU usage, relative to the baseline,
ascends 2.6, 3.8, and 5.8, and the percentage effect on the
prover is far less.

We measured CPU cycles (using rdtsc) consumed by
our prototype. Figure 2 shows the measurements, scaled
by r = 80; they agree with our estimates above.

Take-aways. For matrix multiplication, required stor-
age is a constant (≈ 60r) greater than the input; the

2Unlike in the theory literature, our error cannot be driven arbitrarily
close to zero. It is bounded away from zero by 1

232 , owing to the way
that we implement refinement (2). The details are described in [30].
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Figure 2—CPU measurements (scaled) of m × m matrix mul-
tiplication, for varying m. The y-axis is log-scaled. The bar
heights depict the means of 10 runs, scaled by r = 80 (which
makes e ≤ 3 · 10−5); std. deviations are < 3% of the means.

prover’s online CPU cost is ≈ 12m times executing lo-
cally; and the verifier’s online CPU usage is less than
executing locally for m3 ≥ 7m2r + O(m), which, for
r = 80, holds for m > 600. The main costs, then, are
storage and CPU at the prover. Are they plausible? Pos-
sibly for high-assurance scenarios like those mentioned
in §1. For everyday use, likely not. However, as noted
before, our costs are dramatically reduced from a naive
version, and we are optimistic about more improvements.

5 Where do we go from here?
Our scheme achieves our goals of practicality, simplicity,
and unconditional assurance but only over a limited do-
main. The ultimate goal is perhaps far off, but there are a
number of tractable improvements we hope to pursue:

Reducing storage costs. During setup, the verifier in-
stalls on the prover many random strings. We think that
pseudo-random functions may help alleviate these costs.

Floating point support. Our prototype supports arith-
metic circuits over (large) finite fields. But for most ap-
plications, efficient floating point arithmetic is essential.

Automatically compiling circuits. Our example in-
volves a hand-tailored circuit for which the decomposi-
tion into parallel chunks was apparent. A key next step is
a compiler to turn amenable computations expressed in a
higher-level formalism into representations of this form.

Longer-term (but more speculative) projects include:
Complicated control flow. A central inquiry is to find

a representation of computation that, unlike our current
one, deals well with looping or significant control logic.

Prover efficiency. While our results suggest that the
prover’s current burden is arguably practical in some sce-
narios, it would obviously be great to reduce these costs.

Larger inputs. An extension in which the verifier han-
dles only a digest of the input, instead of the full input,
would be highly useful for large problem instances.

Transferability. Our verifier cannot convince a third
party of the correctness of a computation, unless that
third party trusts the verifier.
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