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ABSTRACT Embedding in a specially chosen domain: We insert wa-
) ) ~_ termark data into the DCT [1] or wavelet transform of an entir

nal processing. As a tool for watermarking in an adversaoak highest power among the middle frequencies. The subsetctefl
text, however, this methodology needs caution and newti@m®  4yeraging attacks that collect many distinct images wadeket
We suggest SS variants where the detection rule is randdriize  \yith the same secret and use averaging to estimate (andlyossi
the sense of having the watermark detector use secret quértdili reduce) the watermark.

choose subsets of the watermarked data and perform casrelat Detection randomized by subset computations. We com-

tests. We then form a pool of such estimates and pick the media pute correlations ovepseudorandom subsets of the watermark
value. We study the effect of such detection methods on sensi gai4 to generate many different watermark respomses., c,.

tivity and estimation attacks, which suggest that randation is We return the median of the responses, which helps to defeat

a necessary tool to prevent these types of potentially ittty sensitivity-type attacks [5], as described later.

adversarial methodologies. We also present other schemas-f Pseudorandom chips: The chip values we add to coefficients

proving the robustness of SS methods, along with experahent are selected pseudorandomly from the rag®, D], whereD is

results. '!'hough we recognize the limitations of ,SS. in the?ak: a small constant. This differs from classical éS WM, whermghea

adversarial attacks, our methods attempt to maximize ttenfial chip usually has the value D or —D.

of SS watermarking in such scenarios. Image-dependent WM keys: We use an image hash [6] as
part of the WM key. This helps avoid averaging attacks, wiih

1. INTRODUCTION estimate WM chips by averaging coefficients of many imagkes al

watermarked with the same key.

Spread Spectrum (SS) is a popular means of implementing im- ~ Our scheme uses several other techniques. To amplify a wa-

age watermarking (WM) [1]. Via engineering tricks and cleve termark embedded in high-power, low- to middle-frequen&yTD

implementation, SS has proven reasonably effective aisteitid- coefficients, we apply histogram equalization to an imaderee
ing image-manipulation and other non-adversarial attg§gk4Jn- we attempt watermark detection. To counter moderate araount
fortunately, SS is less effective against cryptanalytiacis [3]. of resizing and cropping, we rescale images before watéingr

While the ultimate security of SS watermarking is questidea  either to a standard size or to some quantized dimensiogs (e.
various methods can be used to extract maximum performancerounded to the neare80 pixels), and then restore original size.

from SS in the face of cryptanalytic adversaries. Our godhis Finally, we embed separate watermarks into randomly oppitey
paper is to present such methodology and analyze its eféeetss regions of the image. During detection, we use the respdoses
in both theory and practice. all regions simultaneously.

The randomizing features of our algorithms seek to minimize
the assumptions on how input images are generated [7]. We be-
lieve this is important for watermarking techniques to warll
across a range of images with varying characteristicsudiag
images traditionally difficult to watermark robustly. A cbmato-
rial approach to formulating and analyzing the problem atchia
in progress and will appear elsewhere.

2. ALGORITHMSAND ENHANCEMENTS

To embed a WM, SS adds a pseudorandom sequence of small val

ues, or chips, to coefficients in some image representatypi,

cally wavelet- or DCT-basefd]. For detection, SS computes a nor-

malized inner product of that same sequence and the marléd co

ficients. Techniques such as chip repetition, error cdoectind

embedded synchronization patterns are typically usedrtteneSS 3. SENSITIVITY ATTACKS

against common distortions and signal-processing attédhite

such methods can resist StirMark [2] and similar attacks,eth- Against standard correlation-based watermark schemesenti-

hancements may also open the door to adversaries [3]. tivity attack [5] can determine crucial data about watermark chips
We summarize our general methodology [4], which aims to- (i.e., values added to coefficients to encode watermarkisis i$

wards robustness against adversarial attacks. Some oéthe t  true even if the attacker has only black-box access to a efec

niques also help against StirMark-type signal-procesattacks, that is, the attacker can ask the detector only whether ax given

but this is not our focus. image is watermarked, possibly also obtaining the streafjthe



watermark response. A variant of this idea is the followingce-
dure to estimate and subtract out portions of an image watérm PrlY — E(X)| > ¢] < 6.

1. Transform the image or a portion thereof into the domain For example Y may have been obtained via sample averag-
where the watermark is embedded. In our case, this trans-ing. The median method allows one to decre@sxponentially.
form plane P is the DCT or wavelet transform of some  The constant in the lemma below can be replaced by any other

color or intensity plane of the image. constant that is bounded away fr(g-n

2. Choose a random subs@t= {c, cz, ..., cx } of k coeffi- Lemma: Let Yi,..Yn be the‘ values produced by independent
cients within the domain. Typically, < k < 15 for per- runs of the algorithn” for which [§ — 3| = A, whereX is a
formance reasons. These are coefficients the attacker will positive constant. LeYmeq be the median value of the;’s. For
try to guess. some constant, we have

3. Choose a valud that is at least an order of magnitude —cn

; > - > < .

larger than typical coefficient values @ Prl[Yimed — B(X)| 2 e < e

4. Consider the* tuples of the form{d:, do, ..., dy }, where This lemma is simple and standard enough, but its security im
eachd; = +D or —D, andd; correspond_s te; for i = plications seem little known. Now let us imagine an attackko
1...k. For each such tuplé;, do the following: changes one of the coefficients in the DCT plane to an aritrar

value of his choosing, which he can do easily, since there ien
quirement that the resulting image not have significanteyral
distortion. In fact, there exist many DCT coefficients tham de
changed significantly with acceptable perceptual digingi We
say that this DCT, as a perceptual characteristitndally unsta-

(@) Create a transform plankewith dimensions the same
as those of?. Each coefficient i is either0 or d;,
depending on whether the coefficient’s coordinates
correspond to those of somg. We refer toA as

anattack plane. ble. Let k be the size of the random subsgfrom the set of all
(b) Create a new imageby transformingA to the image possiblen coefficients. The probability that the coefficient the
domain. We refer td as anattack image. attacker picked will be included iff is % The following lemma

states that the detector values before and after the attachin
unchanged, unless the attacker changes too many coeficiént
the attacker does not change enough coefficients, he gainéitve
tle information; on the other hand, if the attacker has tongea
32 coefficients before the detector value changes, then h*Ras
5. The sequence$; for which watermark detection succeeded possible values for the signs of the spread-spectrum ctip:all

provide an estimate of the signs of watermark chips added this anexhaustive-search strategy, which works only for a limited

to the image. The attacker can repeat this procedure to number of coefficients. Note that we can insert delays intaeko

guess the signs of as many coefficients as desired. box detector, so that the attacker will be forced to expeniveng
gmount of time for each guessotoefficients (e.g).1 seconds),
no matter how fast a machine he is using.

Lemma (Threshold Phenomenon): Consider a watermarked

(c) Use the black-box detector to attempt watermark de-
tection inI. Keep track of the corresponding se-
guencesS; for which watermark detection was suc-
cessful or strongest.

6. Once the attacker has estimated enough chip signs, he cal
use trial and error to estimate the magnitudes of the chips.
Thereafter, subtracting the estimated chips from the embed | -

; ; image, and sgi = £. Assume the attacker changgso-efficients
ding domain should degrade the watermark response to the ' n -
point of detector failure. in the DCT plane, anth¢ — %| > \. LetS;,7 < n, be the random
subsets choosen by the detector. Deand D denote the detector

We have implemented the above attack for our DCT-based values that are output to the attacker. For eysry 0, we have

scheme. As expected, the procedure allows us to make agcurat
guesses of watermark chips if the detector returns an dwanal
relation as the watermark response. Assuming the blackdbex
tector returns a value indicating watermark strength, apbedd-
ing on image size, we obtain accurate chip signs by starting o for some constant, where(2 is the space of coin-flips used by the
guesses wittk = 2 or 3 coefficients at a time. We can guess more detector.
each time, but the time complexity of this procedur©ig”). Remark: If p < 1, the case whep( — 3 > X forces the

As we demonstrate in a later section, we have observed thatattacker to change more coefficients than in the case whea
the above attack does not work well if the watermark respisise 1 — A, and consequently the attacker gains even less information
the median (or weighted median) of a number of subset cerrela about signs of the SS chips for a given query to the detectar as
tions. In effect, our detection procedure treats the attawge black-box oracle.
I and the attack coefficient$; as "outliers” that should neither Remark: The space? of the detector’s coin-flips need not
destroy nor enhance the overall watermark response. O@rexp be known even to the embedder. Thus, there is no need to fix
iments, described in a subsequent section, present eaipiata these coin-flips, and the detector may choose them indeptyde
on attacks that involve guessiig= 10 andk = 32 watermark on each trial (and even use a hardware noise generator ttie u

Pr|D~D| > p] < e

chips. a keyed pseudo-random generator, has no reproduciblesiesul
We review some statistical facts needed for an analysis of wa Remark: By the last remark, the attacker gains little advan-
termark detection based on the median of subset corretatiorst, tage (except by exhaustive strategy) from accumulatingriné-

we recall a standard trick of using the median as a good esima tion by correlated queries to the black-box oracle for datac
for the average. Assume we are given an estimator algorfithm  Thus, the expected number of trials for a successful seitgitit-
for the average value of a random variaBlesuch that tack is at leastnin(2¢, 2°™).



4. OTHER ATTACKS ever, the corresponding medians are still close, tmdicating no
watermark in any of the attack images. Thus, usage of theanedi
Since SS is locally unstable as a measure of perceptualateara  for reporting watermark response has foiled the attack.

istics, some designers have used repetition as a way ofisiog The two bottom-left graphs show results when the attacker is
robustness. For example, the scheme in [8] has excellefarper  correctly guessing2 watermark chips. This means the attacker
mance against signal-processing attacks, but fails agestisna- must have performed an exhaustive search @¥ércalls to the
tion attacks [3]. In general, even without repetition oneyrba black-box detector, making this attack impractical. Thediaes
able to estimate watermark chips by using correlationserhibst of the subset correlations are on the threshold of incdyrebbw-
signal. For example, if animage is expected to yield reddyicon- ing watermarks. For our images, complete success of thekata
stant or predictable DCT coefficients at locati@ny), then one quired guessing4 to 128 coefficients. However, the shapes of the
may estimate the watermark coefficient at this location gigie curves in the graphs can be used to detect this kind of attentk;

average in a neighborhood as an estimate for the originalnoay the irregularities on the right sides of the top-right anttdro-left
then subtract the estimate from the watermarked image. #awe  graphs, as compared to the results for non-attack imagesseTh
our scheme prevents black-box oracle methods from allottiag irregularities reflect the small number of correctly guelsard ar-

attacker to guess which coefficients are used in the process. tificially emphasized watermark chips used to enhance latioa.
A swap attack [9, 10] locates perceptually similar regions of a
signal and copies one such region to another. There are naaiy v 6. CONCLUSION

ations on this theme, including shifting around pieces grials to

foil watermark detection, estimating and copying watekdata  We presented techniques for hardening image watermarkssaga
between signals to create false positives, and others. prbis  cryptanalytic adversaries. We did not address the more ariym
cedure can be applied across different signals; for exanipte  studied signal-processing distortions or "presentatattéicks [2].
attacker may keep a database of non-watermarked images, andhough the true security of SS watermarking is not certaim, o

copy similar-looking areas, such as small rectangles, fitoese  methods attempt to maximize the potential of such methods.
images into a watermarked image under attack. For wateingark

schemes that use local signal features, such as the 8x8 CHsbI
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Fig. 1. Top: Sorted correlations over 500 watermark subsets in each @m&@es. From left to right, the graphs show results for
non-watermarked, watermarked, and attack imagésldle: Averages and medians of subset correlations on 10 non+watked, wa-
termarked, and attack imageBottom: The two rightmost graphs show averages and medians of stinsetations in 10 images on the
threshold of failed detection. The leftmost graph showsnadtand enhanced WM responses 60 images, each watermarked and then
distorted by medium JPEG compression and the StirMark ttefttack.



