Image Hashing

Ramarathnam Venkatesan and Mariusz H. Jakubowski
Microsoft Research

March 24, 2000

Abstract

We present new algorithms for hashing, or one-way image compres-
sion, and comparison of bitmapped images. Our methods are based
on random multiscale subdivision of images into regions, randomized
rounding of intensity averages in those regions, and robust compression
of the resulting vectors by error correction. As hashes useful for ro-
bust identification and comparison of images, the compressed vectors
can replace watermarks. Our schemes work with images subjected
to common distortions, including scanning, resizing, and resampling.
Additionally, image hashes withstand anti-watermark transformations
performed by software such as StirMark and unZign.

1 Introduction

We describe several new algorithms for transforming bitmapped images into
short hash vectors, which can be used to identify and compare images. This
may be viewed as one-way image compression, where the image is com-
pressed using randomly chosen, not necessarily invertible basis functions.
The scheme allows us to compare two images and obtain an image-closeness
measure satisfying the following criteria:

1. Every image should produce a randomly distributed value.

2. For two images that are ”visually close enough,” the values must be
close.

3. For two not-so-close images, the outputs must be uncorrelated.

Our techniques allow comparisons even if an adversary maliciously trans-
forms an image into another ”visually equivalent” image with the hope

of convincing the comparison algorithms that the images are different or
unrelated. The schemes allow hierarchical comparisons where successive
stages involve doubling the number of computations, but are performed
only with much smaller probabilities. Unlike cryptographic hashes [8], our
image hashes remain the same despite small changes to input images, and
are thus useful even when images undergo compression, filtering, and other
distortions.

Each of our hashing algorithms performs the following sequence of basic
steps:

1. Subdivide an image into pseudorandom, possibly overlapping regions
(typically rectangles) of various sizes.

2. Compute a summary (typically an average) of the pixel intensities in
each region.

3. Randomly round resulting values to some randomly chosen wvertices.
4. Shorten the resulting vectors by applying error correction.

5. Output the compressed vector as the image hash.

The schemes can iterate this sequence of steps on an image and combine
all or parts of the resulting vectors. In addition, for comparison of two
images, the schemes can subtract the two hash vectors and multiply the
scalar differences by ”weights” chosen to represent the relative significance
of the differences at particular vector locations.

Our schemes are designed to withstand a wide variety of attacks intended
to change hash values while preserving visual similarity. In particular, our
hashes are invariant to arbitrary amounts of scaling, and withstand some
amount of cropping. Additionally, the algorithms cope with software such as
StirMark and unZign [9], which slightly alter images to render watermarks
unreadable [4]. The schemes resist individual attacks as well as combina-
tions.

The methods presented here can also be used to generate short random
binary strings as image hashes, although more work is required to make
such hashes truly robust and short. The paper [14] builds on the general
approach described here, as well as on extensive empirical study, to generate
highly resilient short hashes from data in the the wavelet domain.

2 Algorithms

We present several specific algorithms that use the above framework. Each
scheme operates on an intensity plane of an image, and may be executed
separately on the red, green, and blue planes of an RGB color image. Let
k denote a secret key for generating a pseudorandom sequence of numbers,
and 7 an image plane. Our first algorithm chooses many points, randomly
spaced on the real line, within the range of image coordinates. We call these
vertices. Rectangles can be replaced by arbitrary shapes.

2.1 Scheme A: Random rectangles

1. Use k to produce n random rectangles 7y 79, ..., 7, in the space of the
image.

2. Compute the intensity average u; of the pixels in each r;.

3. Round each p; to one one of the closest vertices and produce d;.
The rounding may be randomly done so that expected value after
the rounding is equal to the original quantity itself.

4. Apply an error-correction algorithm on the d;.

5. Output the vector D = dy, ds, ..., d,.

Random rounding of a value z in the interval [0, 1] maps x to 0 with prob-
ability x, and to 1 with probability 1 —x. This generalizes straightforwardly
to other intervals.

A simple instance of this algorithm uses only two vertices corresponding
to bits; specifically, each intensity average is mapped to either 0 or 1 based
on a threshold. For error correction, groups of n bits are compressed into
a single bit using majority-logic decoding; that is, a 0 is produced if there
are more Os than 1s in the group of n bits, and a 1 is produced otherwise.
Typically, n is in the range 3...20, with higher n offering more robustness
but fewer bits in the hash value.

2.2 Scheme B: Binary space partitioning

Let D denote an initially empty vector that will contain the image hash. Let
s be the subdivision level (number of times image has been split, initially
0), and smax the maximum subdivision level.

- —— — = =
e i]

el = = o B o -

Figure 1. Test image before resizing and StirMark distortion, subdivided
recursively into rectangles used to compute intensity averages in Scheme B.

Figure 2: Test image after resizing and StirMark distortion, ”visually simi-
lar” to the image in the preceding figure.

1. If I’s dimensions are lesser than a predetermined minimum, or if s >
Smax,compute and randomly round the intensity average of pixels in 7,
insert this value into D), and return.

2. Pseudorandomly split I into two rectangular regions /; and 7.

3. Compute, randomly round, and error-correct intensity averages of pix-
els in lyand Iy. Insert these two values into D.

4. Recur this procedure on the subimages 7iand 75, with s incremented
by 1.

Pseudorandom splitting can be done in a number of ways. For example,
we may alternate vertical and horizontal splitting between adjacent recursion
levels. In addition, we can generate splits to ensure that subimages do not
become too thin or too wide in any recursion step.

2.3 Scheme C: Hierarchical comparisons

We can generalize scheme B by splitting the image into more than two
subimages in each recursion step, executing the entire procedure multiple
times with different pseudorandom sequences determining the split points,
and combining parts of the resulting hash vectors. As an example of such an
algorithm, consider two executions of scheme B, each subdividing the image
twice (Smax = 2), first vertically and then horizontally. This generates two
hash vectors, [hi, he| and [g1, g2|, where hiand gy are the vector components
generated in the k-th recursion step, for £ = 1,2. To produce the final
hash vector, we combine hjand gy into one vector, [hq, gs]. For comparison
of two images, we subtract their two hash vectors and multiply the scalar
differences of the g components by weights between 0 and 1 (to decrease
the significance of these components, which correspond to image regions at
finer resolution and are thus more error prone than the hjcomponents). We
can then compute the norm (or some other function) of the difference vector
as a measure of similarity between the two images.

A generalized version of the above method uses a sequence of hierarchical
image tesselations to compute hash vectors. We define a tessellation of an
image as follows: First, subdivide the horizontal axis into intervals having
lengths chosen from a distribution that has expectation py and finite vari-
ance; then independently subdivide each horizontal image region vertically
so that the intervals have expected height 1, and finite variance. Given
a tessellation 7;, the next tessellaton 7;y; has parameters p; and gy, half

(or a constant factor smaller than) those of the previous tessellation. We
compute the averages of pixel values in each of the cells in 73, and construct
a vector V; of the averages. Our randomized rounding strategy then rounds
the vectors V.

A hierarchical strategy can compare two images efficiently using the
following method. Given an image, we compute 77 and a vector V7, and
compare the image with another image using the vectors from the first tes-
sellations only. If we observe sufficient closeness, we compare further using
the second set of tessellations (which are at a finer resolution level). Given
that an image is not likely to be close to another arbitrary image, it is clear
that for uncorrelated images, successive comparison stages will be reached
with lesser and lesser probability.

3 Applications

Hashes generated by the above algorithms have a variety of potential uses.
For example, we can maintain a database of hashes for copyrighted images
placed on the Web, and deploy a Web spider that searches for infringing
copies of the images. The spider hashes each image it finds and attempts
to locate the hash in its database. This technique can be used instead of
image watermarks [2, 5, 10]; advantages include no image degradation due
to embedded watermarks, as well as the potential for robustness impractical
to achieve with watermarks. Additionally, image hashes can be used to
index images for various types of searching [1, 11]; for example, an image’s
hash can serve as a key into a database of textual descriptions or other
information [12].

The methods presented here can be extended to other media, such as
audio and video [6, 7]. For streaming audio, we can use hashing to enhance
watermarking: A window sliding over an audio signal can yield a hash use-
ful for determining the start of watermark insertion and detection. Such
hashes can also serve to identify the audio signal itself, particularly when
combined with a perceptual model [3, 13] that determines which parts of
the signal are aurally important. The sliding-window technique applies sim-
ilarly to images, where a two-dimensional hashing window can help to locate
watermarks and subimages; this can be useful for countering Web-based pre-
sentation attacks that break up or coalesce images onto Web pages [9]. We
are currently investigating the uses of hashing in various domains and attack
scenarios.

4 Conclusion

We presented several methods to compute image hashes, or compressed im-
age representations useful for locating and identifying images. Such hashes
are robust to small changes in input images, and thus do not fall under the
cryptographic notion of hash values. However, images comprise relatively
malleable data, and simple operations such as compression and rescaling are
often done without intent to change basic visual appearance. Our methods
also apply to other domains, such as audio and video, where both standard
signal-processing operations and malicious attacks can change data slightly.
Taking this into account, our hashes are useful in applications where tradi-
tional cryptographic hashes do not apply.

References

[1] S. Bhattacharjee and M. Kutter, ”Compression tolerant image authentica-
tion,” Proc. IEEE-ICIP ’98, 1, Sep. 1998.

[2] T. J. Cox, J. Kilian, T. Leighton and T. Shamoon, ”Secure spread spectrum
watermarking for images, audio and video,” Proc. IEEE-ICIP 96, Oct. 1996.

[3] T. J. Cox and M. L. Miller, ” A review of watermarking and the importance of
perceptual modeling,” Proc. Electronic Imaging, Feb. 1997.

[4] T. J. Cox and J. P. Linnartz, "Some general methods for tampering with
watermarks,” IEEE Journal on Selected Areas in Communications, 16(4), May
1998.

[5] D. Gruhl and W. Bender, "Information hiding to foil the casual counter-
feiter,” Second Workshop on Information Hiding, Portland, Oregon (USA),
April 1998,

[6] F. Hartung and B. Girod, "Fast public-key watermarking of compressed
video,” Proc. IEEE-ICIP 97, Oct. 1997.

[7] G. C. Langelaar, R. L. Lagendijk and J. Biemond, "Real-time labeling of
MPEG-2 compressed video,” J. Visual Communication and Image Represen-
tation, 9(4), Dec. 1998.

[8] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1998.

[9]

[12]

[13]

[14]

F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn, ” Attacks on copyright
marking systems,” Second Workshop on Information Hiding, Portland, Oregon
(USA), April 1998.

F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn, ”Tnformation hiding — a
survey,” Proc. IEEE, 87(7), July 1999.

M. Schneider and S.-F. Chang, ” A robust content based digital signature for
image authentication,” Proc. IEEE-ICIP 96, 3, Sep. 1996.

M. D. Swanson, S. Hosur and A. H. Tewfik, ”Coding for content-based re-
trieval,” Proc. ICASSP ’96, Atlanta, GA, May 1996.

M. D. Swanson, B. Zhu, A. H. Tewfik and L. Boney, "Robust audio water-
marking using perceptual masking,” Signal Processing, 66(3), May 1998.

R. Venkatesan, M. Jakubowski, S.-M. William Koon and P. Moulin, ”Robust
image hashing,” December 1999.

