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Figure 1: Comparison of different mesostructure rendering techniques: (a) bump mapping, (b) horizon mapping, (c) conventional displace-
ment mapping, and (d) view-dependent displacement mapping with self-shadowing.

Abstract
Significant visual effects arise from surface mesostructure, such as
fine-scale shadowing, occlusion and silhouettes. To efficiently ren-
der its detailed appearance, we introduce a technique called view-
dependent displacement mapping (VDM) that models surface dis-
placements along the viewing direction. Unlike traditional dis-
placement mapping, VDM allows for efficient rendering of self-
shadows, occlusions and silhouettes without increasing the com-
plexity of the underlying surface mesh. VDM is based on per-pixel
processing, and with hardware acceleration it can render mesostruc-
ture with rich visual appearance in real time.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

Keywords: Reflectance and shading models, mesostructure, dis-
placement maps, hardware rendering

1 Introduction
Accurate rendering of fine-scale geometric features and their as-
sociated visual effects yields vivid object appearance. This level
of detail, commonly referred to as mesostructure [Koenderink and
Doorn 1996; Dana et al. 1999], lies between that of meshes, which
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provide an efficient representation of gross shape, and bi-directional
reflectance functions (BRDFs) that describe the light scattering ef-
fects of micro-scale material structure. The high-frequency visible
geometry of mesostructure leads to complex visual effects includ-
ing fine-scale shadowing, occlusion and silhouettes. These charac-
teristics are necessary to include for realistic appearance, but are
also difficult to render efficiently.

Mesostructures are typically rendered using techniques such as
bump mapping, horizon mapping or displacement mapping. A
comparison of different mesostructure rendering methods in han-
dling visual effects is provided in Table 1. As displayed in Fig. 1,
bump mapping [Blinn 1978] provides basic shading but not shad-
owing, occlusion, and silhouettes. Horizon mapping [Max 1988]
improves realism by adding self-shadows, but occlusion and silhou-
ettes are still missing. A combination of displacement mapping and
horizon mapping could potentially yield most of the visual effects,
but achieving real-time performance is challenging. Although con-
ventional displacement mapping can be implemented in hardware,
its performance for mesostructure rendering is limited by the large
number of vertices that result from the considerable mesh subdivi-
sion required. Adding shadows by horizon mapping would further
aggravate the performance problem.

Inspired by previous work on horizon mapping and bi-directional
texture functions (BTFs), we introduce in this paper a pixel-based
technique called view-dependent displacement mapping (VDM) for
efficient rendering of mesostructures. Unlike the traditional dis-
placement mapping [Cook 1984], VDM represents displacements
along the viewing direction instead of the mesh normal direction.
This view dependency allows VDM to interactively compute self-
shadows as well as shading, occlusion and silhouettes. Most im-
portantly, all these visual effects are achieved without increasing
the complexity of the underlying surface mesh. Implementation of
VDM can be done in current graphics hardware as per-pixel oper-
ations, bringing greater processing efficiency than methods that re-
quire fine mesh subdivision (e.g., [Cook et al. 1987]). The primary
benefits of VDM are as follows:

• Renders major visual effects of mesostructure.

• Achieves high frame-rates with hardware acceleration of a
per-pixel algorithm.

Interreflection is not directly included in VDM and is approximated



in our implementation as an overall effect using an ambient illumi-
nation term.

The remainder of the paper is organized as follows. The sub-
sequent section reviews previous work. In Section 3, we describe
our mesostructure rendering algorithm and its hardware implemen-
tation. Section 4 presents results, and the paper concludes with
future work in Section 5.

Fine-scale Visual Effect
Shadow Occlusion Silhouette Interreflection

Bump Mapping
Horizon Mapping X
Displ. Mapping X X

BTF X X X
VDM X X X

Table 1: Comparison of mesostructure rendering methods. For
bump mapping and displacement mapping, this table refers to their
conventional algorithms.

2 Related Work

The simplest technique for mesostructure rendering is bump map-
ping [Blinn 1978], which perturbs mesh normals to match those
of the fine geometric detail. Unfortunately, bump mapping does
not handle other visual effects of mesostructure. To deal with self-
shadows, Max introduced horizon mapping [Max 1988] as an ex-
tension to bump mapping. Sloan and Cohen demonstrated that hori-
zon mapping can be done at an interactive rate with hardware accel-
eration [Sloan and Cohen 2000]. To account for occlusion, Becker
and Max proposed redistribution bump mapping [Becker and Max
1993], where the bump map normals are adjusted according to the
viewing direction. However, they also point out that problems arise
when horizon mapping and redistribution bump mapping are put
together. Heidrich et al. enhanced bump mapping using precom-
puted visibility [Heidrich et al. 2000]. Their technique simulates
self-shadowing and interreflection but does not account for occlu-
sions and silhouettes.

Traditionally, displacement mapping [Cook 1984] is imple-
mented by subdividing the original geometry into a large number of
micro polygons whose vertices can be displaced in the normal di-
rection [Cook et al. 1987]. Adaptive remeshing methods [Gumhold
and Hüttnert 1999; Doggett and Hirche 2000] have been proposed
to reduce the number of subdivisions; nevertheless, the number of
generated triangles is still large and remains difficult to process in
real time without development of hardware support.

To have the features of displacement mapping without the com-
plexity of modifying original geometry, several hardware-based
techniques have been based on image layers [Kautz and Seidel
2001; Meyer and Neyret 1998; Lensch et al. 2002]. In this 3D
texture approach, each triangle is rendered several times according
to the number of slice layers, and self-shadowing is not simulated.
Several other methods avoid extensive subdivision by employing
per-pixel processing. Most of these are based on ray-tracing [Pat-
terson et al. 1991; Pharr and Hanrahan 1996; Smits et al. 2000],
which is computationally slow. Schaufler et al. presented a back-
ward warping algorithm that efficiently finds pixel appearance from
many reference depth images [Schaufler and Priglinger 1999]; how-
ever, a hardware implementation does not exist for this complicated
method. Another warping-based technique, the relief texture map-
ping by Oliveira et al. [Oliveira et al. 2000], captures silhouettes
and occlusion, but self-shadowing and shading are absent.

An image-based approach to mesostructure rendering is to sam-
ple surface appearance under various lighting and viewing direc-
tions. The bi-directional texture function introduced by Dana et al.
captures shading, self-shadowing, and occlusion [Dana et al. 1999].
The polynomial texture map (PTM) proposed by Malzbender et al.
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Figure 2: Mesostructure displacement with respect to view direc-
tion. (a) Displacement geometry. (b) Texture space offset.

represents shading and self-shadowing but not occlusion [Malzben-
der et al. 2001]. Both BTF and PTM do not render silhouettes.

3 VDM Rendering
Our mesostructure rendering technique first takes as input a tex-
tured height field sample and converts it to the VDM representation.
This VDM data is rendered by a per-pixel algorithm that is imple-
mented in hardware. Details of the VDM approach are described in
this section.

3.1 VDM Definition
A view-dependent displacement map records the distance of each
mesostructure point from the reference surface along the viewing
direction, as illustrated in Fig. 2. For a given viewing direction V =
(θ, φ) expressed in spherical coordinates, each reference surface
point P with texture coordinate (x, y) projects to a mesostructure
surface point P ′ that has texture coordinate (x′, y′). For different
viewing directions, P clearly would project onto different points on
the mesostructure surface, so the displacement value d is dependent
on x, y, θ, φ. Although other view-dependent parameters such as h
or l could equivalently represent the displacement, d is less affected
by sampling errors that would arise at viewing directions close to
the surface normal or tangent.

The local curvature of the mesh surface also affects the projec-
tion point P ′ as shown in Fig. 3. When displacements for a flat ref-
erence surface as illustrated in Fig. 3(a) are mapped onto a curved
surface as in Fig. 3(b), the displacements are no longer correct, and
for some viewing directions such as Vn−1 there does not even exist
an intersection with the mesostructure surface. Curvature is gener-
ally ignored in other rendering algorithms such as bump mapping,
horizon mapping, BTF and PTM. However, neglect of this factor
can lead to inaccurate silhouettes and a warped appearance of the
mesostructure.

With the consideration of curvature, view-dependent displace-
ment information can be organized into a five-dimensional VDM
function dV DM (x, y, θ, φ, c), where x, y are the texture coordi-
nates on the reference surface, θ, φ are the spherical angles of the
viewing direction in the local coordinate frame on the reference
surface, and c is the reference surface curvature along the viewing
direction. If an intersection with the mesostructure exists for (x, y)
in direction (θ, φ) with curvature c, then the VDM function takes
the value of the view-dependent displacement. If the intersection
does not exist, then dV DM is set to -1. In our implementation, the
mesostructure surface is defined inwards of the reference surface,
so negative displacements are invalid.

The VDM function is built by first forming a fine mesh for a
mesostructure with zero curvature, and then using a ray-casting al-
gorithm to calculate the view-dependent displacement values. An
example of a VDM function computed from a height field is shown
in Fig. 4.
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Figure 3: View-dependent displacement variation for curved sur-
faces.

While it is possible to compute the full 5D VDM by forming
a mesostructure mesh for various curvature values, we in practice
take a less computationally expensive approach that is based on the
zero-curvature mesostructure mesh. Details of this method are pre-
sented in the Appendix.

3.2 Rendering Algorithm
After computing a VDM for a given mesostructure surface, it can be
mapped to a new surface as a high-dimensional texture. This map-
ping should result in texture coordinates on the object surface that
have locally uniform scale and little distortion, with the mesostruc-
ture pattern closely maintained. Since the mesostructure is a 3D
volume, it is also requisite that its dimensions be scaled equally in
the mapping.

To render this mapping, the normals of the object surface must
first be calculated from the height field. Each surface normal and
the two orthogonal directions of the texture define a local coordinate
system in which the viewing and lighting directions are expressed.

The parameters of each pixel on the rasterized surface are then
computed. These parameters consist of the texture coordinate
T = (x, y), the illumination direction L = (θL, φL), the view-
ing direction V = (θV , φV ), and the local curvatures cV , cL along
V and L respectively. From the two principal curvature directions
Cmax, Cmin and their corresponding curvature values cmax, cmin,
the curvature along the viewing direction V can be computed as

cV =
cmax(V · Cmax)2 + cmin(V · Cmin)2

1 − (V · N)2
.

The curvature cL along the lighting direction L is computed sim-
ilarly. Since the cost of calculating the parameter values for each
pixel is unacceptably large, in practice we calculate the parameters
per vertex and then interpolate them for each pixel.

After calculating these pixel quantities, VDM rendering of de-
tailed geometry proceeds with the following four steps, organized
in the flowchart of Fig. 6.
Silhouette Determination: The VDM function includes an explicit
representation of point visibility along the mesostructure silhouette.
When dV DM = −1, then the corresponding line of sight intersects
no detailed geometry. In this case, the pixel need not be processed
and the rest of the algorithm is skipped. In practice, for each pixel
we use its nearest sample value in texture space for silhouette de-
termination.

(a) (b) (c) (d) (e)

Figure 4: VDM images synthesized from a mesostructure height
field. (a) Height field, (b-e) VDM images for different viewing di-
rections, where the gray-level is proportional to the view-dependent
displacement from the bounding reference surface.
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Figure 5: Shadow determination in VDM

Real Texture Coordinate Calculation: Since properties of the
detailed geometry are parameterized by texture coordinates on
the planar reference surface, the actual texture coordinate of each
mesostructure intersection point needs to be determined.

For a planar reference surface, the offset between the real tex-
ture coordinate T ′ and original texture coordinate T = (x, y)
can be computed as dT = dV DM (x, y, θV , φV , cV )Vxy , where
Vxy = (sinθV cosφV , sinθV sinφV ) is the projection of the view-
ing vector onto the local tangent plane. For a curved reference sur-
face, the texture offset can be computed in the same way from the
extended VDM displacement for curved surfaces described in the
Appendix.

The real texture coordinate T ′ is then obtained by adding this
offset to the original texture coordinate T , i.e., T ′ = T + dT .
Shadow Determination: Shadowing of the intersection point from
the light source can be determined from the VDM function. We first
describe this computation for a flat surface as illustrated in Fig. 5.
Let P be the mesh surface point and P ′ be the intersection point
on the detailed geometry. Let h denote the distance from P ′ to the
surface as given by the mesostructure height field. The point P ′′

represents the reference surface intersection of L passing through
P ′.

Since the surface is flat, the texture coordinate of P ′′ can be
geometrically determined as T = T + h · tan(θL) · L. The view-
dependent displacement of P ′′ = (x′′, y′′) along L is given by
dL = dV DM (x′′, y′′, θL, φL, 0).

The distance h · sec(θL) between P ′ and P ′′ is compared to dL

to determine the presence of shadow. When the two quantities are
equal, the light source is not occluded from P ′; otherwise, P ′ is in
shadow.

For a curved object surface, the computation of T requires solv-
ing some trigonometric equations. To reduce run-time computation,
a table indexed by the variables h, θL and cL could be built. We
have found, however, that the effect of curvature on shadow deter-
mination is generally unnoticeable, so it is ignored in our imple-
mentation.
Pixel Shading: If the pixel is not in shadow, a pre-defined re-
flectance model is used to compute pixel appearance. Otherwise,
its appearance is computed for ambient illumination only.

3.3 Data Decomposition and Compression
The rapid development of programmable graphics hardware pro-
vides opportunities for real-time implementations of our VDM ren-
dering algorithm. However, some hardware constraints should be
overcome. First, the maximum dimensionality of texture maps in
current hardware poses a problem for high-dimensional maps such
as VDM. Second, memory constraints present an obstacle to the
substantial amount of VDM data. Throughout this paper, we use
mesostructure height fields of resolution 128 × 128 with 32 × 8
viewing directions and 16 curvatures. The corresponding 64 MB of
VDM data consumes most of the graphics hardware memory and
cannot efficiently be loaded.

To deal with these restrictions, we decompose and compress the
data by singular-value decomposition (SVD). SVD has the benefit
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Figure 6: Flowchart of per-pixel VDM rendering.

that it can efficiently decompose a high-dimensional map into two
lower-dimensional maps. Moreover, reconstruction is performed
using only linear arithmetic operations, which can easily be handled
in the hardware. For data with high correlation, a small number of
eigen-functions is sufficient for good reconstruction.

In VDM, when a ray along a view direction has no intersection
with the mesostructure, it is labelled with the special value −1.
When the silhouette exhibits high frequency, the number of eigen
functions needed for acceptable reconstruction is dramatically in-
creased, which leads to difficulties in hardware implementation.

To address this problem, we employ an auxiliary 4D Maximal
View polar angle Map (MVM). For a densely sampled VDM, the
MVM θMV M (x, y, φ, c) ≡ max θ such that

dV DM (x, y, θ, φ, c) �= −1,

where x, y are texture coordinates, φ is the azimuth angle of the
viewing direction, and c is the local curvature. After this compu-
tation, the -1 value of the corresponding polar viewing angle in the
original VDM is then replaced with this maximum polar viewing
angle. For our mesostructure samples, the MVM size is 4 MB, and
combined with the VDM data, the total data size becomes 68 MB.

The high-dimensional VDM and MVM are then reorganized into
a 2D matrix

A = [AV DM , AMV M ]

such that the rows are indexed by x, y, φ and the columns are in-
dexed by θ and/or c. Although these maps could be differently
organized for decomposition, experiments have shown that our so-
lution provides the best compromise between accuracy and storage
for all data used in this paper.

Applying SVD to A gives A = UλET = WET , where E =
[EV DM , EMV M ] contains the eigen functions of A and W = Uλ
contains the weights of the eigen functions. From this, the two maps
can be expressed as

dV DM (x, y, θ, φ, c) =
∑

i

W i(x, y, φ)Ei
V DM (θ, c)

θMV M (x, y, φ, c) =
∑

i

W i(x, y, φ)Ei
MV M (c)

where i indexes the eigen functions in E and the eigen function
weights in W . Note that a common weight function is used for the
two maps to reduce storage.

Since the eigenvalues decrease rapidly in magnitude, good ren-
dering accuracy can be achieved with a small number of eigen func-
tions. For the VDM data used in this paper, we employ only 8 VDM
and 4 MVM eigen functions for rendering. By this decomposition
and compression, the original 68 MB of VDM is reduced to 4 MB.

(b)(a) (c)

Figure 7: Mesh complexity in VDM and displacement mapping
for rendering similar level of detail images. (a) VDM mesh, (b)
Displacement map mesh. (c) Zoomed views of the green and red
boxes in (a) and (b) respectively.

4 Results
Our system is implemented on a 1.4 GHz 768MB Pentium IV PC
with an ATI Radeon 9700 Pro 128MB graphics card. The hardware-
accelerated VDM rendering is implemented as a single rendering
pass using Pixel Shader 2.0 with OpenGL. The complexity of the
pixel shader is 40 arithmetic instructions and 14 texture lookups.
All VDM data in this paper is of resolution 128x128 and sampled
for 32x8 viewing directions and 16 curvatures between −2.0 and
3.0, which are interpolated for intermediate values. The number of
sampled values can be increased for greater accuracy at the expense
of data size. Additionally, VDM as a texture map is easily anti-
aliased by mip-mapping all data dimensions.

Important visual effects such as shadowing, occlusion, and sil-
houettes are all captured well by the VDM technique. Fig. 1
compares VDM with hardware-accelerated bump mapping, horizon
mapping and conventional displacement mapping where the geom-
etry is subdivided and displaced before software rendering.1 The
added mesh complexity of displacement mapping as exemplified in
Fig. 7 prevents rendering in real time.

Overall, the VDM algorithm has a fill rate performance of ap-
proximately 50M/sec and a per-triangle processing speed of about
15M/sec. A main reason for the real-time performance of VDM
is that it is based on per-pixel processing. Additional examples of
VDM rendering are displayed in Fig. 9. These models have a screen
size of 512 × 512 and rendering performance listed in the figure.

Renderings under different levels of data compression are dis-
played in Fig 8. It can be seen that even with only a small number
of eigen functions, the mesostructure maintains an appearance close
to that for the original uncompressed VDM.

5 Conclusion
In this paper, we presented a pixel-based method for real-time ren-
dering of surface mesostructure and its associated visual effects,
including shadowing, occlusion, and silhouettes. A number of re-
search topics remain to be explored. We plan to investigate meth-
ods for efficient capture of VDM functions from real world sur-
faces. Also, VDMs will be extended to model open surface bound-
aries, which are not handled in our current implementation. An-
other interesting topic is to incorporate interreflections and support
spatially-variant BRDFs in the VDM framework.
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nications with ATI technical staff revealed that no proper driver is available
now to access this feature.
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Appendix

For ease of explanation, let us consider a given point (x0, y0) and
azimuth angle φ0 of the viewing direction. Suppose we have n
sampled viewing elevation angles (θ0, θ1, ..., θn−1) uniformly dis-
tributed over [0, π/2] and intersecting the microgeometry at points
P0, P1, ..., Pn−1, as shown in Fig. 3(a). The displacements of these
points are used to compute the zero curvature values of the VDM,
and can also be used for calculations of other curvatures.

Bending the zero-curvature microgeometry surface to have cur-
vature C = C0 causes the zero-curvature intersection points to cor-
respond to new viewing angles (θ′

0, θ
′
1, ..., θ

′
n−1) that are no longer

a uniform sampling. To obtain the VDM values, we resample these
non-uniform samples by linear interpolation.

In the resampling process, a couple special cases require atten-
tion. When the curvature is positive, some view-dependent dis-
placement values may become invalid because no intersection with
the mesostructure surface exists. In this instance, the VDM is as-
signed a value of -1. Another special case occurs when the sampled
angles become reordered after resampling. This happens when a
zero-curvature intersection point becomes occluded after bending.
For this case, the occluded direction is discarded in the resampling
operation.

To efficiently compute the texture offset for a curved surface at
rendering time, we modify the VDM definition to

dV DM (x, y, θV , φV , cV ) =
l

sin(θV )
,

where l is the distance between P and P ′ in texture space and can
be geometrically computed from the triangle defined by P , P ′ and
the center of curvature. This extended definition simplifies texture
offset computation for curved surfaces as described in Section 3.1.



Figure 9: Examples of VDM rendering under different lighting and viewing directions. The number of triangles and rendering speed for each
object are as follows. Teapot: 4032 tri., 104 FPS; Torus: 4800 tri., 112 FPS; Vase: 8640 tri., 130 FPS; Branch: 5888 tri., 139 FPS.


