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Abstract

The objective of this paper is to examine statistical approaches to the classification of tex-
tured materials from a single image obtained under unknown viewpoint and illumination.
The approaches investigated here are based on the joint probability distribution of filter
responses.

We review previous work based on this formulation and make two observations. First,
we show that there is a correspondence between the two common representations of filter
outputs - textons and binned histograms. Second, we show that two classification method-
ologies, nearest neighbour matching and Bayesian classification, are equivalent for partic-
ular choices of the distance measure. We describe the pros and cons of these alternative
representations and distance measures, and illustrate the discussion by classifying all the
materials in the Columbia-Utrecht (CUReT) texture database.

These equivalences allow us to perform direct comparisons between the texton frequency
matching framework, best exemplified by the classifiers of Leung and Malik [IJCV 2001],
Cula and Dana [CVPR 2001], and Varma and Zisserman [ECCV 2002], and the Bayesian
framework most closely represented by the work of Konishi and Yuille [CVPR 2000].
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1 Introduction

In this paper, we examine two of the most successful frameworks in which the prob-
lem of texture classification has been attempted – the texton frequency comparison
framework, as exemplified by the classifiers of [3,8,14], and the Bayesian frame-
work, most closely represented by [7]. While the frameworks appear seemingly
unrelated, we draw out the similarities between them, and show that the two can be
made equivalent under certain choices of representation and distance measure.
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The classification problem being tackled is the following: given a single image of
a textured material obtained under unknown viewing and illumination conditions,
classify it into one of a set of pre-learnt classes. Classifying textures from a single
image under such general conditions and without any a priori information is a very
demanding task.

Fig. 1. The change in imaged appearance of the same texture (Plaster B, texture # 30 in the
Columbia-Utrecht database [5]) with variation in imaging conditions. Top row: constant
viewing angle and varying illumination. Bottom row: constant illumination and varying
viewing angle. There is a considerable difference in the appearance across images.

What makes the problem so hard is that unlike other forms of classification, where
the objects being categorised have a definite structure which can be captured and
represented, most textures have large stochastic variations which make them diffi-
cult to model. Furthermore, textured materials often undergo a sea change in their
imaged appearance with variations in illumination and camera pose (see figure 1).
Dealing with this successfully is one of the main tasks of any classification algo-
rithm. Another factor which comes into play is that, quite often, two materials when
photographed under very different imaging conditions can appear to be quite simi-
lar, as is illustrated by figure 2. It is a combination of all these factors which makes
the texture classification problem so challenging.

Nevertheless, weak classification algorithms which exploit the statistical nature of
textures by characterising them as distributions of filter responses have shown much
promise of late. The two types of algorithm in this category that have been partic-
ular successful are (a) the Bayesian classifier based on the joint probability distri-
bution of filter responses represented by a binned histogram [7], and (b) the near-
est neighbour χ2 distribution comparison classifier based on a texton frequency
representation [3,8,14]. In this paper, we draw an equivalence between these two
schemes which then allows a direct comparison of the performance of the two clas-
sification methodologies.

The success of Bayesian classification applied to filter responses was convincingly
demonstrated by Konishi and Yuille [7]. Working on the Sowerby and San Fran-
cisco outdoor datasets, their aim was to classify image pixels into one of six texture
classes. The joint PDF of the empirical class conditional probability of six filter
responses for each texture was learnt from training images. It was represented as a
histogram by quantising the filter responses into bins. Novel image pixels were then
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Fig. 2. Small inter class variations between textures present in the Columbia-Utrecht
database. In the top row, the first and the fourth image are of the same texture while all
the other images, even though they look similar, belong to different classes. Similarly, in
the bottom row, the images appear similar and yet there are three different texture classes
present.

classified by computing their filter responses and using Bayes’ decision rule. How-
ever, for image regions, Konishi and Yuille only reported the Chernoff information
(which is a measure of the asymptotic classification error rate) but didn’t perform
any actual classification. In this paper, we take the final step and use Bayes’ deci-
sion rule to classify entire images by making the same assumption as Schmid [11],
i.e. that a region is a collection of statistically independent pixels, and whose prob-
ability is therefore the product of the individual pixel probabilities.

In contrast, frequency comparison classifiers such as [3,8,14] learn distributions of
texton frequencies from training images and then classify novel images by com-
paring their texton distribution to the learnt models. Different comparison methods
may be used, such as the Bhattacharya metric [12], Earth Mover’s distance [10], KL
divergence and other entropy based measures [16], but the χ2 significance test [9],
in conjunction with a nearest neighbour rule, has become the default choice.

Leung and Malik [8] were amongst the first to seriously tackle the problem of
classifying 3D textures and, in doing so, made an important innovation by giving
an operational definition of a texton. They defined a 2D texton to be a cluster centre
in filter response space. This not only enabled textons to be generated automatically
from an image, but also opened up the possibility of a universal set of textons for all
images. To compensate for 3D effects, they proposed 3D textons which were cluster
centres of filter responses over a stack of 20 training images with representative
viewpoint and lighting. They developed an algorithm capable of classifying a stack
of 20 registered, novel images using 3D textons and applied it very successfully to
the Columbia-Utrecht (CUReT) [5] database. Later, Cula and Dana [3] and Varma
and Zisserman [14] showed that 2D textons could be used to classify single images
without any loss of performance.

Classification performance is evaluated here also on image sets taken from the
CUReT texture database. All 61 materials present in the database are included,
and 92 images of each material are used with only the most extreme viewpoints
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being excluded (see [14] for details). The variety of textures in this database is il-
lustrated in figure 3. The 92 images present for each texture class are partitioned
into two, disjoint sets. Images in the first (training) set are used for model learning,
and classification accuracy is assessed on the 46 images for each texture class in
the second (test) set.

The materials in the CUReT database are examples of 3D textures and exhibit a
marked variation in appearance with changes in viewing and illumination condi-
tions [2–4,8,14,17]. The difficulty of single image classification is highlighted by
figure 4 which illustrates how drastically the appearance of a texture can change
with varying imaging conditions.

Modelling such textures by a single probability distribution of filter responses may
fail in these situations. The solution adopted in this paper is to represent each tex-
ture class by multiple models which characterise the different appearances of the
texture with variation in imaging conditions. These models are generated from the
various training images for each texture class, and essentially this means that each
texture class is represented by a set of probability distributions implicitly condi-
tioned on viewpoint and illumination. In our experiments, each training image is
used to generate a model and thus there are 46 models per texture class. However,
the number of models can be substantially reduced to, on average, 7-8 per class by

Fig. 3. Textures from the Columbia-Utrecht database. All images are converted to
monochrome in this work, so colour is not used in discriminating different textures.
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Fig. 4. Images of ribbed paper taken under different viewing and lighting conditions. The
material has significant surface normal variation and consequently changes its appearance
drastically with imaging conditions. Characterising such a texture by only one model, i.e.
a single probability distribution of filter responses, will lead to poor classification results.
Instead, it is better to represent a texture by multiple models generated under different
viewing and illumination conditions.

the use of K-Medoid and Greedy algorithms as described in [14].

The layout of the rest of the paper is as follows: in section 2, we outline a low
dimensional representation of rotationally invariant filter responses which was first
introduced in [14]. We also describe the two common semi-parametric representa-
tions, texton and binned histogram, of the joint PDF of filter responses and show
how it is possible to convert one to the other. Then, in section 3, we present a com-
parison between the texton and bin representations using a distribution comparison
classifier. Finally, we implement a Bayesian classifier using a texton representation
in section 4 and contrast its performance to the distribution comparison classifier.

2 Filter Responses and their Representation

In this section, we first describe the filter bank that will be used to generate features,
and then discuss two popular representations of filter responses, textons and binned
histograms, between which we will draw a correspondence.

2.1 Filter bank

Traditionally, the filter banks employed for texture analysis have included a large
number of filters in keeping with the philosophy that many diverse features at mul-
tiple orientations and scales need to be extracted accurately to successfully classify
textures. However, constructing and storing PDFs of filter responses in a high di-
mensional filter response space is computationally infeasible and therefore it is
necessary to limit the dimensionality of the filter response vector. Both these re-
quirements can be achieved if multiple oriented filters are used but their outputs
combined to form a low dimensional, rotationally invariant response vector. A fil-
ter bank which does this is the Maximum Response (MR8) filter bank which com-
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prises 38 filters but only 8 filter responses (see figure 5). The filters consists of a
Gaussian and a Laplacian of Gaussian (LOG) both with σ = 10 pixels (these filters
have rotational symmetry), an edge filter at 3 scales (σx,σy)={(1,3), (2,6), (4,12)}
pixels and a bar filter at the same 3 scales. The latter two filters are oriented and
occur at 6 orientations at each scale. The responses of the isotropic filters (Gaussian
and LOG) are used directly, but the responses of the oriented filters (bar and edge)
are, at each scale, “collapsed” by using only the maximum filter responses across
all orientations – thereby giving 8 rotationally invariant filter responses in all.

Fig. 5. The rotationally invariant MR8 filter bank consists of (in order, from top to bottom)
an oriented edge filter at 6 orientations and 3 scales, a bar filter at the same set of orien-
tations and scales, an isotropic Gaussian filter and a Laplacian of Gaussian filter. The re-
sponses of the isotropic filters are recorded directly. However, taking the maximal response
of the anisotropic filters across all orientations results in 2 filter responses being recorded
per scale, giving 8 filter responses in total. Essentially this is the maximum response of
each row of the filter bank above.

Rotation invariance is desirable in that it leads to the correct classification of ro-
tated versions of textures present in the training set. Another motivation for using
the MR8 filter bank is that despite being rotationally invariant, its oriented filters
should accurately pick up anisotropic features whose relative angular information
(as determined by the angle of maximum response) can still be recorded. Further-
more, we expect that more significant textons are generated when clustering in a
low dimensional, rotationally invariant space.
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Both the Bayesian and the texton frequency comparison classifiers discussed in
this paper are divided into two stages – learning and classification. In the learning
stage, features are extracted from the training images by convolution with the MR8
filter bank. The choice of representation of the resultant filter response features
determines the learnt statistical model for a given texture under particular imaging
conditions and is described next.

2.2 Texton representation of filter responses

Each training image is convolved with the MR8 filter bank to generate a set of filter
responses. These filter responses are then aggregated over various training images
from the same texture class (as described in the following paragraph) and clustered.
The resultant cluster centres form a dictionary of exemplar filter responses and are
called textons. Given a texton dictionary, the first step in learning a model from a
particular training image is labelling each of the image pixels with the texton that
lies closest to it in filter response space. The (normalised) frequency histogram of
pixel texton labellings then defines the model for the training image.

In the implementation in this paper, the filter responses of 13 randomly selected
images per texture class (taken from the training set) are aggregated and clustered
via the K-Means algorithm. The textons (cluster centres) learnt from each class are
then combined into a single dictionary of size S. Various values of K are tried (K =
10, 20, . . . , 50) and results are reported for each case. Thus, in each experiment, K
textons are learnt from every texture class resulting in a dictionary comprising a
total of S = 61 × K textons. Hence, a model of a training image is a S-vector
where each component is the proportion of pixels which are labelled as a particular
texton.

2.3 Histogram representation by binning

In this representation, the model corresponding to a given image is the joint prob-
ability distribution of the image’s filter responses – obtained by quantising the re-
sponses into bins and normalising so that the sum over all bins is unity. It should be
noted that the number of bins and their placement can be important parameters as
they determine how crudely, or how well, the underlying probability distribution is
approximated and whether the data is over-fitted or not.

As an implementation detail, the histogram is stored as a sparse matrix and the
space it occupies is given by: number of non-empty bins × number of bytes re-
quired to store a bin value and its corresponding index. This is bounded above
by the number of data points and compares favourably to a naive implementation
which stores the full matrix in O(total number of bins) bytes, but where most of the
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bins are empty. For example, using this implementation for MR8 with 20 bins per
dimension, we were able to store the PDF of all the training images in less than a
hundred megabytes whereas the naive implementation would have taken over five
hundred gigabytes. Also, it is efficient to store the histogram as a sparse matrix as
the χ2 statistic can be evaluated in O(number of non-empty bins) flops.

2.4 Moving between representations

The two representations of filter responses can be made identical by a suitable
choice of bins or textons. For example, an equally spaced bin representation can
be converted into an identical texton representation by placing a texton at the cen-
tre of every bin (see figure 6). In the algorithm implemented here, the textons are
generated by clustering and do not coincide with the bin centres. Hence, the two
representations are not identical in this case.

It is possible to go the other way round as well. Every texton representation can be
converted into an identical bin representation. In this case, the bins will be irregu-
larly shaped and will correspond to the Voronoi polytopes obtained by forming the
Voronoi diagram of the texton sites. Thus, clustering to get textons can be thought
of as an adaptive binning method and a histogram of texton frequencies can be
equated to a bin count of filter responses. In essence, the comparisons made in sec-
tion 3 can be thought of as a comparison between two different texton dictionaries.

However, it should be noted that in general, not every bin representation can be
converted to an equivalent texton representation in which there is a one to one
mapping between textons and bins. Though it might be possible to find a similar

(a) (b)

Fig. 6. Texton and bin equivalence in two dimensions: (a) Every texton representation can
be converted into an equivalent bin representation where the bins are the Voronoi polygons.
(b) Conversely, an equally spaced bin representation can be converted into an identical
texton representation by placing a texton at the centre of each bin (though not every bin
representation has an equivalent bijective texton representation). A similar equivalence ap-
plies in <N .
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representation if there are more textons than bins with certain textons being grouped
together to form a particular bin.

3 Classification by Distribution Comparison

In this section the effect of the representation on classification performance is in-
vestigated. Given a set of models characterising the 61 material classes, the task is
to classify a novel (test) image as one of these textures. This proceeds as follows:
the filter response distribution is computed for the test image, and both types of rep-
resentation (texton and bin) are then determined. In either case, the closest model
image, in terms of the χ2 statistic, is found and the novel image declared to belong
to model’s texture class.

3.1 Experimental setup and results

Classification is carried out on all 61 texture classes for both the representations.
We consider the case where every image in the training set, for each texture class,
is used to generate a model. Thus, there are 46 models per texture, for each of the
61 texture classes. The classification performance is measured by the proportion of
test images which are correctly classified as the right texture.

For the texton based representation, figure 7 plots the classification accuracy versus
the number of textons in the dictionary when classifying all 2806 test images. The
best results are obtained when K = 40 textons are learnt per texture (resulting in a
dictionary of size S = 2440 textons) and an accuracy rate of 97.43% is achieved.
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Fig. 7. The variation in classification performance with the number of of textons. The best
classification result obtained is 97.43% using a dictionary of size S = 2440 textons.
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Fig. 8. The variation in classification performance with the number of bins used during
quantization: The best classification results are obtained when the filter responses are quan-
tized into 5 bins per dimension.

For the bin representation, the number and location of the bins are, in general,
important parameters. However, it turns out that in this case excellent results are
obtained using equally spaced bins. Figure 8 plots the classification accuracy for
the test set versus the number of bins used in the quantization process. The classifier
achieves a maximum accuracy of 96.54% when the filter responses are quantised
into 5 bins per dimension. Increasing the number of bins decreases the performance,
indicating that the distribution is being over-fitted and that noise is being learnt as
well. The classification accuracy also decreases with decrease in the number of bins
as the binning is now crude.

Both the representations give very similar classification results. Of course, this is
not surprising in the light of the fact that the two can be made identical. In this
particular instance, however, the texton representation slightly outperforms the bin
representation as the bins are always equally sized while the textons are learnt adap-
tively from the given data.

4 Bayesian Classification

Given that texton frequencies and histogram binning are equivalent ways of repre-
senting the PDF of filter responses, it is now possible to calculate the class condi-
tional probability of obtaining a particular filter response using a texton representa-
tion. This setting of a texton representation in a Bayesian paradigm effectively lets
us compare, in this section, the classification scheme of Konishi and Yuille [7] with
the texton based distribution comparison classifiers of Cula and Dana [3], Leung
and Malik [8] and Varma and Zisserman [14].

The Bayesian classifier of [7] is also divided into a learning stage and a classifi-
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cation stage. In the learning stage, class priors and empirical filter response prob-
abilities are learnt from the training data. Once again, we emphasise that to take
into account the variation due to changing viewpoint and illumination a number of
models will be used for each texture class, rather than just learning a single model
per texture class as is done by [7,11]. In the classification stage, Bayes’ theorem is
invoked to calculate the posterior probability of a given filter response from a novel
image belonging to a particular class.

4.1 A Bayesian classifier using the texton representation

The class conditional joint PDF of filter responses is obtained directly from the his-
togram of texton frequencies for the various images in the training set (of section 2).
It is straight forward to implement the Bayesian classifier given this information.
For a particular model we want to estimate the posterior

P (Mij|I) = P (Mij|{F(x)}) (1)

where {F(x)} is the collection of filter responses generated from the novel image I
to be classified, Mij is a particular model corresponding to training image number i
taken from texture class number j, and the equality sign arises from the assumption
that all the available information in the image has been extracted by the filtering
process. The image I is classified as the texture j for which P (Mij|{F(x)}) is
maximised over all models (i.e. all ij). Using Bayes’ rule,

P (Mij|{F(x)}) ∝ P ({F(x)}|Mij)P (Mij) (2)

where P ({F(x)}|Mij) is the likelihood of the model Mij , and P (Mij) the prior on
model Mij . Since all models are equally likely in our case, the MAP class selection
reduces to a Maximum Likelihood estimate, i.e.

M̂ = argmax
Mij

P ({F(x)}|Mij) (3)

If the filter responses are assumed spatially independent, then the probability of all
the filter responses from the novel image belonging to the model Mij is obtained
by taking the product of the probabilities of the individual filter responses, i.e.

P ({F(x)}|Mij) =
∏

x

P (F(x)|Mij) (4)

At this point, we take logs and focus on the log-likelihood to clarify the subsequent
discussion,
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M̂ = argmax
Mij

∏

x

P (F(x)|Mij) = argmax
Mij

∑

x

log P (F(x)|Mij) (5)

= argmax
Mij

S
∑

k=1

Nk log P (Tk|Mij) (6)

where Nk is the number of times the kth texton occurs in the novel image labelling
and P (Tk|Mij) is the probability of occurrence of the kth texton in the model Mij .
This equality follows because the log likelihood essentially amounts to counting
the number of times each filter response falls in a particular bin – but this is exactly
what is recorded in the texton frequency histogram.

4.2 Equivalence with Minimum Cross Entropy and KL Divergence

It will now be shown that Bayesian classification in this form can be viewed as near-
est neighbour distribution comparison classification where the distance between
two distributions is measured using Cross Entropy or the KL divergence. Cross En-
tropy is an information theoretic measure of the average number of bits required
to encode symbols from a given alphabet using another alphabet. It is minimised
if the same alphabet is used throughout. Based on this observation, we can use
Cross Entropy to determine how similar a given distribution is to another distri-
bution. The Cross Entropy between two discrete distributions, p and q, is given by
H(p, q) = −

∑

pk log qk and the smaller this value the better the match between the
two distributions. The KL divergence is a related measure of the similarity between
two distributions and is defined as D(p‖q) =

∑

pk log (pk/qk).

Nearest neighbour matching using Cross Entropy or KL divergence can be shown
to be equivalent to the Bayesian formulation [1,15,16] by noting that from (6),

M̂ = argmax
Mij

S
∑

k=1

Nk log P (Tk|Mij)

= argmax
Mij

S
∑

k=1

Nk
∑

Nk

log P (Tk|Mij) (7)

= argmin
Mij

−
S

∑

k=1

P (Tk|MI) log P (Tk|Mij) (8)

= argmin
Mij

H(p, q)

where pk = P (Tk|MI) = Nk/
∑

Nk is the probability of occurrence of the kth

texton in the novel image labelling MI and qk = P (Tk|Mij), i.e. the normalised
texton frequency of the novel image and model image respectively.
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Therefore, a Bayesian classifier which assumes uniform priors and the spatial in-
dependence of filter responses will give equivalent results to a nearest neighbour
classifier based on the Cross Entropy between the texton distributions of the novel
and model images.

The result can be straight forwardly extended to KL divergence by adding the con-
stant

∑S
k=1

pk log pk to (8) and taking it inside the argmin operation as it does not
depend on Mij . Thus,

M̂ = argmin
Mij

S
∑

k=1

pk log pk −
S

∑

k=1

pk log qk (9)

= argmin
Mij

S
∑

k=1

pk log
pk

qk

(10)

= argmin
Mij

D(p‖q)

4.3 Relationship with χ2

The equivalence can be taken further by noting that KL divergence and its exten-
sions are bounded above by the χ2 statistic and that the bound is attained when the
two probability distributions being compared are very similar [6,13,15].

In more detail since the KL divergence is not a metric, it is often extended [13] to
what is called a capacitory discriminant given by

C(p, q) = D
(

p‖1

2
(p + q)

)

+ D
(

q‖1

2
(p + q)

)

(11)

where
√

C(p, q) is now a metric [6]. Furthermore, Topsoe [13] has shown that C is
bounded quite tightly according to the relation

1

2
χ2(p, q) ≤ C(p, q) ≤ ln 2 · χ2(p, q) (12)

where

χ2(p, q) =
S

∑

k=1

(pk − qk)
2

pk + qk

(13)

Also, by taking the Taylor series expansion of C, it is straight forward to show that

lim
p→q

C(p, q) =
1

2
χ2(p, q) (14)

13



up to second order in p and q.

Most of these results are by now standard. The significance for us is that by com-
bining these equivalence results with the texton-bin correspondence shown in sec-
tion 2, it becomes immediately clear that the Bayesian method of [7] is equivalent
to the texton distribution comparison schemes of [3,8,14].

4.4 Bayesian Classification Experiments

The equivalence results from the previous subsections allow us to cast a Bayesian
classifier as a nearest neighbour classifier with KL divergence as the distance mea-
sure. Thus, the experimental setup remains exactly the same as in section 3 except
now the distance measure being used is KL divergence rather than the χ2 statistic.
Figure 9 plots the classification accuracy versus the size of the texton dictionary for
the Bayesian classifier. The best results are for a dictionary of size S=1830 textons
(i.e. K = 30 textons learnt from each texture class). A classification accuracy of
97.46% is achieved.
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Fig. 9. The variation in classification performance with the size of of the texton dictionary
using a Bayesian classifier: In each case, there are 2806 models and 2806 test images. The
best classification result obtained is 97.46% using a dictionary of 1830 textons. The results
of the texton based χ2 classifier (i.e. figure 7) are also plotted for the sake of comparison.

A technical point about implementing probability products is that if the model his-
tograms are determined directly from the textons frequencies of the training im-
ages then the classification accuracy of the Bayesian classifier is an astonishingly
low 1.06%, i.e. almost all the test images are classified incorrectly. This is because
most novel images contain a certain percentage of pixels (filter responses) which do
not occur in the correct class models in the training set. This may be a result of an
inadequate amount of training data, or due to outliers or noise. As a consequence,
the posterior probability of these pixels is zero and hence when all the pixel proba-
bilities are multiplied together the image posterior probability also turns out to be
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zero.

This is a standard pitfall in histogram based density estimation and three solutions
are generally proposed: (a) smoothing the histogram, (b) assigning small nonzero
values to each of the empty bins, and (c) discarding a certain percentage of the least
occurring filter responses in the belief that they are primarily noise and outliers.
A combination of (b) and (c) is used here: instead of starting the bin occupancy
count from 0, it is started from 1 to ensure that no bin is ever empty. Some of the
least frequently occurring bins are also discarded. These modifications lead to the
classification performance plotted in figure 9.

4.5 Comparisons

On the basis of experimental results, there is very little to choose between the
Bayesian and distribution comparison classifiers using the texton representation.
This is to be expected as, in essence, the test being performed is a comparison of
χ2 and KL divergence as distance measures. Nevertheless, while both classifiers at-
tain rates of over 97%, there are different theoretical pros and cons associated with
the two approaches.

There can be no doubt that theoretically, when the underlying distributions are
known perfectly, the Bayesian classifier minimises the classification error. How-
ever, when we don’t have enough data to accurately determine the true distribution
or only have noisy approximations which suffer from the inherent quantisation ef-
fects of either clustering or histogram binning then the superiority of the Bayesian
classifier is much less clear. This is evident from the capability of χ2 to practi-
cally cope with empty bins (even though it is theoretically incapable of doing so)
and noisy measurements while the Bayesian classifier completely collapses unless
the probability distribution is modified. Furthermore, as can be seen from figure 9,
the Bayesian classifier is often marginally surpassed by the nearest neighbour χ2

classifier.

There is also the question about the Naive Bayesian assumption that the observed
data is independent. However, in our case, this can not be considered a major draw-
back of the Bayesian classifier as compared to χ2 because (a) χ2 also makes the
very same assumption in its derivation, (b) the experimental results indicate that
extremely good classification results are obtained even when the assumption is vi-
olated (Schmid [11] notes that this holds true even for other texture datasets) and
(c) if violating the assumption was leading to large errors then this could be tackled
by randomly sampling filter responses from disjoint regions of the novel image in
a bid to decrease their dependence.

Yet, despite their theoretical limitations, both classifiers appear to work extremely
well in practise as is evidenced by the classification results.
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5 Conclusions

In conclusion, we have shown that the texton representation of the PDF of filter
responses is equivalent to an adaptive bin representation and, conversely, that every
regularly partitioned bin representation can be converted into an equivalent texton
representation. This has enabled us to use texton densities for texture classification
in the Bayesian framework which itself, under certain circumstances, can be viewed
as another measure of distance in a distribution comparison classification scheme.
In doing so, we have brought together two seemingly unrelated schools of thought
in texture classification – one based on the Bayesian paradigm and the other on
textons and their first order statistics.
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