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Abstract— We study the problem of estimating the illuminant’s
direction from images of textured surfaces. Given an isotropic,
Gaussian random surface with constant albedo, Koenderink
and Pont [JOSA 03] developed a theory for recovering the
illuminant’s azimuthal angle from a single image of the texture
formed under a Lambertian model. In this paper, we extend the
theory to deal with cases of spatially varying albedo.

First, we generalise the theory to explain why their method
should work even for certain types of spatially varying albedo.
Our generalisation also predicts that the coherence of the
structure tensor should lie below 0.8 in such non-constant albedo
cases and accurately predicts the “deviation” from the true value
observed by Koenderink and Pont on the Columbia-Utrecht
(CUREeT) texture database. Next, we extend the theory to account
for arbitrarily varying albedo. We also investigate local, rather
than global, estimates of the direction, and demonstrate our
theory on the CUReT and the Heriot-Watt TextureLab databases
where estimated directions are compared to ground truth.

I. INTRODUCTION

In this paper we address the problem of determining the
illuminant’s azimuthal angle from textured images. Tradition-
ally, techniques from Shape from Shading have been used
to estimate the direction of the light source [3], [15], [18]-
[20], [22], [24]. Assuming a Lambertian [8] image formation
model, most of these techniques try to simultaneously recover
both shape, i.e. the surface height map or the surface normals,
and the direction of the light source. However, this is an ill
posed problem and so many constraints have to be imposed in
order to find a reasonable solution. Some of the most common
constraints are that the albedo is constant and that the surface is
smooth or the normals integrable. Alternatively, other methods
focus on local estimates or the occluding contour but, once
again, have to impose very similar constraints to determine
the illuminant’s direction.

Recently, methods have been developed which specifically
exploit the statistical nature of rough textures. Chantler et
al. [4], [5] have shown that the variance of filter responses
obtained from a textured image lie on Lissajous’ ellipses as
a function of the illuminant’s azimuthal angle. Given three
reference images of the texture, taken under fixed viewpoint
and illuminant elevation, it is possible to determine the ellipse.
This ellipse can then be used to read off the illuminant’s az-
imuthal angle for any novel image of that texture. Koenderink
and Pont [12] assume that the texture has constant albedo
and that its surface has shallow relief, is isotropic and has a
Gaussian random distribution. They develop a theory based on
second order statistics to recover the illuminant’s azimuth from

a single image viewed orthographically under the Lambertian
model.

Such statistical methods which recover the illuminant’s
direction from textured images are useful and have many
applications. For instance, they can be used in Texture Anal-
ysis to provide information about the imaging conditions
and thereby improve classification. Knowledge of the light
source’s direction can also help in Computer Graphics when
introducing characters and objects with realistic shadows into
an image. However, the applicability of most illumination
estimation algorithms is restricted by the fact that they require
the surface to have constant albedo. In this paper, we take
a first step towards tackling this problem. In particular, we
extend the method of Koenderink and Pont [12] to cases where
the albedo is spatially varying.

The organisation of the rest of the paper is as follows:
In section Il we generalise the theory of Koenderink and
Pont for the case where the albedo is isotropic and can be
modelled as a random variable drawn from a log-normal
distribution. In this case, the eigenvectors of the structure
tensor S =< (VlogI)(VlogI)™ > turn out to be identical
to those found by [12]. However, the coherence has a very
different form and now, rather than being just a constant,
becomes a function of the illuminant’s elevation as well as the
texture’s albedo. We also examine how the coherence behaves
in the presence of shadows and in section Il verify our
theory experimentally on the Columbia-Utrecht (CUReT) [6]
database. Next, in section IV we explore how the theory
can be further generalised to take into account arbitrarily
varying albedo if extra information is present in the form of
an additional reference image. The theory is then tested in
section V on the Heriot-Watt TextureLab database, where ad-
ditional reference images are available, and it is demonstrated
that superior results are achieved with the new formulation.
In section VI we investigate the advantages of using local
regions, rather than the entire image, to form estimates of the
azimuthal angle. Finally, we conclude in section VII with a
discussion on the implications of our theory for resolving the
Generalised Bas-Relief ambiguity.

Il. ESTIMATING THE LIGHT SOURCE AZIMUTH

This section develops the basic theory for recovering the
illuminant’s azimuth from a single texture image. We consider
the case where the underlying texture surface can be modelled
as a Gaussian, random, rough surface. None of the parameters
of the surface, the mean, variance or even the auto-correlation



function, need actually be known. Thus no knowledge of the
geometry is required. Instead by making general assumptions
about the surface height distribution, the second order statistics
of the surface derivatives can be used to robustly recover the
light source azimuth. The derivation will follow principally
along the lines of [12].

Under the basic assumptions that the underlying model
which produced the textured image has (a) an isotropic,
Gaussian random rough surface with shallow relief viewed
orthographically, (b) an albedo which is also isotropic but
distributed log-normally, (c) an illuminant whose elevation
v is high as compared to the surface tangent plane, and
(d) a perfect Lambertian image formation model without
shadowing, specularities or inter-reflections, it will be shown
that the illuminant’s azimuthal angle «) can be recovered from
the largest eigenvector of the structure tensor S.

As these assumptions might appear to be overly restrictive, it
will be demonstrated that the theory holds even for cases when
the textures deviate strongly from this model. For example, the
results are empirically valid for elevations as small as v = 5°
and when there are significant shadows. We will explain why
this might be the case by considering the situation where the
effects of shadowing, specularities, inter-reflections etc. can be
incorporated into the albedo map.

If a textured surface is imaged under the Lambertian
model [8], then the image intensities are independent of the
viewing direction and depend on only the angle between the
surface normal at each point and the light source direction.
When there is a single, collimated, parallel light source,
relatively high enough from the surface tangent plane so that
shadows can be neglected, the image intensities are given by

plx,y)Lysiny

\/1+h2 + h2

where L = Ly[cosvcost,cosvsiny,siny] is the light
source vector with elevation v and azimuthal angle ¢, h(z,y)
is the Monge patch parameterisation of the surface height with
partial derivatives h,(x,y) and h,(x,y), and p(z,y) is the
spatially varying surface albedo. Thus we are only considering
a very simple image formation model and neglecting effects
due to specularities, inter-reflections and shadows. Yet, as will
be demonstrated, even this simple analysis can give very good
results on real world datasets.

If the surface has shallow relief then the factor in the
denominator can be ignored as h;, h, < 1. Following [12],
[14], we work with the log intensity distribution given by

I(z,y) = [1—cot v(hy cosp+hysiny)] (1)

log I(x,y) = log(pLy sinv)—cot v(hy cos+hy siny) (2)

where we have used the fact that cot v is small to form the
truncated Taylor series expansion log(1 — z) = —z. Denoting
LI =logl,s =siny,c = cosy and taking partial derivatives
gives

LI(z,y) = %—coty(chm—&—shxy) ®)
Ll,(z,y) = %—Coty(chxy—l—shyy) 4)
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Fig. 1. Gaussian random rough surfaces and a corresponding 1D horizontal

slice as generated by (5): (a) isotropic and (b) anisotropic.

Generic information about the surface height and albedo
distributions is now needed in order to proceed further with
the analysis. Many Lambertian rough surfaces in the real world
can be described by a Gaussian height distribution with a
given auto-correlation function. In [2], [17], it is shown that
a Gaussian random rough surface can be generated by the
interaction of a number of waves at different frequencies and
orientations. Thus,

h(z,y) = Z Z R cos(nz + my) (5)

where n,m € Z and h,,, are random variables which
determine the auto-correlation function. Figure 1 shows some
sample Gaussian random rough surfaces which can be ex-
pressed as (5). Since a Gaussian rough surface must have an
equal number of protrusions and indentations, the first order
statistics will not reveal any information about the illuminant’s
azimuth (as the bright image regions will cancel out the dark
image regions). Mathematically, < LI, > and < LI, >
should vanish as the expected values of all partial derivatives
of h must equal zero. Hence we turn to the square terms
< LI >, < LI? > and < LI, LI, > which become
<LIZ> = <(pa/p)>

+cot? v < (chys + thy)2 > (6)

—2cotv(c < pghaz/p > +5 < pahzy/p >)

To account for the albedo, a similar kind of assumption
is made about its distribution. If the albedo can be modelled
as a random variable with a log-normal distribution [7], then
log p should also be of the form (5) and therefore the third
term in (6) must vanish as the product of any odd and
even numbered derivatives has zero expected value. Denoting,
Ay =< (pz/p)? > we then have,

< LI? >
< LI} > =

= Ay +cot?v < (chyy + shyy)? > (7)
Ay + cot? v < (chyy + shy,)? > (8)



where < LI§ > has been obtained by a similar treatment. The
expression for < LI,LI, > is also very similar

< LI LI, >= Ayy+cot? v < (chyy + shyy)(Chay + shyy) >

where A, =< pypy/p* >.
We now need to evaluate the expectations of the height
derivatives. Some straight forward trigonometry and integra-

tion yields
<2, > = (1Y > a2,
<hy, > = (1/2)zn:§:m4him
<hi,> = (1/2) iian%im =< hgzhyy >
< hgphey > = (1/2) iin%hfm
< hyyhgy > = »3 ©

(1/2) Z Z nm3h$L7n

n
At this point, there are more unknowns than equations and
therefore the system must be constrained further for the light
source azimuth to be recovered. One way of reducing the
number of free variables is by constraining the underlying
surface and albedo. In the case that both are isotropic, the
expectations in (9) can be greatly simplified [2] to

<hZ > < hpzhyy > < haghay > 3 1 0

2 -
< hyyhos > <hi, > < hyyhay > =H( 1 3 o0
< hmyhmm > < hmyhyy > < hiy > 0 0 1

while the albedo expectations simplify to

Ay Ay \ A 10

Aye Ay o 0 1
where H and A are constants which depend on the surface
height and albedo of the textured material (for instance, A = 0
for constant albedo textures). Substituting these values back

into the expressions for < LI2 >, < LI? > and < LI, LI, >
gives

(10)

< LI?> = A+ Hcot?v(3cos® ) +sin® )
< LIS > = A+ Hcot?v(cos? 1 + 3sin? ¢))
< LI,LI,> = Hcot?v(1+1)sintcosy

There are now exactly three equations in three unknowns and
therefore it is possible to recover the illuminant azimuth
from the eigenvectors of the structure tensor [12] defined as
g_ <LI?> <LI,LI,>
~\ <LLLI,> <LI}>

In the present case, the structure tensor turns out to have a
2 + cot 29 sin 29

very simple form
sin 29 2 — cot 24 ) (12)

where I is the 2 x 2 identity matrix. The larger eigenvalue and
corresponding eigenvector of the structure tensor are given by

cos Y
sin

(11)
S :AI+Hcot2u<

)\1=A+3Hcot21/:>v1=[ (13)

while the smaller eigenvalue and eigenvector are given by

cos(¢ + 7/2)
sin() + 7/2) } (14)

Thus, vy points in the direction of the illuminant’s azimuthal
component and represents the desired solution. However, note
that there is an ambiguity of 180 degrees in the recovered
angle as S depends on 2+ rather than 1.

The coherence of the structure tensor S is defined to be

)\2:A+HCOt21/:>V2:|:

A2 — A3
coh = S22 15
TN (12)
2 2
_ H cot®* v(2A + 4H cot* v) (16)

A2 + H cot? v(4A + 5H cot?v)

which must be less than or equal to 0.8. Thus, the coherence
depends upon both v and A. For example, when A2 is
negligible as compared to the second term in the denominator,
the expression for the coherence simplifies to

B 2A + 4H cot? v
"~ 4A +5H cot?v

which varies between 0.5 and 0.8 depending on the elevation
v. Of course, if A? is not negligible then the coherence can
be lower still.

Deviations from the perfect Lambertian model: The
model up till now has been derived under the assumption
of perfect Lambertian reflectance without any shadowing
(see figure 2), specularities, inter-reflections etc. However, in
general, it is not possible to distinguish these effects from
albedo variations given just a single image (unless there is
prior information available) [10], [13]. For example, it is not
possible to tell apart dark regions due to shadows (either cast
or attached) from dark regions due to low albedo from only
one image. Therefore, it might be possible to model these
effects as albedo variations, as long as the distribution remains
roughly log-normal (which can accommodate a large number
of low intensity shadow regions in the bulk of the distribution
with the specularities fitting into the long tail). In such a
situation, (13), (14) and (16) will still hold and the largest
eigenvector will point in the direction of the azimuth. However,
A will now become a function of both v and ) (as well as the
camera position) and therefore, for a given textured material,
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Fig. 2. A indicates an attached (self) shadow boundary, and C a cast
shadow boundary. Significant cast shadows can suddenly appear below a
certain elevation for rough surfaces.



the coherence can no longer be expected to be a monotonic
function of the elevation. If we were to focus on shadowing
as the major source of deviation from the the model, then
depending on how quickly A increases with decreasing v (i.e.
the rate of shadowing), as compared to H cot? v, the coherence
curve can either increase or decrease. It can also do both if the
shadowing pattern changes after a certain elevation and one
can expect kinks in the graph. Figure 3 plots some sample
scenarios.
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Fig. 3. The variation in coherence with elevation in the presence of shadows.
The curve can change dramatically if the shadowing pattern changes after a
certain elevation. This can also cause a jump in the curve, for example, when
significant cast shadows suddenly appear below a certain elevation. It should
be noted that these are just a few sample curves from the set of all such
possible. Each can vary considerably depending on how shadowing influences
the albedo parameter A.

I11. SINGLE IMAGE EXPERIMENTS AND COMPARISONS

It is interesting to note that the eigenvectors recovered in
(13) and (14) are identical to those found by Koenderink and
Pont [12]. Thus, even though their theory was derived for a
constant albedo map, their method should hold for a much
wider range of textures. However, since a constant albedo
map implies A = 0, their model expects that the measured
coherence should always equal 0.8 and should not change
with varying elevation, azimuth or texture sample. The theory
derived here predicts otherwise. For almost constant albedos
(i.e. small A), (17) expects the coherence to lie between
0.5 and 0.8 with lower values being expected for larger
variations in albedo. These predictions match very well with
the “deviations” from the ideal as measured in [12].

In the case of a true Gaussian random rough surface with
painted white albedo, [12] report that the azimuth is estimated
correctly within a few degrees but “the coherences are signif-
icantly lower” and vary between 0.4 and 0.7 with changing
elevation. Similarly, on a sample texture from the Columbia-
Utrecht (CUReT) database [6], the illuminants azimuth is
detected to within a degree of the ground truth (v = 0) but
the coherences are again found to be slightly lower with the
25 to 75 percentiles being 0.53 to 0.78.

It should be noted that while the current model has been
derived by assuming Gaussian and log-normal distributions, it
may also hold to some degree for other distributions for which
the appropriate expected values cancel out. To determine how
well the model copes with various materials with differing
albedo and height distributions, we apply it to all the textures
in the CUReT database. There are a total of 61 materials
present in this database and each texture has been imaged
under 205 different viewing and illumination conditions. Out
of all the images available, we selected 92 images per material
for which a big enough texture region could be extracted from
the image. While the most extreme viewpoints are excluded,
there are still many images for which the viewing direction is
far from head on. Again, in order to verify the robustness of the
model, we do not photometrically or geometrically calibrate
the images but instead use the raw pixel intensities after they
have been converted to grey scale.

Figure 4 shows the results of the algorithm on some CUReT
textures. Only a few samples are shown for lack of space. For
each texture, 7 images are chosen for which the viewing angle
is almost in the direction of the surface plane normal (within
15°). The value of the illuminant’s azimuth is estimated using
(13) and the estimation error in degrees is plotted as a function
of v in the middle row. The error is less than a few degrees
even though the view is not perfectly normal, the albedo not
constant and the surface not necessarily isotropic Gaussian.
The results are valid even in the presence of shadows for the
smaller values of elevation. In the bottom row, the associated
coherences have also been plotted as a function of v. As can
be seen, they are not always equal to the constant value 0.8
but vary with v and albedo as predicted by the theory.

Next, we apply the method to all 92 x 61 = 5612 images
selected from the CUReT database and estimate the light
source azimuth. As can be expected some results will not
be very good due to the oblique viewpoint and the strong
deviation of the textures from our assumptions. Nevertheless,
in a majority of the cases, the azimuth is recovered to within
a few degrees. Figure 5 is a plot of the estimation error versus
the number of images having that error. Thus, for 1475 images
the azimuth is estimated to within an accuracy of 1° while
3255 images (roughly 58% of those selected) have an error
less than 5°.

However, the algorithm does have a source of error which
could be biasing these results. When a texture is strongly
anisotropic, the perpendicular partial derivative dominates the
structure tensor and forces the estimated illuminant to lie in its
direction irrespective of the true azimuthal angle. For example,
for a texture with translational symmetry, the iso-illumination
contours are straight lines parallel to the translation direction
and hence the derivatives in this direction will be negligible
as compared to the perpendicular derivatives. So, for images
which are vertically oriented (see figure 6), the x derivative
becomes very large and forces the structure tensor to assume
the form

s;g(l 6)¢A1=1,A2:0,v1={1}
€ € 0
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Fig. 4. The top row shows some sample CUReT textures from a fronto-parallel view (only a few samples are shown because of space limitations). The

middle row plots, for each material, the error in estimating + (in degrees) as the illuminant’s elevation varies from 11.25° to 78.75° (the viewing angle
also varies but is always within 15° of the surface plane normal). Clearly, +) is estimated to an accuracy of within a few degrees even when the albedo is
not constant, the texture not necessarily isotropic Gaussian and even in the presence of strong shadows for smaller values of the elevation. The associated
coherence values are plotted in the bottom row. As can be seen, the measured coherence varies with elevation and texture sample as predicted by the theory.
It is not a constant equal to 0.8 in all cases as predicted by [12]. The jumps in the curves are most probably due to shadowing effects primarily with change
in elevation but could also be due to the other effects with change in viewpoint (as the camera’s azimuthal angle fluctuates between 0° and 180° from image
to image). The samples are: Polyester (texture number 02), Terrycloth (03), Rough Plastic (04), Sandpaper (06), Plaster A (10), Plaster B (11), Quarry Tile
(25), and White Bread (52). Note that for each sample, derivatives are computed at various scales and the best result reported. No photometric or geometric
calibration has been done and all images are converted to grey scale.

and thus the estimated azimuth is 0° irrespective of the
actual direction of the illuminant. A similar problem exists for
horizontal textures and ¢ = 90°. And since most illuminant
directions in the CUReT database are either ¢ = 0°, ¢» = 90°
or ¢»p = 180° it is difficult to tell whether the algorithm is
working properly or giving erroneous results because of the
dominance of oriented edges. However, in these cases the
coherence will be greater than 0.8 and in fact will approach
1 and can therefore be used to flag errors. Figure 6 illustrates

1500

this effect. The algorithm seems to be working well as the
estimated azimuth appears to lie very close to ground truth
for ¢ = 0°. However, in reality, it is the orientation effects
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Fig. 6. The model can appear to be working well even though it is being
B ‘ ) ‘ fooled by orientation effects. As long as the illuminant’s true azimuth is around
% 10 20 3 40 50 60 70 80 9 100 0° the algorithm returns good results (solid red curve in the graphs in the
Azimuth Estimation Error (in degrees) middle row) for Corduroy (42), Linen (44) and Corn Husk (51). However,
Fig. 5. A count of the azimuth estimation errors (in degrees) for all 5612  the estimates for all other illuminant directions are very poor as can be seen

images in the CUReT database. Results are given for the best scale for
computing derivatives.

by the dashed curve in the same graphs. The fact that the coherence is near
1 for the 1) = 0° curves can be used to flag this.



which are causing this and once the true illuminant direction
moves away from 0° the errors become very large. The fact
that the coherences are greater than 0.8 can be used to flag
this occurrence.

Nevertheless, the model appears to be quite robust when its
basic conditions are met. For example, for Plaster A (texture
number 10) which appears to be isotropic, the azimuth was
estimated to within 5° nearly 90% of the times, irrespective
of viewpoint and shadowing. Thus, even though there is room
for improvement, the simple model derived without taking into
account many physical phenomenon still appears to work quite
well.

1V. ESTIMATION FROM TWO IMAGES

There are often cases when multiple images are available
of a texture taken from the same viewpoint but with varying
illumination. Photometric Stereo techniques rely on such data
for example. In these cases, it is possible to use the extra
information available to lift some of the restrictions imposed
on the model in section Il. In particular, it is possible to
have freely varying albedo and, in this section, we develop
a theory for estimating the illuminant’s azimuth under such
circumstances.

Suppose we have available two registered images I; and I
imaged by varying the illuminant’s azimuth. Then, under the
Lambertian model, the image intensities are given by

plx,y)Lysinv

\/1+h2+h?

Note that by taking the ratio of the two images, it is possible
to immediately get rid of both the albedo variation as well
as the normalising constant in the denominator. Thus, we no
longer have to make explicit the assumption that the surface
has shallow relief in order to remove the , /1 + h2 + h2 factor.
Furthermore, the albedo can be allowed to vary arbitrarily as
it has no influence on the ratio. Taking logarithms and again
making use of the truncated Taylor series expansion gives

Ii(z,y) = [1 — cot v(hy costp; + hy sin;))

= cotv[hg(costy — cos)r) + hy(sinpg — sinyn )]
Denote C = costs — costpy and S = sinps — sine)y. Then
LR =cotv(Chy, + Shy)
= LR, =cotv(Chyy+ Shyy)

= LR, =cotv(Chyy+ Shyy) (18)
Again, < LR, > and < LR, > are not expected to contain
any information, so one must look at the second order statistics
contained in < LR >, < LR > and < LR,LR,, >. If the
surface is isotropic and Gaussian, then < h2, >=< hjy >=
3H, < h}, >=< hg.hy, >= H while all other expectations

are zero. Therefore,
<LR?>> =
<LR)> =
<LR,LI,> =

H cot® v(3C? + S?)
H cot? v(C? + 35?)

H cot? 12C'S (19)

and the structure tensor is given by
302+52 2CS
2C8 C? + 352

Making use of the trigonometric identities cos (12 1) =
€O8s 13 cos 1 Fsin 1o sin 1)1, sin (g £ 1P1) = sin g coshy =
cosg sintpy and performing some careful, but straight for-
ward, algebra yields

) @

S:a< 2 — cos(¢1 +¢2)
(22)

S = Hcot’v ( (20)

—sin(y1 + 1b2)

—sin(y1 +2) 2+ cos(yr + P2)

where

a = 4H cot? v sin? (@)

The eigenvalues of the structure tensor are now A; = 3« and
A2 = « while the larger eigenvector is

vi=| ~ sin(y1 + )
! L+ cos(¢1 + 92)
from which it is possible to recover the joint angle ¥, + 5.
The coherence of the structure tensor now becomes
)\2 _ )\2
=N - 08
1t A3

(23)

(24)

V. EXPERIMENTAL RESULTS FOR TWO IMAGES

We now assess the validity of the theory developed in
section IV on the Heriot-Watt TextureLab database [21].
The database has 30 textures representing various kinds of
materials: isotropic, oriented (in both surface and albedo),
rough, etc. Figure 7 shows one image of each sample present
in the database. Each material has been imaged under a fixed
viewpoint. The illuminant’s elevation is also fixed at v = 45°
but the azimuth varies between ) = 0° and ¢ = 315°.

Fig. 7. Materials present in the Heriot-Watt TextureLab database. There are
30 textures and each has been imaged from a fixed viewpoint. The illuminant
elevation is also fixed at v = 45° but the azimuth varies between ) = 0°
and ¢ = 315°.



To test the theory, we take samples from the database whose
surface might be modelled as isotropic and Gaussian but for
which the albedo varies considerably. For each sample, the
image taken at ¢ = 0° is retained as the reference image while
(23) is then used to recover the azimuthal angle for all the rest.
Figure 8 is a plot of the estimation error for four samples,
AN4, TL2, TL3 and TL6, each of which has signification
variation in its albedo. The middle row shows plots of the
estimation error versus v for the remaining images. The solid
blue curves represent the errors in the angle estimated using
(23) and generally tend to be much lower than the dashed
red curve representing the error in estimation due to (13). The
bottom row is a plot of the associated coherences. Even though
(24) predicts that the coherences should now equal 0.8 this is
clearly not the case. The variation is most probably due to
deviations from the model in terms of shadowing.
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Fig. 8. Estimating the illuminant’s azimuth for samples in the Heriot-Watt
TextureLab database. For each material, the image at ¢» = 0° is chosen as
the reference image. The solid blue curves (middle row) then represent the
error in estimating ¢ in degrees for all the remaining images using (23). The
dashed red curves represent the estimation error as measured using (13). The
bottom row is a plot of the associated coherences. Note that for both methods,
derivatives are computed at various scales and the best results reported.
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VI.

Even though the methods developed in sections Il and 1V
appear to cope fairly well with deviations in the model, there
are often cases where a few bad measurements can adversely
affect the recovery of the azimuthal angle. Therefore, it is
desirable to estimate the illuminant’s direction using local
regions rather than the entire image.

As has been noted in section Ill, the presence of strong
edges can bias the structure tensor and therefore these regions
should be excluded while computing the expectations. Simi-
larly, regions of constant intensity where the signal variation
is very low should also be excluded.

There exist many such operators [9], [11], [16] to discard
exactly such regions. Most of them are based around comput-
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ing the second moment matrix which is extremely similar to
the structure tensor S. We use the Harris corner detector op-
erator [11] to reject edge and constant intensity regions which
might deviate from the assumed model and therefore give bad
estimates. To estimate the statistics locally, we compute the
most interesting Harris points and then for each point, use
the region around it to calculate the expectations < LI2 >,
< LI§ > and < LI, > and thereby the structure tensor. Thus
at each chosen Harris point we compute the structure tensor
and evaluate the local estimate of the illuminant direction. This
can then be used to return the probability distribution of the
azimuthal angle from which the mode can be chosen as the
most likely estimate.

Preliminary experiments indicate favourable results. As dis-
cussed in section 111 the azimuth can be estimated to within an
accuracy of a few degrees for most images of Plaster A in the
CUReT database. This indicates that the texture satisfies the
basic model. However, for a few images the estimation error is
as high as 15° indicating that viewpoint and shadowing effects
are causing deviations from the model and thereby contributing
bad measurements. It is hoped that if these measurements can
be excluded from the estimation process then we should be
able to recover the azimuthal angle much more accurately. This
is found to be exactly the case when the top 300 Harris points
are used to choose the regions for computation. Figure 9 plots
the probability distribution of the angles estimated using the
Harris regions. The mode of the distribution is at 65° which is
within 0.15° of the ground truth while using the entire image
the recovered angle was ¢ = 49.61° with an error of 15.49°.
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Fig. 9. Recovering the illuminant’s azimuth using local estimates for an
image of Plaster A from the CUReT database. The ground truth is ¢ =
65.10° but the angle recovered using (13), which computes statistics over
the entire image, is v = 49.61° due to shadowing and viewpoint deviations.
By estimating the angle locally using Harris regions and rejecting others it is
possible to improve the accuracy of the estimate as the mode of the distribution
is 65°.



VII. CONCLUSIONS

In this paper, we have developed a theory for estimating
the illuminant’s azimuth for isotropic, Gaussian random tex-
tures with spatially variable albedo. When the albedo itself
is isotropic and randomly distributed log-normally, then the
solution for the illuminant’s azimuth is identical to the one
found by Koenderink and Pont [12]. However, the coherence
of the structure tensor is no longer a constant but varies with
both the elevation and the azimuth and is dependent on the
texture’s albedo and shadowing pattern. In the case that extra
information is available in the form of a registered image with
the same elevation, then it is possible to extend the theory
to arbitrarily varying albedo as long as the surface itself is
roughly isotropic Gaussian.

Being able to recover the illuminant’s azimuth raises the
interesting possibility of resolving parts of the Generalised
Bas-Relief ambiguity (GBR) [1], [23]. Unfortunately, it turns
out that once integrability has been enforced, the GBR does
not affect the azimuthal angle of the light source but only its
elevation and strength. However, the fact that we have imposed
a Gaussian distribution on the height function does restrict the
ambiguity. If the transformed surface is given by

h(z,y) = Mr(z,y) + pr + vy +d (25)

then, in theory, both x and v must be zero and the ambiguity
reduces to \ which affects the variance of the Gaussian, and
the constant of integration in the surface reconstruction d
which affects the mean. However, in practise, due to numer-
ical reasons and because the Gaussian distribution is being
approximated by a finite number of surface height points, it
may well be the case that the ambiguity is not resolved to just
A and d but may also involve spurious values of ;4 and v.
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