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Abstract

The objective of this paper is classification of materials
from a single image obtained under unknown viewpoint and
illumination conditions. Texture classification under such
general conditions is an extremely challenging task. Our
methods are based on the statistical distribution of rotation-
ally invariant filter responses in a low dimensional space.

There are two points of novelty: first, two representa-
tions of filter outputs, textons and binned histograms, are
shown to be equivalent; second, two classification method-
ologies, nearest neighbour matching and Bayesian classifi-
cation, are compared.

In essence, given the equivalence of texton and bin rep-
resentations, the paper carries out an exact comparison be-
tween the texton based distribution comparison classifiers
of Leung and Malik [1JCV 2001], Cula and Dana [CVPR
2001], and Varma and Zisserman [ECCV 2002], and the
Bayesian classification scheme of Konishi and Yuille [CVPR
2000].

The comparisons are assessed by classifying images of
all 61 materials present in the Columbia-Utrecht database.
Classification rates of over 97% are achieved for both the
methods while classifying more than 2800 images in all.

1 Introduction

In this paper, we investigate the problem of classifying ma-
terials from their imaged appearance, without imposing any
constraints on, or requiring any a priori knowledge of, the
viewing or illumination conditions under which these im-
ages were obtained. Classifying textures from a single im-
age under such general conditions is a very demanding task.

A texture image is primarily a function of the following
variables: the texture surface, its albedo, the illumination,
the camera and its viewing position. Even if we were to
keep the first two parameters fixed, i.e. photograph exactly
the same patch of texture every time, minor changes in the
other parameters can lead to dramatic changes in the resul-
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tant image (see figure 1). This causes a large variability in
the imaged appearance of a texture and dealing with it suc-
cessfully is one of the main tasks of any classification algo-
rithm. Another factor which comes into play is the fact that,
quite often, two materials when photographed under very
different imaging conditions can appear to be quite similar,
as is illustrated by figure 2. It is a combination of both these
factors which makes the texture classification problem so
hard.

Weak classification algorithms based on the statistical
distribution of filter responses have shown much promise of
late. The two types of algorithm in this category that have
been particular successful are (a) the Bayesian classifier
based on the joint probability distribution function (PDF) of
filter responses represented by a binned histogram [5], and
(b) the nearest neighbour y? distribution comparison clas-
sifiers based on a texton frequency representation [2, 6, 9].
In this paper, we draw an equivalence between these two
representations. We are then able to compare the perfor-
mance of Bayesian and distribution comparison classifiers
using either representation.

The success of Bayesian classification applied to filter
responses was convincingly demonstrated by Konishi and
Yuille [5]. Working on the Sowerby and San Francisco out-
door datasets, their aim was to classify image regions into

Figure 1: The change in imaged appearance of the same tex-
ture (# 30, Plaster B) with variation in imaging conditions.
Top row: constant viewing angle and varying illumination.
Bottom row: constant illumination and varying viewing an-
gle. There is a considerable difference in the appearance
across images.



Figure 2: Small inter class variations between textures can
make the problem harder still. In the top row, the first and
the fourth image are the same texture while all the other
images, even though they look similar, belong to differ-
ent classes. Similarly, in the bottom row, the images ap-
pear similar and yet there are three different texture classes
present.

one of six texture classes. The joint PDF of the class condi-
tional likelihood of six filter responses for each texture was
learnt from training images. It was represented as a his-
togram by quantising the filter responses into bins. Novel
image pixels were then classified by computing their filter
responses and using Bayes’ decision rule. Finally, to clas-
sify an entire image or image region, pixel independence
was assumed and pixel posterior probabilities multiplied to-
gether.

In contrast, distribution comparison classifiers such
as [2, 6, 9] learn distributions of texton frequencies from
training images and then classify novel images by compar-
ing their texton distribution to the learnt models. Different
comparison methods may be used, such as the Bhattacharya
metric, Earth Mover’s distance, KL divergence, etc., but the
x? significance test, in conjunction with a nearest neighbour
rule, is often preferred.

Leung and Malik [6] were amongst the first to seriously
tackle the problem of classifying 3D textures and, in do-
ing so, made an important innovation by giving an opera-
tional definition of a texton. They defined a 2D texton to
be a cluster centre in filter response space. This not only
enabled textons to be generated automatically from an im-
age, but also opened up the possibility of a universal set of
textons for all images. To compensate for 3D effects, they
proposed 3D textons which were cluster centres of filter re-
sponses over a stack of 20 training images with representa-
tive viewpoints and lighting. They developed an algorithm
capable of classifying a stack of 20 registered, novel im-
ages using 3D textons and applied it very successfully to
the Columbia-Utrecht (CUReT) [4] database. Later, Cula
and Dana [2] and Varma and Zisserman [9] showed that 2D
textons could be used to classify single images without any
loss of performance.

Classification performance is evaluated here on image
sets taken from the CUReT texture database. All 61 ma-
terials present in the database are included, and 92 images
of each material are used with only the most extreme view-

points being excluded (see [9] for details). The variety of
textures in this database is illustrated in figure 3. The 92
images present for each texture class are partitioned into
two, disjoint sets. Images in the first (training) set are used
for model learning, and classification accuracy is assessed
on the 46 images for each texture class in the second (test)
set.

The materials in the CUReT database are examples of
3D textures and exhibit a marked variation in appearance
with changes in viewing and illumination conditions [1, 2,
3, 6, 10]. The difficulty of single image classification is
highlighted by figure 4 which illustrates how drastically the
appearance of a texture can change with varying imaging
conditions. Modelling such textures by a single probabil-
ity distribution of filter responses [5, 8] may fail in such a
situation. The solution adopted here is to represent each tex-
ture class by probability distributions (models) conditioned
implicitly on viewpoint and illumination. Hence, multiple
models are generated from the various training images for
each texture class and these models characterise the dif-
ferent appearances of the texture with variation in imaging
conditions. Thus, each training image can potentially gen-
erate a model, and the choice of which models are used is
based on a greedy algorithm which maximises classifica-
tion performance over the training set [9]. On average, 7-8
models represent each texture class.

The layout of the paper is as follows: in section 2, we
outline a low dimensional representation of rotationally in-
variant filter responses which was first introduced in [9].
We also describe the two common representations, texton
and binned histogram, of the joint PDF of filter responses
and comment on their equivalence. Then, in section 3, we
present a comparison between the texton and bin represen-

Figure 3: Textures from the Columbia-Utrecht database.
All images are converted to monochrome in this work, so
colour is not used in discriminating different textures.



Figure 4: Images of ribbed paper taken under different
viewing and lighting conditions. The material has signifi-
cant surface normal variation and therefore changes its ap-
pearance drastically with imaging conditions thereby mak-
ing single image classification an extremely difficult job.

tations using a distribution comparison classifier. Next, we
implement a Bayesian classifier using a texton representa-
tion in section 4 and contrast its performance to the distribu-
tion comparison classifier. We conclude by discussing some
of the advantages and limitations of the CUReT database.

2 Filter Responses and their Repre-
sentation

In this section, we first describe the filters bank that is used
here, and then discuss two popular representations of the
filter responses, textons and binning, which we will show to
be equivalent.

Filter bank: Traditionally, the filter banks employed
for texture analysis have included a large number of filters
in keeping with the philosophy that many diverse features
at multiple orientations and scales need to be extracted ac-
curately to successfully classify textures. However, con-
structing and storing PDFs of filter responses in a high di-
mensional filter response space is computationally infeasi-
ble and therefore it is necessary to limit the dimensionality
of the filter response vector. Both these requirements can be
achieved if multiple oriented filters are used but their out-
puts combined to form a low dimensional, rotationally in-
variant response vector. A novel filter bank which does this
is the Maximum Response (MR8) filter bank which com-
prises 38 filters but only 8 filter responses (see figure 5).
The filters include a Gaussian and a Laplacian of a Gaussian
(LOG) filter, an edge (first derivative) filter at 6 orientations
and 3 scales and a bar (second derivative) filter also at 6 ori-
entations and 3 scales. The response of the isotropic filters
(Gaussian and LOG) are used directly, but the responses of
the oriented filters (bar and edge) are, at each scale, “col-
lapsed” by using only the maximum filter responses across
all orientations - thereby giving 8 rotationally invariant filter
responses in total.

Rotation invariance is desirable in that it leads to the cor-
rect classification of rotated versions of textures present in
the training set. Another motivation for using the MR8 filter
bank is that angular information can still be recorded. Fur-

thermore, we expect that more significant textons are gen-
erated when clustering in a low dimensional, rotationally
invariant space. Further details of the filter bank, as well as
pre and post image processing steps, are given in [9].

Both the Bayesian and the distribution comparison clas-
sifiers discussed in this paper are divided into two stages -
learning and classification. In the learning stage, training
images are convolved with the filter bank to generate filter
responses. The representation of these filter responses is
described next. This representation is the learnt statistical
model for a given texture under particular imaging condi-
tions.

Texton representation of filter responses: Each train-
ing image is convolved with the filter bank to generate a set
of filter responses. These filter responses are then aggre-
gated over various images from the texture class and clus-
tered. The resultant cluster centres form a dictionary of
exemplar filter responses and are called textons. Given a
texton dictionary, the first step in learning a model from a
particular training image is labelling each of the image pix-
els with the texton that lies closest to it in filter response
space. The (normalised) frequency histogram of pixel tex-
ton labellings then defines the model for the training image.

In the implementation here, the filter responses of 13
randomly selected images per texture class (taken from the
training set) are aggregated and clustered via the K-Means
algorithm. K = 40 textons are learnt from every texture
class resulting in a total of 61 x 40 = 2440 textons. Hence,
a model is a 2440-vector where each component is the pro-
portion of pixels which are labelled as a particular texton.
Implementation details are given in [9].

Histogram representation by binning: In this repre-
sentation, the model corresponding to a given image is the
probability distribution of the image’s filter responses - ob-
tained by quantising the responses into bins and normalis-
ing so that the sum over all bins is unity. It should be noted
that while binning has the advantageous effect of preventing
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Figure 5: The MR8 filter bank consists of 2 oriented filters
(an edge and a bar filter, at 6 orientations and 3 scales), and
2 rotationally symmetric ones (a Gaussian and a Laplacian
of Gaussian). However, by taking the maximal response
of the oriented filters across orientations and at each scale,
only 8 filter responses are recorded.
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over-fitting of the data it also changes the underlying distri-
bution. Therefore, the number of bins and their spacing can
be important parameters.

As an implementation detail, the histogram is stored as a
sparse matrix and the space it occupies is given by: number
of non-empty bins x (space required to store a bin value +
space required to store a bin index). This is bounded above
by O(number of data points) and compares favourably to a
naive implementation which stores the full matrix in O(total
number of bins) space, but where most of the bins are
empty. For example, using this implementation for MR8
with 20 bins per dimension, we were able to store the PDF
of all the training images in less than a hundred megabytes
whereas the naive implementation would have taken over
five hundred gigabytes. Also, it is efficient to store the his-
togram as a sparse matrix as the y2 distance can be evalu-
ated in O(number of non-empty bins) flops.

Equivalence of the representations: The two repre-
sentations of filter responses can be made identical by a
suitable choice of bins or textons. For example, for equally
spaced bins, a bin representation can be converted into an
identical texton representation by placing a texton at the
centre of every bin (see figure 6). In the algorithm imple-
mented here, the textons are generated by clustering and
do not coincide with the bin centres. Hence, the two rep-
resentations are not identical in this case. In essence, the
comparison carried out in section 3 can be thought of as a
comparison between two different texton dictionaries.

It is possible to go the other way round as well. Ev-
ery texton representation can be converted into an identi-
cal bin representation. In this case, the bins will be ir-
regularly shaped and placed in accordance with the hyper
plane boundaries demarcated by the various textons in fil-
ter response space (as determined by the Voronoi diagram).
Thus, clustering to get textons can be thought of as an adap-
tive binning method and a histogram of texton frequencies
can be equated to a bin count of filter responses, which fa-
cilitates the comparisons made in section 4.

3 Classification by Distribution Com-
parison

Classification: Given a set of models characterising the 61
material classes, the task is to classify a novel (test) image
as one of these textures. This proceeds as follows: the fil-
ter response distribution is computed for the test image, and
both types of representation (texton and bin) are then de-
termined. In either case, the closest model image, in terms
of the x? metric, is found and the novel image declared to
belong to the texture class of the closest model.

In this section the effect of the representation on classifi-
cation performance is investigated.
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Figure 6: Texton and bin equivalence: (a) A bin representa-
tion can be converted into an identical texton representation
by placing a texton at the centre of each bin. (b) Conversely,
a texton representation can be converted into a bin represen-
tation where the bins are the Voronoi polygons.

Experimental setup and results: Classification is car-
ried out on all 61 texture classes for both the representa-
tions. We first consider the case where every image in the
training set, for each texture class, is used to generate a
model. Thus, there are 46 models per texture, for each of
the 61 texture classes. Then, the number of models used is
reduced by the Greedy algorithm while maintaining classi-
fication accuracy.

Using 46 models per texture for the texton based repre-
sentation, the classifier achieves an accuracy rate of 97.43%
while classifying the 2806 test images. Upon running the
greedy algorithm, the number of models is substantially re-
duced to, on average, 7.14 per texture.

For the bin representation, the number and location of
the bins are, in general, important parameters. However, it
turns out that in this case excellent results are obtained using
equally spaced bins. Figure 7 plots the classification accu-
racy for the test set versus the number of bins used in the
guantization process. The classifier achieves a maximum
accuracy of 96.54% when the filter responses are quantised
into 5 bins per dimension. Increasing the number of bins
decreases the performance, indicating that the distribution
is being over fitted and that noise is being learnt as well.
The classification accuracy also decreases with decrease in
the number of bins as the binning is now crude. The greedy
algorithm reduced the number of models used to, on aver-
age, 7.91 models per texture.

Both the representations give very similar classification
results though the texton representation slightly outper-
forms the bin representation. The situation remains much
the same even after the greedy algorithm is used to reduce
the number of models. Of course, this is not surprising in
the light of the fact that the two representations can be made
identical (though they are not here).
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Figure 7: The variation in classification performance with
the number of bins used during quantization: In each case,
there are 46 x 61 = 2806 models and 2806 test images.
The best classification results are obtained when the filter
responses are quantized into 5 bins per dimension.

4 Bayesian Classification

Given that texton frequencies and histogram binning are an
equivalent way of representing the PDF of filter responses,
it is now possible to calculate the class conditional likeli-
hood of obtaining a particular filter response using a tex-
ton representation. This setting of a texton representation
in a Bayesian paradigm effectively lets us compare, in this
section, the classification scheme of Konishi and Yuille [5]
(and to some extent that of Schmid [8]) with the texton
based distribution comparison classifiers of Varma and Zis-
serman [9], Cula and Dana [2] and Leung and Malik [6].

The Bayesian classifiers of [5, 8] are also divided into
a learning stage and a classification stage. In the learning
stage, class priors and filter response likelihoods are learnt
from the training data. Once again, we emphasise that to
take into account the variation due to changing viewpoint
and illumination it is necessary to condition the likelihood
on the imaging conditions rather than learning a single like-
lihood per texture class as is done by [5, 8], i.e. a number of
likelihood models will be used for each texture class.

In the classification stage, Bayes’ theorem is invoked to
calculate the posterior probability of a given filter response
from a novel image belonging to a particular class. A naive
Bayesian classifier which assumes the class conditional in-
dependence of filter responses is then employed to deter-
mine the posterior probability of the novel image as a whole
belonging to a particular class.

A Bayesian classifier using the texton representation:
Since we have already computed the histogram of texton
frequencies for the various images in the training set, we

already have all the class conditional likelihoods of filter re-
sponses and it is straight forward to implement the Bayesian
classifier. First, class priors are learnt by counting the num-
ber of pixels present in each texture class and normalising
this distribution (which turns out to be uniform in our case).
Next, each texton frequency histogram model defines a tex-
ture subclass (the texture class is the set of all models for
that class) and yields the likelihood of a particular filter re-
sponse belonging to that subclass. Finally, given the filter
responses of a novel image, Bayes’ theorem is used to deter-
mine the posterior probability of a particular filter response
belonging to a specific subclass. If the filter responses are
assumed independent, the posterior probability of all the fil-
ter responses from the novel image belonging to the same
subclass can be obtained by taking the product of the pos-
terior probabilities of the individual filter responses. The
novel image is classified as belonging to the subclass (and
therefore texture class) with the maximum posterior proba-
bility.

Experiments: The experimental setup was kept exactly
the same as in the previous section. Using the same train-
ing, test and textons sets, the classification accuracy of the
Bayesian classifier when using 46 models per texture was
an astonishingly low 1.06%. Almost all the test images
were classified incorrectly. The reason for this was that
most novel images contained a certain percentage of pix-
els (filter responses) which did not occur in the correct class
models in the training set. This could be as a result of inad-
equate amount of training data as compared to the number
of textons in the representation, outliers or noise. As a con-
sequence, the posterior probability of these pixels was zero
and hence when all the pixel probabilities were multiplied
together the image posterior probability also turned out to
be zero.

This is a standard pitfall in non-parametric density es-
timation and three solutions are generally proposed: (a)
smoothing the histogram, (b) assigning small nonzero val-
ues to each of the empty bins, and (c) discarding a certain
percentage of the least occurring filter responses in the be-
lief that they are primarily noise and outliers.

A combination of (b) and (c) improved the classification
performance dramatically. Instead of starting the bin oc-
cupancy count from O, it is started from 1 to ensure that
no bin was every empty. The 1% of the least frequently
occurring bins are also discarded. Under these conditions
the Bayesian classifier achieved an accuracy rate of 97.36%
while using 46 models per texture. The greedy algorithm
reduced the number of models to, on average, 7 per texture.

Comparisons: There is very little to choose between
the Bayesian and distribution comparison classifiers using
the texton representation. Both attain classification rates
over 97% while using roughly 7 models per texture. And
yet, there are different theoretical pros and cons associated



with the two approaches.

The biggest theoretical drawback of the Bayesian
paradigm is the assumption that the filter responses are in-
dependent. However, this can be tackled by randomly sam-
pling filter responses from disjoint regions of the novel im-
age in a bid to decrease their dependence. Another prob-
lem, albeit one that was successfully addressed here, is of
the non-parametric representation of empty bins.

The 2 classifier appears to be a lot more forgiving to-
wards this problem and no modification had to be made to
cope with zero texton frequencies. However, x2 has its own
theoretical limitations [7] and the various criteria for using
the 2 probability function must be fulfilled. Also, x? is
not sensitive to shuffling the bin order, something which is
important when textons are interrelated. Of course, a differ-
ent comparison method could be used but its conditions too
would need to be fulfilled.

However, despite their theoretical limitations, both clas-
sifiers appear to work extremely well in practise as is evi-
denced by the classification results.

5 Conclusions

In conclusion, we have shown that the texton representation
of the PDF of filter responses is equivalent to the bin rep-
resentation and that every texton representation can be con-
verted into an identical bin representation. This lets us use
non-parametric texton densities for texture classification in
the Bayesian framework.

The Columbia-Utrecht database used here has many ad-
vantages over Brodatz textures but also some limitations.
As compared to Brodatz, it is by far the superior database, as
it has many real world textures photographed under varying
image conditions. One can actually see the effects of specu-
larities, shadowing and other surface normal variations, un-
like in Brodatz where there is only a single viewpoint and
illumination available for each image.

The limitations of the database are mainly in the way the
images have been photographed and the choice of textures.
For the former, there is no significant scale change for most
of the textures and limited in plane rotation. Also, because
the photographs were taken under controlled conditions, the
illumination is somewhat contrived as there is very little
change in illuminant intensity or number of illuminants. As
regards choice of texture, the most serious drawback is that
multiple instances of the same texture are present for only a
very few of the materials, so intra-class variation cannot be
investigated. Hence, it is difficult to make generalisations.
Finally, almost all the textures can be classified on the basis
of their first order statistics. There are almost no instances
of textures having the same first order statistic but different
higher order statistics.
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