Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Initializing Mutually Referential Abstract
Objects: The Value Recursion Challenge

Don Syme !

Microsoft Research, Cambridge, U.K.

Abstract

Mutual dependencies between objects arise frequently in programs, and program-
mers must typically solve this value recursion by manually filling “initialization
holes” to help construct the corresponding object graphs, i.e. null values and/or
explicitly mutable locations. This paper aims to augment ongoing theoretical work
on value recursion with a description of a semi-safe mechanism for a generalized
form of value recursion in an ML-like language, where initialization corresponds to
a graph of lazy computations whose nodes are sequentially forced, requiring runtime
checks for soundness during initialization in the style of Russo. Our primary contri-
bution is to use the mechanism to develop compelling examples of how the absence
of value recursion leads to real problems in the presence of abstraction boundaries,
and give micro-examples that characterize how initialization graphs permit more
programs to be expressed in the mutation-free fragment of ML. Finally we argue
that in heterogeneous programming environments semi-safe variations on value-
recursion may be appropriate for ML-like languages, because initialization effects
from external libraries are difficult to characterize, document and control.

Key words:
ML, Value recursion, Initialization Graphs, GUI Programming

1 Introduction

One of the primary goals of a programming language is to permit the authoring
of programs in a form that corresponds closely to an informal specification.
For example, the following is an informal specification of a GUI form (i.e.
window) where each menu item toggles the activation state of the other.

A form f with title “Form” containing a Menu m with title “File” containing two menu

items mi; and mis with titles “Item1” and “Item2” where selecting mi; toggles the
activation state of mis and likewise selecting mis toggles the activation state of mi;.

! Email: dsyme@microsoft.com

(©2005 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

SYME

We would like to program this in a safe language without either mutation or
null pointers. In this paper we first describe a “dead simple” mechanism for
value recursion in an ML-style language. This mechanism has its problems,
but will let us write the above program as follows (we use an OCaml-like
syntax):
let rec f = createForm("Form", [m])
and m = createMenu("File", [mil; mi2])

and mil = createMenultem("Iteml", A(). toggle(mi2)) (A)
and mi2 = createMenultem("Item2", A(). toggle(mil))

Here we have assumed the API:?

type Menultem type Menu type Form

val createForm: string * Menu list -> Form

val createMenu: string * Menultem list -> Menu

val createMenultem: string * (unit — unit) -> MenuItem
val toggle: Menultem -> unit

The client program is not permitted in ML-family languages, because ML
statically enforces a strong notion of initialization soundness, in particular
that recursive bindings won'’t fail or have side-effects at all. To work around
this the programmer codes an explicit initialization hole:

let the = function | Some v — v | None — failwith "bug"

let mi2 = ref None

let mil = createMenultem("Iteml", A(). toggle(the(!mi2)))
let _ = mi2 := Some(createMenultem("Item2", A(). toggle(mil)))

let m = createMenu("File", [mil; the 'mi2])
let f = createForm("Form", [m])

The absence of value recursion has forced the programmer to rely on mutation
and failure to write simple programs, even in a “safe” functional language.?

1.1 Contributions of this paper

The contributions of this paper are as follows:

e We describe how the emerging “platform-oriented” versions of ML that rely
on external libraries (e.g. F#, MLj and SML.NET [222]) are exposed to
the value recursion problem, because it is impossible to characterize the
side-effects that may occur during the construction of rich objects through
abstract external APIs.

e We describe a form of value recursion using runtime-checks and laziness
through a formal calculus (§2) and prove some simple properties of this
system. Although the principle of using laziness to mediate recursion is
well-known, we have not seen this particular system proposed as an inter-
pretation of recursive bindings in the core of a strict language.

2 We use A(). for “fun () ->".
3 Another alternative is the use of a reference cell holding a function value initialized to a
polymorphic failing dummy value let dummy _ = raise "bug".

2

SYME

e We give an example of a program that cannot be defined in the mutation-
free fragment of ML, but can be defined using this form of value recursion.

* We give compelling and previously un-noted examples of how the lack of
value recursion forces programmers to break abstraction boundaries (§3-
§5), including an analysis of the picklers example from the literature due to
Kennedy [13]. We also document for the first time the relationship between
GUI programming and value recursion (§6).

We conclude with related work and future directions (§8-§9). Notice that this
paper is not about imposing static controls on value recursion (a standard
Core ML type system is assumed throughout). The static control of value
recursion is a crucial goal, e.g. see [3,4,5,20,11] for discussions of attempts to
control value recursion in the context of modules and mixins. Instead, this
paper argues that a mix of safe and semi-safe mechanisms still appears to be
required, especially for languages deployed in heterogeneous multi-language
environments.

2 Initialization Graphs

2.1 Inatialization Graphs via Fxplicit Uses of Laziness

Consider the following transformation of the program (A) from §1:4

let rec f’ = lazy createForm("Form", [force m’])
and m’ = lazy createMenu("File", [force mil’, force mi2’])
and mil’ = lazy createMenultem("Iteml", A(). toggle(force mi2’))
and mi2’ = lazy createMenultem("Item2", A(). toggle(force mil’))
let £ = force £’
let m = force m’
let mil = force mil’
let mi2 = force mi2’

The bindings have become lazy computations, but only for the purposes of
initialization. We call a let rec interpreted in this way an initialization
graph. We first note that this approach has obvious problems:

e The nodes of the graph are explored on-demand, so evaluation order may
be counter-intuitive. However evaluation order is still precisely defined, and
all nodes are eventually evaluated, provided no errors occur.

e Initialization graphs that result in cyclic initialization-time dependencies
cause runtime errors. Runtime checks are needed for this condition.

Initialization graphs are a form of the unrestricted recursion proposed by
Dreyer in the context of recursive modules for Standard ML [5]. Initialization
graphs are a blunt and simple approach to value recursion, and the general
observation that laziness can be used to encode value recursion is well known

4 Here 1lazy and force generate and consume delayed computations of the type a lazy,
defined using an appropriate discriminated union and reference cell.

3

SYME

(e.g. see discussion in [11]). However, no one seems to have documented a
formal calculus that uses laziness (as opposed to null-pointers) as the basis for
value recursion. Furthermore, compelling examples of the importance of value
recursion have been missing from the literature: for example, the interaction
between mixin modules and value recursion has been studied [11,3,4], but the
examples given are just simple recursive functions. Furthermore, semanticists
have assumed that unrestricted recursion is an evil to be avoided at all costs,
but it occurs in practice as part of the dynamic linking semantics of initial-
ization for C# and Java (see §11), and thus exploring options for unrestricted
recursion appears sensible as an adjunct to strictly static techniques.

2.2 Terminology: Immediate and Delayed Dependencies

We make the following distinctions, similar to those made by Dreyer [5]:

* When execution of the bindings of a let rec evaluates a reference to a
recursively bound variable we say an immediate dependency has arisen, i.e.
if we evaluate a reference to v that syntactically occurs in a binding for u
then an immediate dependency has occurred from u to v.

e After the bindings have been completed, closures may still reference these
variables. We say the subsequent evaluation of these generates delayed
dependencies, i.e. the evaluation of a reference to v that syntactically occurs
in a binding for u generates a delayed dependency from u to v.

Immediate and delayed dependencies are dynamic notions: in general it is not
possible to statically determine if a given syntactic occurrence of a recursively
bound variable results in immediate or delayed dependencies, or even both (in
the general case it is undecidable which parts of the initialization bindings will
execute at all). Delayed dependencies are irrelevant to initialization soundness:
they are purely part of the emergent behaviour of the object values being
defined.

2.8 Ar: A calculus for initialization graphs

This section presents a typed lambda calculus extended with initialization
graphs. The language is defined by the grammar in Figure 1 and is standard
apart from allowing arbitrary expressions on the right of recursive bindings.
We incorporate the effectful action print (). The typing rules for this language
are also standard and are not presented here. Non-standard are the evalua-
tion environments and rules in Figure 2.° Evaluation environments are maps
to locations rather than maps to values. We have omitted rules for print ()
and for propagating errors (see §2.7). The given calculus can be extended to

5 We adopt an implicit rule that the overall output over the program is recorded in the state,
though in general output plays no role in the semantics other than support a minimalist
effectful operation.

SYME

v =1id Variable
e =v Value/Node Reference
=ee Function Application
= letrec by and ... b, in e Recursive Binding
=funv —>e Lambda Abstraction
= print() A simple effectful construct
b=v=e Binding
Fig. 1. Syntax for Ay
I' =i —1 Environment
c=1—-V Initialization Graph State
V=uv Evaluated Initialization Thunk
(T, Aoe) Delayed Initialization Thunk
error Initialization Error
v = (T, \z.e) Closure Value
f @ (z — y) Function extension
Ix) =1
F(x)=1 o(l)=v a(l) = (I, Aoc)

Mo & (I — error) e~ v,0’

Nokz~v,0 e U)

1"
IokFx~0v,0

,o0 Fep~ (I, \x.e), 01
,01 F ea ~r vy, 09
fresh
1—\70_ |_ (funx - 6)’\’) (F,)\x.e)70' @ (.’I;'_) l)70-2 @ (l |—)U1) }_ €~ V2,03

T o0k (e1 e2) ~> v2,03

l; fresh
F/:F@(l'l'—)ll)
og=0®D (lz — (F,,Aoei))
IV o1 Fai~ v, 0

I o,Fe~w, 0

ot (let reczy =e€1 ... o, =€, ine) ~ v,0’
Fig. 2. Selected Rules from Operational Semantics for A;

include conditionals, non-recursive structured data, pattern matching, muta-
ble state and I/O in completely standard ways — most examples in this paper
will assume these extensions have been made. If recursive data is included
then one must consider the interaction between immediately recursively-tied
data and value recursion [12], which is beyond the scope of this paper.® We
consider the issue of exceptions later.

The evaluation of a recursive binding initially assigns a new delayed com-
putation for each variable, and then evaluates each thunk. Hence the execution
of a recursive binding leaves no unresolved delayed computations, and thus
the delayed computations do not escape their lexical scope, as captured by
the following theorem:

6 Qur prototype implementation supports both but demands that each let rec utilize
either data recursion or be an initialization graph, but not both.

7 Note the theorem is in terms of the quantity and state of initialization thunks in the
thunk heap: something that cannot normally be observed.

5

SYME

Theorem 2.1 (Successful initialization eliminates initialization thunks)
Let T(o) = {l | 3l,e. o(l) = (T, \oe)}. Then T'yo F e ~ v,0" implies
T(o") CT(o).

The proof is by induction over the derivation, with an appropriate analysis
at let rec bindings to prove that each fresh location is eventually assigned
a completed value. A corollary is that the evaluation of a term from a state
with no initialization thunks produces a state with no initialization thunks.
We informally propose that a corresponding result holds when A; is extended
to contain the full constructs of a typical ML-family language, excluding a
construct to catch exceptions. Note that:

e Expressions never evaluate to delayed initialization thunks.

e Locations in the initialization graph are never aliased, since they are not
directly referred by expressions.

e A recursive binding let rec x = e; in es where x is not used in ey is equiv-
alent to the traditional call-by-value interpretation of let x = e; in ey.)

o If all expressions on the right of a let rec are immediate functions then
we have the traditional semantics for let rec. (The initialization thunks
reduce to closure values).

2.4 FExpressivity

Initialization graphs are an extension to core ML: all existing core ML pro-
grams can be accepted without warnings and run with unchanged behavior.
No initialization failures occur if the mechanism is not used. However, initial-
ization graphs do extend the expressive power of variations of ML that include
data abstraction but which do not include mutation. Consider the following
module, defining streams where stream generators have identity. ®

module type MSig = sig module M : MSig = struct
type t type t = T of string * (unit -> t)
val mk: (unit -> t) > t let mk £ = T (gen(), £)
val next: t -> t let next (T (n,f)) =£f O
val id: t -> string let id (T (n,f)) =n
end end

Given the above, it is not possible to generate a value of type t where:

id x1 = id(next(x1)) = id(next(next(x1))) = ...

without using mutation, i.e. an explicit initialization hole, e.g.

let xlhole = ref None
let rec x1 mk (fun () -> the !xlhole)
let _ = xlhole := Some(x1)

However, initialization graphs allow us to define such a value:

8 We assume a function gen() that generates fresh names (print() could also be used,
where the number of outputs indicates the number of names generated).

6

SYME

let rec x1 = mk (fun () -> x1)

The best we can do without using value recursion or mutation is:

let rec xf () = mk xf
let x2 = xf O

But each call to next now causes a call to mk, and thus multiple object iden-
tities, so id(x1) # id(next(x1)) # id(next(next(x1))). Note we have only
achieved this increased expressiveness by using runtime-checking for initial-
ization soundness. See §9 for further discussion of this example.

2.5 Static Warnings and Errors

A7 permits nonsensical definitions such as let rec x = x + 1 where the eval-
uation of x on the right-hand-side of the binding will cause an immediate
exception. A technical report gives details of a simple static analysis that
reports errors for many such cases [23]. See also Boudol [3,4] for an in-depth
treatment of inference issues related to one particular static type system for
value recursion.

Furthermore, initialization graphs should clearly be used with care, and so
in our prototype implementation warnings are given whenever the mechanism
is used. These warnings are similar to the “incomplete pattern match” warn-
ings given by typical ML compilers: a possibility of unsoundness exists, and
the programmer is informed of this.

2.6 Implementation Techniques

The initialization graph interpretation of let rec can easily be avoided com-
pletely for normal recursive functions, i.e. bindings z = e where e is a A or
some other delayed computation, so the performance of normal ML code is not
impaired. These tend to cover nearly all 1let rec bindings in real programs,
and we have yet to encounter a non-contrived program where an initialization
graph dominates computation, because such graphs are usually used to specify
GUIs and other reactive machines. However, they are easy to implement in
practice: a simple transformation can convert recursive bindings into a target
language that supports lazy computations, e.g. as provided in OCaml. Every
expression of the form

let rec 1y = €1 ... ©, = €, in e
is transformed to

let z1,..,2, = let rec x| = lazy €] ... x
in (force zf,...,force)

! = lazy el
in e
where each e/ is formed by taking e; and replacing all references to each z; with

force zj. That is, uses of value recursion are replaced by initialization thunks
implemented as lazy computations, and references to recursively bound vari-

7

SYME

ables are replaced by force operations. All expressions in let recs are now
delayed computations, a form of recursive data supported by OCaml, F# and
optionally in SML/NJ.

2.7 The awkward squad: value-carrying exceptions, concurrency and contin-
uations

The accompanying technical report [23] addresses three additional topics: the
semantics given for initialization actions that can throw exceptions (in partic-
ular ones that can carry sophisticated data values), start threads or capture
continuations. Since our aim is to have a semi-safe mechanism that can com-
plement static techniques, we follow the typical ML response to these prob-
lems: ML does not attempt to control effects, and the specification of the
language simply defines the results of computations on a single thread.

In practice the use of effects is discouraged during initialization except
in precisely those cases where the programmer judges that the effects are an
essential part of constructing and wiring together the objects that form the
recursive binding. For example, in the context of .NET or Java programming
thread objects can be created and their properties specified, but the threads
themselves should not be started. If a monadic system to control effects were
added to ML then it would be desirable to restrict the monad associated with
initializing computations (see §8 and [10]).

We mention in passing that ML’s well known value restriction on type pa-
rameterization can also lead to problems when defining and using APIs. This
simply restricts the class of let-bindings that can be given generalized poly-
morphic types, but means abstract APIs must sometimes declare constructs
as computations rather than values. This is orthogonal to the issues discussed
in this paper, and other statically typed programming languages such as Java
have even more onerous restrictions.

3 Examples of Value Recursion: Caches

One of the main contributions of this paper is to use initialization graphs to

present a series of compelling examples of value recursion where

» abstract APIs are required to create graphs of related objects; and

* the object graphs incorporate immediate and/or delayed dependencies, but
where there are no cycles in the immediate dependencies.

Our first examples show how the lack of value recursion leads programmers
to break abstraction boundaries. A frequent example of this in practical ML
programming relates to caches. For example, consider a function cache with
the following abstract API, where the first argument is a comparison function:

val cache: (’a -> ’a -> int) -> (’a -> ’b) -> (’a -> ’b)

8

SYME

Implementations can vary, e.g. the following naive attempt, assuming func-
tions mem_assoc and assoc for using querying association lists with the given
comparison function.

let cache cf f = let cref = ref [] in fun x ->

if mem_assoc cf x (!'cref) then assoc cf x !cref
else let y = f x in cref := (x,y) :: (lcref); y

The following simple program attempts to cache calls to even:

let rec odd n = even(n-1)
and even = cache compare (fun n -> n = 0 or odd(n-1))

but is rejected due to let rec restrictions. A common result is that program-
mers reveal and/or duplicate their cache implementations, or simply avoid
adding caching to recursive bindings even when it is, from a performance
perspective, appropriate.

4 Examples of Value Recursion: Automata

For our next example we use initialization graphs to describe the mutually
referential states of automata. We are particularly interested in cases where
the implementation of automata states is hidden.

Assume we wish to programmatically specify an automaton that transi-
tions between control states paused, running and finish in response to sig-
nals, e.g. Unix file handles or instances .NET’s WaitHandle class. We could
code such a specification using explicit calls to platform primitives, e.g. Unix’s
select or .NET’s WaitHandle.WaitAny, the latter of type WaitHandle array —
int. However there are advantages to using combinators and abstract values
to represent the control states: the implementation of states can be uniformly
augmented with additional tracing, caching, profiling and/or model-checking
functionality without requiring changes to the specification. So instead assume
we have the following API:

type State

type Signal = WaitHandle

type Transition = Signal * NextState

type NextState = unit — State

val waitAll: Signal list * NextState — State

val waitAny: Transition list — State

val peekOne: Transition list * NextState — State
val doThen: (unit — unit) * NextState — State

val finish: State
val run: State — unit

Here automaton are State objects with associated behaviour, that is, nodes
in a programmatically-specified graph of states. A waitAll automaton blocks
until all given signals have been set; a waitAny automaton selects between
signals and commits to one selected transition; peekOne is waitAny with a zero-
timeout and a default transition; finish terminates. Executing an automata

9

SYME

using run causes a thread to transition from state to state under the control of
the signals. An automaton in a doThen state performs the given computation
on this value and then proceeds to the next state (it does not respond to
signals while performing the computation). The API uses computations for
NextState values. A simple implementation of a portion of the API is:
type State = { runAction: unit -> unit; count: int ref }
let run st = incr st.count; st.runAction()
let finish = { runAction=(A(). ()); count=ref 0 }
let waitAny transitions =
let waithandles = Array.of_list (map fst transitions) in
let actions = Array.of_list (map snd transitions) in
let runAction () =
let i = WaitHandle.WaitAny(waithandles) in
run (actiomns. (i) ()) in
{ runAction = runAction; count = ref 0 }

Here the states are augmented with private tracing to count the number of
times each state is entered. In addition the waitAny function pre-computes
two arrays that are re-used during the actual execution of the graph.

The transitions of worker automaton can now be specified using initializa-
tion graphs. Here is one such graph (we assume supporting functions reset
and step of type unit — unit that peform an underlying computation):

let rec initial = resetThenPause

and paused = waitAny [stepSignal, (A(). stepThenPause);
resetSignal, (A(). resetThenPause);
exitSignal, (A(). finish)]

and stepThenPause = doThen(step, (A(). paused))

and resetThenPause = doThen(reset, (A(). paused))
let _ = run initial

This is a compact declaration of a set of mutually dependent abstract objects
combined with their behaviour.

4.1 Automata in ML without initialization graphs

State machines are traditionally programmed using recursive functions, e.g.

let waithandles = [| stepSignal; resetSignal; exitSignal |]
let rec initial () = resetThenRun ()
and paused () =

match (WaitHandle.WaitAny(waithandles)) with

| 0 -> step(); paused()

| 1 -> reset(); paused()

2> 0

| _ -> failwith "unexpected"

This avoids the let rec restriction by defining states as functions. However,
this familiar idiom has the significant drawback that states are not abstract:
they are known to be functions of type unit — unit. The above program

uses explicit pre-computed arrays for the waitAny call, because an abstract
API would have hit 1let rec restrictions that prevented these from being pre-

10

SYME

computed from a more abstract specification. Furthermore, state-counting
instrumentation can only be added by altering client programs, rather than
augmenting a library, a violation of abstraction. Ideally the existence of in-
strumentation and performance-related caches should not even be revealed.

5 Examples of Value Recursion: Picklers

The next example is drawn from Kennedy [13], who introduces a combinator
library for specifying picklers, a compositional way of specifying objects that
manage both the marshalling and unmarshalling of data structures. The pro-
grammer controls what is marshalled, the marshalling order, sharing in the
marshalled graph and the shape of the underlying data format. Corresponding
unmarshallers are built automatically, ensuring consistency. Marshallers can
be thought of as objects with a pair of marshal/unmarshal methods, though
an implementation may augment them with additional functionality. The aim
is to build marshallers via combinators such as those in the following channel-
oriented version of the API:

type Channel (* e.g. a file stream *)

type o Mrshl

val marshal: a Mrshl — « * Channel — ()

val unmarshal: « Mrshl — Channel — «

val pairMrshl: a Mrshl * [Mrshl — (a * (3) Mrshl

val listMrshl: « Mrshl — (« list) Mrshl

val innerMrshl: (o — () * (8 — a) — « Mrshl — 3 Mrshl

val intMrshl: int Mrshl
val stringMrshl: string Mrshl

Marshallers are instances of a Mrshl. Combinators shown here are those for
pairs (pairMrshl), lists (1istMrshl) and internal data (innerMrshl). The type
of marshalling objects is abstract, but could be implemented by an object or
record type such as the following:

type « Mrshl = { marshal: a * Channel — ();
unmarshal: Channel — « }

For example if files are represented by some structured data then marshallers
can be constructed quite easily:

type file = int * string

let fileMrshl = pairMrshl(intMrshl,stringMrshl)

let filesMrshl = listMrshl(fileMrshl)

Kennedy observes how specifying marshallers for recursive data structures
runs into trouble with let rec restrictions in Standard ML. For example,
consider the following recursive data type (we add some helper functions to
make the subsequent code more concise):

type folder = { files: file list; subfldrs: folders }

and folders = folder list

let mkFldr (x,y) = { files=x; subfldrs=y}
let destFldr f = (f.files,f.subfldrs)

11

SYME

let fldrInnerMrshl(f,g) = innerMrshl (mkFldr,destFldr) (pairMrshl(f,g))

We now wish to create marshallers for both a single folder and a list of folders.
One attempt is as follows:

let rec fldrMrshl = fldrInnerMrshl(filesMrshl,fldrsMrshl)
and fldrsMrshl = listMrshl(fldrMrshl)

However, this declaration is rejected because of ML’s restrictions on value
recursion. It would also be an invalid initialization graph since it has an
immediate cycle.? Even if you reveal the implementation of marshallers (as
we did for the abstract type of states in §4), you still can’t use Standard ML’s
value recursion, which can only define functions, and not records containing
functions. To quote Kennedy

This problem is overcome in ML implementations of parser combinators
[18] by exposing the concrete function type of parsers... We can’t apply this
trick because marshallers are pairs of functions.

In the context of initialization graphs a simple solution is possible. Firstly, we
add the following function to the API:

val delayMrshl: (() — « Mrshl) — « Mrshl

let delayMrshl p =

{ marshal = (fun x — (p ()).marshal x);
unmarshal = (fun y — (p ()).unmarshal y) }

This function takes a delayed computation that is only evaluated when an
marshal /unmarshal operation is invoked — it can only be defined because mar-
shallers only exhibit delayed (i.e. reactive) behaviour. This is exactly what
lets us build a recursive graph of marshaller objects using an initialization
graph. This can be used to break cycles amongst immediate dependencies:

let rec fldrMrshl = fldrInnerMrshl(pairMrshl(filesMrshl,fldrsMrshl))
and fldrsMrshl = listMrshl(delayMrshl(A(). fldrMrshl))

Note how we have been able to define a mutually-recursive graph of interacting
marshalling objects in a concise style.

6 Examples of Value Recursion: Abstract APIs for GUIs

GUIs provide an excellent source of examples of mutually referential graphs of
objects where both immediate and delayed dependencies feature prominently.
Typically the widget containment hierarchy of a collection of related GUI ob-
jects must be specified at the point of creation through the use of immediate
dependencies. Furthermore imperative functionality to configure GUI compo-
nents is often exercised during initialization. We have already shown simplistic
examples of self references amongst simple GUI components. This story re-
peats itself on a larger scale in typical hand-programmed or tool-generated

9 This is obvious since there is a dependency cycle and yet there are no delayed computa-
tions on the right-hand-side, so all dependencies are immediate.

12

SYME

GUI code, to the extent that the initialization code for GUI components can
run to many pages, full of delayed and immediate self-references between a
network of components.

For example the GUI components of a program called ConcurrentLife (see
samples at [22]) involve a form, a menu, 7 menu items, a background worker
thread and a bitmap to record the state of the display. All GUI objects are
abstract values created and manipulated using the Windows Forms library of
NET. Dependencies arise as follows:

e Immediate dependencies arise from the widget containment hierarchy;
* Many delayed-dependency loops exist between the GUI components.

e All major GUI APIs are single threaded: worker threads may not directly
manipulate GUI components, but must serialize their GUI update actions
through the event loop of the GUI thread. !° This leads to non-local delayed
dependency loops: a form refers to a menu item whose action causes a thread
to serialize computed results back via the form. The dependencies are not
immediate because the thread object is created during initialization, but
not started.

The author developed three versions of variations of this program, using the
following techniques to mediate the recursion:

e explicit initialization holes (option ref);
* explicit use of laziness;
e initialization graphs.

Recursive references occurred at essentially every line of the recursive binding.
The version coded with initialization graphs appears simpler and easier to
maintain and modify. In practice all versions of the program were sound w.r.t.
initialization, but in no case can this be checked by the static type system.
However, the versions using explicit techniques were found to contain several
race conditions w.r.t. multi-threading. The repetitive clutter associated with
explicitly mediating value recursion achieved very little and obscured the real
logic of the program.

6.1 “Create and Configure” APIs

Most GUI programming APIs require a combination of direct-specification
and an additional style of initialization which we call create-and-configure.
For example, the API from the introduction could in practice be structured
as follows:

val createForm: string -> Form
val createMenu: string -> Menu

0Tn the context of the .NET Windows Forms library this is done by using the
Form.BeginInvoke method provided on each Form object that acts as a container of
a related group of GUI components.

13

SYME

val createMenultem: string -> Menultem

val toggle: Menultem -> unit

val setMenus: Form * Menu list -> unit

val setMenultems: Menu * Menultem list -> unit
val setAction: Menultem * (unit -> unit) -> unit

Here the API uses explicit mutation to affect the post-hoc configuration of a
component. Uses of create-and-configure APIs suffer from a lack of locality:
the configuration information that specifies an object is spread across the
creation and configuration sections of code. The possible call-graphs also
become harder to understand. !

Create-and-configure APIs can be used in conjunction with initialization
graphs by adding the configuration actions to the graph. For example, example
(A) from §1 could be written:

let rec f = createForm("Form") (a)
and _ = setMenus(f, [m 1) (b)
and m = createMenu("File") (c)
and _ = setMenultems(m, [mil; mi2 1) (d)
and mil = createMenultem("Iteml") (e)
and _ = setAction(mil, A(). toggle(mi2)) ()
and mi2 = createMenultem("Item2") (g)
and _ = setAction(mi2, A(). toggle(mil)) (h)

In this case the bindings will be completed in order a,c,b,e,g,d,f,h. Clearly it
is crucial that the programmer only use such bindings for initialization actions
that are essentially commutative, that is, the programmer should ensure that
the same result would be achieved if configuration actions are executed after
all bindings have been established.

7 Initialization Graphs and self in Object Oriented
Languages

For completeness, we record the connection between value recursion and re-
curring problems in the design and use of OO languages. OO languages use
the identifier self (or this) for self referential access, and typically feature
a potential for unsoundness arising from the use of the object during initial-
ization. For example, calling a virtual method in the middle of a constructor
can lead to many problems, and different languages even implement different
semantics for the associated dispatch. Languages that restrict the use of self
until all fields are known to have been initialized appear too inflexible, though
more liberal systems have even caused a number of security bugs in the virtual
machine verifiers [9].

We note that initialization graphs let you encode self references in methods

100 APIs also allow configuration of components via method overriding. For the purposes
of this paper this is simply a convenient way to directly specify functional parameter values
during initialization.

14

SYME

without the need for a self keyword in the language at all. For example,
consider the following encoding of an object as an ML record. *?
type object = { getName: unit -> string;
lengthOfName: unit -> int }
let mkObject name =
let rec obj = { getName = A(). name;
lengthOfName = A(). length(obj.getName()); }

in obj
The inner recursive binding is an initialization graph and the self reference
obj.getName will never result in a runtime error because the dependency is
delayed, i.e. will only be exhibited once lengthOfName is called at a later
point. The technical report [23] gives additional examples where self runs
into limitations when defining mutually referential objects.

This means that initialization graphs admit a disciplined approach to in-
troducing limited static checking for initialization soundness in the context of
OO programming. For example, consider the following erroneous program:

let rec mkObject name =
let rec obj =
let len = length(obj.getName()) in
{ getName = A(). name;
lengthOfName = A(). len; } in
obj
In OO parlance the method getName is being invoked during the construction
logic for obj. The above error will be caught by the static checking described
in §2.5, so initialization graphs give at least some protection against this kind
of error (a typical OO language would not complain about the invocation of
a virtual method during initialization). Furthermore initialization graphs are
the exception rather than the norm — only a handful of such graphs would
occur in a typical program, meaning the vast majority of a program would be
free of the possibility of initialization failures. This is in stark contrast to most
OO languages, where the pervasive use of recursive initialization references
through self complicates many aspects of design, reasoning and analysis.

Top-level initialization in the presence of dynamic loading
Initialization graphs do actually occur in the semantics of the top-level
static initialization of dynamically loaded components of OO languages. C#
and Java support top-level initialization through class-initializers. A C# ex-
ecution engine (e.g. the CLR [14]) generally executes class-initializers upon
first access to a static field of a class. All static fields are initially set to null
values. If mutual references exist between the statics of two classes then one
class-initializer will complete first and null values can be observed, even if all
static fields appear to be initialized by each static initializer. In a concurrent

12 Encodings of object systems into ML hit limitations — for example the encoding used here
does not support subtyping [1]. However that is orthogonal to the issues discussed in this

paper.
15

SYME

setting mutual-exclusion is only applied at the granularity of individual class-
initializers, and so threads executing mutually referential class-initializers can
deadlock. The CLR breaks these deadlocks arbitrarily, and null-values can be
observed that are not observable in a single-threaded situation. In practice
mutual references between class initializers are avoided by programmers.

8 Related Work

Recursion is a topic that pervades theoretical and practical computer science,
and the concept of initialization graphs has strong affinity with ideas presented
in other settings. We trust that the mechanisms and examples studied in this
paper will be of use to those pursuing more theoretical aspects of disciplined
approaches to dynamic linking, recursion, fix points and effects. We also trust
that it will provide added motivation for the development of type systems in
this area.

Scheme’s let rec
The accompanying report [23] describes the approach to value recursion
in a number of other languages, including Java and Scheme. In Scheme the
example from the introduction becomes:
(letrec ((mil (createMenultem("Iteml", A(). toggle(mi2))))
(mi2 (createMenultem("Item2", A(). toggle(mil))))

(m (createMenu("File", (mil, mi2))))
(f (createForm("Form", (m)))) ...)

Scheme executes with values initially set to undef, a form of initialization hole.
The problem here is that the programmer must manually sort the declarations
according to the graph of immediate dependencies, and no protection is given if
this order is incorrectly specified. We have shown how immediate dependencies
arise quite naturally, especially when there is a containment relation between
the objects being defined, or in the case of combinator-generated objects such
as the marshallers of §5, where delayed dependencies are the exception rather
than the rule.

API, Data or Language?

One approach to value recursion is to assume that the problem lies with the
API, rather than the programming language. Progress has been made recently
on type systems where APIs can be annotated with dependency information,
e.g. Dreyer’s work [5,11]. This is problematic when APIs must be used that
are not marked with full type information regarding recursive effects, which
is the case for any language which permits the automatic import of COM,
Corba, Java and/or .NET APIs [22,2]. Dreyer admits the likely need for a
mechanism for unrestricted recursion (see §8).

Another approach is to specify objects using recursive data rather than
side-effecting function applications. Recent versions of OCaml support di-
rectly recursive data without the use of null values or mutation: both con-

16

SYME

structed data and delayed values are permitted on the right of the recursive
bindings [12]. This approach lacks simple abstraction properties — even sim-
ple functions that generate concrete data cannot be used as part of such a
recursive binding. It also means wrapping all external APIs to make them
entirely data-driven, which is not a serious option when making use of the
enormous external APIs available in NET and Java, and in any case the inter-
pretation layer from data to constructed objects will itself face value-recursion
problems.

Another approach to GUI APIs is to use explicit “create and configure”
wiring for all event connections (see §6.1). However, this approach does not
apply to other problematic APIs (§4-5). A final approach is to equip APIs with
a set of fixed point operators for describing recursion: see [13] for an example.
This approach has not yet been shown to scale, or at least not within the
confines of the ML type system: mutual recursion can require an arbitrary
number of different operators, even more so if multiple types of objects are
involved.

Recursive Modules and Type Systems

Recursive initialization considerations arise in the context of proposals
for recursive modules in ML-style languages. Dreyer’s work gives an excel-
lent overview [5], also [11,3,4]. Dreyer also defines a static system based on
tracking dependencies through annotations on function types, including poly-
morphism over the sets of names that represent these dependencies. Dreyer’s
work provides a strong conceptual foundation for further attempts to stati-
cally exclude the possibility of runtime failures. However, type inference for
the system appears very difficult and, like many systems of effect inference,
gives rise to extremely complicated types.

In addition to Dreyer’s static system, forms of unrestricted recursion are
used by both Russo and Dreyer [20,5] and they both give semantics for their
respective constructs (Dreyer’s is based on laziness). Our aim in this paper
has been to explore the ramifications of unrestricted recursion within ML’s
core language. Both Russo and Dreyer’s unrestricted recursion constructs
result in runtime errors if immediate dependencies are present. This is akin
to an initialization graph with only one node, i.e. all self references must be
delayed. The evaluation semantics for both these systems are similar to those
presented in §2 in that the evaluation of values can result in errors.

Mixins

Leroy, Hirschowitz and Boudol’s work on source languages and founda-
tional calculii for mizins is highly relevant (e.g. [11,3]). Fundamentally we
agree with their analysis that a static type system is essential to tame value
recursion in most cases. However, the question we have addressed in this
paper is whether such a mechanism should be augmented by unrestricted re-
cursion, to ensure no barriers to expressiveness and abstraction are added to

17

SYME

the language, particularly when using external APIs.

For example, it is apparent that the program from §2.4 can be encoded
without runtime checks into an appropriately extended version of the \g calcu-
lus [11]. This reinforces the result from that section: value recursion increases
expressiveness when Pure Core ML is extended with abstract types. Further-
more, if their mixin modules are used carefully for all the constructs in that
example then it appears Hirschowitz’s source language can express that re-
cursion structure, and Boudol’s provides additional flexibility [3]. However,
if normal ML modules are used at any point (i.e. dependency information is
lost) then there is no recovery: the possibility of cyclic immediate dependencies
would be reported, and programs such as the given one would again become
undefinable. This would appear to place a heavy burden on the API designer.
It seems likely that a combined static/dynamic system may be appropriate to
ensure a flexibility between expressiveness and safety.

Initialization graphs as described in this paper are not immediately com-
posable: if two graphs with dangling references are to be separately con-
structed (e.g. via a function that returns a tuple) and then combined then
they must communicate their mutual-references to each other via delayed com-
putations, rather than by simple value names, which would force execution
during composition. Some variations on mixins naturally give rise to partial
initialization graphs, and the compilation of mixins using lazy techniques may
be appropriate in the context of platform-oriented languages.

A mixin-like theory for the dynamic linking of mutually-dependent compi-
lation units has been developed by Flatt and Felleisen [8], where uninitialized
references at letrec are used to help permit on-demand dynamic linking.

Laziness in strict languages
Wadler et al. describe techniques to add on-demand computations to strict
languages [24], and explain how doing it in the wrong way can result in prob-
lems. Here is their recommended way of defining an infinite stream:
type ’a streamres = Nil | Cons of ’a * ’a stream
and ’a stream = ’a streamres lazy
(x map : (’a -> ’b) -> ’a stream -> ’b streamres *)
let rec map f 1 = force (match force 1 with
| Nil -> lazy Nil
| Cons(h,t) -> lazy (Cons(f h,map f t)))
However their approach only helps with value recursion when datatypes have
been explicitly design with delays. For example, using their syntactic sugar a
single value that represents an infinite stream of “3”s can be defined using “let
rec $threes = Cons(3, threes)”. However, adding and exposing delays in
data type definitions breaks abstraction boundaries (the type of “stream”
is not abstract), and furthermore makes this mechanism insufficient when
interfacing to external library components where the representations of types
can’t be modified. However if we follow the style of §5 and assume an abstract
stream type comes with functions

18

SYME

val cons : ’a -> ’a stream -> ’a stream
val delay : (unit -> ’a stream) -> ’a stream
// e.g. let delay s = lazy (force (s()))

then we can use an initialization graph:

let rec threes = cons 3 (delay (fun () -> threes))
or let rec threes = delay (fun () -> cons 3 threes)

Evidently Okasaki-style syntactic sugar might help greatly if $ were shorthand
for insertion of delay nodes, e.g. admitting

let rec $threes = cons 3 threes

even if the stream were abstract. This hints at the possibility of classifying
types that may appear in value recursion cycles via a type class mechanism:

typeclass ’t Delayable = { delay : (unit -> ’t) -> ’t }

Such a construct could be used to express the delayed nature of the depen-
dencies of purely behavioural objects such as lazy computations, streams and
automata, though its applicability to GUI programming is limited since GUI
elements tend to be multi-modal, exhibiting a mixture of immediate and de-
layed functionality.

An additional dimension to adding laziness to strict langauges is found
in constructs for concurrent programming such as futures and promises, e.g.
as in the Alice programming language [17,19]. These can be used to encode
an explicit version of initialziation graphs. Like lazy values and initialization
graphs the use of these constructs can result in runtime failures when cyclic
dependencies occur.

Monadic Approaches to Recursion

This paper is about strict (call-by-value) languages: value recursion is
much less of a problem for languages such as Haskell. However this only ap-
plies if initialization does not have side-effects, controlled through monads.
The question is then whether values produced by executing monadic opera-
tions can be mutually-dependent: in a Haskell interpretation of the kind of
value recursion considered in this paper each initializing computation may
have effects within a particular monad. Launchbury and Erkok have de-
scribed an axiomatization of value recursion in certain monads, and this is
implemented as an extension to Haskell [7]. Friedman and Sabry [10] have
proposed an alternative operational view of value recursion which is applica-
ble to a wider range of monads (e.g. the continuation monad) — this requires
that initialization is an operation in a state monad. Moggi and Sabry have
given a semantics for a monadic meta-language incorporating this construct
[15]. Both approaches incorporate a notion of runtime initialization failure,
and also limit the role of forward immediate references.

19

SYME

Declarative GUI Programming
As an aside we note that the notion of “declarative” GUIs can be taken in a
rather different direction where abstract behaviours in terms of event streams

are used to give declarative combinatorial descriptions of reactive systems, e.g.
see Fran and FranTk [21,6].

9 Discussion and Future Work

It has been observed elsewhere that value recursion yields a tension between
expressiveness, efficiency, simplicity and soundness [12]. In particular, a lan-
guage that admits many self referential programs may also admit unsound pro-
grams whose execution may result in a runtime exception. Likewise, stricter
languages may reject too many sound programs and/or require artificial cod-
ing techniques.

A primary aim of ML programming is to eliminate or minimize the use of
explicit initialization holes, null values and/or mutation-based APIs. In this
paper we have shown how ML’s restrictions on recursion leads to practical
problems in the presence of abstract APIs. We have argued that “platform
oriented” languages such as those that connect to NET and/or Java are par-
ticularly exposed to this problem, because of the practical difficulty of char-
acterizing the effects that may be caused by calling object-construction and
object-wiring routines.

As an alternative we have presented a semi-safe approach to value recur-
sion called initialization graphs. Given the prevailing importance of the above
platforms a mixed static/dynamic approach to value recursion appears nec-
essary for any platform-oriented language that seeks to eliminate the use of
other problematic constructs.

We acknowledge the limitations of initialization graphs and note that care
must be taken to ensure that programmers are warned of the possible dangers
and limitations of any unsafe mechanism to deal with value recursion. In fu-
ture work we will consider whether it is possible to characterize a reasonable
set of default assumptions about typical APIs from these platforms in terms of
a statically-checked system (e.g. Boudol’s [3]) or a linear calculus of locations
and capabilities [16]. However, given the prevailing importance of these plat-
forms a mixed static/dynamic approach to value recursion appears necessary
for any platform-oriented language that seeks to eliminate or minimize the use
of explicit initialization holes, null values, mutation-based APIs and/or self
references. We have argued that solving initalization puzzles by these other
techniques does nothing to restrict the scope of possible initialization failures
in theory or practice. However care must be taken to ensure that programmers
are warned of the possible dangers and limitations of any unsafe mechanism
to deal with value recursion.

Section §7 has shown the connection between value recursion and self
and indicates that the mechanism may also allow us to introduce a notion

20

SYME

of partial initialization soundness in OO languages — a notion that currently
barely features in their design.

Acknowledgement

We thank Andrew Kennedy, Nick Benton, Simon Peyton-Jones, Byron Cook,
Georges Gonthier, Gavin Bierman, James Margetson, Paul Govereau and
Claudio Russo for helpful discussions related to this work. We also thank
anonymous reviewers for their helpful remarks and lively discussion.

References

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag New
York, Inc., 1996.

[2] P. N. Benton, A. J. Kennedy, and G. Russell. Compiling Standard ML to Java
bytecodes. In 3rd ACM SIGPLAN International Conference on Functional
Programming, September 1998.

[3] Gérard Boudol. The recursive record semantics of objects revisited. Journal of
Functional Programming, 14(3):263-315, April 2004.

[4] Gérard Boudol. Safe recursive boxes. Technical Report 5115, INRIA, February
2004.

[5] Derek Dreyer. A type system for well-founded recursion. In Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 293-305. ACM Press, 2004.

[6] Conal Elliott. Declarative event-oriented programming. In Principles and
Practice of Declarative Programming, pages 56—67, 2000.

[7] Levent Erkok and John Launchbury. A recursive do for Haskell. In Proceedings
of the ACM SIGPLAN workshop on Haskell, pages 29-37. ACM Press, 2002.

[8] Matthew Flatt and Matthias Felleisen. Units: cool modules for hot languages.
In Proceedings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 236-248. ACM Press, 1998.

[9] Stephen N. Freund and John C. Mitchell. The type system for object
initialization in the Java bytecode language. ACM Transactions on
Programming Languages and Systems, 21(6):1196-1250, 1999.

[10] Daniel P. Friedman and Amr Sabry. Recursion is a computational effect.
Technical Report 459, Indiana University, December 2000.

[11] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting.
In European Symposium on Programming, pages 620, 2002.

21

SYME

[12] Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation of extended
recursion in call-by-value functional languages. In Principles and Practice of
Declarative Programming, pages 160-171. ACM Press, 2003.

[13] Andrew J. Kennedy. Functional Pearl: Pickler combinators. Journal of
Functional Programming, 14(6):727-739, 2004.

[14] Microsoft ~ Corporation. The .NET Common Language Runtime.
http://msdn.microsoft.com/net/.

[15] Eugenio Moggi and Amr Sabry. An abstract monadic semantics for value
recursion. In 2003 Workshop on Fized Points in Computer Science, April 2003.

[16] Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A linear language with
locations. In TLCA’04: Proceedings of the Seventh International Conference on
Typed Lambda Calculi and Applications, pages 293-307. Springer-Verlag, April
2005.

[17] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent
lambda calculus with futures. In Bernhard Gramlich, editor, 5th International
Workshop on Frontiers in Combining Systems, volume 3717 of Lecture Notes
in Computer Science, pages 248-263. Springer, August 2005.

[18] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
July 1996.

[19] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and
Gert Smolka. Alice through the looking glass. Trends in Functional
Programming, Volume 5, 5, 2004.

[20] Claudio V. Russo. Recursive structures for Standard ML. In International
Conference on Functional Programming, pages 50-61, 2001.

[21] Meurig Sage. FranTk - a declarative GUI language for Haskell. In Proceedings of
the fifth ACM SIGPLAN international conference on Functional programming,
pages 106-117. ACM Press, 2000.

[22] Don Syme. The F# programming language.
http://research.microsoft.com/projects/fsharp.

[23] Don Syme. An alternative approach to initializing mutually referential objects.
Technical Report 2005-31, Microsoft Research, March 2005.

[24] Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a
strict language without even being odd, September 1998.

22

	Introduction
	Contributions of this paper

	Initialization Graphs
	Initialization Graphs via Explicit Uses of Laziness
	Terminology: Immediate and Delayed Dependencies
	I: A calculus for initialization graphs
	Expressivity
	Static Warnings and Errors
	Implementation Techniques
	The awkward squad: value-carrying exceptions, concurrency and continuations

	Examples of Value Recursion: Caches
	Examples of Value Recursion: Automata
	Automata in ML without initialization graphs

	Examples of Value Recursion: Picklers
	Examples of Value Recursion: Abstract APIs for GUIs
	``Create and Configure'' APIs

	Initialization Graphs and self in Object Oriented Languages
	Related Work
	Discussion and Future Work
	Acknowledgement
	References

