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Abstract

This paper describes the implementation of an ATM protocol stack as a protocol family within a ��� BSD
derived Unix� A novel approach to the implementation of the management and control functions for the
ATM protocol stack has been adopted� The data path is implemented within the kernel but all control
and management functions are implemented by a user space daemon� An encapsulation of IP on the ATM
protocol is provided by means of a logical IP interface� The mapping of IP addresses to ATM addresses is
performed by the user space daemon�

� Introduction

The Cambridge ATM environment is heterogeneous� and includes networks such as the Cambridge Fast
Ring �CFR� ���� Cambridge Backbone Ring �CBN� �	�� and Fairisle �
�� The CFR and CBN are respectively
��Mb
s and ���Mb
s slotted rings which predate current ATM standards and use a �	 octet cell size�
whereas Fairisle is a switch�based ATM network with a standard B�ISDN and ATM Forum �� octet cell size�
To permit easy interconnection of ATM networks and services the ATM protocol is also carried across the
Ethernet in the form of �Fat Cells�� in which an Ethernet frame is �lled with ATM cells in a format which
enables rapid cell forwarding at Ethernet�ATM gateways� The software environment is also heterogeneous
and supports Unix and experimental micro�kernels� To this environment will be added standards compliant
ATM equipment purchased from third parties� and in the near future the network will be connected to the
national wide area ATM network provided as part of Super�JANET�

To facilitate the management of this complex system amid constantly changing protocol standards� and to
permit both experimental and service use of the network� we decided to implement the management and
control functions for the ATM network in a single body of code which could be ported to all of our operating
platforms� including 	� bit architectures� This was accomplished by implementing the code as a user space
daemon� This paper describes the features implemented in the ��� BSD based Ultrix kernel to support the
management and control functions in user space� and discusses the design and implementation of the user
space manager�

The management code can be extended to accommodate emerging international standards for ATM networks�
such as the ATM Forum signalling protocol and the IETF suggested standard for address resolution for IP
on ATM ����� Such extensions can be carried out without modifying the kernel� as all management and
control functions exist in user space�

Problems resulting from the asynchronous nature of the control interface are described� We identify several
shortcomings of the BSD socket interface for the ATM protocol domain� including the di�culty of describing
parameters required for the ATM protocol such as Quality of Service �QoS� speci�cations and adaptation
layer requirements�

� The ATM protocol

In the ATM protocol domain the socket interface provides an application with direct access to an ATM
virtual connection� The ATM protocol is o�ered as a new address family� AF ATM� Each Protocol Data



Unit �PDU� to be transmitted over the connection is handed directly to the ATM adaptation layer for
segmentation into ATM cells and subsequent transmission� Similarly� received PDUs are handed up to the
socket layer by the adaptation layer on completion of reassembly� Draft standards for ATM UNI signalling
��� provide a mechanism for the selection of the ATM adaptation layer �AAL� and Quality of Service �QoS�
to be used for an ATM connection� However� there is no mechanism in the socket interface to permit an
application to specify these parameters to the connect�� system call in a clean manner� Consequently� for
this implementation all ATM connections make use of AAL�� and a default �best�e�ort� QoS speci�cation
is used�

At the ATM layer each connection is represented by an association record� and each socket is associated with
a single association� In the case where the connection is local� no association record is required and each of
the two sockets corresponding to the endpoints of the connection contains a reference to the other� This is
similar to the local connection case in TCP� During connection setup the user space manager instructs the
ATM protocol code in the kernel to build the data path for the socket� When the connection is complete the
protocol control block �PCB� associated with the socket contains a reference to the ATM association record
for the connection� Final authority as to the state of a connection lies with the manager� It can unilaterally
decide to terminate a connection at any time�

Additionally the ATM code provides logical interfaces to the IP code within the system and will set up
tunnels over the ATM network to carry IP tra�c to its destination� In this case the upper layer for the ATM
protocol is a tunnelling 
 logical interface engine rather than the socket code� Figure � shows a diagrammatic
overview of the system components�

� Communication with the Manager

To permit the ATM connection manager to be implemented in user space� a mechanism was required to
permit communication between the kernel socket layer and the manager� and between the ATM layer and
the manager� Two possible solutions were identi�ed� namely the provision of a special device in �dev or a
�magic� control socket type� We chose to implement the latter option� adding a socket type SOCK RAW to
AF ATM which can have only one instance per machine� The reasons for this choice are�

� For concurrency reasons it was preferable for the manager to interface directly with the networking
code rather than via the �le system� This would also make implementations on kernel threads� such
as on OSF
�� easier� This is particularly important because most of the information for the manager
is generated as a result of calls from the socket layer�

� The user space manager is responsible for the transmission and reception of ATM signalling messages�
Since these must be presented to the ATM layer in the form of queues of mbufs and the mechanism for
the encapsulation of data in mbufs is already provided by the socket layer� it is preferable to transmit
and receive signalling via the socket interface rather than via the �le system� The fundamentally
asynchronous nature of interaction between the kernel and the daemon maps well onto the asynchronous
nature of socket communication�

The control socket is used to exchange three types of information� socket layer requests� ATM layer requests
and ATM signalling� Socket layer requests to the manager include� for example� requests to bind�� an
ATM address to a socket� connect�� a socket to a destination ATM address� and close�� a connection�
Responses from the manager indicate the status of outgoing connections and include noti�cation of incoming
connection requests� The manager uses the control socket to issue commands to the ATM layer to build
an association for each connection� provide it with a virtual circuit identi�er �VCI�� and monitor its status�
In the control plane the manager transmits and receives ATM signalling messages via the control socket�
Implementation of the ATM control plane in user space has the advantage that modi�cation of the signalling
protocol to comply with the latest ATM signalling standards involves only the user space daemon and not
the kernel ATM layer code� In addition� development can be aided by the use of programming tools such as
debuggers�

Messages exchanged between the kernel and the manager are normally in the form of �xed length con�
trol messages� Some of these message blocks� however� may be followed by ATM signalling messages for
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transmission or which have been received�

A few management operations cannot be performed asynchronously and are transferred using the ioctl��
system call� In this case the kernel can synchronously modify the block to return the required response�

� Kernel Modi�cations

Two key issues were identi�ed which dictated the design of the kernel code� First� although the user
space manager is a part of the operating system� its failures should be localised� If the manager is not
running� or crashes� the kernel code should remain consistent and stable� Existing sockets should be closed
and additional requests at the socket layer for AF ATM should be denied� Malfunctions on the part of the
manager should be incapable of crashing the kernel�

Secondly� both the socket level code and the manager will asynchronously issue requests pertaining to sockets
in the ATM protocol domain� Because they operate concurrently it is impossible to ensure that both have
a consistent view of the state of all ATM connections at any one time� Special measures must be taken to
ensure that errors resulting from this inconsistency are avoided�

To solve these two problems the kernel protocol code keeps in the PCB for each socket its own notion of the
state of the socket�� For example the protocol code will call soisconnecting�� and even soisconnected��

to cause the socket code to perform the required operations even when the protocol is not necessarily either
connecting or connected� Likewise the PCB continues to exist even when the socket code detaches the socket
until the manager has acknowledged that it has �nished dealing with the signalling for that PCB�

The kernel code and the connection manager identify individual ATM connections by means of their associ�
ated PCBs� To the manager the PCB is an opaque identi�er which uniquely identi�es an ATM connection�
Within the kernel PCBs are kept in an open hash table which is used to verify every PCB reference passed
to the kernel by the manager� Each PCB contains a pointer to a set of methods for dealing with the higher
level protocol� It also contains methods which implement the transmission path and permit the socket layer

�or IP tunnel



to destroy the data path� as well as an opaque value which� in the case of a local connection� is a pointer to
the PCB for the peer socket� and in the case of a remote connection� is a pointer to the association structure
at the ATM layer�

The association structure contains various control �elds such as the VCI and a pointer to the receive routine�
For normal connections the receive routine performs AAL processing on the received cells before passing up
AAL Service Data Units �SDUs� to the socket layer� For each ATM network interface a special association
exists which is used for meta�signalling� For these associations the receive routine passes the entire payload
of each meta�signalling cell up to the socket layer for forwarding to the manager via the control socket� The
manager transmits meta�signalling via the control socket�

� Kernel Implementation Problems

In the following sections we address several of the implementation problems which were encountered�
some of which resulted directly from the design choices described above�

��� Socket Addresses

The BSD ��� socket code requires the implementation of the bind��� getsockname��� and getpeer�

name�� system calls for all protocols to be non�blocking� Many applications perform a getsockname��

immediately after a bind�� in order to publish or export their service address� This unfortunately means
that the implementation of the ATM service address allocator must remain within the kernel� The addresses
allocated are reported to the user space manager� Whilst it would have been preferable to locate this function
with the rest of the control plane functions in the manager� this restriction is a minor inconvenience�

��� Interrupt levels

BSD ��� is structured such that all interaction with the socket level code must be performed while
operating at splnet whereas device interrupts and the internals of the mbuf system operate at splimp� BSD
��� assumes that there will always be a queue structure between the device driver and the protocol handler�
For this reason the ATM device driver cannot manipulate the association data structures� for example during
reassembly� Instead it enqueues complete blocks of data on a per VCI basis for the ATM protocol layer� The
ATM protocol layer runs at splnet and removes blocks from the queue asynchronously� adding them to the
receive bu�er on the appropriate socket� This additional layering represents a signi�cant bottleneck in the
protocol stack and signi�cantly slows down the implementation�

��� Accepting Semantics

The ATM protocol implemented on the Cambridge networks� MSNA ��
�� allows the passive end of a
connection to consider both the address of the peer and the quality of service requested before deciding to
accept the connection� This is directly at odds with the BSD ��� semantics which require that a connection
be declared �soisconnected� before the receiver is informed of the connection� In our implementation an
incoming connection request is forwarded to the manager which in turn presents the connect request to the
kernel ATM layer� On receipt of the connect request the ATM layer declares to the socket layer that the
connection is complete �soisconnected�� and prevents subsequent transmission on the socket associated with
the connection by manipulation of the socket transmit bu�er� It then instructs the manager to accept the
connection� Once the manager has accepted the connection and built the data path� it informs the ATM
layer that the connection is complete and transmission and reception are enabled�

Although a Unix server is still prevented from vetting its peer before accepting a connection� our implemen�
tation preserves the expected ATM protocol semantics� The inability of the socket interface to permit an
application to vet its peer and to accept connections conditional on the availability of su�cient resources to
meet their QoS requirements should be addressed to provide the full �exibility of ATM to applications�



� IP Logical Interface

Within the kernel a logical IP interface is provided which makes use of ATM connections as �tunnels� �
each tunnel is a logical link in the IP network� The IP tunnelling code is responsible for generating requests
for the establishment of ATM connections and for the transfer of IP datagrams over these connections� It
makes direct use of the protocol code and provides the PCB for each of its tunnels with methods which
permit it to monitor the state of the connection�

The tunnelling code sets up an ATM connection to every active IP destination� which are torn down after
a period of inactivity� It would be preferable to use one ATM connection for each TCP connection or UDP
session� however this would require extensive modi�cation of the BSD ��� IP code�� An alternative� which
has not yet been implemented� would be to identify the higher layer TCP and UDP associations within the
ATM driver in a similar manner to that used in SLIP header compression �����

��� IP Address Resolution

To set up an ATM connection for tunnelling IP packets� the IP tunnelling code must somehow resolve
the IP address to form an ATM address� It was a particular choice of our design that this mapping would
be performed by the manager� and so we permit AF INET addresses to be speci�ed as the destination for an
ATM connection� The manager performs the necessary mapping�

Address mapping schemes used previously in the implementation of IP over X�
� use either a �xed algorithm
��� �which requires a private X�
� network�� or a manually administered con�guration �le read at initialisation
time such as ����� In contrast in the scheme we have adopted� any mapping is possible and the management
daemon is free to solicit or receive updates or enhancements to its knowledge at any time� For example at
boot time the manager may know a single IP to ATM address mapping for its default router� The router
could then inform it of optimisations that could be made based on tra�c analysis�

��� IP MTUs

Recent debate in the internet community has addressed the problem of choosing a suitable Maximum
Transfer Unit �MTU� for the encapsulation of IP on ATM� The MTU determines the maximum size of an
IP datagram which will be transmitted on the ATM network� and its choice is in�uenced by several factors�
In order to exploit the high bandwidth of the ATM network the MTU should be as large as possible� for
example 	�KB� On the other hand� some routers� switches and hosts may be unable to support such a
large MTU� and fragmentation of IP datagrams into smaller units will result� In addition� if a single ATM
connection is used to carry all IP tra�c between two hosts then performance of higher layer protocols may
be degraded if the MTU is too large because of the delay in processing each large packet as a single unit� If
one ATM connection is used per TCP connection then this can be avoided� In a LAN environment a single
IP datagram is likely to arrive as a large burst of ATM cells� Care should be taken to ensure that bu�er
space in the receive interface does not over�ow� taking particular account of the interrupt response time of
the system under realistic loads�

Clearly some mechanism for the negotiation of the MTU per ATM connection should be provided to permit
individual hosts to achieve maximum performance from the ATM network� Our ATM signalling protocol
permits the negotiation of the maximum sizes of the encapsulated forward and return PDUs� thereby per�
mitting the MTU to be negotiated per tunnel� In our current implementation we provide four logical IP
interfaces� each with a di�erent MTU� This will permit us to experiment with di�erent MTU sizes without
modifying the generic IP code� The IP routeing tables on each host are con�gured to use the IP interface
with the best MTU for the attached ATM network�

� Design of the User Space Manager

The user space manager implements the control and management planes for the ATM protocol� It is
responsible for ATM network signalling and communicates with the ATM protocol family code in the kernel�
It also performs mapping of IP to ATM addresses for the IP tunnelling code�

�This approach has been followed in our local micro�kernel IP implementation



At the socket layer requests issued to the manager include bind��� connect��� listen��� accept�� and
close��� Each request speci�es a unique identi�er �the PCB pointer� which identi�es the ATM connection
to which it refers� Requests are received asynchronously on the control socket� For each call reference the
manager maintains a record of the state of the connection� the association �elds such as the VCI� and ATM
addressing information� The manager issues requests to the protocol layer to process incoming connection
requests and to inform the socket layer of the state of each connection� The manager is responsible for
building the data path for each connection at the ATM layer� It issues requests via the control socket to
build associations� assign VCIs and monitor the status of each connection� Signalling tra�c is transmitted on
the appropriate ATM interface by the manager to request the setup of connections on behalf of the protocol
layer�

Since the control socket delivers requests asynchronously and since the manager needs to be able to process
several requests �from all layers� simultaneously� it is implemented as a multi�threaded process� The im�
plementation uses the POSIX Pthreads package ��� to implement several threads of control to manage the
following concurrent tasks�

� receipt and transmission of socket layer requests�

� management of the ATM layer and its associated network interfaces�

� receipt and transmission of ATM signalling� and

� generation of timeouts and performing consistency checks�

These independent threads are scheduled by the Pthreads package� which also implements concurrency
control primitives for shared data� As the performance measurements in section � show� the concurrency
control primitives have a high associated cost� and result in some ine�ciency�

An important consideration when designing the manager was the potential inconsistency between the man�
ager and socket layer views of the state of each connection� For example� an application could issue a
listen�� and then immediately close�� the socket� Due to the asynchronous nature of the control socket�
the manager might attempt to complete an incoming connection to the listening socket after the application
had already issued the close��� To prevent this� the kernel code checks all instructions issued by the man�
ager to ensure that they pertain to valid PCBs� Similarly� the manager will destroy any socket for which the
kernel issues an invalid request� Final authority as to the state of a connection lies with the manager�

	 Performance

In this section we present performance measurements for the implementation of the ATM protocol� The
performance of the control path was investigated by measuring the time taken to set up connections over
the ATM network and the Ethernet� In addition� the manager was pro�led to determine which parts of the
code were critical in determining its performance�

	�� Data Path

The implementation of the data path in the kernel is crucial to the performance of the ATM protocol�
Comparison of the performance achievable with that for the micro�kernel demonstrate that it is limited by
the current structure of the BSD ��� protocol stack� Nevertheless� high data transfer rates can be achieved�
Performance measurements using a very simple cell based interface with little bu�ering ��� indicate that a
raw ATM throughput of 
�Mb
s can be achieved between two DS����

� hosts� Using an MTU of 
�� KB
a throughput of ��Mb
s for a TCP connection over IP on ATM was achieved�

	�� Control Path

The performance of the control path is a�ected by several factors� scheduling of the manager as a user
space process� concurrency within the manager� and communication between the manager and the kernel�
Table � gives typical connection setup and teardown times over the Ethernet and a direct ATM link between
two lightly loaded DS����

� hosts running the kernel and user space manager� and for local IPC on a single



host� Measurements are also given when the hosts are connected through an ATM switch� The performance
measurements were made using etp ����

Network Setup �ms� Teardown �ms�
Ethernet 
��� ���
ATM 
��� ���
Local 
��� ��


ATM �switched� �
�� ���

Table �� Connection setup and teardown times

The measurements indicate that our implementation performs worse than an earlier implementation of a
�simpler� version of the control plane within the Unix kernel� for which average connection setup times of
��� ms were measured between two Unix hosts over the Ethernet during periods of low network activity ����
Although it would be unreasonable to expect our implementation to perform as well as a more mature�
though less functional� kernel implementation� we might have hoped for better results� The results can be
only partially explained by competition between the client and connection manager �and in the local case�
the server�� all of which were running at the same� default� user priority level� To determine why connection
setup took longer than expected� we pro�led the connection manager�

The pro�le results showed that the manager typically spends just over half of its active time �i�e� time not
blocked in the select�� call� executing code in the Pthreads library� In all of our measurements� the �� most
frequently called functions were in the Pthreads library� Most of these functions are concerned with thread
context switching and concurrency control� Table 
 lists these functions� their associated frequencies� and the
percentage of the total active time of the manager for which they account� for a typical pro�le during which

� connections were set up� Clearly the concurrency control primitives have a high cost� The manager could
be made more e�cient by implementing it as a single threaded process� On an operating system platform
which supports lightweight threads� such as OSF
�� it would be hoped that the multi�threaded design of
the manager would not impact its performance� and the connection setup time would be proportionately
reduced� We believe that this� in conjunction with some further optimisations identi�ed� would enable a
reduction of approximately �� � in the connection setup time� reducing it to the order of �� ms�

Function No� of calls � CPU time
exc push ctx ���� 	����
setjmp ���� 
���	
exc pop ctx ���� ����	
cma int mutex unblock ��� �����
cma int mutex block ��� ���
	
cma init �

 �����
pthread mutex unlock ��� �����
pthread mutex lock �
� ��	�

cma queue dequeue �
� ��	��
cma attempt delivery 	�	 �����
Top �� calls combined �
�	�
Total for Pthreads �
��

Manager ���
�

Table 
� Most frequently called functions



	�� In
uence of System Load

In the following sets of results� the in�uence of system load on connection setup time is studied� Three
sets of measurements were taken� In each set the system load was varied by running a number of CPU�bound
processes in competition with the manager� The competing processes each consisted of a shell pipeline�which
required both user space and kernel processing� The competing pipelines were run at the default user priority
of �� The number of interfering pipelines was varied from � to �� For a given system load the performance
of the manager was measured by pro�ling a client which repeatedly set up a connection� exchanged a single
message with a remote server� and then tore down the connection� In each experiment� the client set up ���
connections with a random interval between each� In all of the experiments� connections were set up from
a DS����

� over the ATM network� via 
 Fairisle ATM switch ports� to a second DS����

� also running
our code� Both workstations were �tted with a simple� cell�based ATM interface ����

In the �rst set of measurements� the manager was run at a priority of �� As expected� the connection setup
time degraded as the system load increased� Figure 
 shows an initial sharp increase in connection setup
time with � competing pipeline� followed by a linear increase with increasing load� In the second set� the
priority of the manager was increased to ��� As can be seen from the graph� the connection setup time
initially increased rapidly with increasing load� but the rate of increase slowed thereafter� In the third set
of experiments the priority of the manager was set at �	� higher than that of the automount daemon� This
served to stabilise the performance� in spite of an initial sharp increase with a single competing pipeline�
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� In�uence of system load on mean connection setup time

The results suggest that the manager should be run at a high priority� to ensure that an increase in system
load does not a�ect its performance excessively�

�while true� do a��echo �PATH � grep wanda � sed �e �s�wanda�foo�g��� echo �a ��tmp�foo	��� done



	�� Code Size

An important consequence of our design is that the complexity of the system� in terms of code size� has
been signi�cantly reduced� The connection manager compiles to approximately ��� MB� almost all of which
is due to the Pthreads library� The size of the kernel ATM code has been reduced by about �� � to a mere

� KB of text segment including the ATM device driver�

� Conclusion

This paper has described the design and implementation of an ATM protocol stack within the Unix
kernel� A novel approach to the implementation of the control plane has been adopted� the management
and control functions are located in a user space daemon� Communication between the kernel networking
code and the daemon takes place via a special control socket� The user space daemon is responsible for
signalling� socket layer management and control of the ATM protocol code� It is implemented as a multi�
threaded process using the Pthreads package�

We conclude that our design is both viable and bene�cial� The performance costs are low� and mostly result
from a poor Pthreads implementation on Ultrix� The bene�ts are that the complex and �uid control plane
need not be buried in the kernel� and that the resulting code is more portable�
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