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ABSTRACT

Duplicate URLs have brought serious troubles to the whole
pipeline of a search engine, from crawling, indexing, to re-
sult serving. URL normalization is to transform duplicate
URLs to a canonical form using a set of rewrite rules. Nowa-
days URL normalization has attracted significant attention
as it is lightweight and can be flexibly integrated into both
the online (e.g. crawling) and the offline (e.g. index com-
pression) parts of a search engine. To deal with a large
scale of websites, automatic approaches are highly desired
to learn rewrite rules for various kinds of duplicate URLs.
In this paper, we rethink the problem of URL normaliza-
tion from a global perspective and propose a pattern tree-
based approach, which is remarkably different from existing
approaches. Most current approaches learn rewrite rules
by iteratively inducing local duplicate pairs to more gen-
eral forms, and inevitably suffer from noisy training data
and are practically inefficient. Given a training set of URLs
partitioned into duplicate clusters for a targeted website,
we develop a simple yet efficient algorithm to automatically
construct a URL pattern tree. With the pattern tree, the
statistical information from all the training samples is lever-
aged to make the learning process more robust and reliable.
The learning process is also accelerated as rules are directly
summarized based on pattern tree nodes. In addition, from
an engineering perspective, the pattern tree helps select de-
ployable rules by removing conflicts and redundancies. An
evaluation on more than 70 million duplicate URLs from
200 websites showed that the proposed approach achieves
very promising performance, in terms of both de-duping ef-
fectiveness and computational efficiency.
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1. INTRODUCTION

Syntactically different URLs linking to identical or closely
similar text content, called duplicate URLs or DUST [7], are
quite common on the Web. The intention of creating dupli-
cate URLs is to make a website more user-friendly and easier
to maintain. For example, some websites have mirrors used
to balance load or served as backups, e.g., http://us.php.net
and http://de.php.net. To provide a personalized service,
most web server software allows webmasters to insert addi-
tional parameters like session_id into URLs to identify a user
connection, although such parameters have no impact on the
content of the retrieved web page. Furthermore, to make the
surfing experience smoother, website designers usually add
abundant aliasing URLs as shortcuts to help users quickly
navigate to target pages. At last, some industry conventions,
e.g., adding trailing slash or removing directory indexes like
default.asp, also lead to many duplicates [3]. As a result,
duplicate URLs have become quite common and helpful to
both webmasters and Internet users.

However, to search engines, duplicate URLs are kind of a
nightmare. Actually, duplicate URLs have brought a series
of troubles to the whole pipeline of a search engine, from
the backend to the frontend. First, in crawling, precious
bandwidth and time are wasted to download large quantities
of duplicate pages. Then, in indexing, many machines and
hard disks are required to store such redundant information;
and consequently the constructed inverted index becomes
bloated and inefficient. After that, in the link-based ranking
algorithms like PageRank [8], pages cannot obtain appropri-
ate scores as the Web’s link graph has been disturbed by
duplicate URLs. At last, in presenting, users cannot be sat-
isfied when they see duplicate entities in the search results.
According to our statistics on an untreated corpus of 20 bil-
lion documents, around one-quarter are duplicates. Conse-
quently, most commercial search engines like Bing, Google,
and Yahoo have paid much attention to remove duplicates.
It is worth noting that Google even asked webmasters to
explicitly mark duplicate links in their pages [1].

Besides leveraging the supports from webmasters, inten-
sive research efforts have been devoted in recent years to pur-
sue automatic de-duping solutions, from both academia [7,
10,12,18] and industry [4,13-16]. According to the method-
ologies, most of the current de-duping technologies can be
classified into two categories: content-based de-duping
and URL-based de-duping.

Content-based approaches once dominated the de-duping
research [10,12,14,15,18]. Just as the name implies, content-
based methods compare the semantic content of two web
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pages and consider two pages having very similar content as
duplicates. Content-based approaches are essentially a com-
bination of information retrieval (IR) and database (DB)
technologies. Most research efforts from IR area focus on
extracting representative features to characterize a docu-
ment (web page). The mainstream strategy of designing
a feature is to generate one or several bit strings (called
fingerprints [17]) based on the terms extracted from a docu-
ment [14,15]. The widely adopted features are simhash [11]
and shingles [9,10]. In contrast, researchers with DB back-
ground are more interested in developing appropriate sim-
ilarity measurements and efficient algorithms to minimize
the time cost of identifying near duplicates in a high dimen-
sional space, such as the similarity join algorithm in [18]
and the locality-sensitive hashing (LSH) technology in [5].
Detailed comparisons of some state-of-the-art content-based
de-duping approaches can be found in [14]. Content-based
approaches can accurately identify duplicates as they al-
ready know the content of web pages. However, from the
industrial point of view, content-based de-duping is only an
offline post-processing, as it still needs to download dupli-
cates and cannot save the precious bandwidth and storage.
A search engine also needs online de-duping in some pre-
processing steps (e.g., normalizing discovered URLs before
adding them to the crawling queue) where only URL strings
are available. To fulfill such a requirement, URL-based de-
duping has been attracting significant attention nowadays.

The main idea of URL-based de-duping is to learn some
normalization rules (also called DUST rules [7] or rewrite
rules [13]) for a website based on a training set. The training
set can be automatically constructed by first sampling a few
pages from a targeted website and then discovering duplicate
groups based on their fingerprints. With the learnt normal-
ization rules, we can tell whether two URLs are duplicates
without examining the corresponding page content, and can
further rewrite them to the same canonical form [3]. There-
fore, URL-based de-duping has low computational cost and
is easy to integrate. In this paper, we focus on developing
an effective and efficient approach to learning URL normal-
ization rules. Bar-Yossef et al. [7] are pioneers in the field of
URL-based de-duping. In their work, URL normalization is
considered as a “string substitution” problem. For example,
http://us.php.net can be transformed to http://de.php.net
using a substitution operation “us—de”. The limitation of [7]
is that they simply treat a URL as an ordinary string but
ignore there is a syntax structure scheme strictly defined for
URLs in the W3C standard [2]. Another important mile-
stone work is from Dasgupta et al. [13], in which the most
critical contribution is to introduce the syntactic structure
information into URL normalization. As shown in [13], with
the syntactic structure information, the algorithm can deal
with more duplicate cases than string substitutions.

To the best of our knowledge, most URL-based de-duping
approaches, including [7] and [13], adopt the same bottom-
up pairwise strategy to learning rules. That is, although
their algorithm details are different, the fundamental process
is the same — starting from pairs of duplicate URLs and
iteratively inducing them to more general forms. However,
such a strategy has several limitations in practice:

— It is sensitive to noise and is easy to break before reach-
ing the final stage. As the strategy starts from original
URLSs, random noise in individual URLs usually mislead
the algorithms to generate wrong rules. Such mistakes are
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http://Awww\.wretch\.cc/.*

-luser/.* ~falbum/.* -/blog/.* -ffriend/.*

-/falbum/.*\.php -/lalbum/.*/

-/album/album\.php\?.* -/album/show\.php\?.*

-/album/show\.php\?i=.*&b=_*&f=*
Figure 1: An illustration of the pattern tree (simpli-
fied for a clear view) for URLs from www.wretch.cc.

-/album/show\. php\?i= *&b=_*&f=_*&p=*

possibly accumulated in the bottom-up process and may
break the induction somewhere.

It cannot take full advantage of all the training samples.
To avoid noise influence, most algorithms adopt very strict
assumptions to filter the training data. As a result, a part
of training samples cannot be involved in the algorithms.
It is computationally inefficient to do pairwise induction.
The time complexity is at least O(cn?) where c is the num-
ber of duplicate groups in training set and n is the average
number of URLs in each duplicate group. In practice, a
duplicate group can have tens of thousands URLs'. The
cost becomes extremely heavy and unacceptable.

In this paper, we rethink the URL normalization problem
from a global perspective and try to leverage as much infor-
mation as possible from the whole training set. It should be
noticed that webmasters usually have some principles when
designing the URL scheme of a website. In their minds, dif-
ferent URL components by design take different functions,
e.g., some components denote semantic categories and some
others record browsing parameters. Actually, the goal of
URL normalization is to find out which components are ir-
relevant to the page content. If the design principles are
known, it becomes relatively easier and more confident to
tell which components should be normalized. In comparison,
the bottom-up pairwise strategy is from a local perspective
as individual duplicate pairs cannot tell design principles.

After investigating a substantial number of duplicate URLs,
we found the design principles of a website can be revealed
by a pattern tree to some extent. A pattern tree is a group
of hierarchically organized URL patterns. Each node (a pat-
tern) on a pattern tree represents a group of URLs sharing
the same syntax structure formation; and the pattern of a
parent node characterizes all its children. In this way, a pat-
tern tree actually provides a statistic to the syntax scheme of
a website. More specifically, in a pattern tree, salient URL
tokens which express directories, functions, and document
types are usually explicitly represented by some nodes; while
trivial tokens which denote parameter values are easy to be
generalized to some regular expressions®. Figure 1 shows
a part of the pattern tree of www.wretch.cc, from which
the typical patterns and their relationships are clearly illus-
trated. From Figure 1, it is noticed the salient tokens like
“album” and “show.php” are reserved by some nodes; and
trivial tokens such as the values of the parameter “b” are
generalized to “b=.*" in the bottom nodes.

Since a normalization rule is to transform a group of URLs
having the same formation to another (canonical) formation,

! As shown in Table 1 in Section 6.1, some duplicate groups
in the experiments have more than 300 thousand URLs.

2In this paper, we simply denote all the regular expressions
with the wildcard character ‘*’; while in implementation

more complex regular expressions are supported.
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scheme authority path query
http:,//www@ng.com/images@/search ?q:hp&f@rmzbifd
[ scheme | auth_0 path_0 q
| http | com images hp
auth_1 path_1 form
bing search bifd
auth_2
wWww [T key [ value

Figure 2: An illustration of the syntax structure of
a URL based on which it can be described as a set
of key-value pairs.

it can be represented by a mapping between two nodes on the
pattern tree as a tree node (a URL pattern) indeed repre-
sents a set of URLs sharing the same formation. Based on
this observation, in this paper, we propose a pattern tree-
based approach to learning URL normalization rules. First,
we present an algorithm to automatically reconstruct a pat-
tern tree given a collection of URLs. Second, tree nodes
having similar duplicate distributions are discovered, based
on which a set of candidate rules are generated. At last,
we develop a graph-based strategy to select deployable rules
from the candidate rules. In our approach, as the learn-
ing process directly starts from the tree nodes instead of
URLs, the computational cost is lower as the number of
tree nodes is much smaller than that of original duplicate
URLs. Moreover, a pattern tree leverages all the training
samples in the statistics, and is also robust to random noise
in individual URLs. A large-scale evaluation on more than
70 million duplicate URLs from 200 websites showed our
approach can achieve significant improvements in compar-
ison with one state-of-the-art method, for both de-duping
effectiveness and computational efficiency.

The rest of this paper is organized as follows. In Section 2
we explain our motivations with a concrete example; and
clarify some basic concepts in Section 3. The overview of
the proposed approach is introduced in Section 4; and the
algorithm details are described in Section 5. Experimental
evaluations are reported in Section 6; and in the last section
we draw conclusions and point out some future directions.

2. BACKGROUND AND MOTIVATIONS

In this part, we explain the detailed motivations of this
work. With a concrete example, we show how the bottom-
up pairwise strategy works and when it fails; and explain
how a pattern tree can help to improve the performance.

URL Scheme and the Key-Value Representation.

To help readers better understand the following algorithms
and our motivations, an example URL and its syntax struc-
ture are shown in Figure 2. According to [2], a URL can be
first decomposed into some generic URI components (e.g.,
the scheme, authority, path and query in Figure 2) by a set
of general delimiters like ¢, ¢/’, and ‘?’, where the compo-
nents before the delimiter ‘?’ are called static part and the
rest is called dynamic part. Each component can be fur-
ther broken down into several sub-sections by another set
of delimiters such as ‘&’ and ‘=’. Following the terminol-
ogy in [13], a URL can be easily represented by a series
of key-value pairs based on the decomposition. For exam-
ple, the “path_0O-images” and “q-hp” are two key-value pairs
in Figure 2. Here, for the static part of a URL, the keys
are pre-defined by the corresponding components such as
“auth_0” and “path_0”; and for the dynamic part the keys
are the tokens before the delimiter ‘=’
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How the Bottom-up Pairwise Strategy Works.

Based on the key-value representation, Dasgupta et al.
proposed an effective algorithm in [13] to discover the map-
ping relationships among different keys. In this way, keys
can provide perfect contextual constraints, and can help cre-
ate more general normalization rules. For example, Figure 3
shows a set of duplicate URLs and their key-value represen-
tations, where their values of K3 and K5 are different and
should be generalized in the normalization. With the DUST
algorithm in [7], it can only generate substitution rules such
as “p—q” and “m—n”, which are too trivial to be deployed.
In comparison, Dasgupta’s algorithm can successfully gen-
eralize these URLs in a hierarchical progress. As shown in
Figure 3, in the step (1) and (2), two raw rules R; and
Ry are first generated according to the duplicate pairs (Us,
Us) and (Uz, Us); R1 and R» are further combined in the
step (3) to create the ideal rule Rs, i.e., for URLs satisfy-
ing the contextual constraint “value( K1)=a & value(K2)=b
& value(K4)=c”, their values under K3 and K5 should be
normalized to the wildcard *’.

When the Bottom-up Pairwise Strategy Fails.
However, as only a few inputs (URLs or raw rules) are
compared in each induction, in [13] there is a strict require-
ment — the inputs should differ with each other at only one
single key — to ensure the induction is safe. A similar re-
quirement can also be found in [7]. Such strict requirements
usually break the algorithms somewhere. For example, in
Figure 3 if one of Us ~ Us (e.g. Us) is absent, some raw
rules like Ry and the final R3 cannot be generated. In other
words, some “critical” training samples cannot be missing to
ensure the performance of these bottom-up pairwise algo-
rithms. However, in real applications, URLs usually have
more complex key-value structures than the toy case in Fig-
ure 3. Consequently, we need more “critical” samples to
cover all the possible key-value combinations. It is prac-
tically impossible to prepare such a complete training set.
On the other hand, these algorithms discard a lot of train-
ing samples as they don’t satisfy the “only-one-key-different”
requirement. In Figure 3, 50% samples (U1 ~ Us) are not
leveraged in the learning process although they indeed reveal
the information that the values under K3 and K5 are quite
diverse and possibly to be generalized for normalization.

How a Pattern Tree Helps.

First, a pattern tree can fully leverage the statistical in-
formation of the whole training set. In this way, the learning
process becomes more reliable and robust, and no longer suf-
fers from random noise. For the example in Figure 3, even
some URLs are absent, it is still possible to construct a tree
node with the pattern “K1=a& Ko=b& K3=*& Ky=c& K5=.*”
by considering all the other URLs (including U1 ~ Uy). Sec-
ond, with a pattern tree, the learning efficiency can be signif-
icantly accelerated by summarizing rules directly based on
the tree nodes. For example, in Figure 3 we no longer need
R: and R2 and can directly generate Rz based on the above
pattern. An additional benefit from the pattern tree is to
help detect and resolve the conflicts of rules. From an engi-
neering perspective, the generated rules cannot be directly
deployed as some rules may be redundant and some rules
may conflict with each other. Selecting deployable rules is
an important step as unqualified rules will degrade the per-
formance and even crash the system. Unfortunately, this
problem was not addressed in previous work [7,13,16]. A
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bottom-up pairwise strategy works. There are 8
duplicate URLs U; ~ Us, from which it is clear the
values of K3 and K5 should be normalized to ‘*’. Fol-
lowing the steps (1) to (3), three rules R;, Rz, and
R3 are sequentially generated where R3 is the ideal
one. However, if some URLs like Us are absent, the
bottom-up process is easy to break down and can-
not produce R; and R3, as denoted by the shadowed
rows and corresponding dashed arrows. Moreover,
this strategy cannot leverage U; ~ U; in induction.

pattern tree can also help on this problem. For example,
the “ancestor—descendant” relationships between tree nodes
make it easy to identify redundant rules. More details can
be found in Section 5.3.

3. PROBLEM FORMULATION

To make a clear presentation and facilitate the following
discussions, we first define some concepts used in this paper.

Duplicate Clusters and Training Set. A duplicate
cluster is a group of URLSs having very similar page content;
and a training set is a collection of duplicate clusters. In
this paper, we number the duplicate clusters in sequence, de-
noted as {c1,ca,...,cn}, to distinguish different duplicates,
as shown in Figure 4 (a).

URL Pattern and Pattern Tree. Similar with the for-
mation of a URL, a URL pattern is also described with a
group of key-value pairs, and the values can be regular ex-
pressions. A pattern tree is a hierarchical structure where
the pattern of a parent node can characterize all its chil-
dren. Figure 4 (b) shows the pattern tree discovered from
the training set in Figure 4 (a), where nodes A and B are
siblings and node C' is their parent. For each node, both
the key-value pairs and the regular expression of the corre-
sponding URL pattern are illustrated.

Rewrite Operation and Normalization Rule. Fig-
ure 4 (c) shows a normalization rule which coverts URLs of
the source pattern A to the format of the target pattern B
in Figure 4 (b). A normalization rule is eventually a set of
rewrite operations for every URL key. Each rewrite opera-
tion works on one target key and sets its value accordingly.
There are three kinds of operations defined in our approach:

— Ignore is to generalize the values on the target key to
the wildcard ‘*’ as its value doesn’t affect the page con-
tent. Such a key is also called “irrelevant path compo-
nents” in [13]. Mirror version and session ID are typical
examples of this case, as shown with the 1°¢ and 4*" op-
erations in Figure 4 (c).
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/%’ C1 C2
‘g /archive0/show?pageid=10 /archivel/show?pageid=21
| £ | /archive3/show?pageid=10 /archive4/show?pageid=21
3-% /archive2/10/display?sid=8hd78a /archive0/21/display?sid=0pqgas8
|: archive1/10/display?sid=ncpaq0 archive3/21/display?sid=0kx123
(@)
L x> [ 5 [/
[path_0[path 1 pageid| (C) [path O]path 1]path 2] sid |
[* [show | * | | * [ * [|display[ * |

®

/.*/show?pageid=.* /-*/.*/display?sid=.*

(W]
Normalization Rule (A —» B) : /.*/show?pageid=(.*) - /*/$1/display?s=*
No.|| Target Key Operations Discription
1 path_0 Ignore value(K o) = *
2 path_1 Replace value(K®pm 1) = value(K zeia)
3 path_2 Keep value(K®,u 2) = display
4 sid Ignore value(KPgg) = *

)
Figure 4: An illustration of the definitions of (a)
Duplicate Cluster and Training Set, (b) URL Pat-
tern and Pattern Tree, and (c) Rewrite Operation
and Normalization Rule.

— Replace is to set the value of the target key to the value
of the source key. For example, the 2" operation in Fig-
ure 4 (c) sets the value of the key “path_1” of B according
to the value of the key “pageid” of A, i.e., value(Kfath?l)
= value(Kfageid).

— Keep is to retain the original value of the target key. For
example, the value “display” of the target key “path_2” of

B doesn’t change in the 3"¢ operation.
Compression Rate, Dup-Reduction Rate, and False-

Positive Rate are the measurements mostly used to evalu-
ate the de-duping performance [7,13]. The compression rate
and dup-reduction rate are defined as:

compression rate = 1 — Nporm /Nori (1)
e O
where No,; and Nyporm are the numbers of URLs before and
after the normalization, respectively. Supposing there are
Cori duplicate clusters in the N,,; URLs, the original du-
plicate rate is 1 — Cori /Nori . After the normalization, sup-
posing there are Chorm clusters, the new duplicate rate is
1 — Crorm/Nnorm.

In normalization, it is still possible that two non-duplicate
URLs are mistakenly rewritten to the same canonical for-
mat. Such two URLs are called a false-positive pair. By
contrast, any two URLs that are normalized to the same
URL are called a support pair. The false-positive rate (fpr)
is to measure how accurate the normalization (either by ap-
plying one rule or a set of rules) is:

Ipr = Nypp/Nsupp (3)

where Ny, and Ngypp are the numbers of false-positive pairs
and support pairs in the normalization, respectively.

dup-reduction rate =1 —

4. FRAMEWORK OVERVIEW

The overview of the proposed approach is shown in Fig-
ure 5, which consists of (a) pattern tree construction, (b)
candidate rule generation, and (c) deployable rule selection.

As we have discussed in Section 2, a pattern tree can fully
leverage the statistical information of the whole training set
and help summarize duplicate URL patterns. Given a collec-
tion of training samples (i.e. URLs), the first component is
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é;nﬁida(e Rules
Figure 5: The flowchart of the proposed approach,
which consists of three parts: (a) pattern tree con-
struction, (b) candidate rules generation, and (c)
deployable rules selection.

to construct a pattern tree based on the analysis of URL syn-
tax structures. Each URL is first decomposed into a group
of key-value pairs, as shown in Figure 2. The distribution
of values under each key is then evaluated, based on which
the pattern tree is construct through an iterative splitting
process. Starting from the root node which contains all the
training samples, members of a node is split into sub-groups
according to the key whose value distribution has the small-
est entropy. In this way, each node on the pattern tree has
a set of member URLs; and the members of the parent node
are the union of members of all its children nodes.

Based on the constructed pattern tree, we estimate how
the duplicate URLs distribute on each tree node. If there
is a node whose member URLs are highly duplicated with
the members of another node, there should be a normal-
ization rule to transform the URLs from one node to the
other. In the second component, we present an inverted-
index like structure to identify possible duplicate nodes with
linear time complexity. After that, for every two duplicate
nodes we generate one candidate rule, in which the rewrite
operations are constructed by discovering the mapping rela-
tionships among the keys of the two nodes. Finally, a quick
proofing is carried out to remove unqualified candidates with
high false-positive rates. This is a necessary step as the
learning process only considers positive observations (where
URLs are duplicate) but ignore negative observations. As a
result, some generated rules are biased by the positive cases
and cause false-alarms on the negative ones.

The last component is to select deployable rules from qual-
ified candidates. The goal is to identify an optimal subset
of rules to balance the de-duping capability and the running
stability, which is theoretically an NP-hard problem [13].
After investigating a plenty number of rules from different
websites, we summarize several typical cases which lead to
redundant and conflict rules. Based on these observations,
we develop a graph-based method to incorporate both the
populations of tree nodes and the link relationships created
by normalization rules. Experimental results demonstrate
that the proposed method is practically effective.

5. ALGORITHM DETAILS

In this section there are three subsections, each of which
describes the algorithm details of one step in Figure 5.

5.1 Pattern Tree Construction

Constructing the pattern tree for a set of URLs is not
a trivial problem. First, traditional pattern discover algo-
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Figure 6: An illustration of the most popular to-
kens (or values) in 100,000 URLSs from myspace.com.
From the frequency curve, it is clear that the maxi-
mum decline point can help distinguish salient values

from trivial ones.

Algorithm 1 Build-Pattern-Tree. Given a URL group U
and the set of keys that have been processed K jone, the algorithm
returns a tree node ¢ for URLs in U.
1: Create a new node t
2: Generate a regular expression for ¢ to describe URLs in U
3: Calculate entropy H (k) for each key in U
4: if 3k ¢ Kjone then
¢ Let k* ¢ Kgone be the key that minimizes H (k)

5
6: Vk* = (Z)

7:  for all URL u € U do

8 if u(k*) is a trivial value then
9 Vigx = (Vk* U “ % 77)

else
11: Vix = (Vigr Un(k*))
12: end if
13:  end for
14:  if all u(k*) are trivial values then
15: return the node t
16:  end if
17: Split U into sub-groups Ui, ..., U; according to Vi«
18:  for all subgroup U; do
19: ch = BuildPatternTree(U;, K gone U {k*})
20: add ch to t as a child node
21:  end for
22: end if

23: return the node t

rithms like [6] tend to find one or more common sub-strings
from a group of strings, but cannot help build the hierar-
chical structure (e.g. Figure 1). In addition, the syntactic
structure of URLs is not leveraged in these algorithms. Sec-
ond, hierarchical clustering algorithms might be helpful to
construct pattern tree; while it is still hard to find an appro-
priate similarity measurement to properly considering the
syntax structure information. What’s worse is calculating
the similarity of every URL pair could be a huge task when
the training set is large. In short, we need to seek a practical
way for building a pattern tree.

In our observation, different URL components (or keys)
usually have different functions and play different roles. In
general, keys denoting directories, functions, and document
types have only a few values, which should be explicitly
recorded by the pattern tree. By contrast, keys denoting
parameters such as user names and product IDs have quite
diverse values, which should be generalized in the pattern
tree. According to this observation, we propose a top-down
recursive split process. Starting at the root node (which con-
tains all the URLs), the tree and sub-trees are constructed
by continually splitting the URLs into subgroups, as shown
in Algorithm 1. We follow two criteria in the algorithm: 1)
in each iteration, the key with the fewest values is selected,
based on which the URLSs are split into sub-groups; and 2)
stop the iteration and generate a tree node if values of the
selected key seldom appear in other URLs.
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The first criterion describes the value distribution of a
given key k in the form of entropy, as:
v

_Yiog

N

=1

Ui

H(k) N

(4)

where V' is the number of values under this key, v; is the fre-
quency of the i*" value, and N is the number of total URLs
in this iteration. In each iteration, the key with the smallest
entropy is chosen; and the URLs are split into sub-groups
according to their values of the selected key. The second cri-
terion is to decide whether the iteration should be stopped.
As we prefer general patterns and a clean tree, we just keep
salient values in the patterns and generalize trivial values
with regular expressions. The salient/trivial values are de-
termined based on the statistics of their frequencies. Fig-
ure 6 shows the most popular values extracted from 100,000
URLs of the website myspace.com. From Figure 6, it is no-
ticed there is a distinct decline of the frequency curve. Val-
ues before the decline such as “index” and “cfm” are called
salient values; while values after the decline are called trivial
values. In our implementation, values are sorted in descend-
ing order according to their frequencies; and the position of
the decline is determined by finding the maximal drop rate
on the frequency curve, as:

()

DOSdecline = m?X(log fi —log fi—1)

where f; is the appearance frequency of the " value.

5.2 Candidate Rules Generation

As introduced in Section 4, candidate rules are generated
based on the duplicate nodes on the pattern tree. For every
two duplicate nodes, one raw candidate rule is created by
constructing the corresponding rewrite operations. At last,
a proofing is conducted to remove unqualified candidates
with high false-positive rates.

5.2.1 Identify Possible Duplicate Nodes

As we have explained in Section 4, duplicate nodes on the
pattern tree are pairs of two nodes sharing enough common
duplicate URLs. To better assess the duplicate ratio of two
nodes s and t, we define a quantitative measurement called
overlap. We say a duplicate cluster ¢; in the training set
is common to s and t, if sN¢; # 0 and t N ¢; # 0, then
the overlap of s and t is defined based on all their common
clusters c¢;:

Zci|{u|u€ci and (u € soru € t)}

overlap(s,t) = EES

(6)

The owverlap sufficiently reflects how many common du-
plicates there are between s and t, thus a larger owerlap
provides us more confidence that there exists a rule between
them. In addition, we consider the special case that the two
duplicate nodes are the same, i.e., s = t. For such a case
we use the duplicate rate defined in Section 3 instead of the
overlap (as overlap(s,s) = 1) above, to ensure the node s
still covers enough duplicates.

Based on the definition of (6), to find out possible dupli-
cate nodes, a straightforward way is to check every pair of
nodes on the pattern tree. The time cost is O(cm?), where
m is the number of tree nodes and c is the average num-
ber of duplicate clusters in each node. Although the cost
is much cheaper than checking original pairs of duplicate
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Algorithm 2 Identify-Duplicate-Nodes. Given the pattern
tree T" and all duplicate clusters c1, ca, ..., this algorithm returns
a set of possible duplicate nodes ®
D=0
Initialize an empty index list £
for all duplicate clusters ¢; do
E(CZ) = {t|t eT,tNc; # @}
end for
for all duplicate clusters ¢; do
for all (s,t) € £(c;) x £(c;) do
if (s,t) has already been checked then
continue
end if
if overlap(s,t) > omin then
D =0U{(s 0}
end if
end for
: end for
: return ®

R o DO XD U N

Algorithm 3 Find-Key-Key-Mappings. Given two dupli-
cate nodes (s, t), this algorithm returns a set of key-key pairs M
1: M=0

2: o(k,k’) = rate of common values shared by k and k&’

3: Let K(s), K(t) be the sets of keys in s, t.

4: for all k' € K(¢t) do

5:  Let k € K(s) be the key that maximizes o(k, k')
6:  if o(k, k') > omin then

7 M=MU{(k,k")}

8: end if

9: end for

10: return M

URLs, it is still time consuming when the tree has a large
number of nodes. In practice, we find most tree node pairs
do not have any common duplicates. This motivates us to
accelerate the process with an inverted index-like structure.
As shown in Algorithm 2, entries of the index structure are
duplicate clusters; and the members of each entry are the
tree nodes having the corresponding duplicate cluster. With
this index structure, for a tree node s, we can identify all
the nodes which share at least one common duplicate cluster
with s in linear time. In this way, the time cost decreases
to O(cm). To reduce the efforts of the later steps, we also
utilize a threshold 0y,in in Algorithm 2 to prune those dupli-
cate nodes with too small overlap scores. In practice, omin
is empirically set to 0.5.

5.2.2 Construct Rewrite Operations

As introduced in Section 3, give two identified nodes s and
t which share a large portion of duplicate URLs, the process
of creating a normalization rule s — t is to construct a se-
ries of rewrite operations for every URL key to transform the
URL pattern of the node s to the format of t. To determine
the operations and their types (keep/replace/ignore), the
necessary information to know is the mapping relationships
from the keys of s to the keys of t. More precisely, there is
a mapping between two keys if they have very similar value
distributions. Keys in a mapping relationship possibly trig-
ger a “replace” operation; while keys without any mappings
are more likely to take the “ignore” or “keep” operations.
Algorithm 3 shows the pseudo codes to discover the map-
pings. We simply estimate the rate of common values shared
by two keys and adopt a threshold om:n to filter out map-
pings having lower possibilities. In implementation, omin
is empirically set to 0.5. Based on the discovered key-key
mapping relationships, the rewrite operations for every key
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in the target node t are determined as follows:
> Keep is the simplest one. If one key of ¢ has a concrete
value (not a regular expression), such as “path_2” of node

B in Figure 4 (b) which has one unique value “display”,

one keep operation is created for this key. In normaliza-

tion, we just directly fill the key with the related value.
> Replace is based on a key-key mapping between s and

t. In general, two keys in such a mapping have the same

function (e.g., denote product-ID or search query); and

different values of these keys usually lead to different page
content. For example, in Figure 4 (b), keys “pageid” of
node A and “path_1” of node B both describe the ID of

the page. These two keys sharing the same values like “10”

and “21” will be identified as a key-key mapping in Algo-

rithm 3. Consequently, a replace operation is created for

“path_1” associated with the mapping key “pageid” from

the source pattern. In normalization, we just copy the

value of the source key (e.g., “pageid”) to the target key

(e.g., “path_17).

> Ignore is to say the values of a key do not affect (or are
wrrelevant to) the page content. There are two situations
to generate an ignore operation:

— First, for a key of ¢, we create an ignore operation
if the key has multiple values (denoted by “*”) but no
mapping relationship. No mapping means the values
of this key never appear in s, which suggests the key
is irrelevant to the page content. For example, the key
“sid” of node B in Figure 4 (b) is ignored.

— The other case is to revise a replace operation. It
should be noticed that “have a mapping relationship”
is just a necessary condition but not a sufficient condi-
tion to “create a replace operation”. In other words, a
replace operation must rely on a mapping relationship
but not all the mappings will lead to replace operations.
For example, in Figure 4 (c), the two “path_0” keys from
node A and node B share the same values (e.g., archive(
and archive3), and can pass the criterion in Algorithm 3
to set up a mapping. However, the values under these
keys are actually used to describe the archive mirrors
and have no impact to the page content. To identify
such a “fake” replace, a test process is added to exam-
ine whether the key’s values affect the page content. If
too many URLs with different values on this key are du-
plicate, the replace operation is revised to an ignore
operation accordingly.

5.2.3 Remove Unqualified Candidates

When generating a candidate rule, only duplicate sam-
ples from the two duplicate nodes s and ¢ are taken into
account. From the perspective of learning, only positive
cases are observed but negative cases (non-duplicate URLs
being rewritten to the same canonical format) are missed.
Therefore, it is likely to produce “over fitting” rules which
work properly on only a few positive samples but cannot
be applied to more others. In other words, such unquali-
fied rules will lead to many false-positive cases in practice.
This is also discussed in [13] where a “false-positive filter” is
proposed to clean these unqualified rules. Similarly, in our
approach we examine each generated candidate rule by run-
ning it on the training set. If the false-positive rate is larger
than a pre-defined threshold fprmaz, the rule is unqualified
and is removed from the candidate set. In the experiments,
we will show how the threshold affects the performance of
the whole approach.
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(@) (b) ©
Figure 7: An illustration of three typical redundant
and conflict cases: (a) two rules share the same
source node; (b) one rule covers another; and (c)
several rules construct a circle.

5.3 Deployable Rules Selection

As we have explained in the Introduction, the candidate
rules cannot be directly deployed as some of them are re-
dundant and conflict with each other. The redundant rules
will degrade the computational efficiency and the conflict
can undermine the performance or even crash the system.
After investigating a plenty of candidate rules from various
websites, we summarize three typical redundant and conflict
cases, as shown in Figure 7:

(a) Two rules share the same source node. As shown in

Figure 7 (a), there are two rules which transform node s to
nodes t1 and t2, respectively. This doesn’t make sense in
practice as there should be only one canonical form for a
URL. Moreover, two transformations also bring additional
computational burden to the normalization system.

(b) One rule covers another. This is another kind of re-

dundant rules. As shown in Figure 7 (b), as node s; is
the ancestor of node s2 (which means the pattern of s1
is more general than that of s2), URLs belonging to s2
can also be normalized by the rule acting on s;. Similar
to the above case, this leads to multiple canonical targets
(t1 and t2) and unnecessary computing work.

(c) Several rules construct a circle. This is a conflict case.

617

As shown in Figure 7 (c), the nodes s1 ~ s3 are connected
by three rules where the source of one rule is the target
of another one. Such a conflict will crash the system as it
leads to an endless loop in computing.

How to select an optimal sub-set of rules for deployment is
not a trivial problem - the running stability and de-duping
capability should be carefully considered. One straightfor-
ward solution is to remove the redundancies and conflicts
with some ad-hoc strategies:

— For case (a), keep only one rule for each node. The rule
with the smallest false-positive rate is reserved and others
are discarded.

— For case (b), keep the rules acting on ancestor nodes and
discard the rules on descendant nodes; or first apply the
rules with smaller false-positive rates.

— For case (c), remove the rule with minimum support to
break the circle. Here, the support is defined as the num-
ber of URLs can be normalized by the rule.

Such an empirical solution does ensure the system stabil-
ity but cannot guarantee the de-duping performance. We
will demonstrate this in the experiments. KEssentially, the
above straightforward solution is designed from a local per-
spective and just addresses the rules in conflict. However,
considering the goal of URL normalization, the key problem
is how to select the canonical formats (i.e. choosing nodes
as the destinations of the normalization), rather than judge
which rules are with higher qualities.
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In our observation, a good destination node should be
general and popular. Being general means a node should
have a clean format and can represent a variety of samples.
Therefore, we can use the number of URLs covered by a
node (called volume of a node) to approximate how general
it is - the larger the number, the more general the node. Be-
ing popular means a node attracts more other nodes to be
transformed to its format. Selecting popular nodes as des-
tinations can maximize the compression performance. To
estimate the popularity of a node, we can accumulate the
volumes of all the nodes which can be normalized to the
given node by some candidate rules. In this way, we can
treat the volume of a node as a kind of energy, which can
flow to other nodes through some normalization rules. Be-
sides the rules, links from descendant nodes to their ances-
tors provide another way for energy transfer, as a descendant
can always be “normalized” to its ancestors. When the flow
of energy reaches to a stable status, nodes with higher en-
ergy are more likely to be selected as the destination nodes.
This is very similar to the graph propagation adopted in the
PageRank algorithm [8].

In detail, we construct a weighted directed graph G =<
V,E,w >, where V is the set of vertices and FE is the set of
edges. One vertex v; represents one tree node appearing in
the candidate rules; and there exists an edge e;; € E if there
is a rule or a descendant-ancestor link from v; to v;. The
weight w;; of the edge e;; is set to 1 — fpry; if the edge is
constructed based on a rule 7;;; otherwise w;; is simply set
as 1 for a descendant-ancestor link. In this way, a natural
random walk can be derived on the graph with the transition
probability matrix P = {p(i,j) } defined by:

Wsj
outdegree(v;)

(7)

for all e;; € E, and 0 otherwise. Then each row of P is

normalized to 3, p(é,7) = 1. Given the initial distribution

7% = (nd,...,72)T where 1) = volumn(v;), the final stable

distribution can be estimated by mw®tette = (PT)>° 70,

Once the destination nodes are determined, removing re-
dundancies and conflicts becomes relatively easy, as shown
in Figure 8. Figure 8 (a) shows a pattern tree with several
candidate rules, from which we can find typical redundant
and conflict cases as shown in Figure 7. Figure 8 (b) shows
how nodes are connected to construct a graph, based on
which the destination nodes are selected, as those in shadow
in Figure 8 (¢). Then we just need to remove those rules
which start from the destinations. Figure 8 (d) and (e) also
illustrate how to concatenate several chaining rules to one
direct rule, which make the normalization more efficient.

p(i,j) =

6. EVALUATION AND DISCUSSION

In this section, we report the experimental results of ap-
plying our pattern tree-based approach on URL normaliza-
tion. Both the evaluations of the three components and the
overall performance are discussed. In comparison with state-
of-the-art methods, our approach remarkably improves both
the du-duping effectiveness and the computation efficiency.

6.1 Experiment Setup

As introduced in Section 1, some websites supporting Google’s

suggestion explicitly indicate the canonical URLs in their
pages. This naturally provides a high quality dataset to
evaluate the performance of URL normalization algorithms.
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Figure 8: An illustration of how to select deploy-
able rules: (a) several candidate rules on a pattern
tree; (b) construct a graph with candidate rules and
descendant-ancestor links; (c) select the nodes with
the largest popularity as targets (nodes in shadow)
and remove edges starting from these nodes; and
(d) and (e) further concatenate the chaining rules
(14+2+43) to one direct rule 4.

Table 1: Statistics of the experimental dataset.

Min Max Average
#URL in a website 24,147 | 3,000,000 | 352,106
#Dup-cluster in a website 158 976,862 92,365
#URL in a dup-cluster 2 314,465 3.8
Table 2: Statistics of the constructed pattern-trees.
Min | Max | Average
#Node on a tree 8 634 105
#Height of a tree 3 16 6
#Running Time (in seconds) | <1 | 257 22

In our experiment, we scanned a corpus of 20 billion pages
and found out the top 200 websites supporting Google’s con-
vention. There are around 70 million URLs identified from
the 200 websites, the statistics are shown in Table 1. The
average duplicate ratio of the whole dataset is about 63.36%.
For each website, we randomly select 20% samples (but no
more than 0.1 million) as training set. The testing is carried
out on the whole dataset.

In the experiment, we selected the method in [13] for com-
parison. To the best of our knowledge, this method is the
most state-of-the-art approach which significantly outper-
forms other previous ones. According to the instructions
in [13], we implemented their algorithm with the “fan-out”
strategy, which is also the strategy utilized in their experi-
ments. Actually, the “fan-out” is a threshold controlling the
resolution of the rules. The smaller the threshold, the sub-
tler the normalization rules, as well as the larger the number
of total generated rules.

All the experiments were run on an x64 machine with
2.33GHz Intel®@Xeon®CPU and 8G RAM. The operation
system is Microsoft Windows 2003 Service Pack 2. All the
programs were implemented with C# and .Net Framework
3.5 Service Pack 1.

6.2 Component Evaluations

In this subsection, we introduce some detailed information
of the evaluations for the three components, respectively.

6.2.1 Pattern Trees

Pattern tree construction is the fundamental step of the
proposed algorithm. Some statistics of the constructed trees
are listed in Table 2. From Table 2, it is clear that the num-
ber of tree nodes (URL patterns) is much smaller than the
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Running Time (in Seconds)

Fanout-10 Pattern-Tree
(constructtree +

generate candidates)

Fanout-5 Pattern-Tree (only

A h generate candidates)
pproaches
Figure 9: Comparisons of the average time (in sec-

onds) to generate candidate rules for a website.

Table 3: Number of raw and qualified candidates
generated by different methods for all the 200 web-
sites (fprmaz = 0.05%).

#Raw Rule | #Qualified Rule | Rate

Ryanout-5 52,577 19,754 37.6%
Ryanout-10 36,149 13,813 38.2%
Riree 14,912 6,373 42.7%

number of original URLs. Even for the most complicated
case, the number of nodes is just over 600. Averagely, a
pattern-tree just contains around 100 nodes. Moreover, the
average height of the trees is just 6, which means the con-
structed trees are with relatively balanced structure.

We also evaluated the running time of this component. If
the tree construction algorithm is not efficient enough, the
computational advantage of the whole approach cannot be
guaranteed. In practice, the computational cost depends on
both the size of the dataset and the complexity of the URL
syntax. From Table 2, in general we need around 22 seconds
to build a pattern tree (based on around 70,000 URLs for
each website). Totally, it took about 1.22 hours to process
all the 200 websites. This time cost is considerable. As
will be shown in the following discussion, it is still much
cheaper in comparison with the traditional bottom-up pair-
wise strategies.

6.2.2 Candidate Rules

To provide a comprehensive comparison, we tried two dif-
ferent “fan-out” thresholds, fan-out = 5 and fan-out = 10,
for the algorithm in [13]. The generated rule sets are called
Rfanout-5 and Rfanout-10, respectively. For our pattern tree-
based approach, the generated rule set is called Riree.

First, the computational costs to generate the three rule
sets are compared and shown in Figure 9. From Figure 9, it
is clear our approach is more efficient than both fanout-5
and fanout-10. Averagely, our approach only needs around
15.3 seconds to generate candidate rules for one website;
while fanout-5 and fanout-10 need 73.5 and 60.6 seconds,
respectively. Even including the time cost of pattern tree
construction, our approach totally needs 37.3 seconds to
deal with one website and is still much faster than others.
This demonstrates our proposed approach can remarkably
improve the computational efficiency in comparison of the
bottom-up pairwise strategy.

Second, we compare how many candidates can be gen-
erated using different methods, and how many of them are
qualified. Table 3 shows the results with the threshold fprmaz
set to 0.05. It is noticed the pattern tree-based approach
generates quite less candidates but has higher qualified rate.
To provide a more complete analysis, we vary fprmaez from
0 to 0.1 with an interval 0.01, and from 0.1 to 0.9 with an
interval 0.1. The qualified rates of the three methods are
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Figure 10: Comparisons of qualified rates with var-
ious fprmaz.

Table 4: Comparisons of the deployable rules se-
lected from different rule sets using different selec-
tion strategies.

#Candidates | #Deployable | %Compression
Rfanout-5 + Snaive 19,754 10,433 18.8%
Rfanuut»l[] + Snn,ive 13,813 7,434 16.0%
Riree + Snaive 6,373 2,069 26.3%
Rirce + Sgraph 6,373 1,171 34.5%

shown in Figure 10. Again, our method shows better quali-
fied rate in most cases.

6.2.3 Deployable Rules

As there is no clear explanation of how the deployable
rules are selected in [13], in the experiments we utilized the
straightforward strategy (Snaive) presented in Section 5.3 to
select the deployable rules from the candidate set Rfonout-5
and Rfanout-10. For comparison, we applied both the straight-
forward strategy and the graph-based strategy (Sgrapn) on
our candidate set Riree-

Table 4 shows the results of using different strategies on
different rule sets. From Table 4, it is clear that the straight-
forward strategy selects more candidates as deployable rules.
In comparison, the graph-based strategy only selects 1,171
rules for all the 200 websites in total. This means on aver-
age there are only around 6 rules deployed for each website;
while the number of using “R fanout-10+Snaive” is larger than
50. However, in Table 4 the compression rate of “Riree +
Sgrapr” is the best, although it has the smallest number
of deployable rules. This indicates the graph-based strat-
egy can successfully resolve conflicts and select those most
effective rules for deployment. More comparisons will be
introduced in the following subsection.

6.3 Overall Performance

In this subsection, we evaluate the overall performance
(i-e., the de-duping ability) using different methods, strate-
gies, and thresholds. We adopt the two standard criteria in-
troduced in Section 3 - compression rate and dup-reduction
rate - to measure the performance. Moreover, considering
the numbers of URLSs from various websites are of different
scales, we utilize both the micro- and macro- averages of the
two criteria for evaluation, to avoid that some big websites
dominant the performance. The micro-average takes all the
URLs from various websites as a whole and calculates the
criteria; while the macro-average first calculates the crite-
ria for each website independently, and then adds them up
and builds the averaged overall performance. The macro-
average gets rid of the bias from big websites and shows
how the approaches can deal with different duplicate cases.
The micro-average provides a fair approximation to the per-
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Figure 11: Comparisons of the micro-average (a)

and macro-average (b) of the compression rates us-
ing different methods, strategies, and thresholds.

=#=  Tree + Graph Tree + Naive =M= Fanout- 5+Naive =®= Fanout- 10+ Naive
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Figure 12: Comparisons of the micro-average (a)

and macro-average (b) of the dup-reduction rates us-
ing different methods, strategies, and thresholds.

formance in real applications, in which websites are indeed
of different scales.

For the methods and strategies, we adopt the same four
combinations in Table 4. For the threshold fprmq., we just
vary it from 0 to 0.1 with an interval 0.01, because a large
false-positive rate has little impact to practical applications.

Figure 11 shows the micro-average and macro-average of
the compression rates. Notably, the rules generated by the
proposed pattern tree-based approach can compress more re-
dundant duplicates than those rules produced by fanout-5
and fanout-10. In addition, the graph-based strategy can
select more effective rules than the straightforward strategy
by comparing the compression rates of “Tree+Graph” and
“Tree+Naive”. In the best case, our approach can remove
around 35% URLs (around 24.5 million URLs from all the
70 millions in the dataset). If these rules are integrated
into a crawler, it can save considerable bandwidth and stor-
age. Figure 12 shows the micro-average and macro-average
of the dup-reduction rates. Similar to those observed in Fig-
ure 11, the pattern-tree-based approach removes more dupli-
cates than fanout-5 and fanout-10, and the graph-based
strategy exceeds the naive (straightforward) strategy.

7. CONCLUSIONSAND FUTURE WORK

In this paper, we present a pattern tree-based approach to
learning URL normalization rules. The main contribution
of this work is to rethink the problem from a global perspec-
tive and leverage the statistical information from the entire
training set. We first construct a pattern tree based on the
training set, and then generate normalization rules via iden-
tifying duplicate nodes on the pattern tree. With the sta-
tistical information, the learning process is more robust to
both the noise and incompleteness of the training samples.
The computational cost is also low as rules are directly in-
duced on patterns, rather than on every duplicate URL pair.
Moreover, practical deployment issues have been discussed
in this paper and a graph-based strategy has been proposed
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to select a subset of deployable rules for normalization. Ex-
periment evaluations on 70M URLs show very promising
results. Compared to the state-of-the-art approaches, our
system can greatly reduce duplicates with much little false-
positives. Besides, our system significantly reduces the run-
ning time of the learning process by around 50%.

There is still room to improve the propose method. First,
the pattern tree construction algorithm should be further
accelerated as it is the current computational bottleneck.
Second, the current algorithms fully trust the duplicate in-
formation labeled in the training set. However, in practice,
auto-generated training sets may contain some fake dupli-
cate information caused by, for example, too relaxed param-
eters in the shingle print algorithms. How to deal with such
fake duplicates is another goal of our future work.
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