
Uni�ed Theories of Programming

C.A.R. Hoare
Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, UK

Abstract. Professional practice in a mature engineering discipline is based
on relevant scienti�c theories, usually expressed in the language of mathe-
matics. A mathematical theory of programming aims to provide a similar
basis for speci�cation, design and implementation of computer programs.
The theory can be presented in a variety of styles, including

1. Denotational, relating a program to a speci�cation of its observable
properties and behaviour.

2. Algebraic, providing equations and inequations for comparison, trans-
formation and optimisation of designs and programs.

3. Operational, describing individual steps of a possible mechanical
implementation.

This paper presents simple theories of sequential non-deterministic program-
ming in each of these three styles; by deriving each presentation from its
predecessor in a cyclic fashion, mutual consistency is assured.

Keywords. Programming, programming methods, non-determinism,
semantics, operational, algebraic, denotational

Chapter 1

Introduction

A scienti�c theory is formalised as a mathematical description of some se-
lected class of processes in the physical world. Observable properties and
behaviour of such a process can then be predicted from the theory by math-
ematical deduction or calculation. An engineer applies the theory in the
reverse direction. A speci�cation describes the observable properties and be-
haviour of some system that does not yet exist in the physical world; and
the goal is to design and implement a product which can be predicted by the
theory to meet the speci�cation.

This paper proposes a mathematical treatment of computer programming
in the simple non-deterministic programming language introduced by Dijk-
stra [?]. The theory is well suited for use by engineers, since it supports
both stepwise development of designs from speci�cations and hierarchical
decomposition of complex systems into simpler components which can be
designed and implemented separately. Furthermore, it permits derivation of
a complete set of algebraic laws to help in transformation of designs and
optimisation of programs. Finally, an operational semantics is derived; this
treats practical aspects of implementation and e�ciency of execution.

The main goal of this monograph is to show simple ways in which the
three presentations of the same language can be derived from each other by
mathematical de�nition, calculation and proof. The denotational theory con-
sists just of a number of separate mathematical de�nitions of the notations
of the language as predicates describing observable aspects of program exe-
cution. These de�nitions can be individually formulated and understood in
isolation from each other.

The individual algebraic laws can then be derived from the denotational
de�nitions, without danger of inconsistency or other unexpected interactions.
A normal form theorem gives insight into the degree of completeness of the
laws, and permits additional laws to be proved without induction. An argu-
ment is given for the computability of programs expressed in the language.

An operational theory is equally easily derived from the algebraic. First
an algebraic de�nition is given for the basic step (transition relation) of an
abstract implementation; and then the individual transition rules can be
proved separately and individually as algebraic theorems, again with reduced
risk of complex or unexpected interactions. A concept of bisimulation then
lifts the level of abstraction, to permit derivation of a minimal collection of
algebraic laws. An alternative abstraction technique derives the observational
presentation from the operational, by proving all its de�nitions as theorems.

This completes the circle: it means that any of the presentations can be
accepted as a primary de�nition of the meaning of the language, and the
others can be derived from it. Even better, di�erent de�nitions can be safely

and consistently used at di�erent times and for di�erent purposes. It is a
characteristic of the most successful theories, in mathematics as well as in
natural science, that they can be presented in several apparently independent
ways, which are in a useful sense provably equivalent. For example, topology
can be based on a certain kind of family of sets, or on neighbourhoods, or
on a closure operator; and a theory of gravity can be based on Newtonian
forces acting at a distance, or on �eld theory, or on Einsteinian geodesics. It
is to be hoped that a multifaceted theory of programming can be developed
to deliver similar bene�ts in the practice of software engineering.

The technical material presented in this monograph serves primarily as
an illustration or proof of concept. If the concept is found attractive, there is
plenty of scope for future work. The most obvious direction is to extend the
programming language, for example by including local variables, procedures
and parameters. Each extension must be presented in all three semantic
styles, with a preferably derivational proof of consistency. An essential goal
is to manage each newly introduced complexity by use of as much as possible
of the existing theory and algebra: starting again from scratch is forbidden.
Ideally, each new feature can be de�ned and introduced separately, in a way
that permits them to be combined without further complexities of interaction.
Mature mathematical theories like topology provide an excellent model of the
kind of structure needed.

More ambitious extensions may also be of interest: perhaps timing, prob-
ability and even a range of paradigms of parallel programming { shared-store,
data
ow, and communicating processes. The ultimate goal would be to cover
all the interesting paradigms of computing, both declarative and procedural,
both in hardware and in software. Again, the challenge is to reveal and pro�t
from their commonality, and so to isolate and control their di�erences. The
work involved is not likely to be easier than fundamental research in any
other branch of science; it can be motivated only by the same intense cu-
riosity to �nd the answer to fundamental questions. This must be supported
by the same intense belief in the ultimate simplicity of basic law, and even
the elegance of the reasoning on which it is based. The challenge is one that
will require the cooperative endeavour of a whole generation of theoretical
computing scientists.

The insights described here were obtained by a study of communication
and concurrency in parallel processes, where the three semantic styles have
been applied individually by independent schools of research to the same class
of phenomena. The operational style was used �rst [?] to de�ne the Calculus
of Communicating Systems (CCS); the algebraic style took precedence in
the de�nition [?] of the Algebra of Concurrent Processes (ACP), whereas
the denotational style lies at the basis of the mathematical theory [?] of
Communicating Sequential Processes (CSP). Many of the detailed di�erences
between these three process theories originate from their di�erent styles of
presentation. This monograph attempts a synthesis by presenting the same

programming language in all three styles. The choice of a simple sequential
language may defuse some of the controversy that has accompanied research
into process algebras.

Not a single idea in this paper is original. The concept of denotational
semantics is due to Strachey and Scott [?], and the particular choice of or-
dering of non-deterministic programs is due to Smyth [?]. The embedding of
programs as predicates is due to Hehner [?]. The language is essentially the
same as that of Dijkstra [?]. The denotational theory is taken from Tarski's
calculus of relations [?]. The treatment of recursion in speci�cations is given
by Tarski's �xed point theorem [?] and for programs by Plotkin [?]. The
algebraic treatment of the language has already been fully covered in [?].
Even the idea of consistent and complementary de�nitions of programming
languages goes back at least to [?].

The intention of this monograph is to develop these familiar ideas in a
smooth progression. In fact, the smoothness is the result of many laborious it-
erations, mercifully concealed from the reader. Even more, it is due to witting
or unwitting inspiration, advice and assistance from many scientists, includ-
ing E.W. Dijkstra, A.J.R.G. Milner, J.A. Bergstra, A.W. Roscoe, He Jifeng,
G.D. Plotkin, J.W. de Bakker, J. Baeten, M. Hennessy, W.P. de Roever,
P. Gardiner, S.A. Schneider, C.C. Morgan, A. Sampaio, B. von Karger,
G. Lowe, F. Vaandrager, D.S. Scott, Joachim Parrow.

Acknowledgements

The research which is reported in this monograph was largely inspired and
partially supported by the European Community under ESPRIT basic re-
search actions CONCUR and PROCOS.

Chapter 2

Denotational Semantics

When a physical system is described by a mathematical formula, the free
variables of the formula are understood to denote results of possible measure-
ments of selected parameters of the system. For example, in the description
of a mechanical assembly, it may be understood that x denotes the projection
of a particular joint along the x-axis, _x stands for the rate of change of x, and
t denotes the time at which the measurement is taken. A particular observa-
tion can be described by giving measured values to each of these variables,
for example:

x = 14mm ^ _x = 7mm/s ^ t = 1:5sec.

The objective of science is not to construct a list of actual observations of
a particular system, but rather to describe all possible observations of all
possible systems of a certain class. The required generality is embodied in
mathematical equations or inequations, which will be true whenever their
free variables are given values obtained by particular measurements of any
particular system of that class. For example, the di�erential equation

_x = 0:5� x; for t � 3

describes the �rst three seconds of movement of a point whose velocity varies
in proportion to its distance along the x axis. The equation is clearly satis�ed
by the observation given previously, because

7 = 0:5� 14 and 1:5 � 3:

In applying this insight to computer programming, we shall con�ne atten-
tion to programs in a high level language, which operate on a �xed collection
of distinct global variables

x; y; : : : z:

The values of these variables are observed either before the program starts or
after it has terminated. To name the �nal values of the variables (observed
after the program terminates), we place a dash on the names of the variables

x0; y0; : : : ; z0:

But to name the initial values of the variables (observed before the program
starts), we use the variable names themselves, without decoration. So an
observation of a particular run of a program might be described as a con-
junction

x = 4 ^ x0 = 5 ^ y0 = y = 7:

This is just one of the possible observations of a program that adds one
to the variable x, and leaves unchanged the values of y and all the other vari-
ables; or in familiar symbols, the program consisting of the single assignment

x := x+ 1:

A general formula describing all possible observations of every execution of
the above program is

x0 = x+ 1 ^ y0 = y ^ : : : ^ z0 = z:

Such a formula will henceforth be abbreviated by the programming notation
which it exactly describes; for example, the meaning of an assignment is ac-
tually explained by the de�nition

x := x+ 1 =df x0 = x+ 1 ^ y0 = y ^ : : : ^ z0 = z:

Similarly, a program which makes no change to anything is written as II (pro-
nounced \skip") and de�ned

II =df x0 = x ^ y0 = y ^ : : : ^ z0 = z:

In words, an observation of the �nal state of II is the same as that of its initial
state.

These de�nitions play the role of speci�cations, giving an observable cri-
terion of correctness for any implementation of the language. Like all de�-
nitions, they cannot actually be proved false or even refuted by experiment:
however, as we shall see later, they may fail to de�ne the language that we
want to implement and use.

Of course, high level programs are more usually (and more usefully) re-
garded as instructions to a computer, \given certain values of x; y; : : : ; z, to
�nd values of x0; y0; : : : ; z0 that will make the predicate true". But for the
purpose of our mathematical theory, there is no need to distinguish between
descriptive and imperative uses of the same predicate.

2.1 Correctness and implication

In engineering practice, a project usually begins with a speci�cation, perhaps
embodied in a formal or informal contract between a customer and an imple-
mentor. A speci�cation too is a predicate, describing the desired (or at least
permitted) properties of a product that does not yet exist. For example, the
predicate

x0 > x ^ y0 = y

speci�es that the value of x is to be increased, and the value of y is to remain
the same. No restriction is placed on changes to any other variable. There
are many programs that satisfy this speci�cation, including the previously
quoted example

x := x+ 1:

Correctness of a program means that every possible observation of any
run of the program will yield values which make the speci�cation true; for
example, the speci�cation (x0 > x ^ y0 = y) is satis�ed by the observation
(x = 4^ x0 = 5^ y0 = y = 7). The formal way of de�ning satisfaction is that
the speci�cation is implied by a description of the observation, for example

(x = 4 ^ x0 = 5 ^ y0 = y = 7)) (x0 > x ^ y0 = y):

This implication is true for all values of the observable variables

8x; y; : : : ; y0; z0 :: (x = 4 ^ x0 = 5 ^ y0 = y = 7)) (x0 > x ^ y0 = y):

In future, we will abbreviate such universal quanti�cation by Dijkstra's con-
ventional square brackets, which surround the universally quali�ed formula
thus

[(x = 4 ^ x0 = 5 ^ y = y0 = 7)) (x0 > x ^ y0 = y)]:

In fact, the speci�cation is satis�ed not just by this single observation but
by every possible observation of every possible run of the program x := x+1:

[(x := x+ 1)) x0 > x ^ y0 = y]:

This mixture of programming with mathematical notations may seem unfa-
miliar; it is justi�ed by the identi�cation of each program with the predicate
describing exactly its range of possible behaviours. Both programs and spec-
i�cations are predicates over the same set of free variables; and that is why
the concept of program correctness can be so simply explained as universally
quanti�ed logical implication between a program and its speci�cation.

Logical implication is equally interesting as a relation between two pro-
grams or between two speci�cations. If S and T are speci�cations, [S) T]
means that T is a more general or abstract speci�cation than S, and at least
as easy to implement. Indeed, by transitivity of implication, any program
that correctly implements S will serve as an implementation of T , though
not necessarily the other way round. So a logically weaker speci�cation is
easier to implement, and the easiest of all is the predicate true, which can be
implemented by anything.

Similarly, if P and Q are programs, [P) Q] means that P is a more
speci�c or determinate program than Q, and it is (in general) more useful.
Indeed, by transitivity of implication, any speci�cation met by Q will be

met by P , though not necessarily the other way round. So a logically weaker
program is for any given purpose less likely to serve; and the weakest program
true is the most useless of all.

The initial speci�cation of a complex product is usually separated from its
eventual implementation by one or more stages of development. The interface
between each stage can in principle be formalised as a design document D. If
this is also interpreted as a predicate, the correctness of the design is assured
by the implication [D) S] and the correctness of the later implementation
P by [P) D]: The correctness of P with respect to S (and the validity
of the whole idea of stepwise development) follows simply by transitivity of
implication:

If [P) D] and [D) S] then [P) S]:

When a predicate is used as a speci�cation, there is no reason to restrict
the mathematical notations available for its expression. Indeed, any nota-
tion with a clear meaning should be pressed into service, because clarity of
speci�cation is the only protection we have against misunderstanding of the
client's requirements, which can often lead to subsequent disappointment or
even rejection of a delivered product.

Particularly important aids to clarity of speci�cation are the simple con-
nectives of Boolean algebra, conjunction (and), disjunction (or), and nega-
tion (not). Conjunction is needed to connect individual requirements such
as \Temperature must be less than 30� and more than 27�". Disjunction is
needed to provide useful options for economic implementation: \For mixing,
use either the pressure vessel or the evaporation tank". And negation is
needed for even more important reasons: \It must not explode".

The freedom of notation which is appropriate for speci�cation cannot be
extended to the programming language in which the ultimate implementa-
tion is expressed. Programming notations must be selected to ensure com-
putability, compilability, and reasonable e�ciency of execution. In a given
programming language, there is a limited collection of combinators available
for construction of programs from their primitive components. Typical com-
ponents include assignments, inputs and outputs; and typical combinations
include conditionals, sequential composition, and some form of iteration or
recursion. It is for good reason that most programming languages exclude
the Boolean combinators and quanti�ers of mathematical logic. For exam-
ple, there is no programming language or compiler that would enable you to
protect against disaster by writing a program that causes an explosion, and
then avoid explosion by just negating the program before execution.

A result of these practical restrictions is that, although we can interpret all
programs as predicates, the converse is obviously invalid: not every predicate
describes the behaviour of a program. For example, consider the extreme
predicate false. No observation satis�es this predicate, so the only object that
it could correctly describe is one that gives rise to no observation whatsoever.

From a scienti�c viewpoint, such an object does not exist and could never
be constructed. The notations of a programming language must therefore
be de�ned to ensure that they can never express the predicate false, or any
other wholly unimplementable predicate.

However, we must live with the danger of proposing and accepting an
unimplementable predicate for speci�cations. Indeed, any general notational
restriction that ensures computability (or even just satis�ability) could se-
riously impact clarity and conciseness of speci�cation, and so increase the
much greater risk of failure to capture the true requirements and goals of
the project. Once these have been successfully formalised, a check on imple-
mentability (and on e�ciency of implementation) may be made separately
with the aid of mathematics or good engineering judgement; and this will be
con�rmed in the end by successful delivery of an actual product which meets
the speci�cation. There is fortunately no danger whatsoever of delivering an
implementation of an unimplementable speci�cation.

2.2 The programming language

In this section we shall give a denotational semantics of our simple sequential
programming language in terms of predicates describing the behaviour of
any program expressed in that language. As explained earlier, the variables
x; y; : : : ; z stand for the initial values of the like-named global variables of the
program, and x0; y0 : : : ; z0 stand for the �nal values.

Let e; f; : : : ; g stand for expressions such as x+ 1; 3� y + z; : : : that can
feature on the right hand side of an assignment. Clearly, their free variables
are con�ned to the undashed variables of the program; and for simplicity,
we assume that all expressions always evaluate successfully to a determinate
result. Generalising an example given earlier, we de�ne a simple assignment,

(x := e) =df (x0 = e ^ y0 = y ^ : : : ^ z0 = z):

The program which makes no change is just a special case

II =df x := x:

A multiple assignment has a list of distinct variables on the left hand side,
and a list of the same number of expressions on the right; it is de�ned

(x; y := e; f) =df (x0 = e ^ y0 = f ^ : : : ^ z0 = z):

A clear consequence of the de�nition is that an implementation must evaluate
all the expressions on the right hand side before assigning any of the resulting
values to a variable on the left hand side.

Other consequences can be simply formulated as algebraic laws; they have
very simple proofs. For example

x := e = x; y := e; y
x; y := e; f = y; x := f; e:

All the de�nitions and laws extend to lists of more than two variables, for
example

(z; y := g; f) = (x; y; : : : ; z := x; f; : : : ; g):

In fact every assignment may be transformed by such laws to a total assign-
ment

x; y; : : : ; z := e; f; : : : ; g

where the left hand side is a list of all the free variables of the program, in
some standard order. In future we will abbreviate this to

v := f(v);

where v is the vector (x; y; : : : ; z) of program variables, and f is a total func-
tion from vectors to vectors. Predicates will be similarly abbreviated

P (v; v0) instead of P (x; y; : : : ; z; x0; y0; : : : ; z0):

Any non-trivial program is composed from its primitive components by
the combining notations (combinators) of the programming language. The
run-time behaviour of a composite program is obtained by actual execution of
its components | all, some, or sometimes even none of them. Consequently,
at a more abstract level, a predicate describing this composite behaviour
can be de�ned by an appropriate composition of predicates describing the
individual behaviours of the components. So a combinator on programs is
de�ned as a combinator on the corresponding predicates. That is part of
what it means for a semantics to be denotational.

The �rst combinator we consider is the conditional. Let b be a program ex-
pression, containing only undashed variables and always producing a Boolean
result (true or false); and let P and Q be predicates describing two fragments
of program. A conditional with these components describes a program which
behaves like P if b is initially true, and like Q if b is initially false. It may
therefore be de�ned as a simple truthfunction

P � b �Q =df (b ^ P) _ (:b ^Q).

A more usual notation for a conditional is

if b then P else Q instead of P � b �Q:

The reason for the change to in�x notation is that it simpli�es the expression
of algebraic laws:

P � b � P = P

P � b �Q = Q� :b� P

(P � b �Q)� b �R = P � b � (Q� b �R)

= P � b �R

P � b � (Q� c�R) = (P � b �Q)� c� (P � b �R):

The �rst law expresses idempotence, the second gives a form of skew sym-
metry, the third is an associative law, and the fourth states the distribution
of any conditional operator � b� through the conditional �c�, for any con-
dition c. All the laws may be proved by propositional calculus; the easiest
way is to consider separately the cases when b is true and when it is false.
In the �rst case, replace P � b �Q by P and in the second case by Q. The
purpose of the algebraic laws is to help in mathematical reasoning, without
such tedious case analyses.

The most characteristic combinator of a sequential programming language
is sequential composition, often denoted by semicolon. (P ; Q) may be exe-
cuted by �rst executing P and then Q. Its initial state is that of P , and its
�nal state is that of Q. The �nal state of P is passed on as the initial state of
Q; but this is only an intermediate state of (P ; Q), and it cannot be directly
observed. All we know is that it exists. The formal de�nition therefore uses
existential quanti�cation to hide the intermediate observation, and to remove
the variables which record it from the list of free variables of the predicate.

P (v; v0) ; Q(v; v0) =df 9v0 :: P (v; v0) ^Q(v0; v0):

Here, the vector variable v0 stands for the correspondingly decorated list of
bound variables

(x0; y0; : : : ; z0):

These record the intermediate values of the program variables

(x; y; : : : ; z);

and so represent the intermediate state as control passes between P and Q.
But this operational explanation is far more detailed than necessary. A clever
implementation is allowed to achieve the de�ned e�ect by more direct means,
without ever passing through any of the possible intermediate states. That is
the whole purpose of a more abstract de�nition of the programming language.

In spite of the complexity of its de�nition, sequential composition obeys
some simple, familiar and obvious algebraic laws. For example, it is asso-
ciative and has II as its left and right unit. Finally, sequential composition
distributes leftward (but not rightward) over the conditional. This asymme-
try arises because the condition b is allowed to mention only the initial values
of the variables, and not the �nal (dashed) variables.

(P ; Q) ; R = P ; (Q ; R)
II ; P = P = P ; II

(P � b �Q) ; R = (P ; R)� b � (Q ; R):

If e is any expression (only mentioning undashed variables), the assign-
ment

x := e

changes the value of x so that its �nal value is the same as the initial value
of e, obtained by evaluating e with all its variables taking their initial values.
So if P (x) is any predicate mentioning x, P is true of the value of x after the
assignment in just the case that P is true of e, i.e.,

x := e ; P (x) = (9x0 : x0 = e : P (x0))
= P (e):

But P (e) is just P with x substituted by e. This substitution e�ect is de�ned
to generalise to any expression:

(x := e ; f(x)) = f(e):

For example

(x := x+ 1 ; (3� x+ y < z)) = (3� (x+ 1) + y < z):

Other common notations for substitution are fxe ; f [e=x] and f [x=e]. Substi-
tution permits a rightward distribution law for conditionals:

x := e ; (P � b �Q) = (x := e ; P)� x := e ; b� (x := e ; Q):

Non-determinism is the programming concept that we de�ne next. Let P
and Q be predicates describing the behaviour of programs. Their disjunction
(P _ Q) describes the behaviour of a program which may behave like P
or like Q, but with no indication which it will be. As an operator of our
programming language, disjunction may be easily implemented by arbitrary
selection of either of the operands; and the selection may be made at any time,
either before or after the program is compiled or even after it starts execution.
Disjunction is an extremely simple explanation of the traditionally obscure
phenomenon of non-determinism in computing science; and its simplicity
provides additional justi�cation for the interpretation and manipulation of
programs as predicates.

All the program combinators de�ned so far distribute through disjunc-
tion. This means that separate consideration of each case is adequate for
all reasoning about non-determinism. Curiously, disjunction also distributes
through itself and through the conditional

P � b � (Q _R) = (P � b �Q) _ (P � b �R)
P ; (Q _ R) = (P ; Q) _ (P ; R)
(Q _R) ; P = (Q ; P) _ (R ; P)
P _ (Q _R) = (P _Q) _ (P _ R)
P _ (Q� b �R) = (P _Q) � b� (P _ R):

As a consequence of distribution through disjunction, all program com-
binators also enjoy the property of monotonicity. A function f is said to be
monotonic if it preserves the relevant ordering, in this case implication. More
formally

[f:X) f:Y] whenever [X) Y]:

(Here, X and Y are mathematical variables ranging over predicates with the
same given alphabet, and the line displayed above is true, no matter what
predicates take the place of X and Y). All program combinators de�ned so
far are monotonic in all arguments; for example

[X ; Y) X 0 ; Y 0] whenever [X) X 0] and [Y) Y 0]:

Monotonicity is a very important principle in engineering. Consider an
assembly which tolerates a given range of variation in its working environ-
ment. Consider also one of its components, which also has a certain tolerance
t. The tolerance of the whole assembly can be expressed as some function f
of the component tolerance t. The engineer usually assumes that f is a mono-
tonic function, so that if the component is replaced by one with a broader
tolerance t0, then the tolerance of the whole assembly will in general also be
broader, or at worst, the same:

[t � t0) f(t) � f(t0)];

where � is a partial ordering for comparison of breadth of tolerance. Prob-
lems arising from violation of monotonicity are in practice the most di�cult
to diagnose and rectify, because they invalidate the whole theory upon which
design of the assembly has been based.

When faced with the task of implementing a complex speci�cation S, it
is usual to make an early decision on the general structure of the product,
for example as the sequential composition of two program components. To
formalise and communicate this decision, each of these components is going
to need separate speci�cations, say D and E. The correctness of these spec-
i�cations can be checked before implementation by proof of the implication

[(D ; E)) S]; (�)

where the sequential composition between speci�cations has the same def-
inition as between programs considered as predicates. Now what remains
are the presumably simpler tasks of �nding two programs P and Q which

implement the two designs, i.e.,

[P) D] and [Q) E]:

Now just deliver the product (P ; Q). By monotonicity of sequential compo-
sition

[(P ; Q)) (D ; E)];

and the fact that

[(P ; Q)) S]

follows by transivity from a proof of the correctness of the design step (�).
What is more, this proof was completed before the start of implementation
of P or Q. The technique can be repeated on the components P and Q;
and because of monotonicity it extends to all other program combinators.
Their monotonicity is essential to the general engineering method of stepwise
design decomposition.

But this account of stepwise design requires a simultaneous guess of both
the component designs D and E. This is like trying to factorise a given whole
number S by simultaneously guessing both the factors D and E, and then
checking the guess by multiplication:

D �E = S:

If one of the factors E is already known, there is a much more certain way
of calculating D by long division

D = S � E;

where � is an approximate inverse of �, in the sense that

D � S � E if and only if D �E � S:

Such an inverse is called a Galois connection, and is very useful when exact
inverses are not available.

It turns out that sequential composition also has a Galois connection
(which we also write as �). So if E speci�es some program already designed
or already available in a library, it is possible to calculate S�E as the weak-
est speci�cation which satis�es the original intention

(S � E);E) S:

Such Galois connections exist for any operator that distributes through dis-
junction (through empty and in�nite disjunctions as well). However, the
symbolic calculations required to simplify the predicate S�E may be heavy;
and the result will be unimplementable in the case that there is no way of

using E as proposed to implement S. For example

(x0 is odd) � (x := 2� x) = false.

All the symbolic calculations described above require that designs are
expressed in a mixture of programming notations (for decisions that have
already been taken) and more general predicates (for the parts that are spec-
i�ed but still need to be designed). This is yet another advantage of the
philosophy of expressing both programs and speci�cations in the same logi-
cal space of predicates.

2.3 Recursion

A �nal advantage of monotonicity is that it permits a simple treatment of
the important programming concept of recursion, and of its important special
case, iteration; without this, no program can take signi�cantly longer to exe-
cute than to input. Predicates over a given set of observational variables may
be regarded as a complete lattice under implication ordering, with universal
quanti�cation as meet and existential as join. The bottom of the lattice is
the strongest predicate false and the top is true. Here we will use bold font
to distinguish true (considered as a program predicate over free variables
v; v0) from italic true, which is a possible value of a Boolean expression b
(containing only undashed free variables v).

Moving to a second-order predicate calculus, we introduce a variable X to
stand for an arbitrary predicate over the standard set of �rst-order variables.
Fortunately, all the combinators of our programming language are monotonic,
and any formula constructed by monotonic functions is monotonic in all its
free variables. Let G:X be a predicate constructed solely by monotonic oper-
ators and containing X as its only free predicate variable. Tarski's theorem
[?] guarantees that the equation

X = G:X

has a solution for X ; and this is called a �xed point of the function G. Indeed,
among all the �xed points, there is a weakest one in the implication ordering.
This will be denoted by

(�X :: G:X):

It can be implemented as a single non-recursive call of a parameterless pro-
cedure with name X and with body (G:X). Occurrences of X within (G:X)
are implemented as recursive calls on the same procedure.

The mathematical de�nition of recursion is given by Tarski's construc-
tion:

(�X :: G:X) =df

W
fX : [X) G:X] : Xg

where
W

is the lattice join applied to the set of all solutions of [X) G:X].
The following laws state that the join is indeed a �xed point of G, and that
it is the weakest such:

[G:(�X :: G:X) � (�X :: G:X)]

[Y) �X :: G:X] whenever [Y) G:Y]:

A simple common case of recursion is the iteration or while loop. If b is
a condition,

while b do P

repeats the program P for as long as b is true before each iteration. More
formally, it can be de�ned as the recursion

(�X :: (P ; X)� b � II):

An even simpler example (but hopefully less common) is the in�nite recursion
which never terminates

�X:X .

This is the weakest solution of the trivial equation

X = X ;

it is therefore the weakest of all predicates, namely true. In engineering
practice, a non-terminating program is the worst of all programs, and must
be carefully avoided by any responsible engineer. That will have to su�ce as
justi�cation for practical use of a theory which equates any non-terminating
program with a totally unpredictable one, which is the weakest in the lattice
ordering.

Consider now the program which starts with an in�nite loop:

(�X :: X) ; x; y; : : : ; z := 3; 12; : : : ; 17:

In any normal implementation, this would fail to terminate, and so be equal
to (�X :: X). Unfortunately, our theory gives the unexpected result

x0 = 3 ^ y0 = 12 ^ : : : ^ z0 = 17;

the same as if the prior non-terminating program had been omitted. To
achieve this result, an implementation would have to execute the program
backwards, starting with the assignment, and stopping as soon as the values
of the variables are known. While backward execution is not impossible (in-
deed, it is standard for lazy functional languages), it is certainly not e�cient
for normal procedural languages. Since we want to allow the conventional
forward execution, we are forced to accept the practical consequence that the

program

(�X :: X) ; P

will fail to terminate for any program P ; and the same is true of

P ; (�X :: X):

Substituting (�X :: X) by its value true we observe in practice of all pro-
grams P that

true ; P = true

P ; true = true:

These laws state that true is a zero for sequential composition.

But these laws are certainly not valid for an arbitrary predicate P . As
always in science, if a theory makes an incorrect prediction of the behaviour
of an actual system, it is the theory that must be adapted; and this usu-
ally involves an increase in complication. The violation of plausible simpler
laws is what requires and justi�es introduction of new concepts and vari-
ables, which cannot perhaps be directly observed or controlled, but which
are needed to explain what would otherwise be anomalies in more directly
observable quantities. All the discoveries of fundamental forces and particles
in modern physics have been made in this way. Of course, the old theory is
not actually refuted: it would still apply to a lazy implementation. But we
are not interested in such an ine�cient kind of implementation. It is not the
one that we wanted.

2.4 Preconditions and postconditions

In the case of computer programs, the anomaly described in the previous sec-
tion is resolved by investigating more closely the phenomena of starting and
stopping of programs. The collection of free variables describing programs is
enlarged to include two new Boolean variables:

ok; which is true of a program that has started in a fully de�ned state.

ok0, which is true of a program that has stopped in a fully de�ned
state.

If ok0 is false, the �nal values of the program variables are unobservable, and
the predicate describing the program should make no prediction about these
values. Similarly, if ok is false, even the initial values are unobservable. These
considerations underlie the validity of the desired zero laws.

The new variables ok and ok0 must never appear in the text of any pro-
gram. However, they do appear in the list of existentially quanti�ed variables

in the de�nition of sequential composition, and in the list of universally quan-
ti�ed variables which are abbreviated by the square brackets.

The variables ok and ok0 are useful also in speci�cations of components of
larger programs. The correctness and even the termination of a component
with speci�cation Q is often dependent on some assumed properties of the
initial values of the variables. This assumption is described by a precondi-

tion P , which will be true before the program starts. The speci�cation can
therefore be written

(ok ^ P)) (ok0 ^Q),

or in words \If the program component starts in a state satisfying P , it stops
in a state satisfying Q." For historical reasons, Q is known as a postcondition.

The responsibility for ensuring that P is true at the start is thereby dele-
gated to the preceding part of the program. If the assumption is violated, no
constraint whatsoever is placed on the behaviour of the program; it may even
fail to terminate. Successful teamwork in a large engineering project always
depends on appropriately selected assumptions made by the individual de-
signers engaged on a particular sub-task, and the corresponding obligations
undertaken by their colleagues. So it is worth while to introduce a special
notation

(P;Q) =df (ok ^ P) ok0 ^Q):

This is the primitive notation used by Morgan in [?]. The clear distinction
of precondition P from postcondition Q is also an advantageous feature of
VDM [?].

In the interpretation of programs as single predicates, the concepts of
correctness and re�nement are identi�ed with the implication ordering. The
same ordering can be de�ned for pairs of predicates, as shown by the theorem

[(P1; Q1)) (P2; Q2)] i� [P2) P1] and [P2 & Q1) Q2]:

Here, (P1; Q1) is better because it has a weaker precondition P1, and so it can
be used more widely; furthermore, in all circumstances (P2) where (P2; Q2)
can be used, (P1; Q1) has a stronger postcondition, so its behaviour can be
more readily predicted and controlled.

Equivalence of predicate pairs can be de�ned by mutual implication:

[(P1; Q1) � (P2; Q2)] i� [(P1; Q1)) (P2; Q2)] and [(P1; Q1)) (P2; Q2)]:

It follows that many equivalent predicate pairs actually denote the same
predicate, for example:

[(P;Q) � (P; P ^Q)] and [(P;Q) � (P; P) Q)]:

It is convenient to regard the form (P; P) Q) as a standard form for writing
the predicate pair.

The de�nition of a predicate pair shows how any pair of predicates can
be converted to a single predicate by introducing two new variables ok and
ok0 into its alphabet. The resulting predicate R(ok; ok0) is monotonic in ok0

and antistrict in ok, in the sense that

[R(ok; false)) R(ok; true)] and [R(false ; ok0)]:

Conversely, any predicate R with the above properties can be written as a
predicate pair (R0; R

0), where

R0 = :R(true; false) and R0 = R(true; true):

The de�nition establishes a bijection between predicate pairs and single pred-
icates with the required monotonic and antistrict properties. All the nota-
tions of our programming language (including the re�nement ordering on
programs) can be applied to predicate pairs, as will be shown in the rest
of this section. Consequently the bijection is an isomorphism. For all pur-
poses of mathematical calculation, one may use either interpretation of the
meaning of programs.

A signi�cant advantage of explicit mention of preconditions and postcon-
ditions is a solution of the postponed problem of unde�ned expressions in
assignments. For each expression e of a reasonable programming language,
it is possible to calculate a condition De which is true in just those circum-
stances in which e can be successfully evaluated. For example

D17 = Dx = true

D(e+ f) = De ^ Df

D(e=f) = De ^ Df ^ (f 6= 0):

Successful execution of an assignment relies on the assumption that the ex-
pression will be successfully evaluated, so we formulate a new de�nition of
assignment

x := e =df (De ; x0 = e ^ y0 = y ^ : : : ^ z0 = z):

Expressed in words, this de�nition states that

either the program never starts (ok = false) and nothing can be said about
its initial and �nal values,

or the initial values of the variables are such that evaluation of e fails
(:De), and nothing can be said about the �nal values,

or the program terminates (ok0 = true), and the value of x0 is e, and
the �nal values of all the other variables are the same as their initial
values.

The de�nition of the conditional also needs to be modi�ed to take into ac-
count the possibility that evaluation of the condition is unde�ned

P � b�Q = (Db) (b ^ P _ :b ^Q)):

However, in future we will maintain the simplifying assumption that all pro-
gram expressions are everywhere de�ned.

The normal combinators of the programming language can be de�ned
directly in terms of predicate pairs as shown by the theorems:

(P1; Q1) _ (P2; Q2) = (P1 ^ P2 ; Q1 _Q2)

(P1; Q1)� b� (P2; Q2) = (P1 � b� P2 ; Q1 � b�Q2)

(P1; Q1); (P2; Q2) = (:(:P1; true) & :(Q1;:P2) ; Q1;Q2):

These theorems show that all the combinators of the programming language
map pairs of predicates to pairs of predicates. The functions are all mono-
tonic, and pairs of predicates form a complete lattice under implication or-
dering:

W
i(Pi; Qi) = ((

V
i Pi); (

W
iQi))

V
i(Pi; Qi) = ((

W
i Pi);

V
i(Pi) Qi)):

It follows that the least �xed point of such a function is also expressible as a
predicate pair: this property of all programs is therefore maintained even in
the presence of recursion.

To be more speci�c, any function of predicate pairs can be analysed as a
pair of functions applied to (P;Q), for example

(F (P;Q); G(P;Q)):

Here, F is monotonic in P and antimonotonic in Q, whereas for G it is the
other way round. The least �xed point is calculated over the complete lattice
of predicate pairs, and gives the mutually recursive formula

�(X;Y) :: (F (X;Y); G(X;Y)) = (P (Q); Q))

where P (Y) = �X :: F (X;Y)

Q = �Y :: (P (Y)) G(P (Y); Y)):

Here, �x denotes the strongest �xed point. It may be calculated from the
weakest �xed point by the law:

(�x :: g:x) = (:�x :: :g(:x)):

The treatment given above applies to arbitrary predicate pairs (P;Q),
provided that they do not contain ok or ok0. In particular, the precondi-
tion P is even allowed to mention the dashed �nal values of the program.

Morgan's re�nement calculus has shown that this freedom may be useful in
the early stages of speci�cation and design. But programs with such precon-
ditions would be expensive or impossible to execute. In fact, all predicate
pairs expressible in the notations of the programming language satisfy the
restriction that their preconditions do not mention �nal values. This permits
simpli�cation of the precondition for sequential composition. This fact will
be proved and used in the next chapter.

The preference of many researchers is to de�ne the predicate pair as the
meaning of the program, and use the theorems given above as de�nitions of
the combinators of the programming language. This avoids the introduction
of the \unobservable" variables ok and ok0, widely regarded as a distasteful
coding trick. However, the coding trick is still useful in revealing the iso-
morphism between single-predicate and two-predicate de�nitions of the same
language. The programmer may use whichever is most convenient for the
immediate purpose, and change freely between them when pursuing di�erent
purposes. That is the practical bene�t of unifying theories of programming.

For the proof of general algebraic laws which apply equally to speci�ca-
tions as to programs, there is no doubt that the single predicate formulation
is the most convenient. However, there are a few important laws which are
not valid for general predicates, but only for those that are expressible as
predicate pairs. These include the unit laws for composition

II; (P;Q) = (P;Q) = (P;Q) ; II

which are valid for the new de�nition of II as

(true; x0 = x ^ y0 = y ^ : : : ^ z0 = z):

Even more important is the �rst zero law, which originally motivated intro-
duction of the predicate pairs, which is now trivial

true ; (P;Q) = true:

The second law zero is

P ; true = true; for all programs P:

This can be proved easily for assignments; and a simple induction extends
the proof to all programs written without recursion. However, proof of the
recursive case uses methods developed only in the next chapter.

2.5 Predicate transformers

The de�nition of our programming language was originally given by Dijkstra
in terms of predicate transformers. For any program Q, its weakest precondi-
tion P = wp(Q;R) maps a postcondition R describing the �nal state after its

execution onto a predicate P . This is the weakest precondition that describes
all initial states in which execution of the program is guaranteed to termi-
nate in a state satisfying the given postcondition. For a liberal precondition
(wlp), termination is not guaranteed; but if it occurs, the postcondition will
be satis�ed.

Let Q be a predicate describing the behaviour of a program. Its weakest
liberal precondition can be de�ned

wlp(Q;R) =df :(Q;:R):

This means that execution of Q cannot end in a state that fails to satisfy R.
From this de�nition, we can derive theorems that characterise the notations
of the programming language, for example,

wlp(Q1 _Q2; R) = wlp(Q1; R) ^ wlp(Q2; R)

wlp(Q1 � b�Q2; R) = wlp(Q1; R)� b� wlp(Q2; R)

wlp(Q1;Q2; R) = wlp(Q1; wlp(Q2; R)):

The simplicity of the last equation is impressive.

The wlp function satis�es the main healthiness condition required by Di-
jkstra, that it distributes through arbitrary universal quanti�cation

wlp(Q;8i :: Ri) = 8i :: wlp(Q;Ri):

Conversely, let f be any function with this distributive property. Then there
is a unique Q such that

wlp(Q;R) = f:R; for all R:

The Q is de�ned by

Q = f::II:

An isomorphism has been established between a language de�ned in terms
of single predicates (containing dashed and undashed variables), and one de-
�ned in terms of universally distributive predicate transformers. The original
and continuing attraction of predicate transformers is that there is no need
to use dashed variables: if the postcondition does not contain them, neither
does the precondition. Yet another coding trick is eliminated.

The weakest liberal precondition su�ers from the same problem with non-
termination as the single-predicate theory of programming described in sec-
tion ??, for example

wlp(true, true) = true

To obtain the full strength of Dijkstra weakest precondition in guaranteeing
termination, the two-predicate theory is better. Let (P;Q) be a pair of predi-

cates describing the behaviour of a program, as described in section ??. This
can be converted to a predicate transformer by

wp((P;Q); R) =df P & wlp(Q;R):

Like wlp, this transformer is also universally distributive, and satis�es the
same laws that characterise the combinators of the programming language.
However, non-termination is treated in a more realistic fashion:

wp(true, true) = wp((false; true); true) = false :

Chapter 3

The Algebra of Programs.

In this chapter we con�ne attention to that subset of predicates which are
expressible solely in the limited notations of a simple programming language,
de�ned syntactically in table 1. The semantic de�nitions have been given in
the previous section, and provide the basis for proof of a number of algebraic
laws. Hitherto, most of these have been valid for arbitrary predicates; but
now we can prove additional laws, valid only for predicates which are pro-
grams. To emphasize the algebraic orientation, we shall use normal equality
between programs in place of the previous universally quanti�ed equivalence

P = Q for [P � Q].

Such laws are valid for all P and Q ranging over programs. Of course, P and
Q themselves are predicates which contain free variables in the appropriate
alphabet. Capital letters are used to distinguish these \second order" vari-
ables from the lower case variables which they contain as predicates.

Table 1. Syntax.

<program> :: = true

j <variable list> := <expression list>

j <program> � <Boolean expression> � <program>

j <program> ; <program>

j <program> _ <program>

j <recursive identi�er>

j � <recursive identi�er> :: <program>

In the form (�X :: P), X must be the only free recursive
identi�er in P .

Algebraic laws in the form of equations and inequations have many ad-
vantages in practical engineering. As in more traditional forms of calculus,
they are useful in calculating parameters and other design details from more
general structural decisions made by engineering judgement. There are good
prospects of delegating part of the symbolic calculation to a mechanised term
rewriting system like OBJ3 [?]. And �nally, a theory presented as a set of
equations is often easier to teach and to learn than one presented as a math-
ematical model. Di�erential calculus is much more widely taught, and more
widely used by scientists and engineers, than the foundationary de�nitions
of analysis on which pure mathematicians have shown it to be based.

That is why each of the formal de�nitions given in the previous section
has been followed by a statement of its most important algebraic properties.
Proof of these properties is rightly the responsibility of a mathematician;
that is the best way of helping engineers, whose skill lies in calculation rather
than proof. The goal is to compile a complete collection of laws, so that any
other true law that may be needed can be derived by symbolic calculation
from the original collection, without ever again expanding the de�nition of
the notations involved.

A valuable aid to the achievement of completeness is the de�nition of a
normal form. A normal form uses only a subset of the primitives and com-
binators of the language, and only in a certain standard order. For example,
the conjunctive normal form of Boolean Algebra has conjunction as its out-
ermost combinator, disjunction next, and negation as its innermost operator.
The algebraic laws must be su�cient to ensure that every program in the lan-
guage can be transformed by calculation using just these laws to a program
expressed in normal form. There is often a simple test of equality between
normal forms; so reduction to normal form generalises this test to arbitrary
expressions of the language.

The laws may be classi�ed according to the role that they play in the
reduction to normal form.

1. Elimination laws remove operators which are not allowed in the normal
form. Such laws contain more occurrences of the operator on one side
of the equation than on the other.

2. Distribution laws ensure that the remaining operators can be rear-
ranged to a standard order of nesting.

3. Association and commutation laws are needed to determine equality
of normal forms which unavoidably admit variation in their written
representation.

For purposes of exposition, we will de�ne a series of normal forms, of increas-
ing complexity and generality, dealing successively with assignment, non-
determinism, non-termination, and recursion.

3.1 Assignment normal form

The �rst in our series of a normal forms is the total assignment, in which all
the variables of the program appear on the left hand side in some standard
order:

x; y; : : : ; z := e; f; : : : ; g.

Any non-total assignment can be transformed to a total assignment by vac-
uous extension of the list, for example:

(x; y := e; f) = (x; y; : : : ; z := e; f; : : : ; z):

As mentioned before, we abbreviate the entire list of variables
(x; y; : : : ; z) by the simple vector variable v, and the entire list of expressions
by the vector expressions g(v) or h(v); these will usually be abbreviated to g
or h. Thus the normal form will be written

v := g or v := h(v):

The law that eliminates sequential composition between normal forms is

(v := g ; v := h(v)) = (v := h(g)).

The expression h(g) is easily calculated by substituting the expressions in the
list g for the corresponding variables in the list v. For example

(x ; y := x+ 1; y � 1 ; x; y := y; x)

= (x; y := y � 1; x+ 1).

We now need to assume that our programming language allows condi-
tional expressions on the right hand side of an assignment. Such an expres-
sion is de�ned mathematically

e� c� f = e if c

= f if :c:

The de�nition can be extended to lists, for example

(e1; e2)� c� (f1; f2) = ((e1� c� f1); (e2� c� f2)):

Now the elimination law for conditionals is

((v := g)� c� (v := h)) = v := (g � c� h).

Finally, we need a law that determines when two di�erently written nor-
mal forms are equal. For this, the right hand sides of the two assignments
must be equal:

(v := g) = (v := h) i� [g = h]:

Of course, if g and h are expressions of an undecidable calculus, the algebra
of programs will be equally incomplete. This means that a kind of relative
completeness has to be accepted as the best that can be achieved in a calculus
of programming.

3.2 Non-determinism

Disjunction between two semantically distinct assignments cannot be reduced
to a single assignment, which is necessarily deterministic. We therefore move
to a more complicated normal form, in which the disjunction operator con-
nects a �nite non-empty set of total assignments

(v := f) _ (v := g) _ : : : _ (v := h).

Let A and B be such sets; we will write the normal form as
W
A and

W
B.

All the previous normal forms can be trivially expressed in the new form as
a disjunction over the unit set

v := g =
W
fv := gg:

The easiest operator to eliminate is disjunction itself; it just forms the
union of the two sets:

(
W
A) _ (

W
B) =

W
(A [B):

The other operators are eliminated by distribution laws

(
W
A)� b � (

W
B) =

W
fP;Q : P 2 A ^Q 2 B : (P � b �Q)g

(
W
A); (

W
B) =

W
fP;Q : P 2 A ^Q 2 B : (P ;Q)g:

The right hand sides of these laws are disjunctions of terms formed by ap-
plying the relevant operator to total assignments P and Q, which have been
selected in all possible ways from A and B. Each of these terms can therefore
be reduced to a total assignment, using the laws of ??. Thus the occurrences
of ; and � b� in the right hand sides of the laws given above are also elim-
inable.

The laws which permit comparison of disjunctions are

[(
W
A)) R] i� 8P : P 2 A : [P) R]

[v := f) (v := g _ : : : _ v := h)] i� [f 2 fg; : : : ; hg]:

The �rst law is a tautology; it enables a disjunction in the antecedent to be
split into its component assignments, which are then decided individually by
the second law.

3.3 Non-termination

The program constant true is not an assignment, and cannot in general be
expressed as a �nite disjunction of assignments. Its introduction into the
language requires a new normal form

true � b � P

where P is in the previous normal form. It is more convenient to write this
as a disjunction

b _ P:

Any unconditional normal form P can be expressed as

false _ P

and the constant true as

true _ II:

The other operators between the new normal forms can be eliminated by the
laws

(b _ P) _ (c _Q) = (b _ c) _ (P _Q)

(b _ P)� d � (c _Q) = (b� d � c) _ (P � d �Q)

(b _ P); (c _Q) = (b _ (P ; c)) _ (P ;Q):

The third law relies on the fact that b and c are conditions (not mentioning
dashed variables), and P and Q are disjunctions of assignments; from this,
it follows that

[b; c) b] and [b;Q � b]: (�)

We also need a right distribution law

x := e; (P � b �Q) = (x := e;P)� x := e; b � (x := e;Q)

if P and Q are disjunctions of assignments. The law for testing implication
is

[(b _ P)) (c _Q)] i� [b) c] and [P) c _Q].

3.4 Recursion

The introduction of recursion into the languages permits construction of a
program whose degree of non-determinism depends on the initial state. For
example, let n be a non-negative integer variable in

while n is odd do (n := n	 1 _ n := n	 2)

where n 	 k = 0 � k � n � n � k: The e�ect of this is clearly described by
the predicate

n0 � n & n0 is even & (n is even) n0 = n):

Informally, this can be expressed as a disjunction of assignments:

n := (n� n is even � n� 1)

_ n := (n� n is even � n� 3)

: : :

_ n := (n� n is even � 0)

But there is no �nite set of assignments whose disjunction can replace the
informal ellipses (...) shown above, because the length of the disjunction
depends on the initial value of n.

The solution is to represent the behaviour as an in�nite sequence of ex-
pressions

S = fi : i 2 N : Sig:

Each Si is a �nite normal form, as de�ned in ??; it correctly describes all
the possible behaviours of the program, but maybe some impossible ones as
well. So we arrange that each Si+1 is potentially stronger and therefore a
more accurate description than its predecessor Si:

[Si+1) Si], for all i.

This is called the descending chain condition. It allows the later members of
the sequence to exclude more and more of the impossible behaviours; and in
the limit, every impossible behaviour is excluded by some Si, provided that i
is large enough. Thus the exact behaviour of the program is captured by the
intersection of the whole sequence, written (

V
i Si), or more brie
y (

V
S):

For the example shown above, we de�ne the in�nite sequence S as follows

S0 = true

S1 = n0 = n� n is even� n � 1

S2 = n0 = n� n is even� (n � 3 _ n0 = 0)

S3 = n0 = n� n is even� (n � 5 _ n0 2 f0; 2g)

...

Si = n0 = n� n is even� (n � 2i� 1 _ n0 < i & n0 even):

Each Si is expressible in �nite normal form. It describes exactly the be-
haviour of the program when n is initially less than 2i, so that the number of
iterations is bounded by i. The exact behaviour of the program is described
by any Si with i greater than the initial value of n. It follows that the pred-
icate describing the behaviour of the whole program is equal to the required
in�nite conjunction

V
i Si. The laws for recursion given below will provide a

general method for calculating the successive approximations Si describing
the behaviour of any particular loop.

The calculation depends critically on the descending chain condition for
S, because it is this that permits distribution of all the operators of the
language through intersection:

(
V
S) _ P =

V
i(Si _ P)

(
V
S)� b � P =

V
i(Si � b � P)

P � b � (
V
S) =

V
i(P � b � Si)

(
V
S);P =

V
i(Si;P)

P ; (
V
S) =

V
i(P ;Si) provided that P is in �nite

normal form.

Operators that distribute through intersections of descending chains are called
continuous. Every combination of continuous operators is also continuous in
all its arguments. This permits formulation of a continuity law for recursion:

�X ::
V

i Si:X =
V

i �X :: Si:X

provided that Si is continuous for all i, and it forms a descending chain for
all X , i.e.,

[Si+1:X) Si:X]:

Another advantage of the descending chain condition is that a descending
chain of descending chains can be reduced to a single descending chain by
diagonalisation

V
k(
V

l Skl) =
V

i Sii;

provided that 8k; l; i. Ski � Ski+1 & Sil � Si+1l. This ensures that a func-
tion F , continuous in each of its arguments separately, is also continuous in
its arguments taken together

F (
V
S;
V
T) =

V
i F (Si; Ti):

In turn, this gives the required elimination laws for the three operators of the
language

(
V
S) _ (

V
T) =

V
i(Si _ Ti)

(
V
S)� b � (

V
T) =

V
i(Si � b � Ti)

(
V
S); (

V
T) =

V
i(Si;Ti):

The occurrence of the operators on the right hand side of these laws can
eliminated by the laws of ??, since each Si and Ti is �nite.

The continuity laws ensure that descending chains constitute a valid nor-
mal form for all the combinators of the language; and the stage is set for
treatment of recursion. Consider �rst an innermost recursive program (con-
taining no other recursions)

�X :: F:X;

where F:X contains X as its only free recursive identi�er. The recursive
identi�er X is certainly not in normal form, and this makes it impossible to
express F:X in normal form. However, all the other components of F:X are
expressible in normal form, and all its combinators permit reduction to nor-
mal form. So, if X were replaced by a normal form (say true), (F:true) can
be reduced to �nite normal form, and so can F:(F:true), F:(F:(F:true)),...
Furthermore, because F is monotonic, this constitutes a descending chain of
normal forms. Since F is continuous, by Kleene's famous recursion theorem,
the limit of this chain is the least �xed point of F

(�X :: F:X) =
V

n F
n:true:

This reduction can be applied �rst to replace all the innermost recursions
in the program by limits of descending chains. The remaining innermost re-
cursions now have the form

�Y :: H(
V

m Fm:true;
V

mGm:true; : : : ; Y):

By continuity of H , this transforms to

�Y ::
V

mHm:Y

where Hm:Y = H:(Fm:true; Gm:true; : : : ; Y), which is (for �xed Y) a de-
scending chain in m. By continuity of �, this equals

V
m �Y :: Hm:Y:

and by Kleene's theorem

V
m

V
n(H

n
m:true):

Because this is descending in both n and m, we get

V
nHn:true:

Thus the next innermost recursions are converted to normal form; by repeat-
ing the process, the whole program can be converted to normal form

V
n Sn:

Another way of describing the same conversion is that Sn is the result of
replacing every recursion (�X :: F:X) in the program by the nth element of

its approximating series, i.e, Fn: true.
There is no direct algebraic way of testing equality between limits of de-

scending chains. A partial solution to this problem is to relax the descending
chain condition, and represent a program as the conjunction of all �nite nor-
mal forms which it implies. For all programs P ,

P =
V
fX : X is a �nite normal form and [P) X] : Xg:

This means that if P andQ are di�erent programs, there exists a �nite normal
form that is implied by one of them and not the other.

The proof of this fact is not trivial, and relies on the continuity of all the
operators in the programming language. It also suggests another normal form
for programs as intersections of arbitrary sets of �nite forms. Each operator
F of the language is applied pointwise to the �nite forms in their operands

F:S = fP : P 2 S : F:Pg:

Recursion is explained as the greatest �xed point in the inclusion ordering
for sets of �nite forms. The original semantics of the language should be
recoverable by applying the

V
operator to all the sets.

But this construction will not work for arbitrary sets of �nite forms: they
have to satisfy certain additional closure properties. These are properties
shared by any set generated from a program P by taking all its �nite approx-
imations:

S = fp : [P) p] : pg:

1. If p 2 S and p) q then q 2 S.

2. If T � S and
V
T is expressible in �nite form then

V
T 2 S.

The calculus of programs should be extensible to intersections of arbitrary
sets which are closed in this sense.

The �nite normal forms play a role similar to that of rational numbers
among the reals. Firstly, there is only a countable number of them. A second
similarity is that every real is the limit of a descending chain of rationals. Fi-
nally, the rationals are dense, in the sense that any two distinct real numbers
can be shown to be so by a rational number which separates them. The ap-
plication of these insights to computer programs is the contribution of Scott's
theory of continuous domains.

3.5 Computability

The algebraic laws given in ??, ?? and ?? permit every �nite program (one
that does not use recursion) to be reduced to �nite normal form. The reduc-
tion rules are nothing but simple algebraic transformations, of the kind that

can be readily mechanised on a computer, and therefore even on a Turing ma-
chine. The in�nite normal form (

V
i Si) of section ?? can never be computed

in its entirety; however, for each n, the �nite normal form Sn can be readily
computed; for example by replacing each internal recursion (�X :: F:X) by
(Fn: true):

This suggests a highly impractical method of executing a program, start-
ing in a known initial state s, in which Boolean conditions can be evaluated
to true or false. The machine calculates the series Sn of �nite normal forms
from the program. Each of these is a disjunction (bn _ Pn). If (s; bn) eval-
uates to true, the machine continues to calculate the next Sn+1. If all the
(s; bn) are true, this machine never terminates; but that is the right answer,
because in this case the original program, when started in the given initial
state s, contains an in�nite recursion or loop. But as soon as a false (s; bn)
is encountered, the corresponding Pn is executed, by selecting and execut-
ing an arbitrary one of its constituent assignments. We want to prove that
the resulting state will be related to the initial state by the predicate (

V
i Si).

Unfortunately, this will not be so if the selected assignment is not represented
in Sm, for some m greater than n.

The validity of this method of execution depends on an additional prop-
erty of the normal form, that once n is high enough for bn to be false, all the
assignments Pm remain the same as Pn, for all m greater than n. This can
be formalised:

[(bn _ Pn) � (bn _ Pn+k)]; for all n; k:

Let us therefore de�ne a new ordering relation � between normal forms, one
that is stronger than the familiar implication ordering. For �nite normal
forms, this requires that if the condition of the weaker program is false, its
e�ect is exactly the same as that of the stronger program

(b _ P) � (c _Q) i� [b) c] and [:c) (P � Q)]:

This is clearly a preorder, with weakest element (true_true). What is more,
it is respected by all the combinators of the programming language. If F:X
is a program, it follows that fi :: F i:trueg is a descending chain in this new
ordering. This shows that all innermost recursions enjoy the property that
we are trying to prove.

Furthermore, because of monotonicity, any program combinator H pre-
serves this property:

H(
V

i Si) =
V

i(H:Si):

For nested recursions, the proof uses the same construction as given at the
end of the previous section. All the chains involved are descending in the
new ordering as well.

3.6 Completeness

A reduction to normal form gives a method of testing the truth of any pro-
posed implication between any pair of programs: reduce both of them to
normal form, and test whether the inequation satis�es the simpler conditions
laid down for implication of normal forms. If so, it holds also between the
original programs. This is because the reduction laws only substitute equals
for equals and each of the tests for implication between normal forms has
been proved as a theorem.

For the algebra of programs, the converse conclusion can also be drawn:
if the test for implication fails for the normal forms, then the implication
does not hold between the original programs. The reason is that the tests
give both necessary and su�cient conditions for the validity of implication
between normal forms. For this reason, the algebraic laws are said to be
complete. Of course, since the normal form is in�nite, there cannot be any
general decision procedure.

Completeness is a signi�cant achievement for a theory of programming.
Each of the laws requires a non-trivial proof, involving full expansion of the
de�nitions of all the operators in the formulae, followed by reasoning in the
rather weak framework of the predicate calculus. But after a complete set
of laws have been proved in this more laborious way, proof of any additional
laws can be achieved by purely algebraic reasoning; it will never be necessary
again to expand the de�nitions.

For example, we have to prove the right zero law

P ; true = true:

Since P is a program, it can be reduced to normal form
V
S.

V
S; true =

V
i(bi _ Pi); true

=
V

i(bi _ (
W

j(v := ej) ; true))

=
V

i bi _ (
W

j(v := ej ; true))

=
V

i bi _ (
W

j true)

= true.

Apart from the practical advantages, completeness of the laws has an im-
portant theoretical consequence in characterising the nature of the program-
ming language. For each semantically distinct program there is a normal
form with the same meaning, and this can be calculated by application of
the laws. It is therefore possible to regard the normal form itself as a de�-
nition of the meaning of the program, and to regard the algebraic laws as a
de�nition of the meaning of the programming language, quite independent
of the interpretation of programs as predicates describing observations. This
is the philosophy of \initial algebra" semantics for abstract data types.

There are many advantages in this purely algebraic approach. Firstly,
algebraic reasoning is much easier in practical use than the predicate calculus.
It is often quite easy to decide what laws (like the zero laws) are needed
or wanted for a programming language; and then it is much easier just to
postulate them than to prove them. And there is no need to indulge in curious
coding tricks, like the introduction of ok and ok0. Finally, most algebraic
laws are valid for many di�erent programming languages, just as most of
conventional schoolroom algebra holds for many di�erent number systems.
Even the di�erences between the systems are most clearly described and
understood by examining the relatively simple di�erences in their algebraic
presentations, rather than the widely di�ering de�nitions which they are
given in the foundations of mathematics.

The real and substantial bene�ts of algebra are achieved by completely
abstracting from the observational meaning of the variables and operators
occurring in the formulae. Full advantage should be taken of the bene�ts of
this abstraction, and for as long as possible. But if the algebra is ever going to
be applied, either in engineering or in science (or even in mathematics itself),
the question arises whether the laws are actually true in the application
domain.

To answer this question, it is necessary to give an independent meaning
to the variables and operators of the algebra, and then to prove the laws
as theorems. It is a matter of personal choice whether the investigation of
algebra precedes the search for possible meanings, or the other way round
(as in this monograph). The experienced mathematician probably explores
both approaches at the same time. When the task is complete, the practising
engineer or programmer has a secure intellectual platform for understanding
complex phenomena and a full set of calculation methods for the reliable
design of useful products. And that is the ultimate, if not the only, goal of
the investigations.

Chapter 4

Operational Semantics

The previous chapters have explored mathematical methods of reasoning
about speci�cations and programs and the relationships between them. But
the most important feature of a program is that it can be automatically ex-
ecuted by a computing machine, and that the result of the computation will
satisfy the speci�cation. It is the purpose of an operational semantics to de-
�ne the relation between a program and its possible executions by machine.
For this we need a concept of execution and a design of machine which are
su�ciently realistic to provide guidance for real implementations, but su�-
ciently abstract for application to the hardware of a variety of real computers.
As before, we will try to derive this new kind of semantics in such a way as
to guarantee its correctness.

In the most abstract view, a computation consists of a sequence of in-
dividual steps. Each step takes the machine from one state m to a closely
similar one m0; the transition is often denoted m! m0. Each step is drawn
from a very limited repertoire, within the capabilities of a simple machine.
A de�nition of the set of all possible single steps simultaneously de�nes the
machine and all possible execution sequences that it can give rise to in the
execution of a program.

The step can be de�ned as a relation between the machine state before the
step and the machine state after. In the case of a stored program computer,
the state can be analysed as a pair (s; P), where s is the data part (ascribing
actual values to the variables x; y; : : : ; z), and P is a representation of the
rest of the program that remains to be executed. When this is II, there is no
more program to be executed; the state (t; II) is the last state of any execution
sequence that contains it, and t de�nes the �nal values of the variables.

It is extremely convenient to represent the data part of the state by a
total assignment

x; y: : : : ; z := k; l; : : : ;m;

where k; l; : : : ;m are constant values which the state ascribes to x; y; : : : ; z
respectively. If s is an initial data state interpreted as an assignment, and
if P is any program interpreted as a predicate, (s;P) is a predicate like P ,
except that all occurrences of undashed program variables have been replaced
by their initial values (k; l; : : : ;m). If this is the identically true predicate,
execution of P started in smay fail to terminate. Otherwise it is a description
of all the possible �nal data values v0 of any execution of P started in s. If t
is any other data state,

[(t; II)) (s;P)]

means that the �nal state (t; II) is one of the possible results of starting
execution of P in state s. Furthermore,

[t;Q) s;P]

means that every result (including non-termination) of executing Q starting
from data state t is a permitted result of executing P from state s. If this
implication holds whenever the machine makes a step from (s; P) to (t; Q),
the step will be correct in the sense that it does not increase the set of �nal
states that result from the execution; and if ever a �nal state (t; II) is reached
by a series of such steps, that will be correct too.

In order to derive an operational semantics, let us start by regarding the
machine step relation! as just another (backwards) way of writing implica-
tion:

(s; P)! (t; Q) instead of [(t;Q)) (s;P)].

The following theorems are now trivial.

1. (s; v := e) ! ((v := (s; e)); II).

The e�ect of a total assignment v := e is to end in a �nal state, in which
the variables of the program have constant values (s; e), i.e., the result of
evaluating the list of expressions e with all variables in it replaced by their
initial values. Here, we return to the simplifying assumption that expressions
are everywhere de�ned.

2. (s; (II;Q)) ! (s;Q).

A II in front of a program Q is immediately discarded.

3. (s; (P ;R)) ! (t; (Q;R)); whenever (s; P)! (t; Q)

The �rst step of the program (P ;R) is the same as the �rst step of P , with
R saved up for execution (by the preceding law) when P has terminated.

4. (s; P _Q) ! (s; P)

(s; P _Q) ! (s;Q)

The �rst step of the program (P_Q) is to discard either one of the components
P or Q. The criterion for making the choice is completely undetermined.

5. (s; P � b �Q) ! (s; P) whenever s; b

(s; P � b �Q) ! (s;Q) whenever s;:b

The �rst step of the program (P � b �Q) is similarly to select one of P or
Q, but the choice is made in accordance with the truth or falsity of (s; b),

i.e., the result of evaluating b with all free variables replaced by their initial
values.

6. (s; �X :: F:X) ! (s; F:(�X :: F:X))

Recursion is implemented by the copy rule, whereby each recursive call within
the procedure body is replaced by the whole recursive procedure.

7. (s; true) ! (s; true).

The worst program true engages in an in�nite repetition of vacuous steps.

The formulae 1-7 have been presented above as theorems, easily provable
from the algebraic laws of the programming language. But it is even easier
to present these laws as a de�nition of the way in which the programs are
to be executed. In this de�nition, the components s and P of each state are
represented concretely by their texts. The states are identi�ed as pairs (s, P),
where s is a text describing the data state, and P is a program text, de�ning
the program state. We use typewriter font to distinguish text from meaning:
P is the text of a program whose meaning is the predicate P . The symbol !
is a relation between the texts; it is actually de�ned inductively by the list of
laws given above: it is the smallest relation satisfying just those laws.

A purely operational presentation of a programming language has many
advantages. Firstly, it is surprisingly short and simple; furthermore it closely
re
ects the programmer's understanding (sometimes called \intuition") of
how programs are actually executed. This is especially important in the di-
agnosis of unexpected behaviour of a program, carelessly written perhaps by
someone else. Finally, the clear correspondence to an executing mechanism
gives an immediate guarantee against the danger of incomputability, without
the long proof of section ??. Many researchers into the theory of program-
ming regard an operational semantics as the standard or even the only way
of starting research in the subject.

The disadvantages of an operational presentation arise from its extremely
low level of abstraction. Mathematical reasoning based on this presentation
has to appeal constantly to the completeness clause, i.e., to the absence
of any transitions other than those postulated. Small additions or changes
in the laws can have unexpectedly gross (or even rather subtle) e�ects on
the theory. What is worse, the assumption that the whole program text is
observable means that there can be no non-trivial algebraic equations between
programs. Finally, since operational reasoning starts with the text of the
program, it is absolutely useless for direct reasoning about speci�cation and
design before the program is written. In the later sections of this chapter,
we will investigate methods of raising the level of abstraction of operational
semantics to that of the algebraic or even denotational semantics.

4.1 Total correctness

In the previous section, we used the implication relation) to justify the
seven clauses of the operational semantics of the language. The intention
was to guarantee the consistency of the operational semantics, in the sense
that every �nal state of an execution satis�es the predicate associated with
the program. This is certainly a necessary condition for correctness. But it
is not a su�cient condition. There are two kinds of error that it does not
guard against:

(i) There may be too few transitions (or even none at all!). An omitted
transition would introduce a new and unintended class of terminal state.
A more subtle error would be omission of the second of the two laws (4)
for (P _Q), thereby eliminating non-determinism from the language.

(ii) There may be too many transitions. For example, the transition

(s;Q)! (s;Q)

is entirely consistent with the approach of the previous section, since
it just expresses re
exivity of implication. But its inclusion in the
operational de�nition of the language would mean that every execution
of every program could result in an in�nite iteration of this dumb step.

To guard against these dangers, we need to obtain a clear idea of what
it means for an operational semantics to be correct. The purpose of an
operational semantics is to de�ne the \machine code" of an abstract machine.
One of the best and most common ways of de�ning a machine code is to write
an interpreter for it in a high level programming language, whose meaning is
already known; and a language immediately available for this purpose is the
one whose observational meaning has been given in Chapter 2. The criterion
of total correctness of the interpreter is that its application to a textual
representation of the program P gives rise to exactly the same observations
as are described by P , when given its meaning as a predicate.

The alphabet of global variables of our interpreter will be

s to hold the data state (as text)

p to hold the program state (as text).

They will be updated on each step of the interpreter by the assignment

s; p := next (s; p):

The de�nition of the next function operating on texts is taken directly from
the individual clauses of the operational semantics; for example:

next (s; II; Q) = (s; Q), for all s:

For non-determinism we need two assignments

s; p := next1 (s; p) _ s; p := next2 (s; p) : : : STEP

where next1 (s; P_Q) = (s; P) and next2 (s; P_Q) = (s; Q): In all other cases
next1 (s; P) = next2 (s; P) = next (s; P): The inner loop of the interpreter re-
peats this step until the program terminates

(p 6= `II') � STEP : : : LOOP:

The interpreter de�ned as LOOP is a predicate describing the relationship
between the initial and �nal values of the program variables s and p. It leaves
unchanged the values of the program variables x; y; : : : ; z. The predicate P ,
corresponding to the initial value of p, describes the way that the abstract
variables x; y; : : : ; z are updated. The interpreter is correct if the updates
correspond with each other in some appropriate sense. The relevant sense
is described exactly by the �nal value of the variable s, produced by the
interpreter. This should describe one of the particular �nal values permitted
by the predicate P .

So there are two ways of describing the execution of a program P .

(i) First initialise the values of s and p to S and P. Then execute the in-
terpreter LOOP. This updates s and p, but not the program variables
x; y; : : : ; z. If and when the loop terminates, execute the �nal value of
s, which will assign the desired �nal values to the program variables.
The program variables s and p are local to the interpreter, and we are
no longer interested in their �nal values. So they may as well be reini-
tialised. In summary, the e�ect of this method of execution is described
by the predicate

s; p :=S, P ; LOOP; s ; s; p :=S, P

where the programming notations have the meaning described in Chap-
ter 2.

(ii) First execute the initial value S, thereby assigning to the program vari-
ables the same values as they have in the interpreted execution (i).
Then execute the program P , which updates the program variables,
hopefully to the same �nal state as that produced by the interpreter.
The variables s and p can then be updated to their same �nal state as
in (i). This execution method is described by the predicate

S ; P ; s; p :=s, P.

It may be worth a reminder that S and P are constant program texts,
S and P give their meaning as predicates, whereas s and p are local
variables of the interpreter, and their values are changed by the LOOP.

The hope that the two execution methods are the same can be justi�ed
by proof of the equation between the two predicates displayed under (i) and
(ii). If this can be proved entirely from the algebraic laws, it establishes the
desired correspondence between the operational and the algebraic semantics.
If the theorem is weakened to an implication, the operational semantics is
still correct, but may be more deterministic than the denotational.

Note that both the statement of the theorem and its proof depend utterly
on acceptance of the priority of the denotational or algebraic de�nition as a
speci�cation of the language. Indeed, unless there is such an independent
speci�cation, the question of correctness of an operational semantics cannot
arise.

In the absence of an independent meaning for the programming language,
the operational semantics may be the only one acceptable or available as
a foundation for a theory of programming. In that case, other methods
are needed for escaping from its deplorably low level of abstraction. Such
methods are discussed in the remaining sections of this chapter. They will
be of only secondary interest to readers who recognise that the essential task
of proving equivalence of denotational, algebraic and operational semantics
has already been completed.

4.2 Bisimulation

As mentioned above, the operational semantics uses the actual text of pro-
grams to control the progress of the computation; in principle, two programs
are equal only if they are written in exactly the same way, so there cannot be
any non-trivial algebraic equations. Instead, we have to de�ne and use some
reasonable equivalence relation (conventionally denoted �) between program
texts. In fact, it is customary to de�ne this relation between complete ma-
chine states, including the data part. Two programs P and Q will then be
regarded as equivalent if they are equivalent whenever they are paired with
the same data state:

P�Q =df 8s :: (s, P)�(s, Q).

Now the basic question is: what is meant by a \reasonable" equivalence
between states? The weakest equivalence is the universal relation, and the
strongest is textual equality; clearly we need something between these two
extremes. There are a great many possible answers to these questions; but
we shall concentrate on two of the �rst and most in
uential of them, which
are due to Milner and Park [?].

To exclude the universal relation, it is su�cient to impose an obligation
on a proposed equivalence relation � that it should preserve the distinctness
of a certain minimum of \obviously" distinguishable states. For example, the
terminal states of each computation are intended to be recognisable as such,
and their data parts are intended to be directly observable. We de�ne the

terminal states:

(s; P) 6! =df :9(t; Q) :: (s; P)! (t; Q);

and require that

(i) if (s; P) � (t; Q) and (t; Q) 6!, then s = t and (s; P) 6!:

The second condition on a reasonable equivalence relation between states is
that it should respect the transition rules of the operational semantics; or
more formally

(ii) If (s, P)�(t, Q) and (t, Q) ! (v, S) then there is a state (u, R) such
that

(s, P) ! (u, R) and (u, R) � (v, S).

(iii) Since � is an equivalence relation, the same must hold for the con-
verse of �.

The condition (ii) may be expanded to a weak commuting diagram:

(u; R) � (v; S)

" � "

(s; P) � (t; Q)

Or it may be contracted to a simple inequation in the calculus of relations:

(�;!) � (!;�):

A relation�which satis�es these three reasonable conditions is called a strong
bisimulation. Two states are de�ned to be strongly bisimilar if there exists
any strong bisimulation between them. So bisimilarity is a relation de�ned
as the union of all bisimulations. Fortunately, distribution of relational com-
position through such unions means that bisimilarity is itself a bisimulation,
in fact the weakest relation satisfying the three reasonable conditions listed
above.

An additional most important property of an equivalence relation is that
it should be respected by all of the operators of the programming language,
for example:

If P � P0 and Q � Q0 then (P; Q) � (P0; Q0):

An equivalence relation with this property is called a congruence. It justi�es
the principle of substitution which underlies all algebraic calculation and
reasoning: without it, the algebraic laws would be quite useless. Fortunately,
the bisimilarity relation happens to be a congruence for all the operators
mentioned in our operational semantics; this claim needs to be checked by

mathematical proof.

As an example of the use of bisimulation, we will prove the commutative
law for disjunction. The trick is to de�ne a relation � which makes the law
true, and then prove that it has the properties of a bisimulation. So let
us de�ne a re
exive relation � that relates every state of the form (s; P _
Q) with itself and with the state (s; Q _ P), and relates every other state
only to itself. This is clearly an equivalence relation. It vacuously satis�es
bisimilarity condition (i). Further if (s; P_ Q)! (t; X) then inspection of the
two transitions for _ reveals that t = s and X is either P or Q. In either case,
inspection of the laws shows that (s, Q _ P) ! (s,X). The mere existence of
this bisimulation proves the bisimilarity of (P _ Q) with (Q _ P).

But there is no bisimulation that would enable one to prove the idempo-
tence laws for disjunction. For example, let � be a relation such that

(s; II) � (s; II _ II):

Clearly (s; II _ II) ! (s; II). However, the operational semantics deliberately
excludes any (t; X) such that (s; II)! (t; X); condition (ii) for bisimulation is
therefore violated. In fact, this condition is so strong that it requires any two
bisimilar programs to terminate in exactly the same number of steps. Since
one of the main motives for exploring equivalence of programs is to replace
a program by one that can be executed in fewer steps, strong bisimilarity is
far too strong a relation for this purpose.

Milner's solution to this problem is to de�ne a weak form of bisimilarity
(which we denote �) for which the three conditions are weakened to

(i) if (s; P) � (t; Q) and (t; Q) 6!

then there is a state (t; R) such that (s; P)
�
! (t; R) and (t; R) 6!.

(ii) (�;!) � (
�
! ;�);

(iii) � is symmetric

where
�
! is the re
exive transitive closure of !. (This is very similar to

the con
uence condition, used in the proof of the Church-Rosser property of
a set of algebraic transformations). Weak bisimilarity is de�ned from weak
bisimulation in the same way as for strong bisimilarity; and a similar check
has to be made for the congruence property.

Now we can prove idempotence of disjunction. Let � relate every (s; P)
just to itself and to (s; P _ P) and vice versa. In the operational semantics

(s; P_P) is related by! only to (s; P); fortunately (s; P)
�
! (s; P) since

�
!

is re
exive. Conversely, whenever (s; P)! (s0; P0) then (s; P _ P)! (s; P)!
(s0; P0), so equality is restored after two steps. This therefore is the weak
bisimulation that shows the bisimilarity

(P _ P) � P:

Unfortunately, we still cannot prove the associative law for disjunction.
The three simple states (s; x := 1); (s; x := 2) and (s; x := 3) end in three
distinct �nal states; and by condition (i), none of them is bisimilar to any
other. The state (s; (x := 1 _ x := 2)) and (s; (x := 2 _ x := 3)) are also
distinct, because each of them has a transition to a state (i.e., (s; x := 1) and
(s; x := 3) respectively) which cannot be reached in any number of steps by
the other. For the same reason (s; (x := 1 _ x := 2) _ x := 3) is necessarily
distinct from (s; x := 1_(x := 2_x := 3)). The associative law for disjunction
is thereby violated.

In fact, there is a perfectly reasonable sense in which it is possible to
observe the operational distinctness between the two sides of an associative
equation

(P _ Q) _ R = P _ (Q _ R):

Just take two copies of the result of executing the �rst step. In the case of
the left hand side, this will give either of the two pairs.

(R; R) and ((P _ Q); (P _ Q)):

Now each copy is run independently. There are now �ve possibilities for the
subsequent behaviours of the pair:

(R; R); (P; P); (P; Q); (Q; P) and (Q; Q):

But if the same procedure is applied to the right hand side of the associative
equation, the �ve possibilities are

(P; P); (Q; Q); (Q; R); (R; Q); and (R; R):

The third and fourth possibilities in each case are su�cient to distinguish
the two di�erent bracketings. If copying the state is allowed after any step
of the operational semantics, it is possible to make a pair of observations of
the two copied programs that may tell which way the original program was
bracketed. Such an observation would invalidate the associative law.

So even weak bisimilarity is not weak enough to give one of the laws
that we quite reasonably require. Unfortunately, it is also too weak for our
purposes: it gives rise to algebraic laws that we de�nitely do not want. For
example, consider the program

�X :: (II _ X):

This could lead to an in�nite computation (if the second disjunct X is always
selected); or it could terminate (if the �rst disjunct II is ever selected, even
only once). Weak bisimilarity ignores the non-terminating case, and equates

the program to II. However, in our theory it is equated to true, the weakest
�xed point of the equation

X = (II _ X):

Our weaker interpretation true permits a wider range of implementations:
for example, the \wrong" choice may be in�nitely often selected at run time;
indeed, the \right" choice can even be eliminated at compile time! For a
theory based on bisimilarity, neither of these implementations is allowed. A
non-deterministic construction (P _ Q) is expected to be implemented fairly:
in any in�nite sequence of choices, each alternative must be chosen in�nitely
often. Weak bisimilarity is a very neat way of imposing this obligation, which
at one time was thought essential to the successful use of non-determinism.

Unfortunately, the requirement of fairness violates the basic principle of
monotonicity, on which so much of engineering design depends. The program
(X _ II) is necessarily less deterministic than X , so (�X :: X _ II) should (by
monotonicity) be less deterministic than (�X :: X), which is the least deter-
ministic program of all. However, weak bisimulation identi�es it with the
completely deterministic program II. It would therefore be unwise to base a
calculus of design on weak bisimulation.

But that was never the intention; bisimulation was originally designed
by Milner as the strongest equivalence that can reasonably be postulated
between programs, and one that could be e�ciently tested by computer,
without any consideration of any possible meaning of the texts being ma-
nipulated. It was used primarily to explore the algebra of communication
and concurrency. It was not designed for application to a non-deterministic
sequential programming language; and the problems discussed in this section
suggest it would be a mistake to do so.

A great many alternative de�nitions of program equivalence based on
operational semantics have been explored by subsequent research. One of
them is described in the next section. In the �nal section of this chapter
there is yet another solution: to derive an observational semantics from the
operational. The algebraic laws can then be proved from the observations,
as described in Chapter 3.

4.3 From operations to algebra

In this section we will de�ne a concept of simulation which succeeds in re-
constructing the algebraic semantics of our chosen language on the basis of

its operational semantics. First we de�ne
�
! as the re
exive transitive

closure of !:

(s; P)!� (t; Q) i� s = t and P = Q

(s; P)!n+1 (u; R) i� 9t; Q :: (s; P)! (t; Q) and (t; Q)!n (u; R)

(s; P)!� (t; Q) i� 9n :: (s; P)!n (t; Q):

Secondly, we de�ne the concept of divergence, being a state that can lead to
an in�nite execution:

(s; P) " =df 8n :: 9t; Q :: (s; P)!n (t; Q):

Thirdly, we de�ne an ordering relation v between states. One state is bet-

ter in this ordering than another if any result given by the better state is
also possibly given by the worse; and furthermore, a state that can fail to
terminate is worse than any other:

(s; P) v (t; Q) �df (s; P) " or :(t; Q) "

and (8u :: (t; Q)
�
! (u; II)) (s; P)

�
! (u; II)):

One program is better than another if it is better in all data states

P v Q i� 8s :: (s; P) v (s; Q):

The v relation is often called re�nement or simulation of the worse program
by the better.

It is easy to see that the syntactically de�ned v relation is transitive and
re
exive, i.e., a preorder. As a result the relation

P � Q =df P v Q and Q v P

is an equivalence. Since it is also a congruence, it can be used in exactly the
same way as proposed for the bisimilarity relation in the previous section:
one can thereby derive a full collection of algebraic laws for the programming
language from its operational semantics. For example, associativity of _
follows from the two lemmas

(s; P _ (Q _ R))
�
! (t; II)

i� (s; P)
�
! (t; II) or (s;Q)

�
! (t; II) or (s;R)

�
! (t; II)

(s; P _ (Q _ R)) " i� (s; P) " or (s;Q) " or (s;R) " :

The same holds for the other bracketing as well.
But this is rather a laborious way of proving the rather large collection

of laws. Each of these laws of Chapter 3 is a theorem of the form [P � Q].
They can all be automatically lifted to simulation laws by the single theorem:

P � Q if [P � Q]:

In fact, the above theorem can be strengthened to an equivalence, so that
the laws proved by simulation are exactly those of the algebraic semantics.
The algebraic semantics is isomorphic to the operational, when abstracted
by this particular notion of simulation.

4.4 From operations to observations

An operational semantics is in essence an inductive de�nition of all possible
sequences of states that can arise from any execution of any program ex-
pressed in the notations of the language. This can be turned directly into
an isomorphic observational semantics by just assuming that the whole ex-
ecution sequence generated by each program can be observed. We will use
the free variable e to stand for such an execution sequence. Of course, the
level of abstraction is exactly the same as that of the operational semantics.
To hide the excessive degree of detail, we need to de�ne a predicate which
relates each execution sequence onto an observation just of its initial and �nal
states. Using this relation as a coordinate transformation, the de�nitions of
the observational semantics given in Chapter 2 can be proved as theorems.
The proofs are wholly based on the de�nition of the operational semantics,
thereby completing the cyclic proof of mutual consistency of all three theories
of programming.

An execution is formally de�ned as an empty, �nite or in�nite sequence
of states in which every adjacent pair of states is related by the operational
transition !

E = fe j 8i : 0 < i <]e : ei�1 ! eig;

where] gives the length of a �nite sequence, or 1 for an in�nite one. The
execution sequences generated by an initial state (s; P) are those that begin
with this state

E(s; P) = fe j e 2 E & (e =<> _e0 = (s; P))g

The observations of a program P are those in which P is the initial state of
the stored program

E(P) =
S
sE(s; P):

The function E de�nes an observational semantics of each program text P.
The de�nition can be rewritten into an equivalent recursive form

E(s; P) = (s; P)^fe j 9t; Q : (s; P)! (t; Q) & e 2 E(t; Q)g;

where x^X =df f<>g [f< x > e j e 2 Xg. As in Chapter 2, the recursion
here is understood to de�ne the weakest (i.e. largest) �xed point, which will
include all the in�nite sequences as well.

But the de�nition lacks the important denotational property, requiring
that the semantics of each combinator is de�ned in terms of the semantics of
its components. Fortunately, the problem is solved by proof of the following
theorems, which closely follow the structure of the operational semantics

E(s; II) = f< (s; II) >;<>g

E(s; v := f) = (s; v := f)^f<>; (v := (s; f); II)g

E(s; P _ Q) = E(s; P) [E(s; Q)

E(s; P� b � Q) = (s; P� b � Q)^E(s; P) if s; b

= (s; P� b � Q)^E(s; Q) if :s; b

E(s; P; Q) = addQ(E(s; P))

[fef j e 2 addQ(E(s; P)) & f 2 E(Q)

& 9t : e ends in (t; II; Q) and f begins with (t; Q)g

where addQ(e)i = (s; P; Q) whenever ei = (s; P),

E(s; �X :: F:X) = (s; �X :: F:X)^E(s; F:(�X :: F:X)):

If desired, these equations could be presented as the de�nition of the op-
erational semantics of the language. Although they do not mention the step
relation !, they de�ne exactly the same execution sequences. In fact, the
step relation may be de�ned afterwards as that which holds between the �rst
and second members of any execution sequence

(s; P)! (t; Q) i� 9e :: e 2 E(s; P) & e2 = (t; Q):

The proof of this theorem establishes an isomorphism between the tradi-
tional presentation of the operational semantics, given at the beginning of
this chapter, and its denotational presentation, given by the above de�nition
of E.

Our original presentation of a denotational semantics in Chapter 2 mapped
each program text onto a predicate describing its observations. The de�nition
of E maps each program text onto a set of observations, i.e., its execution se-
quences. Such a set can easily be timed into a predicate e 2 E(P), which uses
the free variable e to stand for an observed value of the execution sequence
generated by P. Similarly, any predicate P , with free variables ranging over
known sets, can be turned into a set of observations by simple comprehension,
for example fe j Pg. The distinction between these two presentations as sets
and as predicates is entirely ignorable. So the equations shown above could
equally well be regarded as an observational semantics of the programming
language, in exactly the style of Chapter 2. In future, let us use the italic
P (e) to stand for the predicate e 2 E(P).

But of course, the level of abstraction of this new observational semantics
is identical to that of the operational semantics. To raise the level, we use a
standard technique of data re�nement. This requires us to specify which of
the more concrete observations we are interested in, and which parts of them
we want to observe. These decisions can be expressed as a predicate contain-
ing both sets of free variables, ones standing for the concrete observations, as
well as ones standing for the abstract.

Our original abstract observations were selected on the assumption that

we want to observe only a very small part of the information contained in each
execution, namely the initial and �nal data states. Furthermore, we choose
never to observe a �nite non-empty execution that has not yet terminated.
So we are interested only in minimal or maximal executions { those which
cannot be reduced or extended

e =<> _ e ends in II _ e is in�nite:

The distinction between empty, terminated and in�nite execution sequences
is captured in the Boolean variables ok and ok0:

ok = (e 6=<>) and ok) (ok0 = (e ends in II)):

For non-empty sequences, we can observe the initial data state v

ok) 9s; P :: e0 = (s; P) & init(s)

where init is a function that maps the text v := k to the predicate v = k.
Similarly, for terminating executions, we can observe the �nal states

ok0) 9s :: e ends in (s; II) & �nal(s)

where �nal is a function that maps the text v := k to the predicate v0 = k.

Let ABS be the conjunction of the predicates displayed above. It has free
variables ok; ok0; v; v0 and e. It describes all the ways in which an execution
e can give rise to particular values of the other more abstract variables. So
the abstract observations obtainable from any possible execution of P are
described by the predicate

abs(P (e)) =df 9e : ABS ^ P (e):

The function abs maps predicates describing execution sequences (denoted
by the free variable e) to predicates describing observations of the initial
and �nal states of a subset of those sequences (denoted by the free variables
ok; ok0; v; v0). This latter class of predicates is exactly the one used to give
the original denotational semantics of the programming language in Chapter
2. We wish to claim that the semantics de�ned above by the functions abs

is the same as that of Chapter 2. The claim is substantiated by showing
that abs is an isomorphism between the relevant subsets of the two classes of
predicate, namely those predicates that can be expressed as programs.

The predicate ABS is often called a linking invariant, because it relates
observations of the same system at two levels of abstraction. It is used to
de�ne the function abs, which translates a low level predicate, whose free
variables denote details of an implementation, to a predicate describing the
same system at a higher level of abstraction. The predicate abs(P) is the
strongest speci�cation expressible at this higher level which is met by any
concrete implementation described by P . But in a top-down design, we

would prefer to translate in the opposite direction; given a speci�cation S
with free variables v; v0; ok; ok0, what is the weakest description of the low-
level observations that will satisfy the speci�cation? The answer is given by
the de�nition

abs�1(S) = (8v; v0; ok; ok0 : ABS) S):

The transformations in each direction are linked by the Galois connection

[abs(P)) S] i� [P) abs�1(S)]:

From this it follows that abs is monotonic with respect to implication, and

P) abs�1(abs(P)) and abs(abs�1(S))) S:

Even more important are the equations

abs(P) = abs(abs�1(abs(P))) and abs�1(S) = abs�1(abs(abs�1(S))):

This means that abs � abs�1 is the identity function over the range of abs,
and similarly for abs�1 � abs. In our case, this range includes all the predi-
cates expressible in the programming language. So abs is a bijection between
predicates with alphabet feg describing execution sequences and predicates
with alphabet fv; v0; ok; ok0g describing initial and �nal states. In both cases
the predicates both arise from program texts.

Our last task is to show that abs is a homomorphism in the usual alge-
braic sense, that it is respected by all the combinators of the programming
language. The required theorems look very like a denotational de�nition of
the abs function.

abs(true) = true

abs(II) = :ok _ (ok0 ^ v0 = v)

abs(v := f) = :ok _ (ok0 ^ v0 = f)

abs(P _Q) = abs(P) _ abs(Q)

abs(P � b �Q) = (abs(P) ^ b) _ (abs(Q) ^ :b)

abs(P ;Q) = abs(P); abs(Q)

abs(�X :: F:X) = �Y :: F 0:Y

where F 0:Y = abs(F(abs�1Y)):

In the last clause, the functions abs and abs�1 are needed to translate F from
a function over predicates with e as their only free variable to a function F 0

over predicates with the more abstract alphabet.
The form of these de�nitions is exactly the same as those of the original

observational semantics of the language in Section ??. Indeed, on omission of

occurrences of the function abs and abs�1, the two de�nitions are the same.
More formally, the theorems show that abs is an isomorphism between two
di�erent interpretations of the notations of the same programming language:
one as a description of execution sequences derived from the operational
semantics, and one as a description of a relationship between initial and �nal
values of variables v; ok.

This completes the task of unifying observational, algebraic and opera-
tional theories of the same programming language. In each case the basic
de�nitions or axioms of each theory have been derived as theorems in its
preceding theory, in a cyclic fashion. It is therefore a matter of choice which
theory is presented �rst. My preference is to start with the most abstract,
because this gives the most help in speci�cation, design and development of
programs. Furthermore, derivation of algebraic laws is quite straightforward,
using standard mathematical proof methods. Finally, proof of the properties
of the operational semantics can take advantage of previously established the-
orems. In general, a top-down approach seems easier than starting at a low
level of abstraction and working upwards. But the operational semantics has
considerable attraction, and is currently quite fashionable among theorists
investigating the foundations of Computing Science.

Chapter 5

Conclusion

This monograph has recommended three distinct approaches to the construc-
tion of theories relevant to computing | the operational, the algebraic, and
the observational. They have each an important distinctive role, which can
and should be studied independently by specialists. But the full bene�ts of
theory are obtained by a clear and consistent combination of the bene�ts of
all three approaches. The method of consistent combination has been illus-
trated by application to a very simple programming language for expression
of sequential algorithms with possible non-determinism. This is only a small
part of the total task of clarifying the foundations of Computing Science.

We will need to build up a large collection of models and algebras, covering
a wide range of computational paradigms, appropriate for implementation
either in hardware or in software, either of the present day or of some possible
future. But even this is not enough. What is needed is a deep understanding
of the relationships between the di�erent models and theories, and a sound
judgment of the most appropriate area of application of each of them. Of
particular importance are the methods by which one abstract theory may
be embedded by translation or interpretation in another theory at a lower
level of abstraction. In traditional mathematics, the relations between the
various branches of the subject have been well understood for over a century,
and the division of the subject into its branches is based on the depth of
this understanding. When the mathematics of computation is equally well
understood, it is very unlikely that its branches will have the same labels that
they have today. Quoting from Andreski [?], \the contours of truth never
coincide with the frontiers between embattled parties and cliques". So we
must hope that the investigations by various schools of programming theory
will contribute to the understanding which leads to their own demise.

The establishment of a proper structure of branches and sub-branches is
essential to the progress of science. Firstly, it is essential to the e�cient ed-
ucation of a new generation of scientists, who will push forward the frontiers
in new directions with new methods unimagined by those who taught them.
Secondly, it enables individual scientists to select a narrow specialisation for
intensive study in a manner which assists the work of other scientists in re-
lated branches, rather than just competing with them. It is only the small
but complementary and cumulative contributions made by many thousands
of scientists that has led to the achievements of the established branches of
modern science. But until the framework of complementarity is well under-
stood, it is impossible to avoid gaps and duplication, and achieve rational
collaboration in place of unscienti�c competition and strife.

Quoting again from Andreski

\. . . the reason why human understanding has been able to ad-
vance in the past, and may do so in the future, is that true insights
are cumulative and retain their value regardless of what happens
to their discoverers; while fads and stunts may bring an immedi-
ate pro�t to the impresarios, but lead nowhere in the long run,
cancel each other out, and are dropped as soon as their promoters
are no longer there (or have lost the power) to direct the show.
Anyway let us not despair."

