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ABSTRACT 
We present Gestalt, a development environment designed to 
support the process of applying machine learning. While 
traditional programming environments focus on source 
code, we explicitly support both code and data. Gestalt 
allows developers to implement a classification pipeline, 
analyze data as it moves through that pipeline, and easily 
transition between implementation and analysis. An 
experiment shows this significantly improves the ability of 
developers to find and fix bugs in machine learning 
systems. Our discussion of Gestalt and our experimental 
observations provide new insight into general-purpose 
support for the machine learning process. 
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INTRODUCTION AND MOTIVATION 
Machine learning is at the core of many advances in science 
and technology. Within HCI, researchers have applied 
machine learning to search [9], facilitating creativity [18], 
and helping people live healthier lives [6]. Within computer 
science, machine learning can reduce system downtime [3] 
and detect anomalous network behavior [5]. In humanity’s 
greatest pursuits, machine learning can help understand 
cancer [7] and the beginnings of the universe [1]. 

Despite the sophistication of machine learning methods and 
their widespread impact in research, these algorithms are 
seldom applied in practice by ordinary software engineers. 
One reason is that applying machine learning is difficult in 
ways different than traditional programming. Traditional 
programming is often discrete and deterministic, but most 
machine learning is stochastic. Traditional programming 
focuses on modules and lines of code, but machine learning 
focuses on pipelines and data. Traditional programming is 

often debugged with print statements and breakpoints, but 
machine learning requires analyses with visualizations and 
statistics. Traditional programming allows developers to 
explicitly describe the behavior of a program, but systems 
that use machine learning must learn behavior from data. 
Developers need new methods and tools to support the task 
of applying machine learning to their everyday problems. 

Prior research has examined domain-specific support for 
applying machine learning to solve several important 
problems. Crayons uses a coloring metaphor for training 
image segmentation classifiers [8]. Eyepatch allows 
composition and training of classifiers to create vision 
systems. Exemplar supports direct manipulation methods 
for specifying simple sensor-based recognizers [14]. The 
domain-specific nature of such tools is both a strength and a 
weakness. Domain knowledge allows tools to limit the 
decisions required for a developer to create a system. But 
these same limitations also constrain the developer if a 
tool’s assumptions do not match the developer’s needs.  

This paper presents Gestalt, a general-purpose tool for 
applying machine learning. Gestalt targets developers, 
providing full support for writing code to specify the series 
of steps in a classification pipeline (Figure 1). In supporting 
a wide range of classification problems, Gestalt generalizes 
the lessons of prior domain-specific tools. Specifically, 
Gestalt allows developers to implement a classification 
pipeline, analyze data as it moves through that pipeline, and 
easily transition between implementation and analysis. 

The specific contributions of this work include:  
• Discussion of general-purpose development environment 

support for the application of machine learning.  
• The Gestalt development environment. Gestalt supports 

the implementation of a classification pipeline, analysis 
of data as it moves through that pipeline, and easy 
transitions between implementation and analysis. 

• Discussion of Gestalt’s capabilities, including a focus on 
generalizing lessons from domain-specific tools to 
provide general-purpose support for machine learning.  

• An evaluation demonstrating that Gestalt significantly 
improves developer ability to find and fix bugs in two 
typical applications of machine learning. 

• Discussion of current limitations and future opportunities 
for general-purpose machine learning support. 
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THE MACHINE LEARNING PROCESS 
Gestalt supports two high-level tasks in applying machine 
learning: implementing a classification pipeline and 
analyzing data as it moves through that pipeline.  

Implementation requires both the creation of a classification 
pipeline and collection of data to train and test that pipeline. 
Figure 1 shows two example pipelines, in which: (a) data is 
transformed into discrete examples, (b) attributes† are 
computed over each example, (c) a learning algorithm is 
used to train a model, and (d) the accuracy of that model is 
evaluated. Not all pipelines are identical, but their structure 
is similar: a linear progression of computation transforms 
data into a model that can be experimentally evaluated.  

Analysis allows developers to understand the behavior of a 
classification pipeline by examining how data moves 
through that pipeline. Beyond the correctness of any 
individual line of code, analysis requires developing an 
understanding of complex relationships between data, 
attributes, and model output [16]. In addition to final model 
output, this requires examination of intermediate data to 
ensure that each step in the pipeline behaves as expected. 
Developers examine whether data is correctly parsed and 
discretized, whether attributes are correctly computed, and 
whether the overall performance is sufficient for a problem. 

Although the structure of a classification pipeline is linear, 
the process of implementing and analyzing it is not. 
Analysis of a current implementation informs a developer’s 
next implementation action. Developers often revisit prior 
steps, such as collecting additional data, debugging 
implementation of attributes, brainstorming new attributes, 
or reconsidering their modeling algorithm. The process of 
applying machine learning thus requires repeated transition 
between implementation and analysis. Gestalt is defined by 
supporting both implementation and analysis so that these 
transitions can be fast, fluid, and easy.  

PROVIDING GENERAL-PURPOSE SUPPORT 
This section introduces two canonical machine learning 
problems: movie review sentiment analysis and pen-based 
gesture recognition. We discuss important differences 
between these problems, as these differences illustrate a 
range of support needed in a general-purpose tool. We then 

discuss their similarity, as their common structure provides 
the basis for Gestalt’s integrated support. 

Two Canonical Problems 
Sentiment analysis consists of categorizing text (e.g., movie 
reviews) according to some sentiment expressed in that text 
(e.g., whether a reviewer had a positive or negative 
impression of the movie). A canonical machine learning 
solution was developed by Pang et al. [15]. Following Pang 
et al.’s process, a developer collects positive and negative 
movie reviews, formats reviews to plain text, and computes 
word-count attributes (the number of times the word 
appears in the review). They then prune words that are too 
common, too rare, or not descriptive. The resulting pipeline 
can be evaluated in a standard cross-validation experiment. 
This involves randomly splitting data into testing and 
training sets, creating models using the training sets, and 
evaluating the accuracy of those models on the test sets.  

Pen-based gesture recognition is well studied, with Rubine 
providing a canonical approach [17]. A developer collects 
strokes defined as sets of (x, y, t) triples, where x and y are 
2D points and t is time. Because different people may draw 
the same gesture differently, data is typically collected from 
a large pool of people to help ensure learned models are 
robust to such variance. Strokes are normalized by rotating, 
translating, and scaling them to facilitate comparison. The 
normalized strokes are then used to compute attributes (e.g., 
the length of the stroke, measures of angles in the stroke). 
Cross-validation experiments then evaluate the pipeline.  

Problem Differences 
Sentiment analysis is a two-class problem, but gesture 
recognition is multi-class. In the sentiment problem, 
classification errors are binary (i.e., reviews can be only 
positive or negative). In the gesture problem, it also matters 
how an example is misclassified. For example, it is 
important to know if rectangles are commonly misclassified 
as triangles. This added information can help a developer 
identify the part of the pipeline responsible for that error. 

These problems also differ in the visual representation of 
their data. Pen-based gestures have a natural and compact 
visual representation. A developer can easily verify the 
label of a gesture by simply looking at a drawing of the 
stroke. In contrast, the sentiment of movie reviews requires 
significantly more time and effort to interpret. They are still 
human verifiable, but require more attention than a gesture.  

 
Figure 1: A wide variety of machine learning problems share a common classification pipeline. The pipeline describes how data is
transformed into a model: (a) raw data is parsed, (b) attributes are computed from parsed data, (c) a model is trained, and (d) the
model is tested. This figure above shows two problems, sentiment analysis and gesture recognition, that share the same pipeline. 

 

† We avoid the overloaded term feature, which could refer to either an
attribute of data or a capability of Gestalt. Both alternatives are
descriptive, though not as commonly used as the word feature. 



 

 

 

These problems also illustrate differing interpretability of 
their attributes, including verifiability and sparseness. 
Individual values of sentiment attributes are easier to verify. 
A developer can quickly check the value of a word-count 
attribute against the text of a review. In contrast, it is 
difficult to gauge the correctness of angle values and 
distances computed over the normalized points of a gesture. 
On the other hand, sentiment attributes are sparse. Each 
review has a large number of attributes, most word-count 
values are zero, and only non-zero values have an effect on 
the final model. The gesture recognition problem is defined 
by a small set of dense attributes, where each attribute may 
have a distinct value and an effect on the final model.  

A final difference we emphasize is how solutions are 
evaluated in cross-validation experiments. Random splitting 
of data into training and testing sets is generally effective 
for sentiment analysis and other problems. Applied to 
gesture recognition, however, it can often be misleading. 
People may differ in how they draw a gesture, and random 
sampling ignores this lack of independence. Because the 
goal is to evaluate how well a model is likely to generalize 
onto people who are not in the training set, leave-one-out 
cross-validation is used. Models are trained with data from 
all but one person, then tested with data from that person.  

Problem Similarity 
Although these problems are different at nearly every step, 
Figure 1 shows there is a similar structure to their 
classification pipelines. Both separate data into discrete 
examples, compute attributes describing each example, and 
conduct experiments that identify sets of examples that are 
correctly or incorrectly classified by the pipeline. This 
common structure provides leverage for a general-purpose 
tool. In our development of Gestalt, we have examined how 
an integrated environment can provide necessary flexibility 
at every stage of a process while also leveraging this 
common structure to make developers more effective in 
their application of machine learning. The next section 
introduces Gestalt and its capabilities. In later discussion, 
we consider limitations of our current implementation and 
the general-purpose approach. 

GESTALT 
Developers interact with a classification pipeline in Gestalt 
through two high-level perspectives: an implementation 
perspective and an analysis perspective (Figure 2). This 
parallels the common distinction between coding and debug 
perspectives in modern development environments (e.g., 
Eclipse, Microsoft Visual Studio). The implementation 
perspective allows developers to edit code and manage the 
classification pipeline. The analysis perspective visualizes 
the information computed as data moves through that 
pipeline. This section describes the specific capabilities of 
Gestalt and discusses how these capabilities work together 
to support developers as they implement a pipeline, analyze 
data, and transition between these perspectives.  

Providing Structure While Maintaining Flexibility 
How do I represent my problem? 
Domain-specific tools use an understanding of a particular 
machine learning problem to constrain and hide some parts 
of the classification pipeline, exposing only the parts a 
developer needs to interact with to create a solution. For 
example, Crayons allows developers to input data and see 
the output of a model, but provides no control over the 
attributes or the learning algorithm [8]. Crayons achieves its 
ease of use by cloaking this complexity. However, it is thus 
impossible to directly modify Crayons to solve a different 
machine learning problem (even if that problem has a 
similar classification pipeline).  

A key realization in Gestalt is that general support cannot 
be achieved by hiding steps in the pipeline. The 
classification pipeline is similar for many problems, but the 
relative importance of different steps varies from problem 
to problem. Gestalt provides general support through a 
structured set of explicit steps with standardized inputs and 
outputs (Figure 2a). Gestalt preserves flexibility by defining 
each step using IronPython scripts written in a built-in text 
editor (Figure 2b). This combination provides an explicit 
structure without constraining what a developer can do in 
that structure. Gestalt thus provides the same flexibility as 
general-purpose programming environments (e.g., Eclipse, 
MATLAB). 

Figure 2: The implementation perspective provides developers with structure through its classification pipeline view (a) and 
flexibility by allowing them to write code to represent their specific problem (b). A common data structure (c), shared 
between analysis and implementation, allows developers to quickly switch between the two tasks. The analysis perspective 
allows developers to interact with the provided visualizations (e) by filtering, sorting, and coloring (d).  



 

 

 

Gestalt’s explicit structure provides a basis for its other 
functionality. For example, Figure 2a shows how Gestalt 
can help developers locate execution errors within specific 
steps. A circle next to each step is colored grey, yellow, 
green, or red according to whether the step still needs to be 
executed, is currently being executed, executed 
successfully, or failed due to an execution error. The 
structured and typed sequence of steps also allows Gestalt 
to capture and visualize computation at intermediate steps 
throughout the pipeline. This section discusses how each 
step can be used as a launching point for analysis, helping 
developers better understand the behavior of their system 
through inspection of the input and output at each step. 

Appropriate Data Structures 
Where do I store my data? 
Implementing a classification pipeline requires loading data 
and storing it in some representation for use throughout the 
remainder of the pipeline. Domain-specific tools often hide 
seedy details of this portion of a machine learning system. 
But data comes in many forms and sizes, so effective data 
management is a requirement for general tools. 

Gestalt stores all information from the entire classification 
pipeline in a relational data table. Relational tables are a 
natural representation for discrete examples with many 
attributes. Because of this, they are also the backbone of 
many other general-purpose tools (e.g., Weka, Tableau). 
Gestalt differs from such tools because they do not address 
the entire classification pipeline (e.g., Weka focuses on a 
library of modeling algorithms, Tableau focuses on 
powerful visualizations of tabular data). Despite their 
common tabular nature, data representations in such tools 
are not identical. Developers using combinations of tools to 
address an entire pipeline must therefore explicitly attend to 
format conversion. The narrowed focus of each tool also 
means that information is often lost or unavailable when 
converting between tools. For example, Weka and other 
tools that represent examples as vectors of attributes 
generally lack support for examining the original data used 
to compute those attributes (the raw data is typically not 
propagated forward by the attribute generation script). 

Gestalt’s use of a single unified table means developers are 
freed from managing data conversion or moving data 
between tools. This is critical to enabling fluid and easy 
movement between interpretation and analysis. Gestalt’s 

data representation implements several enhancements to a 
standard table. First, attribute columns are typed and tagged 
according to where they are used in the classification 
pipeline. All attributes can be used to summarize, visualize, 
and interact with data, but only some of those attributes can 
be used to build a model. Tagging of columns allows 
Gestalt to track which attributes should be used by a 
learning algorithm to train a model. Instead of creating a 
separate data table in each step of the pipeline, Gestalt uses 
a cascaded table structure to reduce the overhead of storing 
intermediate data. Finally, Gestalt provides a sparse 
representation for storing large sets of sparse attributes 
found in many problems (e.g., sentiment analysis).  

Visualizing and Aggregating Examples: 
How do I see my data? 
Developers reason about system behavior by examining 
data and its relationship to attributes and classification. 
Domain-specific tools generally include a visual component 
that provides this feedback. This allows developers to 
examine individual examples as well as compare multiple 
examples. For example, Crayons presents images with 
translucent highlights indicating how pixels are classified 
by a learned model. This shows how individual examples 
are classified (individual pixels) and also provides relevant 
examples for comparison (the other pixels in the image). 

Gestalt’s support for many data types is enabled by a key 
distinction between individual and aggregate visualizations. 
It is impossible for a general tool to provide pre-packaged 
visualizations for all possible types of data. Gestalt instead 
supports data visualization by separating the logic needed to 
view one example from the logic to combine many single 
examples into an aggregate view. Developers can write 
code to visualize an example, and Gestalt then integrates 
that into aggregate visualizations throughout the pipeline. 
Two examples of aggregate visualizations are the grid view 
(Figure 3a, 4a, 4c) and the table view (Figure 3b). 

We also note that aggregate views begin to demonstrate 
how Gestalt’s capabilities work together to create an 
integrated environment. Gestalt’s structured representation 
of the classification pipeline defines boundaries between 
steps where developers can use aggregate views to gain 
insight into their data. Gestalt’s emphasis on code-based 
flexibility allows developers to adapt those visualizations to 
meet the needs of their particular data.  

 
Figure 3: By looking at the raw data next to the attributes computed from that data, developers can gain a better 
understanding of system behavior. Here a developer is shown a thumbnail of movie review data (a). The developer clicks on 
the thumbnail to examine the raw data, attributes computed from it, and the fact that it is currently misclassified (b). 



 

 

 

Interactive, Connected Visualizations  
How can I relate my data, attributes, and results? 
Grouping and summarizing examples can help a developer 
understand a classification pipeline. Gestalt’s analysis 
emphasizes interactive visualizations, inspired by work in 
interactive visualization tools [4]. Support is provided for 
faceted browsing, filtering, sorting, and coloring examples. 
Grouping and summarization operations can be applied 
according to attribute values, according to columns added 
to examples by steps in the classification pipeline, and 
according to tags added to examples by a developer. 

Gestalt’s support for machine learning goes beyond such 
prior general-purpose visualization tools by connecting data 
generated across the entire classification pipeline. In the 
case of domain-specific tools, consider that the coloring 
metaphor in Crayons is effective in part because it connects 
the pipeline’s beginning (labeling data) and end (analyzing 
model classification) within a single visualization. Gestalt 
generalizes this with visualizations that connect data from 
different steps in the pipeline to help developers understand 
relationships between data, attributes, and results.  

Figure 3 shows one approach to a connected visualization, 
side-by-side presentation of information about the same 
example from different parts of the pipeline. Working on a 
sentiment analysis problem, a developer hovers over an 
item in a grid view to see a preview of the document. They 
then click into the grid for a side-by-side view of the 
document, its computed attributes, and its classification. 
Pulling this into a single view allows a developer to 
understand how an example moved through the pipeline. 

A second approach to connected visualizations emphasizes 
filtering and grouping examples based on information from 
different steps in the pipeline. Figure 4 presents an example 
of a developer clicking into a confusion matrix to isolate 
examples labeled as triangles and classified as rectangles. 
In this case, it seems likely that several of these instances 
are mislabeled. As another example, a developer might 
apply a filter to isolate examples that have a particular 
attribute value. Examining these might suggest a possible 
bug in the code computing that attribute. Connected 
visualizations allow developers to quickly assemble the 
information needed to examine such questions. 

The “Gestalt” of Gestalt 
Each of Gestalt’s capabilities is important, but Gestalt’s real 
power comes from how they relate and are combined. 
Figure 4’s clicking into a confusion matrix to see 
misclassified examples requires a structured understanding 
of the pipeline, the flexibility to implement an appropriate 
visualization of the individual examples, and a data 
representation capturing how each example moved through 
the pipeline. All of these pieces work together. 

As a whole, these capabilities serve to accelerate the 
interactive loop: developers can more quickly implement 
and analyze different potential versions of a machine 
learning system. Gestalt’s approach provides both structure 
and flexibility for rapid implementation, the shared data 
table removes data conversion and management to make it 
easy to switch between implementation and analysis, and 
connected visualizations allow developers to quickly 
analyze the important parts of their system. 

CURRENT TOOL WORK 
Several categories of tools can be used in machine learning 
applications and warrant discussion with regard to Gestalt.  

Domain-Specific Tools 
Domain-specific tools support both implementation and 
analysis, but do so at the expense of flexibility. For 
example, Crayons supports the learning of models that 
segment images [8]. A developer captures an image and 
colors regions that correspond to different segments. The 
system learns a model from these labeled pixels, and the 
developer analyzes the model’s performance by applying it 
to new images and overlaying the results on those images. 
The designer iterates by correcting model mistakes, thus 
providing new data for the classification pipeline. Crayons 
achieves this ease of use by limiting flexibility. Input is 
limited to providing more training examples, and analysis is 
limited to looking at classification results overlaid on 
images. Developers cannot access other information that 
might help them iterate (e.g., attribute values). 

Domain-specific tools have been created for a variety of 
problems, including computer vision systems [14], simple 
sensor-based recognizers [11], and interactive concept 
learning in image search [9]. Because the number of 

 
Figure 4: In Gestalt developers can use faceted browsing techniques to understand data. Here a developer tries to 
understand why triangles are confused with rectangles by filtering the full set of examples (a) through a click on a 
confusion matrix cell (b). The filtered examples (c) show that the confusion is due to mislabeled data.  



 

 

 

domains affected by machine learning is large and growing, 
designing domain-specific tools for each is untenable. 
Domain-specific tools often target non-programmers, who 
are unlikely to be able to make major changes to the inner 
workings of a system. Gestalt targets developers and can 
take a different approach. Gestalt focuses on providing the 
necessary development support to make implementation 
and analysis easier for a wide variety of domains. We are 
thus lowering the barrier to using machine learning, so that 
the large population of developers can join the ranks of 
expert researchers in their ability to apply machine learning.  

Disconnected General-Purpose Tools 
A variety of general-purpose tools support either 
implementation or analysis of machine learning systems. 
Weka is a well-known example, providing developers with 
a large library of machine learning algorithms [20]. 
Interactive visualization tools like Tableau can be applied to 
data exported from machine learning systems [19].  

Tools that each support a portion of the machine learning 
pipeline create gaps that are a fundamental obstacle to 
effectively moving between implementation and analysis. 
Developers must explicitly choose to move from one tool to 
another, typically losing any established working context. It 
is entirely upon the developer to bridge the gaps between 
tools: writing custom scripts to convert between data 
formats exported by different tools, aggregating and 
visualizing raw data, storing and linking intermediate 
information computed throughout the pipeline. For 
example, a canonical pipeline for the sentiment analysis 
problem might use Python to process reviews and obtain 
word-count attributes, then Weka to train a model, then 
Tableau to analysis experimental results. Reproducing the 
interactions from Figure 3 and Figure 4 would require 
extensive developer effort. Gestalt connects steps, 
aggregates examples, and enables interactivity to allow 
developers to focus on the logic of their pipeline and 
analyses of how data is transformed in that pipeline.  

Connected General-Purpose Tools 
Connected general-purpose tools are capable of addressing 
the entire classification pipeline. These can be further 
decomposed into dataflow and programming environments.  

Dataflow environments provide sets of discrete components 
that can be combined to implement desired behaviors [2]. 
Some dataflow tools even provide components targeting 
machine learning problems [10]. Dataflow tools generally 
focus on using pre-built components, so it is relatively 
difficult to create new components or modify the behavior 
of existing components. In contrast, machine learning 
problems vary in behavior. The structures of the sentiment 
analysis and gesture recognition problems are similar, but 
the behaviors of steps for data parsing and attribute 
generation are very different and unlikely to be provided as 
part of any standard set of prebuilt components. Gestalt’s 
focus on developer flexibility, critical to allowing rapid 
iteration on a pipeline, is more similar to the support 
provided by general programming environments.  

Modern general programming environments work well for 
writing code that describes the behavior of a program, but 
are not designed for writing code that learns from data. 
Many people experienced in the application of machine 
learning report a preference for MATLAB, because it 
provides better support than most programming 
environments. Matrices are first-class objects, a good fit for 
tabular data representations. Many machine learning 
algorithms include solving linear algebra problems, also 
well-supported by MATLAB. MATLAB makes analysis 
easier by reducing the need to write boilerplate code needed 
to sort, filter, and create basic visualizations. Finally, 
MATLAB provide sufficient functionality to significantly 
reduce the overhead of switching between applications and 
connecting information across tools. 

Despite these advantages of a connected environment like 
MATLAB, it still falls short in addressing the difficulties 
developers face when using machine learning. Developers 
must still construct a classification pipeline from scratch, as 
the environment does not understand the structure of the 
problem being solved. MATLAB’s data representation has 
not been designed for machine learning, and all elements in 
a matrix are of a single datatype. Developers therefore must 
maintain multiple parallel matrices to store raw data, 
numerical attributes, string attributes, and attribute names. 
Finally, MATLAB visualizations are simple charts. They 
do not support the aggregation or visualization of raw data, 
interactively grouping examples within visualizations, or 
connecting information between different steps in the 
machine learning process. To support any of these 
capabilities, developers would need to rewrite most of the 
functionality provided by Gestalt within MATLAB.  

EVALUATING BUG FINDING IN GESTALT 
Our study compared bug-finding performance for 
participants using Gestalt with a baseline condition similar 
to MATLAB. Prior research shows the developers consider 
connected environments, like MATLAB, to provide the 
best support for the machine learning process [16]. This 
section describes our baseline system, the tasks in our study 
design, and the major results of our experiment. 

Participants 
We recruited 8 participants (2 female) for our study. All 
were computer science graduate students. All had some 
experience programming in Python, had taken at least one 
course that taught machine learning algorithms, and had 
worked on at least one project that used supervised machine 
learning. This population is consistent with the target 
audience of Gestalt: software developers who know how to 
apply machine learning. 

Baseline vs. Gestalt 
The baseline condition was a general-purpose development 
environment in which participants created, edited, and 
executed scripts. Like in MATLAB, participants created 
visualizations by calling functions and writing scripts to 
sort, filter, and color. We provided an API with which 
could be used to reproduce all of Gestalt’s visualizations.  



 

 

 

The baseline condition and Gestalt used the same data table 
structure to store data. Unlike Gestalt, the data table in the 
baseline did not keep track of information generated across 
the pipeline.  Participants had to write code to connect raw 
data, attribute values, and classification results or to create 
side-by-side visualizations. 

Other than these differences, Gestalt and the baseline were 
identical. The entire process was integrated, all of the code 
for the learning process was written within the same 
framework, using the same data structures, with the same 
programming language. We chose this study design, instead 
of a design that compared Gestalt directly to MATLAB, 
because we wanted to increase our confidence that any 
differences we observed were due to the capabilities we had 
taken away (and not other differences in the tools, such as 
the syntax of the programming language).  

Study Design 
The study was a within-subjects design, comparing Gestalt 
with the baseline across two debugging tasks. To account 
for carryover or interaction effects based on the ordering of 
interface conditions (e.g., ordering or pairing of interface 
and task), we counterbalanced the task with condition 
(Gestalt and baseline) and order (first and second). 

Our dependent measures included the number of bugs found 
and the number of bugs fixed within the one-hour time span 
of each task. A bug was counted as found if the participant 
verbalized the root cause. For example, “The data is 
mislabeled” or “This line of code should be using this 
variable instead”. If the participant just speculated about the 
cause, the bug would not be counted as found. 

We did not measure time to fix a bug, because it was not 
feasible to ascertain which bug a participant was working 
on at any given time. Participants were cognizant of the 
existence of multiple bugs. While trying to find and fix a 
primary bug, participants often gathered information 
needed to find and fix other bugs. Instead of the time to fix 
each bug, we focus on such measurements as the time spent 
in various visualizations over the entire study.  

Sentiment Analysis and Gesture Recognition Tasks 
Participants built solutions for the two problems discussed 
earlier: sentiment analysis and gesture recognition. Each 
contained data and five scripts: parsing, attributes, 
splitting, training, and testing. We created 
working solutions for both Gestalt and the baseline, then 
injected five bugs into each solution. The machine learning 
code for the baseline and Gestalt differed only in how 
scripts were called and how data was maintained between 
steps. These factors were intrinsic to the differences 
measured in our results. Although we have described the 
two problems previously, we provide additional details 
about their implementation. 

The sentiment analysis task classified movie reviews as 
positive or negative. We used 1,000 negative and 1,000 
positive reviews from a standard sentiment analysis dataset 

[15]. We computed word-count attributes, built a Naïve 
Bayes model, and evaluated using three-fold cross 
validation. After building a working system, we introduced 
the following bugs into the sentiment analysis problems:  

S1: mislabeled 300 positive and 300 negative  
examples [data] 

S2: positive examples are read in twice [parsing] 
S3: instead of removing stop words, the code removes 

everything except for stop words [attributes] 
S4: only updates the count for one  

attribute [attributes] 
S5: each fold tests on the training set [splitting] 

The gesture recognition task involved building a model that 
classifies a pen-stroke as one of 16 different gestures. We 
used a standard dataset of 5280 gestures collected from 11 
different people [21]. We normalized strokes, computed 
attributes, built a Rubine model, and evaluated using per-
person cross-validation. We introduced the following bugs: 

G1: mislabeled gestures (30 triangles swapped with 
rectangles, 30 circles with stars, and 30 carets with 
checks) [data] 

G2: (x, y, t) points are loaded as (t, x, y) [parsing] 
G3: does not load all of the examples [parsing] 
G4: sine and cosine values are the same for one of the 

attributes [attributes] 
G5: tests on the same person in each fold [splitting] 

We chose all of the bugs based on common programming 
errors or common machine learning process errors. For 
example, earlier versions of the Pang et al. dataset included 
problems with mislabeled data that were later discovered 
and reported [15]. The cross-validation bug in our gesture 
recognition task is the same one reported by Hodges and 
Pollack in their work [12]. Other bugs were based on 
common mistakes, such copy-paste errors [13].  

Participants were told that (except for the actual training 
and testing of the model) there could be bugs at any step in 
the pipeline. This included bugs in the raw data. They were 
assured the structure of the pipeline was correct and the task 
was not one of attribute generation or algorithm 
development. As a stopping condition, they were given a 
target accuracy range suggesting they had fixed all of the 
bugs. This was a realistic stopping criterion in the context 
of our task, repairing existing machine learning programs 
that were known to have achieved a certain level of 
accuracy in the past. 

Data-labeling bugs in each task would have taken more 
time to fix than was allotted. To make fixing mislabeled 
data tractable, participants had to clearly state why 
examples were mislabeled (associate the mislabeling with 
bad data rather than a programming error). We then pointed 
them to a directory containing correctly labeled data.   

Finally, because the inserted bugs interacted with each 
other, the accuracy of the classifier could increase or 
decrease erratically (even going above the target accuracy). 



 

 

 

This was a deliberate choice; erroneous high accuracy 
values may be more dangerous because they provide a false 
sense of success. Additionally, it can often be the case that 
an existing solution may have multiple bugs and reported 
accuracy itself may not be the best metric for debugging.  

Procedure 
After providing consent, participants completed a one-page 
survey detailing their prior machine learning and Python 
experience. The experimenter provided a document 
detailing the first task. Both tasks were presented as 
salvaging code written by another developer. The document 
detailed the steps taken by the previous developer, and 
participants were informed the developer had chosen a good 
strategy but there were mistakes in the execution. After 
explaining the task, the experimenter provided participants 
a one-page questionnaire asking what tools they would 
normally use to implement the outlined task.  

After completing the questionnaire, participants followed a 
tutorial on each tool. In the Gestalt condition, the tutorial 
discussed the capabilities of the implementation and 
analysis perspectives. The baseline tutorial contained 
information about the capabilities of the editor and the 
visualization API. After the tutorials, the experimenter 
provided quick reference sheets for the included APIs. 
Because we were studying the effect of Gestalt’s novel 
capabilities and not the usability or learnability of the 
system, participants were told they could use the 
experimenter as an intelligent help system during the task. 
This included asking questions about APIs, visualizations, 
the machine learning problems, and error messages.  

Participants were asked to talk aloud, describing their 
progress in the bug finding process. Participants were told 
the experimenter might ask questions about their state or 
current action. We asked participants to think aloud about 
the states: (1) I have no idea what the bug is, (2) I have a 
guess, (3) I'm checking my guess, (4) I'm fixing the bug, and 
(5) I'm confident I fixed the bug. Participants were given 
one hour to complete the task. After they finished, the 
experimenter saved their data and started the next task, 
providing descriptions of the new machine learning 
problem and the new development environment.  

After completing the second task, participants were given a 
final questionnaire asking them to rate the usefulness of the 
visualizations and faceted search capabilities. They were 
also asked to compare the two development environments 
and to compare to the existing tools they had reported they 
would use for these tasks. Participants then completed a 
recording consent form and were paid $50 for their time. 
The entire study took between 3 and 3.5 hours. 

RESULTS  
Participants unanimously preferred Gestalt and were able to 
find and fix more bugs using Gestalt than using the 
baseline. Figure 5 shows an overview of bugs per condition. 
To examine our found and fixed measures, we conducted a 
mixed-model analysis of variance. We modeled participant 

as a random effect and modeled condition (Gestalt vs. 
baseline), task (sentiment analysis vs. gesture recognition), 
and trial (first vs. second) as fixed effects. We also modeled 
the interactions condition×trial and condition×task. We 
used these same independent variables in all of the analyses 
we report in this section. 

We found a marginal effect of trial on the number of bugs 
found, with participants finding more in the second trial 
(3.1 vs. 4.0 bugs, F1,5=4.62, p ≈ .084). This suggests some 
learning, as there were commonalities among the bugs in 
the two tasks. We verified the interaction condition×trial 
was not significant (p > .42), confirming the effectiveness 
of our counterbalanced design. Participants in the Gestalt 
condition found significantly more bugs (4.25 vs. 2.88 bugs, 
F1,5=11.42, p ≈ .019). 

We also found a marginal effect of trial for bugs fixed (2.88 
vs. 3.63 bugs, F1,5=4.09, p ≈ .099) and again confirmed our 
counterbalance effectiveness by verifying the lack of 
significant interaction condition×trial (p > .72). 
Participants in the Gestalt condition fixed significantly more 
bugs (3.75 vs. 2.75 bugs, F1,5=7.27, p ≈ .042).  

DISCUSSION 
This section discusses how Gestalt was used, the process 
participants followed to solve machine learning problems, 
and possible explanations for Gestalt’s better performance. 
We ground our observations in free response questions 
from our questionnaire and secondary measures of 
performance. We also discuss limitations of our study, 
Gestalt’s implementation, and general-purpose tools. 

The Importance of Structure 
We hypothesized a structured representation would be most 
useful when developers first started a project, as it would be 
less daunting than a blank slate. Because we provided a 
mostly working implementation of the project, we felt the 
importance of structure would be diminished in our study. 
Consequently, we did not explicitly ask participants 
whether they found the structure helpful.  

However, we included open-ended questions asking 
participants what capabilities they found the most useful. In 
this open-ended portion of the questionnaire, five of eight 

Figure 5: Developers found and fixed significantly 
more bugs in the Gestalt condition. 



 

 

 

participants said the explicit structure provided by viewing 
and interacting with the classification pipeline was one of 
the most useful components of Gestalt. They stated they 
would like to see it in their own tools, with one participant 
writing “The [classification pipeline view] was very helpful. 
When I am running these types of experiments, I often get 
lost in all of the processing steps. This seems like a useful 
way to organize the workflow.”  

Creating Individual Example Visualizations 
Even though we provided standard visualizations of the 
individual examples in both conditions, some participants 
created their own. Both the baseline and the Gestalt 
conditions provided developers with the ability to make 
charts, including the ability to plot points. Two participants 
in the baseline condition (p5 and p7) used this to plot a 
gesture’s stroke. This confirms developers can and will 
develop quick, simple visualizations of raw data when 
given proper tools. This is promising evidence for Gestalt’s 
approach of using developer-created visualizations of 
individual examples in aggregate visualizations to help 
developers understand data, attributes, and results. 

The Need for Connectivity 
Participants in both conditions actively tried to relate 
attribute values and results to their raw data. Gestalt’s 
connected visualizations make it easy to compare their data, 
attributes, and classification results. When taken away in 
the baseline, participants expressed frustration. One 
participant, who worked in Gestalt first, explicitly described 
that he wanted to see the raw data next to the attributes in 
the baseline and was annoyed that it was not as easy as in 
the prior condition.  

To make up for a lack of connectivity in the baseline, three 
participants (p1, p3, and p8) went to great lengths to cobble 
together their own combined table view; two did this before 
having used Gestalt. In all three cases, they opened two 
separate table views, one after parsing and one after 
attribute computation. They then resized these tables and 
placed them side-by-side so they could visually compare 
attributes with data.  

Interactivity 
We also observed that the interactivity of visualizations was 
critical. Because we logged the active window as well as 
input (e.g., mouse clicks, key strokes), we could determine 
if participants spent their time implementing or analyzing. 
Participants in Gestalt spent significantly more time 
analyzing (37.3% vs. 18.9%, F1,5=5.44, p ≈ 0.001).  

Participants also used more kinds of views. In our 
post-study questionnaire, we asked participants to tell us 
which faceted search capabilities (e.g., filtering) and views 
they used (e.g., grid view). We found that participants tried 
significantly more views in the Gestalt condition (3.4 vs. 
2.5 views, F1,5=18.84, p ≈ .007) and marginally more 
faceted search techniques (2.0 vs. 1.1 techniques, F1,5=5.44, 
p ≈ 0.067). The gesture recognition task also led 
participants to spend more time in visualizations (32.9% vs. 

23.3%, F1,5=11.15, p ≈ .021), look at more views (3.4 vs. 
2.5 views, F1,5=18.84, p ≈ .0074), and use more faceted 
search techniques (2.3 vs. 0.9 techniques, F1,5=13.44, p ≈ 
.015) than the sentiment analysis task. This is likely 
because there were more classes in the gesture condition 
and the data was easier to visualize. These differences 
suggest that spending more time looking at more kinds of 
views might allow developers to better formulate and test 
possible explanations that lead them to find and fix more 
bugs.  

In both conditions, most participants used filtering and 
sorting to group relevant examples. Gestalt made this 
easier. One participant followed the exact process shown in 
Figure 4. He clicked in a confusion matrix to see examples 
of triangles classified as rectangles, then found the 
mislabeled examples.  

Study Limitations 
Our study has several limitations. Both tasks had pipelines 
that could be run in real-time (loading and processing data, 
generating attributes, training a model, testing the model). 
Many important learning problems are too expensive to be 
computed in real-time. We chose this limitation to allow 
participants to explore a large number of different bug 
hypotheses within our time constraint. It is possible that 
Gestalt may be more useful in situations where models take 
longer to train. Developers might enjoy greater benefit from 
using visualizations to explore data and attributes while 
waiting for updated results in a longer feedback cycle.  

Our study was also limited to finding bugs in unfamiliar 
code. The challenges in the middle of a development 
process are different from those at the beginning, and 
setting up a workflow for a learning task can be daunting. 
Participants found value in Gestalt’s pipeline structure. 
Their comments in the open-ended questionnaire lead us to 
believe Gestalt’s structure will also assist developers 
solving machine learning problems from scratch. 

Our study focused on two problems for which developers 
had some intuition about the data. They knew gestures that 
looked similar should be in the same dataset, and they knew 
words in movie review text should appear as non-zero 
attributes. Developers may not always have such a clear 
understanding of the data at the onset of the project. They 
may instead develop understanding over time. Flexible 
visualizations seem crucial for this, as they can allow 
developers to create individual visualizations embodying 
information to best help them to understand their data.  

Limitations of Gestalt 
Our study revealed some unexpected work patterns that 
suggest new opportunities for Gestalt and other tools. 
Participants p7 and p8 created toy review datasets to see if 
reviews were being correctly parsed and word counts were 
being correctly computed. Participant p8 also created 
simple strokes that consisted of a few (x, y, t) points. He 
then manually computed attributes (using pen and paper) 
and compared them to the values computed during attribute 



 

 

 

generation. Other participants created filters by manually 
selecting a small set of examples and examining them 
through the entire pipeline. These behaviors collectively 
suggest support for unit testing practices could be a good 
addition to Gestalt and other machine learning tools. 

While Gestalt can be used to build machine learning 
systems for many domains, there are some problems Gestalt 
does not completely support. A key limitation is that Gestalt 
assumes individual examples can be processed without the 
context of the larger dataset. This impacts the types of 
learning algorithms Gestalt supports, but also some of 
Gestalt’s core capabilities. For example, our current grid 
and table aggregate visualizations cannot properly visualize 
relationships inherent to sequential data (e.g., time-series). 
It is also non-obvious how to implement the interaction in 
Crayons, where individual pixels have meaning only in the 
aggregate context of an image. New general methods for 
describing relationships between examples would benefit 
Gestalt and future general-purpose tools. 

The difficulty of implementing the core Crayons interaction 
within Gestalt raises a question of whether general-purpose 
tools can be as effective as domain-specific tools. Both 
styles of tool are important. It is almost certain that a 
highly-specialized tool will be more effective for its 
particular problem. However, general tools provide two 
advantages. We have noted that the number of domains 
affected by machine learning is large and growing. General 
tools can support problems for which domain-specific tools 
have not yet been developed. Further, distilling general 
mechanisms, like those in Gestalt, informs domain tools by 
allowing a focus on domain-specific extensions instead of 
re-inventing general mechanisms. 

CONCLUSION 
Gestalt supports the entire process of applying machine 
learning: implementing a classification pipeline, analyzing 
data as it moves through that pipeline, and easily 
transitioning between these perspectives. We have 
discussed how Gestalt’s capabilities generalize advances 
from prior domain-specific tools to provide general-purpose 
support. A comparison of participants using Gestalt with a 
baseline condition similar to MATLAB showed participants 
find and fix more bugs with Gestalt and that Gestalt’s 
flexibility and visualizations were primary contributors to 
their success. These results show that helping developers 
understand relationships between the various steps in a 
classification pipeline is important to their success. 
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