

Gestalt: Integrated Support for
Implementation and Analysis in Machine Learning

Kayur Patel†, Naomi Bancroft†, Steven M. Drucker‡, James Fogarty†, Andrew J. Ko+, James A. Landay†
†Computer Science & Engineering

DUB Group, University of Washington
Seattle, WA 98195

{ kayur, bancron, jfogarty, landay }@cs.washington.edu

‡Microsoft Research
One Microsoft Way

Redmond, WA 98052
sdrucker@microsoft.com

+The Information School
DUB Group, University of Washington

Seattle, WA 98195
ajko@u.washington.edu

ABSTRACT
We present Gestalt, a development environment designed to
support the process of applying machine learning. While
traditional programming environments focus on source
code, we explicitly support both code and data. Gestalt
allows developers to implement a classification pipeline,
analyze data as it moves through that pipeline, and easily
transition between implementation and analysis. An
experiment shows this significantly improves the ability of
developers to find and fix bugs in machine learning
systems. Our discussion of Gestalt and our experimental
observations provide new insight into general-purpose
support for the machine learning process.

Author Keywords
Gestalt, machine learning, software development.

ACM Classification Keywords
H5.2 Information Interfaces and Presentation: User Interfaces;
D2.6 Programming Environments: Integrated Environments.

INTRODUCTION AND MOTIVATION
Machine learning is at the core of many advances in science
and technology. Within HCI, researchers have applied
machine learning to search [9], facilitating creativity [18],
and helping people live healthier lives [6]. Within computer
science, machine learning can reduce system downtime [3]
and detect anomalous network behavior [5]. In humanity’s
greatest pursuits, machine learning can help understand
cancer [7] and the beginnings of the universe [1].

Despite the sophistication of machine learning methods and
their widespread impact in research, these algorithms are
seldom applied in practice by ordinary software engineers.
One reason is that applying machine learning is difficult in
ways different than traditional programming. Traditional
programming is often discrete and deterministic, but most
machine learning is stochastic. Traditional programming
focuses on modules and lines of code, but machine learning
focuses on pipelines and data. Traditional programming is

often debugged with print statements and breakpoints, but
machine learning requires analyses with visualizations and
statistics. Traditional programming allows developers to
explicitly describe the behavior of a program, but systems
that use machine learning must learn behavior from data.
Developers need new methods and tools to support the task
of applying machine learning to their everyday problems.

Prior research has examined domain-specific support for
applying machine learning to solve several important
problems. Crayons uses a coloring metaphor for training
image segmentation classifiers [8]. Eyepatch allows
composition and training of classifiers to create vision
systems. Exemplar supports direct manipulation methods
for specifying simple sensor-based recognizers [14]. The
domain-specific nature of such tools is both a strength and a
weakness. Domain knowledge allows tools to limit the
decisions required for a developer to create a system. But
these same limitations also constrain the developer if a
tool’s assumptions do not match the developer’s needs.

This paper presents Gestalt, a general-purpose tool for
applying machine learning. Gestalt targets developers,
providing full support for writing code to specify the series
of steps in a classification pipeline (Figure 1). In supporting
a wide range of classification problems, Gestalt generalizes
the lessons of prior domain-specific tools. Specifically,
Gestalt allows developers to implement a classification
pipeline, analyze data as it moves through that pipeline, and
easily transition between implementation and analysis.

The specific contributions of this work include:
• Discussion of general-purpose development environment

support for the application of machine learning.
• The Gestalt development environment. Gestalt supports

the implementation of a classification pipeline, analysis
of data as it moves through that pipeline, and easy
transitions between implementation and analysis.

• Discussion of Gestalt’s capabilities, including a focus on
generalizing lessons from domain-specific tools to
provide general-purpose support for machine learning.

• An evaluation demonstrating that Gestalt significantly
improves developer ability to find and fix bugs in two
typical applications of machine learning.

• Discussion of current limitations and future opportunities
for general-purpose machine learning support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

THE MACHINE LEARNING PROCESS
Gestalt supports two high-level tasks in applying machine
learning: implementing a classification pipeline and
analyzing data as it moves through that pipeline.

Implementation requires both the creation of a classification
pipeline and collection of data to train and test that pipeline.
Figure 1 shows two example pipelines, in which: (a) data is
transformed into discrete examples, (b) attributes† are
computed over each example, (c) a learning algorithm is
used to train a model, and (d) the accuracy of that model is
evaluated. Not all pipelines are identical, but their structure
is similar: a linear progression of computation transforms
data into a model that can be experimentally evaluated.

Analysis allows developers to understand the behavior of a
classification pipeline by examining how data moves
through that pipeline. Beyond the correctness of any
individual line of code, analysis requires developing an
understanding of complex relationships between data,
attributes, and model output [16]. In addition to final model
output, this requires examination of intermediate data to
ensure that each step in the pipeline behaves as expected.
Developers examine whether data is correctly parsed and
discretized, whether attributes are correctly computed, and
whether the overall performance is sufficient for a problem.

Although the structure of a classification pipeline is linear,
the process of implementing and analyzing it is not.
Analysis of a current implementation informs a developer’s
next implementation action. Developers often revisit prior
steps, such as collecting additional data, debugging
implementation of attributes, brainstorming new attributes,
or reconsidering their modeling algorithm. The process of
applying machine learning thus requires repeated transition
between implementation and analysis. Gestalt is defined by
supporting both implementation and analysis so that these
transitions can be fast, fluid, and easy.

PROVIDING GENERAL-PURPOSE SUPPORT
This section introduces two canonical machine learning
problems: movie review sentiment analysis and pen-based
gesture recognition. We discuss important differences
between these problems, as these differences illustrate a
range of support needed in a general-purpose tool. We then

discuss their similarity, as their common structure provides
the basis for Gestalt’s integrated support.

Two Canonical Problems
Sentiment analysis consists of categorizing text (e.g., movie
reviews) according to some sentiment expressed in that text
(e.g., whether a reviewer had a positive or negative
impression of the movie). A canonical machine learning
solution was developed by Pang et al. [15]. Following Pang
et al.’s process, a developer collects positive and negative
movie reviews, formats reviews to plain text, and computes
word-count attributes (the number of times the word
appears in the review). They then prune words that are too
common, too rare, or not descriptive. The resulting pipeline
can be evaluated in a standard cross-validation experiment.
This involves randomly splitting data into testing and
training sets, creating models using the training sets, and
evaluating the accuracy of those models on the test sets.

Pen-based gesture recognition is well studied, with Rubine
providing a canonical approach [17]. A developer collects
strokes defined as sets of (x, y, t) triples, where x and y are
2D points and t is time. Because different people may draw
the same gesture differently, data is typically collected from
a large pool of people to help ensure learned models are
robust to such variance. Strokes are normalized by rotating,
translating, and scaling them to facilitate comparison. The
normalized strokes are then used to compute attributes (e.g.,
the length of the stroke, measures of angles in the stroke).
Cross-validation experiments then evaluate the pipeline.

Problem Differences
Sentiment analysis is a two-class problem, but gesture
recognition is multi-class. In the sentiment problem,
classification errors are binary (i.e., reviews can be only
positive or negative). In the gesture problem, it also matters
how an example is misclassified. For example, it is
important to know if rectangles are commonly misclassified
as triangles. This added information can help a developer
identify the part of the pipeline responsible for that error.

These problems also differ in the visual representation of
their data. Pen-based gestures have a natural and compact
visual representation. A developer can easily verify the
label of a gesture by simply looking at a drawing of the
stroke. In contrast, the sentiment of movie reviews requires
significantly more time and effort to interpret. They are still
human verifiable, but require more attention than a gesture.

Figure 1: A wide variety of machine learning problems share a common classification pipeline. The pipeline describes how data is
transformed into a model: (a) raw data is parsed, (b) attributes are computed from parsed data, (c) a model is trained, and (d) the
model is tested. This figure above shows two problems, sentiment analysis and gesture recognition, that share the same pipeline.

† We avoid the overloaded term feature, which could refer to either an
attribute of data or a capability of Gestalt. Both alternatives are
descriptive, though not as commonly used as the word feature.

These problems also illustrate differing interpretability of
their attributes, including verifiability and sparseness.
Individual values of sentiment attributes are easier to verify.
A developer can quickly check the value of a word-count
attribute against the text of a review. In contrast, it is
difficult to gauge the correctness of angle values and
distances computed over the normalized points of a gesture.
On the other hand, sentiment attributes are sparse. Each
review has a large number of attributes, most word-count
values are zero, and only non-zero values have an effect on
the final model. The gesture recognition problem is defined
by a small set of dense attributes, where each attribute may
have a distinct value and an effect on the final model.

A final difference we emphasize is how solutions are
evaluated in cross-validation experiments. Random splitting
of data into training and testing sets is generally effective
for sentiment analysis and other problems. Applied to
gesture recognition, however, it can often be misleading.
People may differ in how they draw a gesture, and random
sampling ignores this lack of independence. Because the
goal is to evaluate how well a model is likely to generalize
onto people who are not in the training set, leave-one-out
cross-validation is used. Models are trained with data from
all but one person, then tested with data from that person.

Problem Similarity
Although these problems are different at nearly every step,
Figure 1 shows there is a similar structure to their
classification pipelines. Both separate data into discrete
examples, compute attributes describing each example, and
conduct experiments that identify sets of examples that are
correctly or incorrectly classified by the pipeline. This
common structure provides leverage for a general-purpose
tool. In our development of Gestalt, we have examined how
an integrated environment can provide necessary flexibility
at every stage of a process while also leveraging this
common structure to make developers more effective in
their application of machine learning. The next section
introduces Gestalt and its capabilities. In later discussion,
we consider limitations of our current implementation and
the general-purpose approach.

GESTALT
Developers interact with a classification pipeline in Gestalt
through two high-level perspectives: an implementation
perspective and an analysis perspective (Figure 2). This
parallels the common distinction between coding and debug
perspectives in modern development environments (e.g.,
Eclipse, Microsoft Visual Studio). The implementation
perspective allows developers to edit code and manage the
classification pipeline. The analysis perspective visualizes
the information computed as data moves through that
pipeline. This section describes the specific capabilities of
Gestalt and discusses how these capabilities work together
to support developers as they implement a pipeline, analyze
data, and transition between these perspectives.

Providing Structure While Maintaining Flexibility
How do I represent my problem?
Domain-specific tools use an understanding of a particular
machine learning problem to constrain and hide some parts
of the classification pipeline, exposing only the parts a
developer needs to interact with to create a solution. For
example, Crayons allows developers to input data and see
the output of a model, but provides no control over the
attributes or the learning algorithm [8]. Crayons achieves its
ease of use by cloaking this complexity. However, it is thus
impossible to directly modify Crayons to solve a different
machine learning problem (even if that problem has a
similar classification pipeline).

A key realization in Gestalt is that general support cannot
be achieved by hiding steps in the pipeline. The
classification pipeline is similar for many problems, but the
relative importance of different steps varies from problem
to problem. Gestalt provides general support through a
structured set of explicit steps with standardized inputs and
outputs (Figure 2a). Gestalt preserves flexibility by defining
each step using IronPython scripts written in a built-in text
editor (Figure 2b). This combination provides an explicit
structure without constraining what a developer can do in
that structure. Gestalt thus provides the same flexibility as
general-purpose programming environments (e.g., Eclipse,
MATLAB).

Figure 2: The implementation perspective provides developers with structure through its classification pipeline view (a) and
flexibility by allowing them to write code to represent their specific problem (b). A common data structure (c), shared
between analysis and implementation, allows developers to quickly switch between the two tasks. The analysis perspective
allows developers to interact with the provided visualizations (e) by filtering, sorting, and coloring (d).

Gestalt’s explicit structure provides a basis for its other
functionality. For example, Figure 2a shows how Gestalt
can help developers locate execution errors within specific
steps. A circle next to each step is colored grey, yellow,
green, or red according to whether the step still needs to be
executed, is currently being executed, executed
successfully, or failed due to an execution error. The
structured and typed sequence of steps also allows Gestalt
to capture and visualize computation at intermediate steps
throughout the pipeline. This section discusses how each
step can be used as a launching point for analysis, helping
developers better understand the behavior of their system
through inspection of the input and output at each step.

Appropriate Data Structures
Where do I store my data?
Implementing a classification pipeline requires loading data
and storing it in some representation for use throughout the
remainder of the pipeline. Domain-specific tools often hide
seedy details of this portion of a machine learning system.
But data comes in many forms and sizes, so effective data
management is a requirement for general tools.

Gestalt stores all information from the entire classification
pipeline in a relational data table. Relational tables are a
natural representation for discrete examples with many
attributes. Because of this, they are also the backbone of
many other general-purpose tools (e.g., Weka, Tableau).
Gestalt differs from such tools because they do not address
the entire classification pipeline (e.g., Weka focuses on a
library of modeling algorithms, Tableau focuses on
powerful visualizations of tabular data). Despite their
common tabular nature, data representations in such tools
are not identical. Developers using combinations of tools to
address an entire pipeline must therefore explicitly attend to
format conversion. The narrowed focus of each tool also
means that information is often lost or unavailable when
converting between tools. For example, Weka and other
tools that represent examples as vectors of attributes
generally lack support for examining the original data used
to compute those attributes (the raw data is typically not
propagated forward by the attribute generation script).

Gestalt’s use of a single unified table means developers are
freed from managing data conversion or moving data
between tools. This is critical to enabling fluid and easy
movement between interpretation and analysis. Gestalt’s

data representation implements several enhancements to a
standard table. First, attribute columns are typed and tagged
according to where they are used in the classification
pipeline. All attributes can be used to summarize, visualize,
and interact with data, but only some of those attributes can
be used to build a model. Tagging of columns allows
Gestalt to track which attributes should be used by a
learning algorithm to train a model. Instead of creating a
separate data table in each step of the pipeline, Gestalt uses
a cascaded table structure to reduce the overhead of storing
intermediate data. Finally, Gestalt provides a sparse
representation for storing large sets of sparse attributes
found in many problems (e.g., sentiment analysis).

Visualizing and Aggregating Examples:
How do I see my data?
Developers reason about system behavior by examining
data and its relationship to attributes and classification.
Domain-specific tools generally include a visual component
that provides this feedback. This allows developers to
examine individual examples as well as compare multiple
examples. For example, Crayons presents images with
translucent highlights indicating how pixels are classified
by a learned model. This shows how individual examples
are classified (individual pixels) and also provides relevant
examples for comparison (the other pixels in the image).

Gestalt’s support for many data types is enabled by a key
distinction between individual and aggregate visualizations.
It is impossible for a general tool to provide pre-packaged
visualizations for all possible types of data. Gestalt instead
supports data visualization by separating the logic needed to
view one example from the logic to combine many single
examples into an aggregate view. Developers can write
code to visualize an example, and Gestalt then integrates
that into aggregate visualizations throughout the pipeline.
Two examples of aggregate visualizations are the grid view
(Figure 3a, 4a, 4c) and the table view (Figure 3b).

We also note that aggregate views begin to demonstrate
how Gestalt’s capabilities work together to create an
integrated environment. Gestalt’s structured representation
of the classification pipeline defines boundaries between
steps where developers can use aggregate views to gain
insight into their data. Gestalt’s emphasis on code-based
flexibility allows developers to adapt those visualizations to
meet the needs of their particular data.

Figure 3: By looking at the raw data next to the attributes computed from that data, developers can gain a better
understanding of system behavior. Here a developer is shown a thumbnail of movie review data (a). The developer clicks on
the thumbnail to examine the raw data, attributes computed from it, and the fact that it is currently misclassified (b).

Interactive, Connected Visualizations
How can I relate my data, attributes, and results?
Grouping and summarizing examples can help a developer
understand a classification pipeline. Gestalt’s analysis
emphasizes interactive visualizations, inspired by work in
interactive visualization tools [4]. Support is provided for
faceted browsing, filtering, sorting, and coloring examples.
Grouping and summarization operations can be applied
according to attribute values, according to columns added
to examples by steps in the classification pipeline, and
according to tags added to examples by a developer.

Gestalt’s support for machine learning goes beyond such
prior general-purpose visualization tools by connecting data
generated across the entire classification pipeline. In the
case of domain-specific tools, consider that the coloring
metaphor in Crayons is effective in part because it connects
the pipeline’s beginning (labeling data) and end (analyzing
model classification) within a single visualization. Gestalt
generalizes this with visualizations that connect data from
different steps in the pipeline to help developers understand
relationships between data, attributes, and results.

Figure 3 shows one approach to a connected visualization,
side-by-side presentation of information about the same
example from different parts of the pipeline. Working on a
sentiment analysis problem, a developer hovers over an
item in a grid view to see a preview of the document. They
then click into the grid for a side-by-side view of the
document, its computed attributes, and its classification.
Pulling this into a single view allows a developer to
understand how an example moved through the pipeline.

A second approach to connected visualizations emphasizes
filtering and grouping examples based on information from
different steps in the pipeline. Figure 4 presents an example
of a developer clicking into a confusion matrix to isolate
examples labeled as triangles and classified as rectangles.
In this case, it seems likely that several of these instances
are mislabeled. As another example, a developer might
apply a filter to isolate examples that have a particular
attribute value. Examining these might suggest a possible
bug in the code computing that attribute. Connected
visualizations allow developers to quickly assemble the
information needed to examine such questions.

The “Gestalt” of Gestalt
Each of Gestalt’s capabilities is important, but Gestalt’s real
power comes from how they relate and are combined.
Figure 4’s clicking into a confusion matrix to see
misclassified examples requires a structured understanding
of the pipeline, the flexibility to implement an appropriate
visualization of the individual examples, and a data
representation capturing how each example moved through
the pipeline. All of these pieces work together.

As a whole, these capabilities serve to accelerate the
interactive loop: developers can more quickly implement
and analyze different potential versions of a machine
learning system. Gestalt’s approach provides both structure
and flexibility for rapid implementation, the shared data
table removes data conversion and management to make it
easy to switch between implementation and analysis, and
connected visualizations allow developers to quickly
analyze the important parts of their system.

CURRENT TOOL WORK
Several categories of tools can be used in machine learning
applications and warrant discussion with regard to Gestalt.

Domain-Specific Tools
Domain-specific tools support both implementation and
analysis, but do so at the expense of flexibility. For
example, Crayons supports the learning of models that
segment images [8]. A developer captures an image and
colors regions that correspond to different segments. The
system learns a model from these labeled pixels, and the
developer analyzes the model’s performance by applying it
to new images and overlaying the results on those images.
The designer iterates by correcting model mistakes, thus
providing new data for the classification pipeline. Crayons
achieves this ease of use by limiting flexibility. Input is
limited to providing more training examples, and analysis is
limited to looking at classification results overlaid on
images. Developers cannot access other information that
might help them iterate (e.g., attribute values).

Domain-specific tools have been created for a variety of
problems, including computer vision systems [14], simple
sensor-based recognizers [11], and interactive concept
learning in image search [9]. Because the number of

Figure 4: In Gestalt developers can use faceted browsing techniques to understand data. Here a developer tries to
understand why triangles are confused with rectangles by filtering the full set of examples (a) through a click on a
confusion matrix cell (b). The filtered examples (c) show that the confusion is due to mislabeled data.

domains affected by machine learning is large and growing,
designing domain-specific tools for each is untenable.
Domain-specific tools often target non-programmers, who
are unlikely to be able to make major changes to the inner
workings of a system. Gestalt targets developers and can
take a different approach. Gestalt focuses on providing the
necessary development support to make implementation
and analysis easier for a wide variety of domains. We are
thus lowering the barrier to using machine learning, so that
the large population of developers can join the ranks of
expert researchers in their ability to apply machine learning.

Disconnected General-Purpose Tools
A variety of general-purpose tools support either
implementation or analysis of machine learning systems.
Weka is a well-known example, providing developers with
a large library of machine learning algorithms [20].
Interactive visualization tools like Tableau can be applied to
data exported from machine learning systems [19].

Tools that each support a portion of the machine learning
pipeline create gaps that are a fundamental obstacle to
effectively moving between implementation and analysis.
Developers must explicitly choose to move from one tool to
another, typically losing any established working context. It
is entirely upon the developer to bridge the gaps between
tools: writing custom scripts to convert between data
formats exported by different tools, aggregating and
visualizing raw data, storing and linking intermediate
information computed throughout the pipeline. For
example, a canonical pipeline for the sentiment analysis
problem might use Python to process reviews and obtain
word-count attributes, then Weka to train a model, then
Tableau to analysis experimental results. Reproducing the
interactions from Figure 3 and Figure 4 would require
extensive developer effort. Gestalt connects steps,
aggregates examples, and enables interactivity to allow
developers to focus on the logic of their pipeline and
analyses of how data is transformed in that pipeline.

Connected General-Purpose Tools
Connected general-purpose tools are capable of addressing
the entire classification pipeline. These can be further
decomposed into dataflow and programming environments.

Dataflow environments provide sets of discrete components
that can be combined to implement desired behaviors [2].
Some dataflow tools even provide components targeting
machine learning problems [10]. Dataflow tools generally
focus on using pre-built components, so it is relatively
difficult to create new components or modify the behavior
of existing components. In contrast, machine learning
problems vary in behavior. The structures of the sentiment
analysis and gesture recognition problems are similar, but
the behaviors of steps for data parsing and attribute
generation are very different and unlikely to be provided as
part of any standard set of prebuilt components. Gestalt’s
focus on developer flexibility, critical to allowing rapid
iteration on a pipeline, is more similar to the support
provided by general programming environments.

Modern general programming environments work well for
writing code that describes the behavior of a program, but
are not designed for writing code that learns from data.
Many people experienced in the application of machine
learning report a preference for MATLAB, because it
provides better support than most programming
environments. Matrices are first-class objects, a good fit for
tabular data representations. Many machine learning
algorithms include solving linear algebra problems, also
well-supported by MATLAB. MATLAB makes analysis
easier by reducing the need to write boilerplate code needed
to sort, filter, and create basic visualizations. Finally,
MATLAB provide sufficient functionality to significantly
reduce the overhead of switching between applications and
connecting information across tools.

Despite these advantages of a connected environment like
MATLAB, it still falls short in addressing the difficulties
developers face when using machine learning. Developers
must still construct a classification pipeline from scratch, as
the environment does not understand the structure of the
problem being solved. MATLAB’s data representation has
not been designed for machine learning, and all elements in
a matrix are of a single datatype. Developers therefore must
maintain multiple parallel matrices to store raw data,
numerical attributes, string attributes, and attribute names.
Finally, MATLAB visualizations are simple charts. They
do not support the aggregation or visualization of raw data,
interactively grouping examples within visualizations, or
connecting information between different steps in the
machine learning process. To support any of these
capabilities, developers would need to rewrite most of the
functionality provided by Gestalt within MATLAB.

EVALUATING BUG FINDING IN GESTALT
Our study compared bug-finding performance for
participants using Gestalt with a baseline condition similar
to MATLAB. Prior research shows the developers consider
connected environments, like MATLAB, to provide the
best support for the machine learning process [16]. This
section describes our baseline system, the tasks in our study
design, and the major results of our experiment.

Participants
We recruited 8 participants (2 female) for our study. All
were computer science graduate students. All had some
experience programming in Python, had taken at least one
course that taught machine learning algorithms, and had
worked on at least one project that used supervised machine
learning. This population is consistent with the target
audience of Gestalt: software developers who know how to
apply machine learning.

Baseline vs. Gestalt
The baseline condition was a general-purpose development
environment in which participants created, edited, and
executed scripts. Like in MATLAB, participants created
visualizations by calling functions and writing scripts to
sort, filter, and color. We provided an API with which
could be used to reproduce all of Gestalt’s visualizations.

The baseline condition and Gestalt used the same data table
structure to store data. Unlike Gestalt, the data table in the
baseline did not keep track of information generated across
the pipeline. Participants had to write code to connect raw
data, attribute values, and classification results or to create
side-by-side visualizations.

Other than these differences, Gestalt and the baseline were
identical. The entire process was integrated, all of the code
for the learning process was written within the same
framework, using the same data structures, with the same
programming language. We chose this study design, instead
of a design that compared Gestalt directly to MATLAB,
because we wanted to increase our confidence that any
differences we observed were due to the capabilities we had
taken away (and not other differences in the tools, such as
the syntax of the programming language).

Study Design
The study was a within-subjects design, comparing Gestalt
with the baseline across two debugging tasks. To account
for carryover or interaction effects based on the ordering of
interface conditions (e.g., ordering or pairing of interface
and task), we counterbalanced the task with condition
(Gestalt and baseline) and order (first and second).

Our dependent measures included the number of bugs found
and the number of bugs fixed within the one-hour time span
of each task. A bug was counted as found if the participant
verbalized the root cause. For example, “The data is
mislabeled” or “This line of code should be using this
variable instead”. If the participant just speculated about the
cause, the bug would not be counted as found.

We did not measure time to fix a bug, because it was not
feasible to ascertain which bug a participant was working
on at any given time. Participants were cognizant of the
existence of multiple bugs. While trying to find and fix a
primary bug, participants often gathered information
needed to find and fix other bugs. Instead of the time to fix
each bug, we focus on such measurements as the time spent
in various visualizations over the entire study.

Sentiment Analysis and Gesture Recognition Tasks
Participants built solutions for the two problems discussed
earlier: sentiment analysis and gesture recognition. Each
contained data and five scripts: parsing, attributes,
splitting, training, and testing. We created
working solutions for both Gestalt and the baseline, then
injected five bugs into each solution. The machine learning
code for the baseline and Gestalt differed only in how
scripts were called and how data was maintained between
steps. These factors were intrinsic to the differences
measured in our results. Although we have described the
two problems previously, we provide additional details
about their implementation.

The sentiment analysis task classified movie reviews as
positive or negative. We used 1,000 negative and 1,000
positive reviews from a standard sentiment analysis dataset

[15]. We computed word-count attributes, built a Naïve
Bayes model, and evaluated using three-fold cross
validation. After building a working system, we introduced
the following bugs into the sentiment analysis problems:

S1: mislabeled 300 positive and 300 negative
examples [data]

S2: positive examples are read in twice [parsing]
S3: instead of removing stop words, the code removes

everything except for stop words [attributes]
S4: only updates the count for one

attribute [attributes]
S5: each fold tests on the training set [splitting]

The gesture recognition task involved building a model that
classifies a pen-stroke as one of 16 different gestures. We
used a standard dataset of 5280 gestures collected from 11
different people [21]. We normalized strokes, computed
attributes, built a Rubine model, and evaluated using per-
person cross-validation. We introduced the following bugs:

G1: mislabeled gestures (30 triangles swapped with
rectangles, 30 circles with stars, and 30 carets with
checks) [data]

G2: (x, y, t) points are loaded as (t, x, y) [parsing]
G3: does not load all of the examples [parsing]
G4: sine and cosine values are the same for one of the

attributes [attributes]
G5: tests on the same person in each fold [splitting]

We chose all of the bugs based on common programming
errors or common machine learning process errors. For
example, earlier versions of the Pang et al. dataset included
problems with mislabeled data that were later discovered
and reported [15]. The cross-validation bug in our gesture
recognition task is the same one reported by Hodges and
Pollack in their work [12]. Other bugs were based on
common mistakes, such copy-paste errors [13].

Participants were told that (except for the actual training
and testing of the model) there could be bugs at any step in
the pipeline. This included bugs in the raw data. They were
assured the structure of the pipeline was correct and the task
was not one of attribute generation or algorithm
development. As a stopping condition, they were given a
target accuracy range suggesting they had fixed all of the
bugs. This was a realistic stopping criterion in the context
of our task, repairing existing machine learning programs
that were known to have achieved a certain level of
accuracy in the past.

Data-labeling bugs in each task would have taken more
time to fix than was allotted. To make fixing mislabeled
data tractable, participants had to clearly state why
examples were mislabeled (associate the mislabeling with
bad data rather than a programming error). We then pointed
them to a directory containing correctly labeled data.

Finally, because the inserted bugs interacted with each
other, the accuracy of the classifier could increase or
decrease erratically (even going above the target accuracy).

This was a deliberate choice; erroneous high accuracy
values may be more dangerous because they provide a false
sense of success. Additionally, it can often be the case that
an existing solution may have multiple bugs and reported
accuracy itself may not be the best metric for debugging.

Procedure
After providing consent, participants completed a one-page
survey detailing their prior machine learning and Python
experience. The experimenter provided a document
detailing the first task. Both tasks were presented as
salvaging code written by another developer. The document
detailed the steps taken by the previous developer, and
participants were informed the developer had chosen a good
strategy but there were mistakes in the execution. After
explaining the task, the experimenter provided participants
a one-page questionnaire asking what tools they would
normally use to implement the outlined task.

After completing the questionnaire, participants followed a
tutorial on each tool. In the Gestalt condition, the tutorial
discussed the capabilities of the implementation and
analysis perspectives. The baseline tutorial contained
information about the capabilities of the editor and the
visualization API. After the tutorials, the experimenter
provided quick reference sheets for the included APIs.
Because we were studying the effect of Gestalt’s novel
capabilities and not the usability or learnability of the
system, participants were told they could use the
experimenter as an intelligent help system during the task.
This included asking questions about APIs, visualizations,
the machine learning problems, and error messages.

Participants were asked to talk aloud, describing their
progress in the bug finding process. Participants were told
the experimenter might ask questions about their state or
current action. We asked participants to think aloud about
the states: (1) I have no idea what the bug is, (2) I have a
guess, (3) I'm checking my guess, (4) I'm fixing the bug, and
(5) I'm confident I fixed the bug. Participants were given
one hour to complete the task. After they finished, the
experimenter saved their data and started the next task,
providing descriptions of the new machine learning
problem and the new development environment.

After completing the second task, participants were given a
final questionnaire asking them to rate the usefulness of the
visualizations and faceted search capabilities. They were
also asked to compare the two development environments
and to compare to the existing tools they had reported they
would use for these tasks. Participants then completed a
recording consent form and were paid $50 for their time.
The entire study took between 3 and 3.5 hours.

RESULTS
Participants unanimously preferred Gestalt and were able to
find and fix more bugs using Gestalt than using the
baseline. Figure 5 shows an overview of bugs per condition.
To examine our found and fixed measures, we conducted a
mixed-model analysis of variance. We modeled participant

as a random effect and modeled condition (Gestalt vs.
baseline), task (sentiment analysis vs. gesture recognition),
and trial (first vs. second) as fixed effects. We also modeled
the interactions condition×trial and condition×task. We
used these same independent variables in all of the analyses
we report in this section.

We found a marginal effect of trial on the number of bugs
found, with participants finding more in the second trial
(3.1 vs. 4.0 bugs, F1,5=4.62, p ≈ .084). This suggests some
learning, as there were commonalities among the bugs in
the two tasks. We verified the interaction condition×trial
was not significant (p > .42), confirming the effectiveness
of our counterbalanced design. Participants in the Gestalt
condition found significantly more bugs (4.25 vs. 2.88 bugs,
F1,5=11.42, p ≈ .019).

We also found a marginal effect of trial for bugs fixed (2.88
vs. 3.63 bugs, F1,5=4.09, p ≈ .099) and again confirmed our
counterbalance effectiveness by verifying the lack of
significant interaction condition×trial (p > .72).
Participants in the Gestalt condition fixed significantly more
bugs (3.75 vs. 2.75 bugs, F1,5=7.27, p ≈ .042).

DISCUSSION
This section discusses how Gestalt was used, the process
participants followed to solve machine learning problems,
and possible explanations for Gestalt’s better performance.
We ground our observations in free response questions
from our questionnaire and secondary measures of
performance. We also discuss limitations of our study,
Gestalt’s implementation, and general-purpose tools.

The Importance of Structure
We hypothesized a structured representation would be most
useful when developers first started a project, as it would be
less daunting than a blank slate. Because we provided a
mostly working implementation of the project, we felt the
importance of structure would be diminished in our study.
Consequently, we did not explicitly ask participants
whether they found the structure helpful.

However, we included open-ended questions asking
participants what capabilities they found the most useful. In
this open-ended portion of the questionnaire, five of eight

Figure 5: Developers found and fixed significantly
more bugs in the Gestalt condition.

participants said the explicit structure provided by viewing
and interacting with the classification pipeline was one of
the most useful components of Gestalt. They stated they
would like to see it in their own tools, with one participant
writing “The [classification pipeline view] was very helpful.
When I am running these types of experiments, I often get
lost in all of the processing steps. This seems like a useful
way to organize the workflow.”

Creating Individual Example Visualizations
Even though we provided standard visualizations of the
individual examples in both conditions, some participants
created their own. Both the baseline and the Gestalt
conditions provided developers with the ability to make
charts, including the ability to plot points. Two participants
in the baseline condition (p5 and p7) used this to plot a
gesture’s stroke. This confirms developers can and will
develop quick, simple visualizations of raw data when
given proper tools. This is promising evidence for Gestalt’s
approach of using developer-created visualizations of
individual examples in aggregate visualizations to help
developers understand data, attributes, and results.

The Need for Connectivity
Participants in both conditions actively tried to relate
attribute values and results to their raw data. Gestalt’s
connected visualizations make it easy to compare their data,
attributes, and classification results. When taken away in
the baseline, participants expressed frustration. One
participant, who worked in Gestalt first, explicitly described
that he wanted to see the raw data next to the attributes in
the baseline and was annoyed that it was not as easy as in
the prior condition.

To make up for a lack of connectivity in the baseline, three
participants (p1, p3, and p8) went to great lengths to cobble
together their own combined table view; two did this before
having used Gestalt. In all three cases, they opened two
separate table views, one after parsing and one after
attribute computation. They then resized these tables and
placed them side-by-side so they could visually compare
attributes with data.

Interactivity
We also observed that the interactivity of visualizations was
critical. Because we logged the active window as well as
input (e.g., mouse clicks, key strokes), we could determine
if participants spent their time implementing or analyzing.
Participants in Gestalt spent significantly more time
analyzing (37.3% vs. 18.9%, F1,5=5.44, p ≈ 0.001).

Participants also used more kinds of views. In our
post-study questionnaire, we asked participants to tell us
which faceted search capabilities (e.g., filtering) and views
they used (e.g., grid view). We found that participants tried
significantly more views in the Gestalt condition (3.4 vs.
2.5 views, F1,5=18.84, p ≈ .007) and marginally more
faceted search techniques (2.0 vs. 1.1 techniques, F1,5=5.44,
p ≈ 0.067). The gesture recognition task also led
participants to spend more time in visualizations (32.9% vs.

23.3%, F1,5=11.15, p ≈ .021), look at more views (3.4 vs.
2.5 views, F1,5=18.84, p ≈ .0074), and use more faceted
search techniques (2.3 vs. 0.9 techniques, F1,5=13.44, p ≈
.015) than the sentiment analysis task. This is likely
because there were more classes in the gesture condition
and the data was easier to visualize. These differences
suggest that spending more time looking at more kinds of
views might allow developers to better formulate and test
possible explanations that lead them to find and fix more
bugs.

In both conditions, most participants used filtering and
sorting to group relevant examples. Gestalt made this
easier. One participant followed the exact process shown in
Figure 4. He clicked in a confusion matrix to see examples
of triangles classified as rectangles, then found the
mislabeled examples.

Study Limitations
Our study has several limitations. Both tasks had pipelines
that could be run in real-time (loading and processing data,
generating attributes, training a model, testing the model).
Many important learning problems are too expensive to be
computed in real-time. We chose this limitation to allow
participants to explore a large number of different bug
hypotheses within our time constraint. It is possible that
Gestalt may be more useful in situations where models take
longer to train. Developers might enjoy greater benefit from
using visualizations to explore data and attributes while
waiting for updated results in a longer feedback cycle.

Our study was also limited to finding bugs in unfamiliar
code. The challenges in the middle of a development
process are different from those at the beginning, and
setting up a workflow for a learning task can be daunting.
Participants found value in Gestalt’s pipeline structure.
Their comments in the open-ended questionnaire lead us to
believe Gestalt’s structure will also assist developers
solving machine learning problems from scratch.

Our study focused on two problems for which developers
had some intuition about the data. They knew gestures that
looked similar should be in the same dataset, and they knew
words in movie review text should appear as non-zero
attributes. Developers may not always have such a clear
understanding of the data at the onset of the project. They
may instead develop understanding over time. Flexible
visualizations seem crucial for this, as they can allow
developers to create individual visualizations embodying
information to best help them to understand their data.

Limitations of Gestalt
Our study revealed some unexpected work patterns that
suggest new opportunities for Gestalt and other tools.
Participants p7 and p8 created toy review datasets to see if
reviews were being correctly parsed and word counts were
being correctly computed. Participant p8 also created
simple strokes that consisted of a few (x, y, t) points. He
then manually computed attributes (using pen and paper)
and compared them to the values computed during attribute

generation. Other participants created filters by manually
selecting a small set of examples and examining them
through the entire pipeline. These behaviors collectively
suggest support for unit testing practices could be a good
addition to Gestalt and other machine learning tools.

While Gestalt can be used to build machine learning
systems for many domains, there are some problems Gestalt
does not completely support. A key limitation is that Gestalt
assumes individual examples can be processed without the
context of the larger dataset. This impacts the types of
learning algorithms Gestalt supports, but also some of
Gestalt’s core capabilities. For example, our current grid
and table aggregate visualizations cannot properly visualize
relationships inherent to sequential data (e.g., time-series).
It is also non-obvious how to implement the interaction in
Crayons, where individual pixels have meaning only in the
aggregate context of an image. New general methods for
describing relationships between examples would benefit
Gestalt and future general-purpose tools.

The difficulty of implementing the core Crayons interaction
within Gestalt raises a question of whether general-purpose
tools can be as effective as domain-specific tools. Both
styles of tool are important. It is almost certain that a
highly-specialized tool will be more effective for its
particular problem. However, general tools provide two
advantages. We have noted that the number of domains
affected by machine learning is large and growing. General
tools can support problems for which domain-specific tools
have not yet been developed. Further, distilling general
mechanisms, like those in Gestalt, informs domain tools by
allowing a focus on domain-specific extensions instead of
re-inventing general mechanisms.

CONCLUSION
Gestalt supports the entire process of applying machine
learning: implementing a classification pipeline, analyzing
data as it moves through that pipeline, and easily
transitioning between these perspectives. We have
discussed how Gestalt’s capabilities generalize advances
from prior domain-specific tools to provide general-purpose
support. A comparison of participants using Gestalt with a
baseline condition similar to MATLAB showed participants
find and fix more bugs with Gestalt and that Gestalt’s
flexibility and visualizations were primary contributors to
their success. These results show that helping developers
understand relationships between the various steps in a
classification pipeline is important to their success.

ACKNOWLEDGEMENTS
We thank Morgan Dixon, Joe Devietti, and Scott Saponas
for their invaluable feedback. This work has been supported
in part by MSR and NDSEG fellowships for Kayur Patel
and by the National Science Foundation under grants
IIS-0812590 and CCF-0952733.

REFERENCES
1. Ball, N.M. and Brunner, R.J. Data Mining and Machine

Learning in Astronomy. 2009.
2. Blume, P.A. The LabVIEW Style Book. Prentice Hall 2007.
3. Candea, G. and Fox, A. Recursive Restartability: Turning

the Reboot Sledgehammer into a Scalpel. HotOS 2001.
4. Card, S.K., Mackinlay, J.D., and Shneiderman, B.

Readings in Information Visualization: Using Vision to
Think. 1999.

5. Chen, M.Y., Accardi, A., Kiciman, E., Lloyd, J.,
Patterson, D., Fox, A., and Brewer, E. Path-based Failure
and Evolution Management. NSDI 2004.

6. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y.,
Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A.,
LeGrand, L., Libby, R., Smith, I., and Landay, J.A.
Activity Sensing in the Wild: A Field Trial of UbiFit
Garden. CHI 2008.

7. Cruz, J.A. and Wishart, D.S. Applications of Machine
Learning in Cancer Prediction and Prognosis. Cancer
Informatics 2, (2007).

8. Fails, J.A. and Olsen, D.R. Interactive Machine Learning.
CHI 2003.

9. Fogarty, J., Tan, D., Kapoor, A., and Winder, S. CueFlik:
Interactive Concept Learning in Image Search. CHI 2008.

10. Gil, Y., Ratnakar, V., Kim, J., Gonzalez-Calero, P.A.,
Groth, P., Moody, J., and Deelman, E. Wings: Intelligent
Workflow-Based Design of Computational Experiments.
IEEE Intelligent Systems, To Appear.

11. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R.
Authoring Sensor-based Interactions by Demonstration with
Direct Manipulation and Pattern Recognition. CHI 2007.

12. Hodges, M.R. and Pollack, M.E. An ‘Object-Use
Fingerprint’: The Use of Electronic Sensors for Human
Identification. UbiComp 2007.

13. Juergens, E., Deissenboeck, F., Hummel, B., and Wagner,
S. Do Code Clones Matter? ICSE 2009.

14. Maynes-Aminzade, D., Winograd, T., and Igarashi, T.
Eyepatch: Prototyping Camera-based Interaction Through
Examples. UIST 2007.

15. Pang, B., Lee, L., and Vaithyanathan, S. Thumbs Up?:
Sentiment Classification Using Machine Learning
Techniques. EMNLP 2002.

16. Patel, K., Fogarty, J., Landay, J.A., and Harrison, B.
Investigating Statistical Machine Learning as a Tool for
Software Development. CHI 2008.

17. Rubine, D. Specifying Gestures by Example. SIGGRAPH 1991.
18. Simon, I., Morris, D., and Basu, S. MySong: Automatic

Accompaniment Generation for Vocal Melodies. CHI 2008.
19. Stolte, C. Visual Interfaces to Data. SIGMOD 2010.
20. Witten, I.H. and Frank, E. Data Mining: Practical

Machine Learning Tools and Techniques. 2005.
21. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures

Without Libraries, Toolkits or Training: A $1 Recognizer
for User Interface Prototypes. UIST 2007.

