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ABSTRACT 

Modern brain sensing technologies provide a variety of 
methods for detecting specific forms of brain activity. In 
this paper, we present an initial step in exploring how these 
technologies may be used to perform task classification and 
applied in a relevant manner to HCI research. We describe 
two experiments showing successful classification between 
tasks using a low-cost off-the-shelf electroencephalograph 
(EEG) system. In the first study, we achieved a mean classi-
fication accuracy of 84.0% in subjects performing one of 
three cognitive tasks - rest, mental arithmetic, and mental 
rotation - while sitting in a controlled posture. In the second 
study, conducted in more ecologically valid setting for HCI 
research, we attained a mean classification accuracy of 
92.4% using three tasks that included non-cognitive fea-
tures: a relaxation task, playing a PC based game without 
opponents, and engaging opponents within the game. 
Throughout the paper, we provide lessons learned and dis-
cuss how HCI researchers may utilize these technologies in 
their work. 

Categories and Subject Descriptors: H.1.2 [User/Machine Sys-
tems]; H.5.2 [User Interfaces]: Input devices and strategies; B.4.2 
[Input/Output Devices]: Channels and controllers; J.3 [Life and 
Medical Sciences]. 
General Terms: Human Factors, Experimentation. 
Keywords: Brain-Computer Interface, human cognition, physical 
artifacts, task classification, Electroencephalogram (EEG). 

INTRODUCTION 

For generations, humans have fantasized about the ability to 
communicate and interact with machines through thought 
alone or to create devices that can peer into a person’s 
thoughts. These ideas have captured the imagination of hu-
mankind in the form of ancient myths and modern science 
fiction stories. However, only in recent decades have ad-
vances in neuroscience and brain sensing technologies 
made measurable progress toward achieving that vision. 

These technologies allow us to monitor the physical proc-
esses within the brain that correspond with certain forms of 
thought.  

Primarily driven by growing societal recognition for the 
needs of people with physical disabilities, researchers have 
used these technologies to build brain-computer interfaces 
(BCIs), communication systems that do not depend on the 
brain’s normal output pathways of peripheral nerves and 
muscles [17]. A conceptual illustration of a BCI system is 
shown in Figure 1. In these systems, users explicitly ma-
nipulate their brain activity instead of using motor move-
ments to produce signals that can be used to control com-
puters or communication devices. The impact of this work 
is extremely high, especially to those who suffer from dev-
astating neurodegenerative diseases such as amyotrophic 
lateral sclerosis, which eventually strips an individual of all 
voluntary muscular activity while leaving cognitive func-
tion intact. 

Although removing the need for motor movements in com-
puter interfaces is challenging and rewarding, we believe 
that the full potential of brain sensing technologies as an 
input mechanism lies in the extremely rich information it 
could provide about the state of the user. Having access to 
this state is valuable to HCI researchers because it may al-
low us to derive more direct measures of traditionally elu-

Figure 1 – A conceptual illustration of a Brain-Computer Inter-

face using EEG signals for task classification. 
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sive phenomena such as task engagement, cognitive work-
load, surprise, satisfaction, or frustration. These measures 
could open new avenues for evaluating systems and inter-
faces. Additionally, knowing the state of the user as well as 
the tasks they are performing may provide key information 
that would allow us to design context sensitive systems that 
adapt themselves to optimally support the state of the user. 

The work we present in this paper is an initial step in ex-
ploring how BCI technology can be applied to HCI re-
search. First, we demonstrate that effective exploration in 
this field can be accomplished using low-cost sensing 
equipment and without extensive medical expertise. An 
experiment we conducted shows that we were able to attain 
84.0% mean accuracy classifying three different cognitive 
tasks using an off-the-shelf electroencephalograph (EEG) 
costing only USD$1500. Within this experiment, we pre-
sent a reusable experimental design adapted from previous 
BCI work and discuss lessons learned so that other HCI 
researchers can build upon our experiences to perform their 
own explorations. Second, we present a novel approach to 
performing task classification by utilizing both cognitive 
and non-cognitive artifacts measured by our EEG as fea-
tures for our classification algorithm. In a second experi-
ment, we attained a mean classification accuracy of 92.4% 
on three tasks within a more ecologically valid setting, de-
termining various user states while playing a PC based 
game. We close with a discussion of how this approach can 
be useful in certain areas of HCI research.  

BACKGROUND AND RELATED WORK 

Brain Sensing and EEG Primer 

The human brain is a dense network consisting of approxi-
mately 100 billion nerves cells called neurons. Each neuron 
communicates with thousands of others to regulate physical 
processes and produce thought. Neurons communicate ei-
ther by sending electrical signals to other neurons through 
physical connections or by exchanging chemicals called 
neurotransmitters. Advances in brain sensing technologies 
enable us to observe the electrical, chemical, or blood flow 
changes as the brain processes information or responds to 
various stimuli. 

In this paper, we focus on the Electroencephalograph 
(EEG), a technology used everyday in hospitals and clinics 
and the most commonly used technology in contemporary 
BCI research. For general reviews of BCI research, see 
[4,16,25]. Figure 2 provides a table of alternative brain 
sensing and imaging technologies and their primary disad-
vantages for BCI work, especially within the HCI commu-
nity [20]. 

EEG uses electrodes placed on the scalp to measure the 
weak (5-100µV) electrical potentials generated by brain 
activity. Each electrode typically consists of a wire leading 
to a gold-plated disk that is attached to the scalp using con-
ductive paste or gel. An EEG records the voltage at each of 
these electrodes relative to a reference point, which is often 

simply another electrode on the scalp [7]. Because EEG is a 
passive measuring device, it is safe for extended and re-
peated use, a characteristic crucial for adoption in HCI re-
search.  

The signal provided by an EEG is at best a crude represen-
tation of brain activity due to the nature of the detector. 
Scalp electrodes are only sensitive to macroscopic and co-
ordinated firing of large groups of neurons near the surface 
of brain, and then only when they are directed along a per-
pendicular vector relative to the scalp. Additionally, be-
cause of the fluid, bone, and skin that separate the elec-
trodes from the actual electrical activity, the already small 
signals are scattered and attenuated before reaching the 
electrodes. Each input channel of an EEG includes a multi-
stage amplifier with a typical gain of 20,000.  

Unfortunately, this high electrical sensitivity also makes an 
EEG susceptible to interference from a variety of sources 
such as physical movement of the person’s body, indoor 
power lines, and other electronic equipment. BCI research-
ers have invested a great deal of effort in creating experi-
mental designs, specialized testing facilities and equipment, 
and software filtering techniques to minimize the presence 
of these non-cognitive artifacts [5]. However, such a high 
degree of environmental and experimental control can be 
impractical for HCI research that aims to eventually func-
tion in a typical home or office scenario. In the work pre-
sented in this paper, we limited ourselves to a typical office 
computing environment without any specialized acoustic or 
electromagnetic insulation. These studies were run in an 
unmodified office of an active researcher containing multi-
ple computers, fluorescent lights, and other typical sources 
of signal interference found in an office building. 

Because much of the work in BCI has grown out of the 
rehabilitation engineering and neuroscience domains, a 
large portion of previous research has used high-end de-
vices costing between USD$20,000-250,000 [e.g. see sys-
tems from www.biosemi.com or www.egi.com]. We were 
unable to find previous examples of successful BCI re-

Brain Sensing Technology Primary Disadvantage 

Electrocorticogram (ECoG) Highly invasive, surgery 

Magneto-encephalography (MEG)  Extremely expensive 

Computed Tomography (CT)  Only anatomical data 

Single Photon Emission Computer-
ized Tomography (SPECT)  

Radiation exposure 

Positron Emission Tomography (PET)  Radiation exposure 

Magnetic Resonance Imaging (MRI)  Only anatomical data 

Functional Magnetic Resonance Imag-
ing (fMRI)  

Extremely expensive 

Event-Related Optical Signal / Func-
tional Near-Infrared (EROS/fNIR)  

Still in infancy, cur-
rently expensive 

 

Figure 2. A table of current brain sensing technologies and their 

primary disadvantages for HCI research. 
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search performed with low-end EEG systems that are ac-
cessible to HCI researchers. While [3,14,22] have explored 
applying brain sensing technology to HCI related problems, 
we have found in our interactions that many HCI research-
ers are hesitant to explore the domain due to the perception 
of prohibitively high costs associated with owning and 
maintaining this equipment. Others may feel that the re-
quired domain expertise presents a major obstacle. In this 
paper, we demonstrate that effective BCI research can be 
accomplished without requiring such high-end and high-
cost devices, as well as to provide HCI researchers with a 
quick primer for entry into the field.  

EEG for Task Classification 

We focus our attention on EEG work related to the problem 
of task classification, which has received significant atten-
tion because BCI technology is most useful as an input con-
trol or communication device if the system is capable of 
discriminating at least two states within the user. With this 
ability, a computer can translate the transitions between 
states or the persistence of a state into a form that is appro-
priate for controlling an application [13]. Previous methods 
for accomplishing this can be divided into two approaches: 
operant conditioning and pattern recognition [21]. Operant 
conditioning places the user in a tight feedback loop with 
the system output and the user must learn how to control 
their brainwaves in order to achieve the desired results. On 
the other hand, pattern recognition places the burden on 
signal processing and machine learning techniques in order 
to recognize the signals associated with mental states or 
activities of untrained individuals without feedback from 
the system. The benefit of pattern recognition is that the 
tedious training and adaptation needed to bridge the gap 
between human and machine is performed by the computer 
rather than the human. From an HCI perspective, this ap-
proach is much more attractive because it can be applied to 
detecting and classifying arbitrary states, rather than having 
the user generate pre-trained states on demand. We utilize 
this basic approach in our work. 

Researchers have explored a wide range of neurological 
phenomena in building BCIs using EEG and pattern recog-
nition. For example, many have studied event-related and 
evoked potentials which represent distinct voltage fluctua-
tions as a response to specific stimuli [11]. These potentials 
include signals such as the P300 response, commonly 
thought to be an index of attention and memory, as well as 
the N100 response, which is a selective attention wave. 
Unfortunately, measuring these phenomena typically re-
quires presenting stimuli at regulated timings and under 
carefully controlled conditions. Additionally, extracting the 
signal from the noisy data often requires averaging over 
dozens or hundreds of recordings that are time-locked with 
the stimulus presentation. While researchers working on 
extracting these signals from single trials have had some 
success [23], the general paradigm of tightly controlling 
stimuli and watching for the absence or presence of a par-

ticular response makes these types of signals less useful for 
task classification and the HCI work we envision. 

Fitzgibbon et al. [8] observed statistical differences in the 
spectral power of EEG signals while subjects performed 
eight different cognitive tasks. However, statistical differ-
ences alone do not necessarily imply the ability to classify 
between these tasks. Hence, we look to work that has used 
signal changes to generate features for machine learning 
algorithms for classifying which cognitive tasks an individ-
ual is performing. While early attempts by Gevins et al. did 
not yield favorable results [12], recent work has been more 
successful. Keirn and Aunon [13] collected EEG measure-
ments while users performed five different mental tasks: a 
baseline relaxed state, a multiplication task, a geometric 
rotation task, a letter composition task, and a visual count-
ing task. These tasks were designed to elicit hemispheric 
differences on the head derived from the neurophysiologi-
cal mapping of brain function. Using various feature selec-
tion techniques and machine learning algorithms, they were 
able to achieve 75-90% classification accuracies when 
comparing pairs of these tasks using within-subject models.  

Using Keirn and Aunon’s data set, Palaniappan [19] 
showed that he could obtain up to 97.5% classification ac-
curacy when using the most easily separable pair of tasks 
for each subject. However, the best performing pair was 
different for each subject. While differentiating between 
two known and pre-selected states is sufficient for direct 
control applications, it is less interesting for general HCI 
research as it does not allow measuring arbitrary states for 
any given user. Also using Keirn and Aunon’s data set, 
Anderson and Sijerčić [1] extend this work by using neural 
networks and temporal averaging to classify the five tasks 
simultaneously, achieving 33-70% classification accuracy 
using data from four subjects. The prior, the expected per-
formance of a random classifier, in this case would be an 
accuracy of 20%. In many cases, a human observer trying 
to correctly identify the active cognitive task would only be 
expected to perform as well as a random classifier.  

Unfortunately, many researchers working on these prob-
lems seem to re-utilize the Keirn and Aunon data set rather 
than obtain new data. In fact, we have been unable to find 
work within the last fifteen years replicating these meas-
urements. In order for this approach to be useful to the HCI 
community, we must be able to reliably replicate the data 
acquisition procedure, preferably with low-cost equipment 
that is accessible to HCI researchers. This would provide us 
with a starting point from which we can perform the ex-
perimental manipulations necessary to develop new and 
relevant applications. Hence, in our first study, we adopt the 
general experimental methods presented by Keirn and 
Aunon to collect new data using a subset of their tasks.  

EXPERIMENT 1: COGNITIVE TASK CLASSIFICATION 

We conducted this experiment to explore the feasibility of 
using a low-cost EEG to measure and classify brain signals 
while subjects performed various cognitive tasks.  
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Tasks 

Based on the results from pilot recordings with our system, 
we chose three tasks from those used by Keirn and Aunon 
[13]:  

Rest – In this task, our baseline, we instructed participants 
to relax and to try not to focus on anything in particular. We 
also explicitly instructed them not to continue working on 
any task that may have preceded the rest task.  

Mental Arithmetic – In this task, participants performed 
mental multiplication of a single digit number by a three 
digit number, such as 7 × 836. We chose the complexity of 
the problems so that it was not so difficult as to be discour-
aging, but also so that it would take most participants more 
than the allotted time to complete it. We instructed partici-
pants to double check their answers if they finished before 
the time expired. This ensured that they were performing 
the intended task as well as they could throughout the task 
period. Since we did not have participants provide us with 
answers, we confirmed that the problems were keeping 
them busy for the duration of the task during a debriefing 
interview. 

Mental Rotation – In this task, participants imagined spe-
cific objects, such as a peacock, in as much detail as possi-
ble and rotating in space. The specific details of the object 
were left to the participant. 

Equipment 

We used a Brainmaster AT W2.5, a PC-based 2-channel 
EEG system [2]. This device retails for approximately 
USD$1500, comparable to the cost of a laptop computer. 
The device has a minimum sensitivity of 0.7µV, provides 8-
bits per channel, and has a sampling rate of 256 Hz. Prior 
research has relied on data from much higher-end systems 
that provide much higher resolution analog-to-digital con-
version, higher sampling rates, and more channels. We 
show in this experiment that this low-cost device is suffi-
cient for measuring the signals of interest. 

It is worth noting that the technology used within EEG is 
not inherently expensive and the raw electrical components 
within a low-end device can be acquired for less than 
USD$100. It is merely a very sensitive digital voltmeter. 
The OpenEEG project [18] provides instructions for end-
users and hobbyists to assemble even lower cost devices 
than the one we used. However, validating these extremely 
low-cost do-it-yourself devices was not within the scope of 
this paper. 

EEG Electrode Placement 

The 10-20 System is an international standard for EEG 
electrode placement locations on the human scalp [7]. The 
system defines a grid relative to physical landmarks on the 
head, such as the indentation between the nose and forehead 
(nasion), and the bump on the back of the head (inion) at 
the occipital protuberance as shown in Figure 3. Electrode 
locations are defined by either 10% or 20% increments be-
tween these landmarks.  

Based on results from pilot recordings, we selected the pa-
rietal (P3 and P4) regions as the locations of interest, with 
both electrode references tied on top of the head at the cen-
tral region (Cz). The placements of electrodes can be seen 
in Figure 4. Tying the references for the two EEG channels 
together allowed us to make meaningful comparisons be-
tween the values from each channel. The Brainmaster de-
vice also includes a ground electrode connection that we 
attached to an ear lobe. The purpose of grounding is to pro-
vide electrical protection that prevents damaging the sensi-
tive inputs of the device. Its specific location on the head 
does not impact the recorded signals. 

To attach an electrode, we first clean the scalp location with 
a small amount of Nuprep™, an abrasive skin prepping gel 
used to remove dirt, oil, and dead skin from the area in or-
der to reduce the impedance of the electrical connection 
with the scalp. Then, we place a small amount of Ten20™ 
conductive paste on the electrode and attached the electrode 
to the scalp. The paste improves the electrical connection 
and provides a temporary bond that holds the electrode on 
the scalp. The measured impedance of our electrode con-
nections was approximately 20KΩ. The setup procedure 
requires about 10 minutes. Once the experiment was com-
plete, we removed the electrodes and subjects could wash 
off any remaining gel and paste with a brief water rinse. 

Procedure and Design 

After ensuring that participants were comfortably seated in 
a chair and attaching the EEG electrodes to their scalp, we 
explained the three cognitive tasks. We then had them per-
form several practice trials to ensure they understood the 
tasks. Participants performed all tasks within this experi-

 

Figure 3. International 10-20 Electrode Placement System 

 

Figure 4. Electrode placement in our experimental setup.  
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ment with their eyes closed. We did this to minimize mo-
tion artifacts in the EEG signal that would result from 
blinking or eye movement. Similarly, we instructed partici-
pants to keep their head and body as still as they could and 
not to outwardly vocalize thoughts while performing tasks. 
This highly constrained subject posture is typical of EEG 
based BCI work due to the extreme sensitivity EEG has to 
muscle movement. 

A pre-recorded computer driven audio cue indicated when a 
task was beginning by saying “Rest”, “Math”, or “Rotate”. 
Following the “Math” prompt, the experimenter read aloud 
the multiplication problem. For example, they would say 
“seven times eight-three-six” representing 7 × 836. We pre-
sented the stimulus by stating only each digit to remove the 
irregular language and duration of compound numeric 
terms. After the “Rotate” prompt, the experimenter verbally 
provided the object, such as “peacock”, for the participant 
to imagine and mentally rotate. Each task lasted 14 seconds. 
We used a blocked design similar to the design used by 
Kiern and Aunon. We grouped each set of three tasks into a 
trial, six trials into a session, and ran three sessions per par-
ticipant. This provided 18 recordings for each task. We 
fully counterbalanced the order of tasks across the trials. 
Tasks and trials were run back to back, resulting in sessions 
that took just over 4 minutes. Participants took short breaks 
between sessions.  

In this design, we cycle through many blocks of short tasks 
rather than using a single long recording for each task be-
cause EEG signal properties naturally drift over short peri-
ods of time [7]. This drift occurs both in the DC component 
as well as in the higher frequency spectrum of the signal. 
While some researchers have attributed this to such factors 
as changes in conductivity on the scalp due to minor perspi-
ration or persistent neurological shifts, the reasons behind 
the drift are generally not well understood. However, 
through observations within our pilot experiments and re-
viewing prior literature describing this phenomenon, we can 
be fairly certain that it is not a direct result of cognitive 
activity brought about by the different tasks in this study. 
Hence, cycling through shorter recordings in counterbal-
anced order reduces the correlation of any unrelated drift 
with the tasks, and minimizes the risk of inadvertently using 
this feature for classification. This ensures we are creating a 
task classifier rather than a temporal drift detector.  

Participants 

Eight individuals (3 females) volunteered for this study. 
Participants ranged from 29 to 58 years of age (mean age of 
37.8). All were cognitively and neurologically healthy, and 
all were right handed, except for one participant who had a 
slight nerve injury in his right hand and who had trained 
himself to depend more on his left hand. The study took 
about 30 minutes and participants were given a small gratu-
ity for their time. The individual used for pilot experiments 
did not participate in these studies. 

Data Analysis and Classification Results 

In order to classify the signals measured from our EEG, we 
performed some basic signal processing to transform the 
time series data into a time independent data set. We then 
computed a set of base features that we mathematically 
combined to generate a much larger set of features. Next, 
we used a feature selection process to prune the feature set, 
keeping only those that added the most useful information 
to the classifier and to prevent over-fitting. Our feature gen-
eration and selection process was similar to that used by 
Fogarty et al. in their work on modeling task engagement to 
predict interruptibility [9].  We used these features to train a 
Bayesian Network and perform the classification. Finally, 
we discuss how averaging may be used to enhance the clas-
sification accuracies leading us to our final results. Each of 
these steps is described in the following subsections.  

Basic Signal Processing 

Since the brain exhibits a characteristic electrical response 
to all forms of sensory stimuli, the auditory prompting used 
in the experimental setup likely introduces unwanted re-
sponse artifacts into the EEG data. For this reason, we re-
move the first 4 seconds from each task recording. This is 
sufficient time for both the computer and the experimenter 
prompts to complete and allows a moment for task onset to 
occur within the participant. The remaining 10 seconds then 
contains only signals during which the task was actually 
being performed. This provides 180 seconds of 2-channel 
8-bit EEG data for each task and each participant.  

Since most machine learning algorithms do not handle 
time-series data well, we must convert the data into a time 
independent dataset. To do this, we adopt a technique used 
in previous work [e.g. 1,13]. We slice the EEG signal into 
small overlapping windows and compute features based the 
content of each window. Specifically, we divide each 10-
second task recording into 2-second windows overlapping 
by 1 second. This provides 9 windows per task period and a 
total of 486 windows for each participant. This set of win-
dows becomes the set of training instances used by the ma-
chine learning algorithm for constructing and validating the 
classifier model. 

Feature Generation 

EEG data is typically analyzed by looking at the spectral 
power of the signal in a set of six standard frequency bands 
which have been observed to correspond with certain types 
of neural activity [7]. These frequency bands are: 1-4Hz 
(delta), 4-8Hz (theta), 8-12Hz (alpha), 12-20Hz (beta-low), 
20-30Hz (beta-high), and 30-50Hz (gamma). Taking a Fou-
rier transform of the EEG data provides us with the fre-
quency content of the signal. It is worth noting that the 
gamma band is sometimes defined as not having an upper 
frequency bound (e.g. simply >30Hz). However, the data 
recorded from our EEG has very little signal above 50Hz 
with the exception of 60Hz interference from indoor power 
lines. As a result, we decided to limit the frequency range 
used for our gamma band. 
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Adopting features used in previous work [e.g. 1,13], we 
compute the following for each window: signal power in 
each of the six frequency bands for each channel, phase 
coherence (similarity in mean phase angle) in each band 
across channels, and each band power difference between 
the two channels. This results in 24 features that are com-
monly used for EEG signal analysis. In addition to these 
features, we also compute the following set of more general 
signal properties for each input channel: mean spectral 

power, peak frequency, peak frequency magnitude, mean 

phase angle, mean sample value, zero-crossing rate, num-

ber of samples above zero, and the mean spectral power 

difference between our two input channels. In total, this 
provides with 39 base features for each window. We then 
compute the product and division of each pair of base fea-
tures resulting in 1482 additional features. Non-linear ma-
nipulations of features such as this is a common machine 
learning technique used to compensate for a potential lack 
of expressiveness in the statistical model use by the classi-
fier [9]. 

Because our output variable is a three-valued nominal vari-
able (Rest, Math, and Rotate), it is useful to divide our con-
tinuous valued input variables into discrete bins that might 
provide meaningful discriminations in the output variable. 
Doing this would allow the model, for example, to deter-
mine that having a beta band power above a particular 
threshold might be indicative of a Math task rather than 
attempting to find a correlation in the continuous values 
that would be useful in separating all the three tasks. We 
did this for our data using Fayyad and Irani's Minimum 
Description Length method [6] as implemented by Weka, 
an open source data mining and machine learning tool [24]. 

Feature Selection 

Once we have generated our full set of 1521 features, we 
apply a feature selection process to eliminate non-predictive 
features and to prevent over-fitting our data. First, we ap-
plied Weka’s CfsSubsetEval operator, which evaluates sub-
sets of features favoring those that have a high correlation 
with the output variable while having low inter-correlation 
among the features within the selected set. This provides a 
computationally inexpensive method of identifying a rela-
tively small subset of useful features for the classification 
problem. On average, this process reduced the number of 
features to 51 for the 3-task classifiers and 39.2 features for 
the pair-wise classifiers, the models that only discriminate 
between two tasks. We then applied a more computation-
ally expensive wrapper-based feature selection process, 
which builds a classifier model beginning with an empty set 
of features and then incrementally adds or removes features 
based on their impact on overall classification accuracy. 
This further reduced the number of features used for classi-
fication, resulting in an average of 23 features for the 3-task 
classifiers, which have 486 example windows, and 16.4 
features for the pair-wise classifiers, which have 324 exam-
ple windows. 

We applied this process of feature generation and selection 
to the data from each participant separately, catering the set 
of most predictive features to the individual. Constructing 
per-participant models is common in previous work 
[1,13,19] due to the high-variance in EEG signal properties 
between individuals. This is analogous to early days of 
speech recognition when systems had to be trained to par-
ticular individuals. However, close inspection of our final 
selected sets revealed that the base components mean spec-

tral power, alpha, and beta lo frequently appeared among 
the most predictive features for many participants. This 
could be the basis of exploring cross-user classifiers in fu-
ture work. 

Baseline Classification Results 

After performing the feature selection procedure for each 
participant, we used a Bayesian Network classifier to iden-
tify which task was being performed during a given test 
window. Rather than using standard 10-fold cross valida-
tion to estimate the classification accuracies of the models, 
we used 18-fold cross validation to control for the block 
design of the data collection procedure. For each fold, the 
model trained on 17 of the 18 available trials and reserved 
one trial for testing. A trial contains 9 contiguous windows 
for each task. Each of our reported results is the mean clas-
sification accuracy after repeating this process 18 times 
using a different test trial for each fold. This is more repre-
sentative of the performance that we would expect if a new 
trial was recorded and tested than if we used standard 10-
fold cross validation. 

The Bayesian Network classifiers for three mental tasks 
yield classification accuracies of between 59.3 and 77.6% 

(µ=68.3, σ=5.5), depending on the user. The prior for these 
classifications, or the expected result of a random classifier, 
is 33.3%. The pair-wise classifiers have a prior of 50% and 
yield accuracies of between 68.5 and 93.8% (µ=84.4, 

σ=6.0). Figure 5 presents a full breakdown of the classifica-
tion accuracies for each subject.  

 3 task 
Math v. 
Rotate 

Rest v. 
Math 

Rest v. 
Rotate 

subject 1 67.9% 83.3% 88.0% 85.8% 

subject 2 70.6% 82.7% 91.4% 84.3% 

subject 3 77.6% 88.3% 93.8% 86.7% 

subject 4 63.6% 69.4% 84.9% 86.7% 

subject 5 66.5% 91.0% 81.2% 80.9% 

subject 6 59.3% 80.6% 80.2% 68.5% 

subject 7 71.4% 87.3% 90.4% 86.7% 

subject 8 69.8% 87.7% 82.4% 83.6% 
     

Mean 68.3% 83.8% 86.5% 82.9% 
 

Figure 5. Classification accuracies per subject for the three 

mental tasks used in study 1. 
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Enhanced Classification Results 

The classification accuracies presented in the previous sub-
section are the accuracies of the models attempting to clas-
sify each of the 2-second windows in isolation. They ignore 
the fact that each window is temporally adjacent to and 
overlapping several other windows. In this section, we dis-
cuss reintroducing the temporal nature of the data by aver-
aging the classifier output over several adjacent windows. 
Doing this reduces the impact of spurious signals in the 
EEG data and substantially improves the overall classifica-
tion accuracy.  

To perform averaging, we must first decide the size of our 
averaging kernel (how many windows we should average 
over before producing the final classifier output). In scenar-
ios where the classifier has no a priori knowledge of when 
tasks begin and end, the best strategy may be to choose a 
fixed kernel size, e.g. 5. If all five windows come from the 
same task, averaging reduces the impact of noise in the 
windows and the final output is more likely to be correct. 
However, if the five windows do not come from the same 
task then the averaging kernel will contain conflicting in-
formation.  The classification accuracies will be poorer ad-
jacent to transitions between tasks. Thus, the benefit of av-
eraging the classifier output will depend on the density of 
task transitions in the data. More precisely, the impact aver-
aging will have on the overall classification accuracy is 
directly related to the ratio between the kernel size and the 
expected duration of tasks. To illustrate, we have computed 
the resulting classification accuracies using a few averaging 
scenarios that we believe might occur in typical HCI appli-
cations. 

In the first scenario, the duration of each task may not be 
significantly longer than the kernel size. For example, if we 
choose an averaging kernel size of 5 windows for our tasks, 
the kernel requires 6 seconds worth of data while each task 
lasts only 10 seconds. This results in 40% of the eventual 
classifications made by averaging over conflicting data. 
This provides us with a 5.1% average improvement in the 
3-task classifiers, while the pair-wise classifiers only mar-
ginally improved over their baseline accuracies.  

In the second scenario, the task duration may be signifi-
cantly longer than the kernel size. In this case, the percent-
age of poor classification results due to task transition 
points is reduced. If we simulate this scenario by doing the 
same averaging over 5 windows but leave out those sets 
that span transitions, we attain a 12.7% improvement over 
the 3-task baseline and a mean improvement of 8.0% over 
the pair-wise baselines.  

Lastly, if the classifier knows or can estimate when tasks 
begin and end, we can further improve classification by 
expanding the kernel size to span the entire task period. For 
our study, this meant averaging over the 9 windows gener-
ated from each 10-second task recording. This yielded 
mean 3-task classification accuracies of 75.9 to 90.7% 

(µ=84.0, σ=6.0) and mean pair-wise accuracies of 75.0 to 

100% (µ=94.4, σ=7.4) across all eight participants. This is a 
mean improvement of 15.7% and 10.0% over their respec-
tive baseline accuracies. Figure 6, shows the impact of 
these averaging schemes under these scenarios relative to 
the baseline accuracy of the raw classifier output with no 
averaging. It is interesting to note that no particular pair of 
tasks was substantially easier to classify than any other pair. 

We should also note that performing averaging in this man-
ner intrinsically increases the classification latency since 
measurements from multiple windows are needed by the 
model to produce an output. While we might be able to 
mitigate this latency by dynamically changing the kernel 
size according to various heuristics, exploring such schemes 
remains future work. 

Are We Really Reading Minds?  

The classification accuracies we achieve in this study sug-
gest that we can indeed reliably measure and identify per-
formance of our three mental tasks. However, we cannot be 
certain that the phenomena providing the classification 
power is entirely generated by neuronal firings in the brain. 
For example, it is entirely possible that the sensitive EEG is 
detecting muscular, or Electromyograph (EMG), artifacts 
from minute subconscious motor movements in various 
parts of the body. Non-cognitive artifacts detected by EEG 
include blinking, eye movement, head movement, scalp 
galvanic skin response, jaw and facial EMG, gross limb 
movements, and sensory evoked potentials. 

We believe that various cognitive tasks are involuntarily 
coupled with physiological responses [15] and that it is dif-
ficult, if not impossible, to fully isolate cognitive activity 
using EEG in healthy neurologically-intact individuals. 
This is problematic for researchers aiming ultimately to 
apply the technology to disabled individuals, as they have 
to guarantee that the features of interest are generated solely 
by the brain. For this reason, many researchers have con-
ducted extensive work to remove these ‘confounds’ intro-
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duced by physical artifacts before classification [10] or 
have limited their data collection to include only partici-
pants who suffer from the same disabilities as those as their 
target users. However, since we are aiming to apply this to 
a generally healthy population, we only need to determine 
the reliability of the features in predicting the task. This 
concept was briefly explored by Chen and Vertegaal who 
sensed motor activity in order to model mental load in their 
physiologically attentive user interfaces [3]. If non-
cognitive artifacts are highly correlated with different types 
of tasks or engagement, we can exploit these artifacts to 
improve our classification power. This is in contrast to the 
neuroscience community which has spent significant efforts 
to reduce and remove these artifacts from their recordings.  

EXPERIMENT 2: GENERAL TASK CLASSIFICATION 

We conducted a second experiment to explore using both 
cognitive and non-cognitive artifacts to classify tasks in a 
more ecologically valid setting. The tasks we chose in-
volved playing a PC-based video game. This task was cho-
sen because it places the participant in a typical personal 
computing environment while encouraging a relatively high 
degree of motor activity with the mouse and keyboard. This 
experiment also serves as a demonstration of the how the 
same experimental design can be used as a generalized ap-
proach for a much broader range of experimental tasks and 
potential applications. 

Tasks 

The game we selected for this experiment was Halo, a PC-
based first person shooter game produced by Microsoft 
Game Studios. The game involves navigating a 3D envi-
ronment using the keyboard and mouse in an effort to en-
gage opponents using various weapons. Participants were 
allowed to move their head and body freely as they would 
naturally while playing the game. The tasks we tested 
within the game were as follows: 

Rest – In this task, again used as our baseline, participants 
were instructed to relax and fixate their eyes on the cross-
hairs located at the center of the screen. During this task, 
they did not interact with the controls, nor did any of the 
game elements interact with them. 

Solo – In this task, participants navigated the environment, 
interacting with passive objects or collecting ammunition 
scattered throughout the scene. None of the enemies were 
visible or engaged the participant in this task. This was de-
signed to emulate some of the physical movement involved 
in playing the game without evoking the task engagement 
of shooting at an opponent. 

Play – In this task, participants navigated the environment 
and engaged an opponent controlled by an expert player. 
The same expert played against all participants. Game ele-
ments and expert player behavior were designed to ensure 
subjects were properly engaged in performing the task 
throughout the task period. 

Setup, Design, and Procedure 

The experimental setup, design, and procedure were similar 
to the first study. All participants were given a tutorial on 
the game and allowed to practice until they felt comfortable 
with the controls. We repeated each of the three tasks 6 
times in fully counterbalanced order for each session. Be-
cause of the additional time necessary to navigate the vir-
tual environment and engage in the activity, we lengthened 
the task durations to 24 seconds. Due to the extended dura-
tion of the tasks, we ran only two sessions of the game task 
per participant. The same eight participants that completed 
the first experiment also took part in this experiment. Six of 
these participants were novices and two were moderately 
experienced players.  

Results 

The data preparation, feature generation and selection, as 
well as the machine learning procedure were identical to 
that used in the first experiment. We removed the first 4 
seconds from each task period and divided the remaining 
data into 2-second windows overlapped by 1 second. This 
provided 19 windows per task period and 684 windows per 
participant. We computed 1521 initial features which were 
reduced by feature selection to an average of 20.25 features 
for the 3-task classifiers and 16 features for the pair-wise 
classifiers. We estimated the accuracies of the Bayesian 
Network classifiers using 12-fold cross-validation since 
only 2 sessions were run providing 12 trial recordings.  

The baseline classification accuracies were between 65.2 

and 92.7% (µ=78.2, σ=8.4) for the 3-task classifiers and 

68.9 and 100% (µ=90.2, σ=8.5) for the pair-wise classifiers. 
After averaging, we were able to achieve 83.3 to 100% ac-

curacies (µ=92.4, σ=6.4) for 3-task and 83.3 to 100% 

(µ=97.6, σ=5.1) for pair-wise comparisons. Figure 7 shows 
the mean baseline accuracy of the classifiers as well as the 
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impact of the various averaging schemes described in the 
previous experiment.  

These classification accuracies were substantially higher 
than our prior experiment using three cognitive tasks. It is 
also interesting that the classifier for Solo vs. Play did not 
do as well as the classifiers comparing against Rest. In the 
Solo and Play conditions, the amount of motor activity was 
moderately similar causing a reduction in classification 
accuracy, while the comparisons against the Rest task were 
easily distinguished by the classifier. This partially illus-
trates the dramatic impact that varying degrees of motor 
activity has on the ease of discriminating between different 
tasks using EEG data. While it may be desirable to specu-
late on the difference in the level of engagement between 
the Solo and Play conditions and the classifiers ability to 
distinguish them, we cannot make any conclusive claims 
about mental engagement given the data we collected. We 
can only state that we were able to achieve a mean accuracy 
of 93.1% when identifying whether the participant was per-
forming the Solo or Play task during a given window. 

It is also worth mentioning that for this particular experi-
ment, it would have been trivial to create a sensor that 
would have achieved essentially perfect classification by 
either hooking into the game state or by monitoring key-
board and mouse activity. Our goal in this experiment was 
not to illustrate the best method of discriminating these 
tasks but to demonstrate the impact of non-cognitive arti-
facts on EEG-based task classification in a realistic comput-
ing scenario. We believe that, given these two studies, EEG 
shows interesting potential as a general physiological input 
sensor for distinguishing between tasks in a wide variety of 
computing applications without requiring detailed prior 
knowledge of the tasks. 

DISCUSSION AND FUTURE WORK 

While the electroencephalograph was invented nearly a 
century ago, it is only recently that researchers have begun 
to apply it to problems outside the medical and neurosci-
ence domains. We believe that success in applying this rela-
tively mature technology to new domains is dependent not 
only on understanding the device and current usage para-
digms, but also on creatively challenging traditional as-
sumptions to create innovative solutions such as embracing, 
rather than rejecting, motion artifacts to improve classifica-
tion accuracies. We believe this work represents an initial 
step in exploring how these brain sensing technologies can 
be applied in a relevant manner to contemporary HCI re-
search problems. 

In describing our two studies, we provide guidance for HCI 
researchers unfamiliar with the technology, but who would 
like to use it in their work. We uncover some of the intrica-
cies of experimental design, cautioning researchers to be 
aware of artifacts such as temporal EEG drift proposing the 
use of a blocked design that minimizes inadvertently train-
ing on signal features orthogonal to the tasks. We also dis-
cuss electrode placement and present one such layout used 

in our experiments. Once data is collected, we describe a 
process for performing signal processing, feature generation 
and selection, machine learning, as well as temporal averag-
ing methods to improve classifier performance. This is a 
general procedure that can be applied to a wide range of 
task classification problems within HCI. We feel that this 
process is flexible and robust enough that it can be custom-
ized for specialized problems. This work also illustrates that 
relatively high classification accuracies can be accom-
plished using off-the-shelf EEG equipment comparable in 
cost to a typical laptop computer and without extensive 
medical expertise. 

Higher end EEG systems, however, do offer a potential 
benefit in having a greater number of electrode channels.  
This improves the chances researchers have in detecting 
stimulus related brain signals. Extremely high-end EEG 
systems containing 256 channels or more have begun ex-
ploring the idea of using complex electrical models of the 
human head to perform source localization in an effort to 
pin-point the location of a signals origin within the brain. 
However, this work has only had moderate success and still 
remains very experimental. Obtaining as much information 
as possible regarding brain activity is important for neuro-
science researchers who ultimately wish to make claims 
regarding the neurological behavior of the brain. However, 
a much coarser level of detail can be used for simply per-
forming task classification and detection. 

The data processing and machine learning procedure de-
scribed in this paper required approximately 15 minutes on 
a modern desktop computer for a given subject. However, 
once the classifier had been trained, classification of new 
test data occurred nearly instantly allowing it to be used in a 
real-time implementation. The classifier model could then 
be updated periodically in the background given the avail-
ability of new training data. The effective data rate of such 
a system would be approximately 10-30 bits/min depending 
on the degree of averaging, which corresponds to the level 
of noise filtering in the data stream.  This is similar in per-
formance to recent BCI work utilizing high-end EEG sys-
tems [4].  With such a slow and relatively noisy signal, 
EEG-based input is certainly not going to replace the key-
board or mouse anytime soon. However, we believe that 
such a signal is well suited for applications such as evalua-
tion tools or context sensitive computing where a secondary 
input stream can be used to supplement the primary input or 
to augment system behavior. 

While the work presented in this paper focuses primarily on 
EEG technology, we are very interested in exploring how 
this process can be expanded to other brain and physiologi-
cal sensing technologies for the purposes of task classifica-
tion and identification. This work represents a starting point 
for a wide range of research work exploring how computers 
can tune into the activity within our minds to help us per-
form the tasks of our everyday lives. We hope this work 
will inspire and encourage other researchers in the HCI 
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community to explore these technologies in their own re-
search. 
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