

Changing How People View Changes on the Web

Jaime Teevan, Susan T. Dumais, Daniel J. Liebling, and Richard L. Hughes
Microsoft Research

Redmond, WA 98052 USA

{teevan, sdumais, danl, richardh}@microsoft.com

ABSTRACT

The Web is a dynamic information environment. Web

content changes regularly and people revisit Web pages

frequently. But the tools used to access the Web, including

browsers and search engines, do little to explicitly support

these dynamics. In this paper we present DiffIE, a browser

plug-in that makes content change explicit in a simple and

lightweight manner. DiffIE caches the pages a person visits

and highlights how those pages have changed when the

person returns to them. We describe how we built a stable,

reliable, and usable system, including how we created

compact, privacy-preserving page representations to support

fast difference detection. Via a longitudinal user study, we

explore how DiffIE changed the way people dealt with

changing content. We find that much of its benefit came

not from exposing expected change, but rather from drawing

attention to unexpected change and helping people build a

richer understanding of the Web content they frequent.

Author Keywords

Web dynamics, Web browsing, revisitation, re-finding.

ACM Classification Keywords

H5.2: Information interfaces and presentation: User

Interfaces – Graphical user interfaces.

INTRODUCTION

When you visit a colleague’s Web page, do the new papers

she has posted jump out at you? When you visit a

conference Web page, is it obvious that the conference

schedule has changed? In this paper we describe DiffIE, a

system that facilitates interactions like these by supporting

awareness of Web content change. DiffIE is a Web

browser plug-in that caches the Web pages a person visits

and highlights any changes to a page when they return to it.

Previous research suggests that people return to content on

the Web regularly [2, 22, 23]. Web content also changes

regularly [10], and the content people revisit is particularly

likely to change [2]. Although changes affect [2], drive

[15], and interfere [21, 23] with people’s revisits, Web

browsers do not support a historical view of Web content.

DiffIE has been designed specifically to support awareness

of how a revisited page has changed without interfering

with the existing Web browsing experience. An example of

DiffIE in use can be seen in Figure 1. Through DiffIE the

changes to a researcher’s publication page since the user’s

last visit are highlighted, drawing attention to the fact that

the researcher has added a new paper. In this example, the

author of the Web page also draws attention to new papers

using a “new” icon. Although this can be helpful, such

annotations are author-centric, not user-centric, and, as in

Figure 1, do not always reflect what is new to the user.

Additionally, once the change has been seen there is no

need to emphasize it again, and different sites expose

change differently, if at all. Regardless of whether and how

page authors choose to identify new content, DiffIE

provides a consistent lens through which to view changes.

In this paper, following an overview of related work, we

discuss how DiffIE is implemented and highlight how we

addressed the interesting technical issues encountered via

prototyping and a large-scale 1-on-1 demonstration. We

then discuss how we deployed the plug-in within Microsoft

and studied its use during daily Web browsing. We present

the primary ways users took advantage of having Web

content change exposed, including several unexpected uses

that emphasize how DiffIE can help people understand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
UIST’09, October 4–7, 2009, Victoria, BC, Canada.

Copyright 2009 ACM 978-1-59593-679-2/07/0010…$5.00.

Figure 1. DiffIE in action. Changes to a publication
page since the user’s previous visit are highlighted.

more about the Web pages they visit than they currently do.

We conclude with a discussion of improvements that could

be made to the system based on we have learned.

RELATED WORK

Even though the Web is constantly changing, most Web

tools deal only with a single time slice of content. Browsers

show only the current version of a page, and search engines

use the crawled version as the source for their indices.

Several groups have studied how frequently Web pages

change and by how much [2, 7, 10, 20], and found that

there are significant amounts of change. Previous research

has also revealed that people often revisit Web pages; as

many as 50% to 80% of page visits are repeat visits [2, 6, 8,

21, 22]. Adar et al. [2] found that 66% of the pages people

revisit change during a 5 week period, and on average 20%

of the content changes. The motivation for revisitation is

often related to the content change [2]. For example,

people sometimes revisit to monitor for new content [15].

Systems like the Internet Archive (archive.org) provide

access to historical versions of Web pages. Web search

engines also provide a cached version of the pages they

index. In each case, a person must explicitly request to see

previous versions to understand the page dynamics, and the

relationship between the previous versions and the current

Web page is not easy to identify. Furthermore, the cached

versions are agnostic to users’ revisitation patterns.

Kellar et al. [15] describe Web browser enhancements to

support monitoring and notification of Web page change.

Applications like WebSite-Watcher (aignes.com), Change-

Detect (changedetect.com) and the Firefox Update Scanner

(updatescanner.mozdev.org) allow people to subscribe to

Web pages as they would an RSS feed to be notified of

changes. Explicit subscription and notification works well

when a user expects change within a fixed set of Web

pages, but does not work to identify unanticipated changes.

DiffIE focuses more broadly on the identification and

visualization of change during normal browsing behavior.

Jatowt et al. [13] discuss several ways historical information

about Web pages could be used to enrich Web browsing.

They suggest example applications such as providing

access to previous snapshots of the page, identifying salient

terms in previous versions, and mapping a representation of

change onto the current page (e.g., by showing content

creation dates or highlighting links to indicate that the user

has previously revisited the link). The latter is similar to

the approach we take in DiffIE, where we seek to enhance

Web browsing by providing in situ and lightweight

annotations of change that are applicable to all pages.

Change notification has been studied by Borodin et al. [3]

to support Web accessibility. The Dynamo system identifies

dynamic Web content and makes it accessible to visually

impaired users. Using VoiceXML dialogs, users can

choose to access only changed content or to jump directly

to the changed content. DiffIE visually (v. aurally) displays

change on every visit (v. only on refreshes), and thus deals

with different UI issues and additional storage and privacy

concerns. We also provide a longitudinal study of its use.

The AT&T Difference Engine (AIDE) [9] archives Web

pages and supports both notification of page changes and

visual display of differences between versions. Display

techniques include a side-by-side presentation, a view that

shows only differences, and an integrated view that

summarizes the common, new, and old material similar to

what is done in Microsoft Word’s change tracking. This

makes changes explicit, but also changes the user experience

from browsing to explicitly comparing differences in detail.

Liu et al.’s WebCQ system [17, 18] uses similar methods

for presenting two different versions of Web pages, but the

focus of their work is on developing scalable methods for

identifying different types of changes.

Systems have also been developed to support the historical

exploration of regions of a Web page. Nadamoto and

Tanaka [19] describe a Comparative Web Browser (CWB)

which presents two pages concurrently in a way that allows

their content to be synchronized. A user selects a region of

interest on the current page and pages that have similar

content are automatically retrieved. Adar’s et al.’s Zeotrope

system [1] allows people to view historical data for a Web

page gathered from a large scale Web crawl by rewinding

pages. They discuss several techniques for specifying

regions of interest in a current page (e.g., visual regions,

textual matches) and visualizations for presenting the

relevant historical information. These sophisticated display

techniques could provide interesting extensions to DiffIE to

be triggered following the awareness of change.

Site owners have also taken interest in aiding users in

identifying changes. Since the early days of the Web, site

authors have flagged new content (e.g., with a “new” icon

or timestamp). The company 37signals (37signals.com)

created a technique by which authors can briefly highlight

new content and then have the highlighting fade to

temporarily draw attention to novel blocks of content.

However, author-flagged content is not necessarily new for

the reader. Some sites track changes to content of other

sites; for example, one tracks edits to FOX News headlines

(thequickbrown.com), and many sites allow subscribing to

their changes through email or RSS feeds.

The work reported in this paper expands on previous work

in several ways. First, we take a user-centric approach to

emphasizing change, rather than content- or author-centric.

Whereas prior work focused on when the content changes

relative to the page itself (using polling or notifications to

retrieve new content), DiffIE shows change from the user’s

perspective (using user revisitations to guide the storage

and analysis of Web pages). Second, the goal of DiffIE is

to augment Web browsing rather than to replace it with a

different information exploration activity. Thus we show

page changes in situ as a user is browsing the page using

simple highlighting techniques. Finally, we deployed the

system, studied how it is used, and iteratively designed

features to support both anticipated and unanticipated uses.

OVERVIEW OF DIFFIE

DiffIE is an Internet Explorer browser plug-in that caches

the pages users visit and, when a user revisits a page,

highlights elements that have changed since the user’s

previous visit. The goal of DiffIE is to support people in

understanding change on the Web in a way that augments

their current Web browsing without interfering. We use

highlighting to annotate the changes that have occurred

since the user last visited the page. For some pages, like

news pages or blogs, people may expect change and, in

fact, visit the page to see the changes. DiffIE highlighting

allows them to quickly see what is new since their last visit.

For other pages, such as conference Web pages or

publication listings (e.g., Figure 1), people typically revisit

to re-find old information rather than to explicitly look for

change. In these cases DiffIE can draw people’s attention

to unanticipated but interesting or important changes.

As can be seen in Figure 2, DiffIE contains three major

components: a cache where representations of previously

visited pages are stored, a comparison component that

listens and responds to browser events and performs the

comparisons of the current page with previous instances,

and a toolbar component that contains the user interface.

All three components are discussed in greater detail below.

The DiffIE system described is the result of an iterative

design process. The initial prototype system was used by

the authors for their Web browsing for several months. An

improved version was demonstrated individually over the

course of several days to 300 Microsoft employees, with

their reactions, problems encountered, and usage scenarios

folded back in to the design. The resulting system was then

deployed to eleven people for regular use, with feedback

gathered during use and via structured interviews at the end

of a two week period. The design decisions made as a

result of insights gained during this iterative development

process are highlighted in the description of the current

system below. In the subsequent section, we summarize the

ways we observed people used DiffIE in practice.

DiffIE Cache

In order to highlight how a page has changed since it was

last visited, DiffIE needs access to previous versions of the

page. For this reason, a major component of DiffIE is a

Web page cache. In this section we discuss how pages are

represented in the cache, and explain key design decisions.

Web Page Representation

DiffIE identifies changes to text-based Web content at the

Document Object Model (DOM) level, including hidden

elements such as drop down menus that may be exposed on

click or mouse events. Pages are represented internally as a

tree of hash values to support this DOM-level comparison

of text across pages. The text nodes of a Web page are

typically the leaves of the DOM tree. The content of these

nodes are hashed using the MD5 algorithm, and the

information is propagated up the tree with each parent node

assigned a subtree hash value corresponding to the MD5

hash of all the hashes of its children, in order. This enables

fast comparison across complicated DOM structures.

Hashing the text means that if a single word changes, it is

possible to identify the DOM node where the change

happened, but not which word has changed. Additional

information could be stored to highlight word-level

changes, but this would require a larger storage footprint

and potentially compromise the user’s privacy. Since Web

page designers tend to chunk related content, DOM-level

analysis works well in practice to group related words for

highlighting, even when only one of the words in a node

has changed. Changes to images or content other than text

are not currently identified; the semantics and presentation

of image changes are more difficult to interpret.

Users can choose to persist a copy of the rendered page.

This enables them to return to previous versions if desired,

but can create significant additional space overhead.

Key Cache Design Decisions

Representations of the Web pages a user visits are stored

locally on the client machine. Although browsers contain

caching mechanisms that save previously viewed content,

they exist for performance reasons and not to enhance the

user’s view of the Web page. We create a parallel cache for

DiffIE so that the application can control cache expiration

and store multiple versions of the same page. Multiple

versions allow users to view the changes not just since their

last visit but also since other earlier visits.

Representations are tied to a particular URL and timestamp

via a file naming scheme. Each representation is stored in a

file named with a hash of the URL followed by the date. A

person’s notion of a Web page does not necessarily map

directly to a unique URL; multiple URLs may map to the

same content, or the same URL may be used to access very

different content. There has been research into identifying

mirrored content [4] and stripping form elements from

URLs that produce the same content [12], and such

functionally could potentially improve the user experience.

The maximum amount of disk space used by the cache is

configurable. When the cache reaches capacity, the oldest

pages are dumped to make room for new content. By

default capacity is set to 500 MB. The maximum number

Figure 2. The DiffIE architecture. DiffIE is a Web
browser plug-in that resides on the client machine.
It consists of three parts: a cache, a toolbar
component, a comparison component.

of versions of the same Web page that are cached is also

configurable, and set to five by default. Only 6% of all

pages are visited more than five times, but not storing more

than five visits per page can reduce the number of elements

in the cache by 25% [22]. Cache size is further reduced by

not storing duplicate versions of the same page when no

change has occurred. Older versions of duplicate pages are

stored as pointer files that indicate they contain the same

content as the next version of the page. Including pointer

files, the average size of an element in the DiffIE cache is

150KB. Given people visit on average from 14 to 97 pages

per day [6, 14, 22, 24], the 500MB cache can support on the

order of two or three months visitation history.

Previous research suggests that some classes of pages are

visited several times in a single browsing session, and then

not returned to again, while others are visited only once in a

session but are very likely to be returned to later [2]. DiffIE

could potentially increase its ability to cache pages that will

be useful by biasing its cache policy towards those pages

that are most likely to be revisited.

By default, secure pages (https://) are not cached, but this is

primarily for the users’ comfort. Storing hashed versions of

page content locally does not pose a significant privacy

risk. However, several users mentioned they appreciated

not having secure pages stored, and one user turned the

DiffIE system off when visiting sensitive content even

though she knew no identifiable content was being stored.

Comparison Component

When a person visits a page for which there is cached

content, DiffIE loads the most recent previous version of

the page while the live content is downloaded, and

compares and displays the differences between the live

version and cached version when the download is complete.

The current version can also be compared with earlier

versions on demand. The comparison component of DiffIE

is responsible for detecting and highlighting the changes.

Researchers have explored many different algorithms for

detecting differences in Web pages [3, 9, 17, 18]. While

any of these algorithms would work for DiffIE, we chose an

approach with a small storage requirement that is fast at

identifying changes at the expense of being able to identify

fine-grained changes like node translation and transposition.

Page comparisons can run in O(n) time, compared to

algorithms such as Dynamo’s [3], which runs in O(n
2
) time.

Detecting Differences

The comparison component compares two pages by looking

at how the current tree of hashes differs from the previous

tree of hashes in a depth-first manner. Starting at the root

node, DiffIE compares the pre-computed subtree hash of

the live version and the cached version. If at any point the

subtree hashes of the two pages are the same, DiffIE

terminates comparison of the corresponding subtree, since

identical hashes implies the content must not have changed.

For those subtrees that do not match, traversal continues

down the branch. For any node, the following types of

differences are identified:

- Addition. The hash of the text content of a node does

not appear in the previous version of the page, and the

node’s parent in the current version of the page has

more children than the previous version.

- Change. The hash of the text does not appear in the

previous version of the page, and the node’s parent in

the current version has the same number of children.

- Deletion. The number of child nodes the node has in

the current page version is less than the number of

child nodes the node had in the previous version.

- Movement. The hash of the text content of a node in

the current page appears in the previous version of the

page, but with a different parent.

These four types of change are illustrated in Figure 3.

By default, only additions and changes are displayed to the

user by DiffIE. Deletions are ignored because highlighting

deletions would necessitate adding additional content to the

current page and we did not want to interfere with the

user’s existing browsing experience.

Movement is ignored by DiffIE because it can be difficult

to identify without semantic knowledge of the page. For

example, for blogs or news feeds, where all of the content

moves down when something is inserted at the top of the

list, only the element that has been inserted conceptually

changes. However, when the semantics of the position are

important (e.g., a list of current best sellers), the movement

of all of the elements in the list can be important even when

no element has actually changed. Displaying additions

captures the semantics of the news feed example, but not

the best sellers example. The category could be broken

down into more fine grained changes such as list insertion

or reordering to capture these differences.

Highlighting Differences

Differences are highlighted via manipulation of the page’s

DOM. The background color of the changed node’s parent

is set by adjusting the node’s style attribute. We worked

with a designer to find a suitable highlighting color choice,

and identified several important constraints. The color

must be salient but not annoying (e.g., people found colors

that were too bright distracting), culturally appropriate (e.g.,

red is often used to indicate a warning in the United States),

and generally distinguishable from Web page background

Addition

Change

Deletion

Movement

A

B C

ED

A

B C

ED F

A

B C

FD

A

B C

ED

A

B C

ED

A

B C

ED

A

B C

ED

A

B C

ED

Figure 3. An illustration of the types of changes that
can occur at the DOM level of a Web page.

elements (e.g., pages may have blue elements, and white

text, making blue highlighting hard to see). Most

importantly, however, highlighted text must be easily

legible. As the majority of Web pages use white as the

dominant background color [5], most text is dark or black.

However, text can also be white or light. Very little text is

in the mid-range, so we selected highlighting colors in this

range. Nonetheless, there will be occasions where the

highlighting color is similar to the color of the highlighted

text. These cases can be identified and text color inverted.

Performance

In practice we find that loading a cached page and

computing and highlighting the differences takes on the

order of tens to hundreds of milliseconds, depending on

DOM complexity. Pages with a very complex DOM

structure (more than 20,000 nodes) are ignored because of

increased resources necessary for the computation and

storage of such pages, but these pages are rare: a recent

study found an average of 281 HTML tags on a

pseudorandom sample of pages [16].

Although DiffIE is very fast, the comparison component

does not trigger until the page has completed loading and

the load event has fired. We observed while demonstrating

DiffIE that this can make the application appear slow.

Users often begin interacting with a page before all of the

elements have loaded, and on occasion some page elements

may not load for a very long time. DiffIE does not fire

earlier is because it is important to have a stable DOM tree

for comparison and stability is not guaranteed earlier. In

fact, JavaScript and other non-HTML content may continue

to modify the DOM even after the document is loaded.

Although waiting for the page to finish loading can delay

the appearance of the highlighting, DiffIE does not interfere

with the user’s interactions prior to firing. The highlighting

is merely a supplemental feature that appears when all of

the content has loaded. We found that adding a status

notification to DiffIE toolbar explaining the delay helped

people understand what was happening and why.

Toolbar Component

The toolbar component of DiffIE is the portion of the

application with which the user interacts. It can be seen in

Figure 4. From left to right, the toolbar elements are:

Status Area

The status area shows what DiffIE is currently doing, or

what the current state of the page is. The status area also

displays additional useful information like whether the page

has been visited before, and if it has, when.

Highlighting Toggle Button

The highlighting toggle button turns highlighting on or off

for the loaded Web page. The button has two states: 1)

show what has changed in the page (green tick), or 2) hide

what has changed in a page (red X). When the changes are

hidden, the area reports the number of hidden changes.

This button was added to the toolbar because DiffIE’s

highlighting can sometimes be distracting. But several

people reported using the toggle button for additional

purposes. One user liked to turn the highlighting on and off

to draw his attention to what had changed. Others used it

when the highlighting interfered with their ability to use the

page, most often when text color matched the highlighting.

Ignore Site Button

For some pages, DiffIE’s highlighting is always distracting.

In this case we allow the user to blacklist sites on a

wildcard basis. By default, we blacklist any sites using the

HTTPS protocol (secure sites). We chose not to blacklist

intranet sites by default. Blacklisted pages are added to a

list of ignored sites in the setting dialog, and can be

removed from the blacklist from there.

Compare-To List

This list displays the visitation history for the page, and

allows the user to select which previous version of the page

the current version should be compared to. By default the

most recent version is the comparison point.

Load Page Button

The page to which the current version is being compared

can be loaded into a new tab for further inspection. As

mentioned earlier, for space reasons page content caching is

turned off by default and must be turned on via the settings

dialog for this functionality to work.

Settings Button

There is also a button on the toolbar to open the settings

dialog. The settings dialog allows the selection of

highlighting color, the ability to turn DiffIE off, and control

over the blacklisted sites and the size of the cache.

Feedback Buttons

The feedback buttons provide a mechanism for people to let

us know when they have had a positive (green smiling face)

or negative (red frowning face) experience with DiffIE.

When a feedback button is clicked, the system generates an

email message with a screenshot of the current page and

information about the user’s current settings. The user can

modify the email to include additional content or remove

private content. For privacy reasons, no other information

than what was explicitly sent to us was collected.

While the DiffIE toolbar contains a lot of functionality for

experimental purposes, we believe that the most important

functionality can be easily encapsulated in a single button

similar to the highlighting toggle button. The enhanced

button would include an iconographic representation for the

page loading, and provide access to a drop down menu for

access to the additional features.

Figure 4. The DiffIE Web browser toolbar.

UNDERSTANDING DIFFIE

As mentioned earlier, we designed and deployed DiffIE in

three stages. During the first stage, an initial prototype was

used by the authors for their daily Web browsing for several

months. This phase was used to identify bugs, problems

with robustness, and performance issues. Stability and

efficiency are very important when deploying a prototype

that operates on all Web pages viewed in a browser.

Second, an improved version of DiffIE was demonstrated to

over 300 Microsoft employees individually over a two day

period, with a focus on the user experience. We observed

during the second phase that people experienced confusion

when nothing was highlighted until a Web page finished

loading, and added a status message to the toolbar to

explain what was happening in response. We also saw

people became overwhelmed when too much content was

highlighted, and thus surfaced in the toolbar the ability to

easily turn highlighting off on a per-page basis.

Finally, to better understand how an awareness of Web

content change might affect normal Web interactions, we

asked eleven people to use DiffIE as part of their daily Web

browsing activity for an extended period of time, and to

share their experiences with us. This section focuses on

results and insights from this phase. We discuss the study

methodology, summarize some of the interesting and

unexpected ways DiffIE was used, and describe several

areas for improvement.

Study Methodology

Eleven people (5 women, 6 men) installed DiffIE on their

primary work computers. All participants were Microsoft

employees. Three were developers and the rest researchers.

Participants were encouraged to use the feedback buttons

on the DiffIE toolbar to submit their positive and negative

experiences. In total, we collected 51 pieces of feedback

relating to the DiffIE user experience, 26 of which were

positive, 23 negative, and 2 unlabeled. We did not log

users’ interactions for privacy reasons, and focus primarily

on users’ subjective experiences in our analysis.

After people had used the system for at least two weeks, we

conducted semi-structured interviews with nine participants

to get an in depth picture of how DiffIE was being used. In

the interviews, we asked participants about their general

experience with DiffIE, their understanding of the various

user interface elements, and how often they felt the

encountered the following different situations during the

course of their use:

- Pages with nothing highlighted.

- Pages with too much content highlighted.

- Pages where highlighting drew attention to something

unexpected they would not have noticed otherwise.

Of those pages that drew attention unexpectedly, we further

asked whether the content attended to was important,

interesting, or distracting. The answers participants gave to

these questions can be found in Figure 5. The majority of

people indicated that they never or rarely saw pages with

nothing highlighted, that there was sometimes or often too

much highlighted, and that there was often or always some

unexpected highlighting (although it was rarely distracting).

During the interview, we also asked participants to revisit a

self-selected sampling of pages from their browser history,

five which they had visited on the same day as the

interview, and five from a previous day. For each page we

collected a screenshot and asked participants to answer the

following questions:

- What was their intent when they last visited the page?

- Did they expect change since their last visit?

- Was their experience with DiffIE on loading the page

during the interview positive, negative, or neutral?

In this way we observed people’s interactions with a sample

of 76 pages. Although during the general questioning most

people indicated they never or rarely encountered pages

with nothing highlighted (see Figure 5), 43 of the pages

visited during the interviews had nothing highlighted. This

is consistent with the rate of change found in previous

research [2], and may suggest that highlighted instances

were particularly memorable. Of the 33 pages where

content had changed, people reported having a positive

experience with DiffIE 20 times, a neutral experience six

times, and a negative experience seven times. The different

breakdown between positive and negative experiences

observed during experience sampling compared to what

was collected via the feedback mechanism suggests

participants were more likely to send negative feedback or

that the pages that participants chose to visit during our

interviews were more likely to have interesting change.

We now summarize the ways that DiffIE enhances people’s

browsing experience, and explore how the DiffIE

experience could be further improved.

How DiffIE Was Used

When people are first introduced to DiffIE, the two most

common uses that come to mind are to find new content on

sites known to change regularly (e.g., news sites or blogs)

and to draw attention to changing content on sites that

people monitor (e.g., stock quotes or sports scores). These

two scenarios are probably popular because they represent

instances where people actively seek out dynamic content.

Figure 5. The frequency at which participants reported
experiencing different scenarios while using DiffIE.

Nothing highlighted

Too much highlighted

Unexpected highlighting

… that was important

… that was interesting

… that was distracting

Never Rarely Sometimes Often Always

Based on what we observed during our study, however, it

does not appear these scenarios are the most common use

cases for DiffIE, nor does it appear that DiffIE is even

always useful in these cases. Instead, DiffIE seemed to be

most valuable to our participants when it revealed things

about the pages they were visiting that they might not have

otherwise been seen or understood. In this way, DiffIE

seems to have the potential to expand the experiences that

people are able to have with the Web.

We first discuss the two obvious use cases (monitoring and

finding expected new content) in greater detail, and then

describe several other ways that DiffIE was used to help

participants see more content or better understand the pages

they visit (including finding unexpected important new

content, serendipitous encountering, understanding a Web

page, attending to activity, and editing). Examples of these

different uses are shown in Figure 6. We conclude with a

discussion of how people said they might use the archived

page content once they knew that the content had changed.

Monitoring

A common activity on the Web is monitoring a page for

change [15]. For example, people may monitor a financial

site to keep track of the latest stock prices, a message board

while waiting for new postings, or online sports scores.

Twenty percent of the pages discussed with us during the

structured interviews were visited with a monitoring intent.

DiffIE provides value in such scenarios by highlighting and

making it easy to quickly focus on the monitored content

when it changes. For example, one participant reported

enjoying using DiffIE to monitor the scores of several

tennis matches because it drew her attention to those

matches with updated scores. Another participant had

monitored the search result page for the query “spock

actor” to see if any of the sites contained information about

Zachary Quinto, the actor who played Spock the recent Star

Trek movie. He was thrilled when he pulled up the search

result page during our interview and saw the tenth result

highlighted and about Quinto, as he would not have noticed

it otherwise even though he had been actively looking for it.

Interestingly, DiffIE did not always enhance the monitoring

experience. Some pages are highly targeted to supporting

monitoring. For example, many finance sites are specifically

designed to show changing stock prices. Several people

reported that DiffIE was annoying in these cases because it

added clutter to a page already designed to draw attention to

the changing value. The true value of DiffIE in monitoring

situations appears to be for sites that are not explicitly (or

not well) designed around the scenario.

Finding Expected New Content

Another popular use for DiffIE was to identify new content

on sites that post new content regularly. Sixteen percent of

the pages visited during the interviews had been previously

visited to find new content that people expected to change

during the day. For example, many people described how

DiffIE drew their attention to recently posted content on

news sites, blogs, or portals.

 Monitoring / Finding Expected New Content Serendipitous Encountering Attending to Activity

 Finding Unexpected Important Content Understanding a Web Page Editing

Figure 6. Examples of different ways DiffIE was used. The system was not always useful for scenarios involving the
monitoring or finding of expected new content because sites are often designed to support these scenarios. Instead,
DiffIE appeared particularly useful for scenarios where people do not currently expect change.

However, many participants also reported that DiffIE often

highlighted too much information (as shown in the second

row in Figure 5). This was most common for pages that

people view periodically, but had not visited in a while.

One participant reported dreading her first visit to an online

news site in the morning because she knew everything

would be highlighted, but enjoying subsequent visits.

Another participant explicitly visited a news page first thing

in the morning, without intending to read it then, so that

DiffIE would be more useful on subsequent visits. For

highly dynamic sites like news sites, DiffIE appeared to be

most useful when the sites were monitored for change

rather than visited to find new content.

Although we did not observe many cases of people finding

new expected content on pages that change less frequently,

a number of participants said they expect to find that DiffIE

will be useful in the future to identify new content for pages

they visit less frequently. For example, one participant

visited a colleague’s academic publication listing during his

interview, and while there were no changes highlighted at

the time, he expressed the expectation of being able to

return in several months and find new papers of interest.

Finding Unexpected Important New Content

A less common scenario particularly delighted users was

when DiffIE drew attention to important but unexpected

new content. As shown in Figure 5, people reported often

having their attention drawn to unexpected content, and

some of this time they found this content to be important.

An example is shown in Figure 1, where the phone number

listed on the researcher’s home page has changed. Another

example in Figure 6 highlights the best paper awards on the

WSDM conference page. One of our participants reported

that DiffIE enabled him to notice the price of an airline

ticket had risen, and another learned of an event she might

want to attend when it was posted on an online calendar.

Serendipitous Encountering

Most of the time when people’s attention was drawn to

unexpected content, that content was not actually important.

However, participants did not appear to find having their

attention drawn to unimportant content distracting, and

instead reported that it was often interesting (see Figure 5).

In fact, several people even said it was interesting to be

made aware of the existence of advertising in locations they

would not have expected.

In this way, DiffIE appeared to support serendipitous

information encounters [11]. For example, one subject

followed a highlighted link during his interview because he

thought it sounded interesting, but he his motivation in

visiting the page was not to find the information and he

would not have noticed it otherwise.

Understanding a Web Page

These unimportant and unexpected changes were often

interesting to people because they provide new way of

understanding the Web pages. When asked if they expected

a page to change when visiting it, participants sometimes

answered that they previously did not expect change on that

particular page, but now did as a result of DiffIE.

For example, many people were surprised by how often

search results changed (as shown in Figure 6). One

participant used a search engine that provided search

history functionality, but was not aware of the functionality

until DiffIE started highlighting his changing history. That

same participant said he used to think a block of content

with different cells for different sports teams contained

information that all changed at the same time, but that he

now recognized that the information about teams changed

at different rates. Instead of viewing content as a block, he

began to view it as a collection of separate entities.

Another was intrigued to notice that new postings to an

audio software news site that he visited about once a week

were not always listed chronologically.

Attending to Activity

DiffIE also made some Web content was not thought to be

useful by itself to become useful in context. One way in

particular that we observed this happening was that it

enabled people to attend to the activity by other users on a

Web page. Many Web pages are structured so that visitors

leave footprints as they interact with them. Pages may have

counters that increment on page loads, comment posts, or

thread visits, or lists of names that show who is logged on,

visiting, or reading content. While this information provides

some value when static, it appears particularly valuable

when users can see that it has changed because it enables

people to understand what others are doing.

For example, one participant reported using DiffIE to

monitor activity on a message board she frequented. She

found that when the counter representing how often a

thread was visited would increment, she would think about

the thread again even if there had not been a new post to the

thread (see Figure 6). Another participant used DiffIE to

know when a postponed tennis match she was interested in

monitoring had started updated again.

Editing

A number of participants reported DiffIE was particularly

useful when they were editing Web content they were

responsible for publishing. Although in these cases

participants knew exactly what changes they expected to

see highlighted following an edit, they found DiffIE was

very useful in drawing their attention to the changes they

had made so they could confirm they appeared as expected.

One participant mentioned he was trying to edit two pages

in a similar manner at the same time, and that being able to

quickly find the content in both without doing a visual seek

was particularly useful.

People also found DiffIE very useful when they were in

charge of producing the content of a page but not in control

of actually changing it. Two participants had used DiffIE

to easily see if the person who was tasked with making the

requested edits had actually done so.

Using the Archived Content

Once they were made aware of the existence of change,

there were a number of ways people suggested the archived

content could be of additional value. Several people

mentioned it could be used to understand the type of change

(e.g., is the content new or different?) or direction of

change (e.g., did the price go up or down?). It could also be

used to support the re-finding of lost content (e.g., what was

the news story that was posted here yesterday?). The

archived page could also be useful to view the changes

made while editing a page or to revert to an earlier version.

Areas for Improvement

Based on our observations of how people used DiffIE, there

are three main ways that the application can be improved.

One is to better expose the changes that occur to a page,

another is to explore the exposition of different types of

change beyond simple additions and changes, and the third

is to allow people to see change they have not personally

experienced. All three are discussed in greater detail below.

Ways of Exposing Change

With DiffIE, we chose a very simple way to notify the user

that the content of the page had changed: We highlighted all

of the changed content. However, this simple approach has

its flaws. Many participants reported finding too much

highlighting, either because too much content had changed,

or because content very high in the DOM structure had

changed and the highlighting of that high-level element lead

to significant highlighting.

One way to address this would be to not highlight changes

in these cases (for example, if more than fifty percent of the

page is going to be highlighted). However, this would make

it difficult for users to distinguish between pages where

nothing has changed and too much has changed. This could

be addressed by briefly presenting and then fading

highlighting, or by showing the amount of new content

iconographically in the DiffIE toolbar.

Another way to reduce the appearance of over-highlighting

would be to only show changes that are likely to be of value

to the user. Adar et al. [2] found that people’s revisitation

rates can be used to help identify DOM elements that are

likely to be interesting because they change at a similar

rate. However, the number of people who enjoyed having

their attention drawn to unexpected changing content

suggests there may be something lost in the experience by

filtering which changes are shown even if interesting

change can be accurately identified.

Many people also wanted more information about changed

content than merely that certain DOM elements had

changed since the last visit. Additional information

requested included details about much the page differed

from older versions. In order to get a longer term historical

picture of how a page changes, two people suggested the

notion of change decay. The live version of a page could

not be merely compared to the last version stored in the

cache, but to all previous versions. Older changes could be

highlighted faintly and fresh changes highlighted brightly.

This would help prevent the change context from entirely

shifting each time a person re-loads the page.

There are a number of ways the details of how a page

differed from the previous version could be exposed (see

also [9]). The most straightforward, which is currently

supported, is to allow the user to load the previous version

and make the comparison themselves. However, it can be

easy to miss changes when viewing pages side by side.

Changes could also be exposed via Microsoft Word’s

change tracking, by displaying the earlier content on hover,

or by building on ideas from related research (e.g.,

highlighting and rewinding areas, as done in Zoetrope [1]).

Types of Change Exposed

One of the reasons people wanted to view the previous

content is that although we highlight additions and changes,

it is not always apparent how the content differs from the

previous version; has the content changed, or is it new?

Several participants mentioned wondering about this, and

one actually changed the highlighting colors for the two

types of changes so that they would be highlighted

differently. She suggested it might be interesting to

highlight new content in a very salient color, and highlight

changed content in a less salient version of the same color.

Several participants asked for additional types of changes

(specifically moves and deletions) to be displayed. The

challenge here is how to represent them. One participant

suggested that deletions could be represented through a

small amount of highlighting to empty content, with the

removed content visible upon hover.

People also expressed interest in seeing how other types of

content, and in particular images, change. This could be

done by earmarking or outlining images that have changed.

We have explored rendering different versions of the same

page as images and performing a pixel-wise comparison of

the old and new versions of the page to show how the page

has changed as is visible to the user. However, while this

captures all manner of change, it is not particularly robust

to small movements.

It might also be interesting to capture a semantic notion of

change. For example, numbers that increase or decrease

could be highlighted have an arrow drawn next to them

representing the direction of the shift, much in the way

stock tickers do. Conceivably even changes to facts could

be captured and represented using the Semantic Web.

Exposing Unseen Change

We observed some people purposely visit pages to establish

a baseline version in their cache. In these cases, their visits

were not driven by the current version of the page, but by

their interest in the future differences. This suggests DiffIE

could potentially benefit from a richer cache than one that

merely contains copies of the pages a user has visited.

One way DiffIE could avoid the cold start problem would

be to pre-populate the user’s cache with pages from the

user’s browser history during installation. In addition to

enabling future scenarios, this would provide immediate

gratification as the new user first explores the application.

We could also show changes not just between content the

user has viewed, but also with other versions of the page.

This could be done by proactively crawling explicitly

requested, previously visited, or globally popular pages, or

by using versions stored in an archive service like the Way

Back Machine or a search engine Web cache. DiffIE could

also support social scenarios where users and organizations

share peer-to-peer or proxy caches to enable awareness of

changes relative to what the group has collectively seen.

Cached content can be used retrospectively, to provide the

user with an understanding of how the pages change over

time, as well as prospectively, to identify for the user when

interesting change occurs to a page of interest.

As we have seen, there are many ways DiffIE might better

help people better understand changing Web content. It is

notable, however, that even though there is significant room

for improvement, all participants chose to continue using

the system following the completion of the study.

CONCLUSION

In this paper, we have looked at how Web browsers can

better support the fact that people work in a dynamic

information environment. We presented DiffIE, a browser

plug-in that caches the pages a user visits and then

highlights the way those page have changed when the user

returns to them. We described challenges to building such

a system, such as identifying change types and presenting

them in a salient but non-distracting way. By deploying

DiffIE and observing its use, we found a number of

unexpected ways that DiffIE helps people have a richer

experience with the Web content they interact with, and we

explored several interesting areas for improvement.

REFERENCES

1. Adar, E., M. Dontcheva, J. Fogarty, and D. S. Weld.

Zoetrope: Interacting with the ephemeral Web. UIST

’08, 2008, 239-248.

2. Adar, E., J. Teevan, and S. T. Dumais. Resonance on

the Web: Web dynamics and revisitation patterns. CHI

’09, 2009, 1381-1390.

3. Borodin, Y., J. P. Bigham, R. Raman and I. V.

Ramakrishnan. What’s new? – Making Web page

updates accessible. ASSETS ’08, 2008, 145-152.

4. Bharat, K. and A. Broder. Mirror, mirror on the Web: A

study of host pairs with replicated content. WWW ’99,

1999, 1579-1590.

5. Bucy, E., A. Lang, R. Potter, and M. Grabe. Formal

features of cyberspace: Relationships between Web

page complexity and site traffic. JASIS, 50(13):1246-

1256, 1999.

6. Catledge, L. D. and J. E. Pitkow. Characterizing

browsing strategies in the World-Wide Web. WWW

’95, 1995, 1065-1073.

7. Cho, J. and H. Garcia-Molina. The evolution of the

Web and implications for an incremental crawler.

VLDB ’00, 2000, 200-209.

8. Cockburn, A. and B. McKenzie. What do Web users do?

An empirical analysis of Web use. International Journal

of Human-Computer Studies, 54(6):903-922, 2001.

9. Douglis, F., A. Feldmann, and B. Krishnamurthy. Rate

of change and other metrics: A live study of the World

Wide Web. USENIX Symposium on Internet

Technology and Systems, 1997.

10. Fetterly, D., M. Manasse, M. Najork, and Wiener, J. A

large-scale study of the evolution of Web pages. WWW

’03, 2003, 669-678.

11. Foster, A. and N. Ford. Serendipity and information

seeking: An empirical study, Journal of Documentation,

59(3): 321-340, 2003.

12. Hupp, D. and R. Miller. Smart Bookmarks: Automatic

retroactive macro recording on the Web. UIST ’07,

2007, 81-90.

13. Jatowt, A., Y. Kawai, H. Ohshima, and K. Tanaka.

What can history tell us? Towards different models of

interaction with document histories. HT ’08, 2008, 5-14.

14. Jones, R. and Fain, D. C. Query word deletion

prediction. SIGIR ’03, 2003, 435-436.

15. Kellar, M., C. Watters, and K. M. Inkpen. An

exploration of Web-based monitoring: Implications for

design. CHI ’07, 2007, 377-386.

16. Levering, R. and Cutler, M. The portrait of a common

HTML Web page. DocEng ’06, 2006, 198-204.

17. Liu, L., C. Pu, and W. Tang. WebCQ: Detecting and

delivering information changes on the Web. CIKM ’00,

2000, 512-519.

18. Liu, L., W. Tang, D. Buttler, and C. Pu, Information

monitoring on the Web: A scalable solution. WWW ’02,

2002, 263-304.

19. Nadamoto, A. and K. Tanaka. A Comparative Web

Browser (CWB) for browsing and comparing Web

pages. WWW ’03, 2003, 727-735.

20. Ntoulas, A., Cho, J., and Olston, C. What’s new on the

Web? The evolution of the Web from a search engine

perspective. WWW ’04, 2004, 1-12.

21. Obendorf, Hartmut, H, Weinreich, E. Herder, and M.

Mayer. Web page revisitation revisited: Implications of

a long-term click-stream study of browser usage. CHI

’07, 2007, 597-606.

22. Tauscher, L. and S. Greenberg. How people revisit Web

pages: Empirical findings and implications for the

design of history systems. International Journal of

Human-Computer Studies, 47(1):97-137, 1997.

23. Teevan, J., E. Adar, R. Jones, and M. A. Potts.

Information re-retrieval: Repeat queries in Yahoo's logs.

SIGIR ’07, 2007, 151-158.

24. Weinreich, H., Obendorf, H, Herder, E., and Mayer, M.

Not quite the average: An empirical study of Web use.

TWEB, 2(1), 2008.

