
Living with a Lifetime Store

Jim Gemmell, Roger Lueder and Gordon Bell
Microsoft Research

Abstract

Storage trends have brought us to the point where it is

affordable to keep a complete digital record of one’s life.

The MyLifeBits system is designed to store and manage a

lifetime’s worth of data. To experiment with a lifetime

store, we have digitized everything possible from Gordon

Bell’s life. These are added to his existing digital assets.

We also continue to add new digital capture such as web

pages, telephone, radio and television. In this paper we

explain the key requirements of a lifetime store. We show

how typed links and database features are keys to the

usefulness of such a system.

Introduction

“A memex is a device in which an individual stores all

his books, records, and communications, and which is

mechanized so that it may be consulted with exceeding

speed and flexibility” – V. Bush

The MyLifeBits system [7] is designed to store and manage

a lifetime’s worth of everything – at least everything that

can be digitized. To experiment with a lifetime store, we

have digitized everything possible from Gordon Bell’s life:

articles, books, cards, CDs, letters, memos, music, papers,

photos, pictures, presentations, home movies, videotaped

lectures, and voice recordings. To this we have added the

digital media from his PC such as digital photos, email, and

calendar events. MyLifeBits supports capture, storage,

management and retrieval of many media types, and logs as

much usage data as possible. Gordon now uses MyLifeBits

to record every chat session, copy of every web page

visited, and selectively record telephone, TV and radio. In

this paper we explain the key requirements of a lifetime

store. We show how typed links and database features are

keys to the usefulness of such a system.

MyLifeBits is inspired by Memex, a personal store

envisioned by Vannevar Bush in 1945 for use by scientists

[3]. Memex was to store documents, photos, and audio.

Bush proposed that Memex support full-text search,

voice/text annotations, and hyperlink creation. In the

1960’s, Ted Nelson expanded the vision to include features

like versioning, hypertext, and transclusion (explained

below) [10,11].However, the technology to make their

ideas feasible is only now appearing. In the intervening

time, personal computers, which started with very limited

storage space for few media types (word processing

documents and spreadsheets), have been evolving into large

and comprehensive stores.

PCs have traditionally stored files in directory trees. Some

systems have allowed full-text search, whether by simply

scanning (as in grep) or using an index. Such searches can

be saved for easy re-issue [1]. Research into personal

storage has taken several directions. Some have advocated

a purely time-based UI and storage organization [6]. Others

have combined time with a location on the user’s desktop

[12]. Yet others have relaxed hierarchy, allowing files to

have more than one parent [1,5].

Over time, the PC has supported new media such as photos,

audio and video. Without text to search for, these media

have presented special challenges. Annotating non-text

media with text is an obvious solution [1,5,9]. Content

analysis can also generate meta-data that can be used for

search and browsing. For example, speech to text can be

run on audio clips, face recognition can be run on photos,

and documents may be classified [8,9].

In the remainder of the paper we will discuss trends in data

storage and data sources that impact this field. We then

consider the requirements for making a lifetime store

useful. Based on these requirements, we discuss the

underlying data model, and describe our implementation to

date. We close with a discussion of outstanding challenges

and our conclusions.

Trends in Data Storage and Sources

“yet if the user inserted 5000 pages of material a day it

would take him hundreds of years to fill the repository,

so that he can be profligate and enter material freely” –

V. Bush

Consumer hard drives are currently in the 80 to 300 GB

range. It is conservative to predict terabyte hard drives,

even for notebook computers, within several years. Such

values place us in the era of virtually unlimited storage that

Vannevar Bush foresaw.

We have scanned many paper pages into MyLifeBits in TIF

format at about 100 KB per page. Thus, Bush’s 5000 pages

a day would require 0.5 GB of storage. However, collecting

paper at this rate is unlikely. One is more likely to

accumulate significant quantities of digital entities such as

web pages, email, or digital photos. Suppose that you began

keeping:

• 100 email messages a day (5KB each)

• 100 web pages day (50KB each)

• 5 scanned pages a day (100KB each)

• 1 book every 10 days (1 MB each)

• 10 photos per day (400 KB JPEG each)

• 8 hours per day of sound - e.g. telephone, voice

annotations, and meeting recordings (8 Kb/s)

• 1 new music CD every 10 days (45 min each at

128 Kb/s)

At this rate, it will take you 5 years to fill up your current

80 GB hard drive. By that time, consumer terabyte hard

drives will be shipping. Once you upgrade to a terabyte

disk, it will take more than 60 additional years to fill.

There is no reason to suppose that disk technology will stop

at one terabyte, but even if it did we can still assume that a

terabyte will drop below one hundred dollars in price,

making the purchase of a new terabyte every year very

affordable. Filling a terabyte in a year turns out to be a real

challenge. Table 1 shows that it is virtually impossible to

fill a terabyte in a year by looking at photos, reading

documents, or recording CD-quality audio. Even 256 Kb/s

video shot 24 hours a day, seven days a week will not fill

up a terabyte in a year. It takes higher bit-rate video to

finally fill the terabyte within a year.

Table 1: Trying to fill a terabyte in a year: for each item, the

number of items it takes to fill a terabyte, and the number of

items per day to fill a terabyte in a year.

Item Per TB Per day

Photo (400 KB

JPEG)

2.7M photos 7354 photos

1 MB Document 1.0M

documents

2872

documents

128 Kb/s audio 18.6K hours 51 hours

256 Kb/s video 9.3K hours 26 hours

1.5 Mb/s video 1.6K hours 4 hours

So we see that we have already reached the point where

one could cheaply store all the digital content you are likely

to view, with the exception of video, and that within a few

years video will also be accommodated by buying a

terabyte hard drive each year. However, there is no reason

to believe that drive technology will stop at one terabyte;

there appears to be every prospect of reaching 100 TB

drives with space for an entire lifetime store.

Digital representations are less expensive than paper

(especially accounting for storage space costs). Indeed, if

you value your time, it will usually be more expensive to

select and delete an item than to keep it. Digital

representations will also be easier to backup and

geographically distribute, offering better protection against

loss due to theft or disaster.

While we have dwelt on storage capabilities for data we are

already familiar with, we can also see that data will be

captured in less familiar ways. Consider, for example,

commercially available on-body systems that joggers use to

track distance and speed, or arm-bands that track body

functions such as heart rate and temperature. Homes will

become more instrumented, enabling conditions (e.g.

temperature) along with machine behavior (e.g. when the

stove was used, and at what temperature) to be logged. The

same can be said for automobiles. In general, we can see

that increased sensor logging is to be expected. Of course,

cameras and microphones are sensors that will also

proliferate and be embedded in many ways. Finally, the

user’s interaction with input devices and the storage system

itself is valuable data to log.

Making the store useful

“A record if it is to be useful … must be continuously

extended, it must be stored, and above all it must be

consulted” – V. Bush

“The difficulty seems to be, not so much that we publish

unduly … but rather that publication has been extended

far beyond our present ability to make real use of the

record” – V. Bush

Once we see the feasibility of collecting and storing vast

amounts of information, the challenge becomes making use

of it. There is no point in constructing a “Write Once Read

Never” memory. On the other hand, it is not a reasonable

requirement that all records will be accessed in the future.

In fact, it is common practice for us to keep many records

just in case we need to access a single one. We keep many

because we cannot predict which one will be useful in the

future.

Memex had a number of features to make the store useful.

The first was full-text search, whose usefulness has been

proven on the World Wide Web and elsewhere. The second

was “trails”, by which Bush meant the ability to link from

one document to the next to guide one through the

documents in Memex. Bush’s trails were influential to the

notion of hyperlinks. However, he concentrated on a single

path rather than the web we are all familiar with. One sees

this implemented ubiquitously on the WWW as menu bars

or table of contents pages, in testimony to its usefulness.

Finally, Bush proposed annotations, by voice or

handwriting (which would include text).

In the 1960’s, Ted Nelson began extending Bush’s ideas

[10,11]. His vision was to revolutionize literature in a

networked world. Hyperlinks and hypertext were key

components to realizing the vision. While Nelson’s full

vision for literature, with networking and micro-payments,

is beyond the scope of our discussion, one concept is of

particular usefulness: “transclusion”. This was his word for

virtually including part or all of one work in another. While

the choice of whether to make a copy of the transcluded

work may be considered an implementation detail, the

critical feature is that links exist from the transcluding work

to the transcluded work and vice-versa. A two-way link

supports, for example, following a link from a photo to a

photo album that it has been transcluded in (to read a

caption beside it). Or, if one sees the photo in the album,

the link may be followed in the opposite direction to the

original photo, where one might find annotations, or that it

is in a collection of other photos from the same event that

were not included in the album.

It is interesting that while Bush rejected traditional filing in

favor of “association”, his trails actually facilitate forming

collections (each trail being a collection of the items in the

trail), and with trails of trails, one can form hierarchies.

While strict hierarchy is usually undesirable, (often an item

needs to be filed in more than one place) nested collections

remain useful. We think that ultimately faceted

classifications [2] will subsume most collections, but for

now we will simply note that nested collections without

strict hierarchy are an important requirement.

Having a single generic link type is too limiting. For

example, a link from a contact to a photo should distinguish

if the link represents the person being in the photo, or the

person being the photographer. We will cover typed links

in the discussion of our data model.

Database features also make the store more useful. For

example, queries may be saved for repeated execution.

These queries may be simple text searches that the user has

performed and wants to repeat, or they may involve

complex formulae. Also, the ability of databases to quickly

sort on any attribute allow the fast retrieval of similar

items, e.g. those of similar size, or those created at a similar

time. This can also be applied to cluster similar attributes of

items in a search result, so that the user can refine the

search by selecting only certain attributes. It is clear that

many of the most interesting queries and clusters of data

would be based on the user’s activities, so usage data

should be logged.

Another clear requirement for a lifetime store is support for

many visualizations. Already, PC users expect to view their

directories as lists, icons, or thumbnails. Just as scientists

with large data sets value visualizations of their data to

glean insight, users will value visualizations to gain insight

into their own large data set: their lifetime store. Many

tables, charts, and graphs are potentially enlightening.

Furthermore, the visualization must become a UI – the user

will want to click on a row of a table or a peak in a graph

and see the data behind it.

Internet
MyLifeBits

store

database

files

Voice

annotation

tool

Text

annotation

tool

Legacy

applications

MAPI

interface

Legacy

email client

Radio

EPG tool

PocketPC

transfer

tool

Telephone

capture tool

Radio

capture tool

TV capture

tool

TV EPG

download

tool

Browser

tool

PocketRadio

player

MyLifeBits

Shell

Figure 1 – The MyLifeBits system

It merits mention that search, while important, is not the

only function of a lifetime store. Most items are likely to be

forgotten so they will certainly not be searched for. These

forgotten items find usefulness only when browsing and

mining is supported. Mining may involve complex

correlations, or it may be something as simple as random

display of a photo that has not been viewed for a long time.

To summarize, our requirements include: full text search,

annotation (voice, text, and handwriting), typed links,

transclusion, collections, powerful queries (potentially

saved), fast sorting/clustering, many visualizations,

browsing, and mining. In the following sections we will

explain the data model needed for such requirements and

describe our implementation to date.

Data Model

“The Web isn't hypertext, it's DECORATED

DIRECTORIES” – T. Nelson

Any storage system has a Logical Data Structure (LDS),

consisting of various entities and their relationships [4]. An

LDS is purely logical, apart from any implementation, such

as in a database schema (the database schema may look

very different from the LDS for efficiency and other

reasons). A relationship between two entities in an LDS

implies two links; one in each direction. For example the

link from photograph to person may be called “photograph

of person” while the same relationship from person to

photograph is a link called “person in photograph”.

The MyLifeBits LDS is implemented in a SQL Server

database schema. It is important to understand that there is

no “right” LDS for something as universal MyLifeBits; that

would be to say that there is one correct LDS for all

possible human knowledge. To the contrary, the LDS for

MyLifeBits should reflect the worldview and needs of the

particular user.
1

That said, we do not believe that users will do much in the

way of creating or altering their LDS, or the practical

expression of it – the database schema. In practice, schemas

are defined by applications and/or standards. We can

envision power users making small extensions to a schema

(perhaps adding a column to a database table). Extreme

power users may do a little creation, but this will be an

exception. When users do modify the schema, there is real

potential for simply making things worse. E.g., they might

create a new link type “about” and use it to indicate that a

document is about the photo. However, this is merely to say

that the document is an annotation of the photo, and they

have only succeeded in making things more confusing by

creating two link types (annotation and about) for the same

thing. When users define new links, there is also a danger

1
 Bates makes some interesting comments on the “fallacy

of ontology” [2]

that future readers may not understand what the author

meant by the link [13]. If too many link types are created,

users may become too intimidated to select any type [13].

We expect that users will end up with a schema that is at

least close to reflecting their worldview by obtaining the

applications that create schemas, or by downloading

schemas in some standard format. At present, we support

easy extensibility and modification of our LDS/schema

merely as a convenience for rapid prototyping and

experimentation.

We have defined some entities for MyLifeBits based on

some common objects on the PC, including: collection,

document, image, video, song, telephone recording, email

message, contact, and event. All of our entities have an ID

for their key. No other fields need be unique. In particular,

a collection may contain two items with the same name,

unlike a directory in the file system. Furthermore, because

references are to the ID of the instance, an instance may be

safely moved among collections without breaking links (in

contrast to HTML hyperlinks, which are to locations in a

directory structure such that moving a file breaks the link).

Relationships can be easily distinguished from each other

when different entities are involved. For example, there is

no mistaking a relationship between a photo and person,

with the relationship between a person and an event.

However, there can be more than one relationship between

the same entities, and such relationships must be

distinguished only by name. For example, a person may be

the organizer of an event, or may be an attendee of an

event. These are two different types of relationships, and

each link should be given a unique name so the user can

recognize the difference, e.g. “organizer of”, “organized

by”, “attendee of” and “attended by”. MyLifeBits requires

every link type to have a unique name for the pair of

entities involved.

While there is no “correct” exhaustive list of relationships

that should be supported, we do believe there are two

universal relationships that should be supported by the

shell: containment and annotation. They are universal in the

sense that they may apply to all entities, and are also

universal in human usage.

An annotation relationship indicates that one instance is

making a comment upon another. The two links defined by

the relationship are “annotates” (commentary on) and

“annotated by” (context of the commentary). The action of

comment and context is fundamental to all ongoing human

discourse, especially in the scholarly realm. Any entity that

could be authored to make a statement could be used to

make a comment, and hence could be the source of an

annotation link. Any entity can be commented on, so any

entity may be the target of an annotation link.

The containment relationship indicates that one instance is

contained in another. Its links are “contains” and

“contained in”. Containment allows the universal operation

of collecting and organizing things. An instance may be

contained by zero or more parent instances. The concept of

containment is recursive, so cycles imply an infinite loop

and are not allowed (they must form a directed acyclic

graph). Consequently, “contains” links can construct trees,

but are not restricted to them. For most parent entities,

containment indicates that the target has been authored into

the source, i.e. transclusion. On the other hand,

containment may be used to simply designate sets. For this,

MyLifeBits has the collection entity. Entity instances

linked by a containment link to a collection entity instance

define a set. To a first approximation, collections exist

merely so we can name sets of objects, so a name string is

their only interesting attribute.

One apparently obvious and universal relationship is

“related”, that is, it merely indicates that two items are

related in some way. However, all relationships indicate

that two items are related. Also, a relationship can be

indicated by putting instances in a collection with a blank

name (or one named “related items”). For more than n>2

objects, using containment in a collection to designate

“related” has the advantage of requiring only n links, where

a fully connected graph of “related” links would require

n
2
/2 links. In a fashion similar to “related”, a little thought

reveals that “about” and “regarding” are really annotations.

Table 2 – Some MyLifeBits links

(name is from source to target)

Link Source Target

Contains Any Any

Annotates Document, audio,

image

Any

Author of Person Any

Capture of Person, Event Image, video, audio,

phone-call

Is material

for

NOT(person,

event)

Event

Attendee Contact Event

Organizer Person Event

In addition to our universal relationships (containment and

annotation), MyLifeBits allows new relationships to be

defined by the user (or an application). The endpoints of

each link in a relationship are typed. For example, a contact

may have an “in-photo” link to an image. However, an

image cannot have an “author” link to a calendar event.

MyLifeBits does not understand any semantics of user

defined relationships; it merely knows the types that can be

involved in the relationship. Indeed, it probably does not

have any need to understand them. Apart from

containment, which implies recursion in operations like

backup or sharing, the shell does not do much with

relationships/links apart from showing their existence, their

name, and following them from one instance to another.

We have created a number of relationship/link types for our

own experimentation with MyLifeBits. They are some

obvious and common relationships between our entities.

Table 2 shows some of the relationships/links in

MyLifeBits. Figure 2 illustrates the core of the MyLifeBits

schema, as implemented in SQL Server. All entities from

the LDS are called “resources”, and a table (“Resource

entities”) indicates which specific entity type a resource is.

The specific entity types, such as people and images, each

have their own table (boxes on the left in Figure 2). Links

have pointers to two resources (source and target), and have

a type. Events for resources are tracked in the event log.

The MyLifeBits System

MyLifeBits includes tools for capture, storage, retrieval,

reporting, annotation, and story creation. Figure 1

illustrates the MyLifeBits system. Annotation creation must

be easy, in whatever mode strikes the user’s fancy, and

available at the moment the fancy strikes. We have

discussed ease of annotation, and storytelling as the

ultimate annotation elsewhere [7].

Figure 2 – Key elements of the MyLifeBits schema. Each box

is a database table. Arrows indicate foreign keys.

Using a database and supporting links allows for powerful

new ways of browsing, search and organization. A natural

first step in organization power was to allow objects

(including collections) to be contained in any number of

parent collections, rather than enforcing strict hierarchy.

This allows the user to file an object in as many ways as

possible. While such a containment structure is indeed

powerful and important, having hyperlinks causes one to

Documents

Images

Music

Phone calls

Resources

Links

Link

types

Entity

types

Resource

entities

Event

types

Event

log

Events

Tasks

People

Notes

Email

Messages

Saved

searches

re-think many of the uses of collections. For instance, a

collection for a date range is much better represented by a

saved query for objects matching the date range. A

collection to hold objects related to an event is better

represented by links from the object to a calendar event

object. Similarly, a collection of objects related to a person

is better represented by links from the objects to the person

object. This is not because links are better than collections.

After all, to be in a collection means to have a containment

link to the collection. It is the more specific entity as the

link target that is desirable. For example, a person object

with name “Joe Smith” is a better representation for a

person than a collection with the name “Joe Smith”.

Collections are for generic containment, and wherever

possible a more specific object should be used.

Figure 3 – Links pane (bottom right) shows instances linked to

the selected item from the search results (top right). In

thumbnail view, the link type is indicated by a popup on

mouse hover. The bottom left pane shows “parents”, i.e.

instances that have a contain link to the selected item.

One advantage of strong typing is that it prevents some

misfiling. For example, one could accidentally file a photo

in a collection called “phone calls with Sam”, but it is

impossible to create a “call from” link between a photo and

the “Sam” person entity, because the “call from” link is

typed to be from a person to a phone call only. One could

allow collections to be user-typed (i.e. to designate a

collection can only contain certain items) and gain the same

protection from misfiling. While this provides power when

used appropriately, it can be used inappropriately to use a

collection where a more specific object would be better. As

in many instances, power for the educated user is a danger

for the naïve user. Presently, we are building in as much

expressive power as we can, even if “bad things” can be

done with the system. We will learn from experience what

features should be hidden or removed in the UI.

The MyLifeBits UI shows all instances linked to the

currently selected instance (Figure 3). In detail view, the

link type is a column. In thumbnail and timeline view, the

link type is displayed as a pop-up when the mouse hovers

over the item. When the selected instance is contained in

other instances, they are shown in a special parent window

pane.

Using a database provides fast search. User searches can be

saved so that they can be repeated with a single click.

Additionally, the system, or third parties, can provide

complex SQL queries beyond what a user could specify in

any feasible form-based UI. For example, MyLifeBits

includes a “commonly used files” query that considers the

number of times a file has been used, n, with the time since

last use, t, and the time span of its use, T (i.e. the time from

its first use until the time of its last use). The sort order is

based on the function

f(n,t,T) = (t/αT)
β
 + 1/γn

where α, β, and γ are constants. By appropriately setting the

constants, one can capture the notion that a document that

has been opened over the course of a year, and then not

accessed for a week, is likely to be used again. However,

another document that has only been opened over the

course of two days, and then not accessed for a week, is not

as likely to be used again.

Figure 4 – MyLifeBits reports of most visited web sites

With a database, one can also create reports to understand

what is in your personal store. Figure 4 shows a

MyLifeBits report of the most commonly visited web sites.

Figure 5 shows a report of email containing the text

“funding” plotted versus time – something a user may want

to see to get an idea of when busy times related to funding

are happening. Excel is used to generate the graphics in the

reports. Six standard reports are included in the current

version of MyLifeBits, and, of course, any number could be

added.

Figure 5 – MyLifeBits report: Mail received containing the

text “funding” plotted versus time.

The indices in the database can be exploited to support

pivoting, especially pivoting by time. That is, given some

object, you can ask the system to pivot by time and show

everything with a timestamp close to that of the object. The

following example illustrates how hyperlinks and pivoting

can be used to find objects that could not be found

otherwise. Suppose that Bill has a phone call with his

realtor to discuss pricing his home, and his realtor tells him

the URL to open on the World Wide Web to view a

comparable property. Months later, Bill remembers this

property and wants to look at the page again. He knows it

has been saved by the MyLifeBits browser tool. However,

he cannot remember any text from the page to search for,

nor does he remember when the call happened very

accurately, just that it was in the fall. What Bill can do is

look up his realtor from his contacts. Selecting the contact

for his realtor displays a window will all items linked to the

realtor. One of these items is a phone call recording with

the link “caller” to the realtor’s contact (this link was

created at the time of the call based on the caller-id). Bill

could listen to the recorded call to hear the URL, but that

would be tedious. Instead, Bill right-clicks on the call and

selects “pivot-by-time”. This takes Bill to a time-sorted list

of everything in his database, scrolled to the phone call

recording. As the web page was visited soon after the call

began, Bill can easily scroll a few items down and find it.

Figure 6 – Date clustering of search results using largest gap

and k-means.

Use of a database also makes narrowing of search results

very convenient and flexible. The MyLifeBits UI allows

the user to filter results to only certain entities. For

example, a search that returns photos, documents and

videos, could be narrowed to only show the videos. We

also perform clustering on some entity attributes for the

purpose of filtering. For example, date attributes are

clustered using a combination of largest-gap and k-means

clustering (Figure 6). The user can click on a date cluster to

narrow the search results. For text attributes like email

subject or web page title, MyLifeBits shows the top seven

occurring strings as clusters and puts the rest in an “other”

cluster (Figure 7).

These techniques for narrowing search can also be useful as

a way to browse the full contents of MyLifeBits (equivalent

to narrowing a search for everything).

We have implemented two programs that suggest links to

the user. Our photo capture wizard suggests that photos

taken when an event in the user’s calendar occurred are in

fact photos of the event, and should have the corresponding

link created. Our telephone recording application suggests

that a contact with a phone number matching the caller-ID

phone number is participating in the call.

Figure 7 – Top occurring names in search result.

Conclusion

“Creative thought and essentially repetitive thought are

very different things. For the latter there are, and may

be, powerful mechanical aids” – V. Bush

We have entered an era of virtually unlimited storage,

enabling lifetime storage of most of what one sees and

hears, along with many new data source such as user logs

and sensor data.

Now that we are able to have a lifetime store, the challenge

is to make it useful. We have implemented a number of

features proposed by Bush and Nelson to make the store

useful, such as transclusion, links, annotations, and full text

search. In this paper, we have shown that it is essential to

augment the concepts of Bush and Nelson with typed

entities/links and database features. Visualizations,

complex queries, and pivots enable the user to find or

browse many items that would otherwise remain unused.

The current MyLifeBits infrastructure is already very

powerful, but we are at work extending it to support

features such as versioning. Also, it is evident that the very

power and usefulness of our infrastructure makes severe

misuse possible (and evenly likely) by the naïve user. It is

clear that MyLifeBits must evolve into “My Personal

Assistant”, with the system helping to organize and

understand the data. Document similarity and face

recognition are examples of important future components.

ACKNOWLEDGMENTS

MyLifeBits has benefited from the insightful comments of

Jim Gray, Ted Nelson, and John Carlis. Josh Blumenstock

and Evan Solomon wrote much of the code for the

telephone, TV, and radio tools. Curtis Wong and Steven

Drucker have helped us with UI issues.

References

[1] Eytan Adar, David Karger, and Lynn Andrea Stein.

Haystack: Per-User Information Environments, In

Proceedings of CIKM ‘99 (Kansas City, MO, November 2-6,

1999), ACM Press, 413-422.

[2] Marcia J. Bates, After the Dot-Bomb: Getting Web

Information Retrieval Right This Time, First Monday,

volume 7, number 7 (July 2002),

http://firstmonday.org/issues/issue7_7/bates/index.html

[3] Vannevar Bush. As We May Think, The Atlantic Monthly,

176(1), July 1945, 101-108.

[4] John Carlis, Mastering Data Modeling: A User-Driven

Approach, Addison-Wesley, Boston, USA, 2001.

[5] Paul Dourish, Keith Edwards, Anthony LaMarca, John

Lamping, Karin Petersen, Michael Salisbury, Douglas Terry

and Jim Thornton. Extending Document Management

Systems with User-Specific Active Properties, ACM TOIS,

18(2), 2000, pp. 140-170.

[6] Freeman, Eric, Gelernter., David. LifeStreams: A storage

model for personal data, ACM SIGMOD Bulletin 25, 1,

March 1996, pp. 80-86.

[7] Jim Gemmell, Gordon Bell, Roger Lueder, Steven Drucker,

and Curtis Wong, MyLifeBits: Fulfilling the Memex Vision,

ACM Multimedia '02, December 1-6, 2002, Juan-les-Pins,

France, pp. 235-238.

[8] David Huynh, David Karger, and Dennis Quan. Haystack: A

Platform for Creating, Organizing and Visualizing

Information Using RDF. Semantic Web Workshop, 2002.

[9] Timothy J. Mills, David Pye, David Sinclair, Kenneth R.

Wood , Shoebox: A Digital Photo Management System

AT&T Technical Report 2000.10

[10] Theodor Holm Nelson, Literary Machines, `Mindful Press,

Sausalito, CA, 1993.

[11] Theodor Holm Nelson. Xanalogical Structure, Needed Now

More than Ever: Parallel Documents, Deep Links to Content,

Deep Versioning, and Deep Re-Use, ACM Computing

Surveys, 31(4es), December 1999.

[12] Rekimoto, J. Time-machine Computing: A Time-centric

Approach for the Information Environment, Proceedings of

UIST '99 (Asheville, NC, Nov. 1999), ACM Press, 1999, pp.

45-54.

[13] Randall Trigg, A Networked-Based Approach to Text

Handling for the Online Scientific Community, PhD

Dissertation, U. Maryland, Tech report TR-1346, Nov. 1983

