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ABSTRACT
Retransmissions reduce the efficiency of data communication in
wireless networks because of: (i) per-retransmission packet head-
ers, (ii) contention overhead on every retransmission, and (iii) re-
dundant bits in every retransmission. In fact, every retransmission
nearly doubles the time to successfully deliver the packet. To im-
prove spectrum efficiency in a lossy environment, we propose a new
in-frame retransmission scheme using µACKs. Instead of waiting
for the entire transmission to end before sending the ACK, the re-
ceiver sends smaller µACKs for every few symbols, on a separate
narrow feedback channel. Based on these µACKs, the sender only
retransmits the lost symbols after the last data symbol in the frame,
thereby adaptively changing the frame size to ensure it is success-
fully delivered. We have implemented µACK on the Sora platform.
Experiments with our prototype validate the feasibility of symbol-
level µACK. By significantly reducing the retransmistion overhead,
the sender is able to aggressively use higher data rate for a lossy
link. Both improve the overall network efficiency. Our experimen-
tal results from a controlled environment and an 9-node software
radio testbed show that µACK can have up to 140% throughput
gain over 802.11g and up to 60% gain over the best known retrans-
mission scheme.
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C.2.1 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Architecture and Design—Wireless communication

General Terms
Algorithms, Design, Experimentation, Performance

∗This work is done when Jiansong Zhang is a researcher and
Haichen Shen is a research intern in Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’12, August 22–26, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1159-5/12/08 ...$15.00.

Keywords
Retransmission, Error Recovery, Feedback, µACK, WLAN

1. INTRODUCTION
Packets transmissions over a wireless medium are lossy. Losses

typically occur because of interference, fading or noise, which in
turn causes poor signal to interference and noise ratio (SINR) at
the receiver. A low SINR reduces the probability of successfully
decoding all bits in the packet.

In existing data networks, such as Wi-Fi or cellular, the onus of
recovering a lost packet is with the link layer of the OSI stack. The
physical layer (PHY) may include some redundancy, i.e., channel
coding, in a frame to correct erroneous bits. But when the errors
cannot be recovered, the frame will be retransmitted by the MAC
layer. The sender usually relies on an acknowledgment (ACK)
packet from the receiver to detect transmission failures. For exam-
ple, in IEEE 802.11, if the sender does not receive the ACK packet
within a fixed timeout period, it retransmits the entire frame.

This frame retransmission is costly. First, each retransmitted
frame requires both PHY and MAC headers, which can consume
up to 100 bytes. While MAC header can be transmitted using high
modulation, the PHY header is sent at the lowest rate and usually
includes a sequence of training symbols (preamble) for synchro-
nization and channel estimation. In 802.11g, this header overhead
can add up to 52 µs. Second, the sender needs to re-contend for the
medium to retransmit the packet. Depending on the number of ad-
ditional contending nodes, the sender has to perform backoff, pos-
sibly several times, before the frame can be successfully delivered
to the receiver. For each unsuccessful retransmission, the sender
needs to wait for an ACK timeout before it can detect the loss. All
reduce the link efficiency in a noisy wireless channel. Finally, re-
transmitting the entire frame may unnecessarily send redundant bits
that may have already been received correctly by the receiver. In
previous work, Jamieson, et. al., tried to address the last issue by
selectively requesting only erroneous bits in retransmission [12].
But the first two issues remain unexplored.

In this paper, we propose a system that does away with frame-
level retransmissions. After a sender gets access to a medium, we
dynamically adjust the length of the packet (up to a maximum limit)
to ensure that it is reliably delivered. In a zero-loss network the
packet length is unchanged; while in a lossy network we pad the



frame, on the fly, with the bits that are received erroneously at
the receiver. Therefore, the receiver can recover the errors inside
a frame, instead of waiting for another frame retransmission. Since
the retransmitted symbols do not have additional PHY/MAC head-
ers or contention overhead, they significantly reduce the cost of er-
ror recovery. As we show in Section 6, our system can be 140%
more efficient than 802.11, and up to 60% better than the existing
best known retransmission scheme [12].

We achieve this in-frame error recovery by introducing a narrow-
band feedback channel, similar to the control channels proposed
in RI-BTMA [21] and other schemes [16]. However, instead of
transmitting a simple tone (or signature signal), in our system, the
receiver uses the control channel to send modulated acknowledg-
ments to the sender for received symbols. We call these tightly syn-
chronized symbol-level acknowledgments as micro-ACKs (µACKs).

Implementing the µACK system imposes several challenges. First,
the forward and feedback radios should be tightly synchronized.
The receiver needs to dynamically generate µACKs based on the
decoding results of the data symbols. The sender needs to re-encode
erroneous bit based on µACK feedbacks. This needs to occur in
real-time in the order of a few symbol durations (tens of µs). Sec-
ond, the receiver needs to reliably determine the data symbols that
are correct or in error. Previous work [12] uses PHY hints to iden-
tify erroneous symbols. Although useful in several scenarios, this
scheme is not reliable when the link is operating at the modulation’s
threshold SNR, i.e., when retransmissions are more likely to occur.

This paper presents the design, implementation, and evaluation
of µACK. µACK uses a multi-radio architecture with multiple RF
front-ends tightly integrated onto one control board. We further
exploit a new side-channel inside 802.11 OFDM PHY to transmit
a CRC-checksum along with a group of data symbols to facilitate
error detection without adding additional overhead. Finally, we de-
sign and evaluate the PHY schemes for both, the side control chan-
nel and the µACK feedbacks. We show the µACK PHY design is
simple, yet reliable for their purpose in our system.

We implement µACK using a high speed software radio plat-
form [18]. Experiments with our prototype validate that symbol-
level µACK is practically feasible. We also show that with µACK,
the retransmission overhead can be significantly reduced, thereby
improving spectrum efficiency. Furthermore, we believe that the
idea of µACK has wider applicability, beyond error recovery. For
example, using µACK, a sender can detect collisions before the en-
tire transmission is complete, and therefore it can abort earlier to
save channel time, similar to [16]. Also, the µACK feedback chan-
nel can be used as an extended busy-tone [6], and therefore can
mitigate hidden and expose terminal problems.

The rest of paper is organized as follows. Section 2 motivates
our work with an analysis of the retransmission overhead. Sec-
tion 3 presents the detailed design of µACK. We further analyze
µACK in Section 4. After describing our implementation of µACK
using a high-speed SDR platform in Section 5, we evaluate the per-
formance of µACK in Section 6. Section 7 discusses related work
and Section 8 concludes.

2. OVERHEAD OF RETRANSMISSIONS
Although retransmissions help recover a packet, they add sig-

nificant redundancy and overhead, thereby reducing spectrum effi-
ciency. In this section we present a simple model to quantify this
overhead, which motivates the need for the µACK mechanism.

Model: We consider the impact of retransmissions on IEEE 802.11g
networks, although the results can similarly be extrapolated for
802.11a/n/b networks. In 802.11g, the timing parameters are, tslot =

9µs, tSIFS = 10µs, and tDIFS = 2tslot + tSIFS = 28µs. The
contention overhead, determined empirically from Atheros cards is
tCW = tslot·CWmin

2
= 8tslot per packet. Each OFDM data sym-

bol is 4 µs.
Using the model presented in [9], at modulation rate R, 4·R data

bits are encoded in a symbol. The frame is broken down and en-
coded in symbols of duration tsymb = 4µs, where each frame is
preceded by a 20 µspreamble, and a 6 µs signal extension. Using
all these values, the time to transmit a packet of size sdata bits at
data rate R Mbps, without any retransmissions is:

Tdata(R) = tCW + tDIFS + tDATA + tSIFS + tACK

= 72µs+ 28µs

+(20µs+ tsymb⌈sdata/(4R)⌉+ 6µs) + 10µs

+(20µs+ tsymb⌈sack/(4Rack)⌉+ 6µs)

= 162 + 4·(⌈sdata/(4R)⌉+ ⌈sack/(4Rack)⌉)µs

When there are r retransmissions, the time to transmit a packet
is:

TReTx =

r∑
i=0

Tdata(Ri)

≥ 162(r + 1) + 4(r + 1)·(⌈sdata/(4R)⌉
+⌈sack/(4Rack)⌉)µs

As we see, retransmissions delay the total time to transmit the
frame due to the following:

• Redundant bits (TRedundancy): These are bits that are cor-
rectly received by the receiver, yet are part of the retransmis-
sion. Depending on the number of bits in error, this adds any-
where from 0 (all bits are lost) to (4r·(⌈(sdata − 1)/(4R)⌉)
when only 1 bit is decoded error.

• Contention (TContention): A retransmission has to contend
for the medium with all other nodes in the medium, just like a
fresh transmission. This adds the DIFS and contention over-
head, for a total of: (100·(r − 1)) µs.

• Header overhead (THeader): Since the retransmission is
just like a new frame, it has to include all training symbols,
the PHY and MAC header, as well as an ACK frame. This
adds another ((r − 1)·(62 + ⌈sack/(4Rack)⌉)) µs.

• Lower data rate (TDataRate): Bits in the retransmission are
usually sent using a lower data rate. In most common im-
plementations, the retransmission data rate is one rate lower
than the original data rate [2]. For example, when the original
packet is sent at 18 Mbps, and the retransmission at 12 Mbps,
the extra overhead is: (r − 1) ∗ (Tdata(12)− Tdata(18)).

To get a quantitative feel of these numbers, we present the over-
head for a single retransmission in Table 2. We change the packet
size and data rate, and note that the retransmission consumes more
time than the original transmission because retransmissions are sent
at a lower data rate. The contention overhead is assumed to be
100 µs. It will be much larger in congested environments. Also,
TRedundancy is assumed to be the worst case, i.e., all but one bit
is erroneously decoded. As expected, the contention and header
overheads are a much larger fraction of the retransmission over-
head when the packets are small in size, or the data rates are higher.
This fraction is likely to dominate in IEEE 802.11n MIMO net-
works with much higher data rates. To summarize, even one re-
transmission more than doubles the delivery time of a packet, and
also reduces the spectrum efficiency because of the factors high-
lighted above.



(Pkt size, Data Rate) Tdata(µs) TReTx − Tdata(µs)
TRedundancy

TReTx

TContention
TReTx

THeaders
TReTx

TDataRate
TReTx

(1500, 54) 389 417 0.53 0.24 0.16 0.07
(1500, 9) 1500 2166 0.61 0.05 0.03 0.31
(500, 54) 241 250 0.30 0.40 0.26 0.04
(500, 9) 611 833 0.53 0.12 0.09 0.26

Table 1: The overhead introduced by one retransmission on changing packet size (in bytes) and the data rate (in Mbps) of the
original transmission, and the fraction of overhead introduced by each of the four factors. Contention and packet headers dominate
for smaller packets, while redundancy is the largest overhead otherwise.
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Figure 1: Illustration of a frame transmission in µACK system.

3. µACK DESIGN
In this section, we present our system, that eliminates packet re-

transmission and thereby mitigates the overhead in recovering er-
rors. The receiver decodes each incoming data symbol and dy-
namically determines if the symbol is correct or in error. For a
group of successfully decoded symbols, the receiver will send an
acknowledgment (ACK) to the sender; otherwise, if erroneous sym-
bols are detected, an negative acknowledgment (NACK) is sent.
These ACK/NACK are transmitted back to the sender using a sep-
arate narrow-band feedback channel, which is tightly synchronized
to the feed-forward data communication channel. Since the ACK/-
NACKs are at symbol level, we call them micro-ACKs/NACKs (or
µACKs/ µNACKs). The sender monitors the feedback channel and
marks the symbols that get NACKs. Then, when all data symbols
have been sent, the sender re-encodes these symbols and appends
them after the last data symbol. The sender continually re-encodes
the lost symbols until it receives an acknowledgment of the entire
frame from the receiver or a predefined maximum limit has reached.
In this way, an µACK sender recovers all transmission errors inside
a frame, instead of relying on different retransmission frames.

Figure 1 illustrates a frame transmission in µACK system. In
the wide-band feed-forward (FF) channel, the sender sends data
symbols to the receiver after a preamble. The receiver, after syn-
chronizing to the preamble, starts immediately a feedback frame to
the sender in a narrow-band feedback (FB) channel. Each symbol
of the feedback frame acknowledges (or negatively acknowledges)
a group of data symbols (GOS) in the feed-forward channel. If
the sender gets a NACK, it will mark the corresponding GOS as
lost. Lost GOSes are re-encoded and appended after the last GOS.
As shown in Figure 1, the second GOS contains errors. Then, it
is re-encoded after GOS 4, the last group of symbols of the frame.
When the entire frame is correctly received, i.e., passed CRC check,
the receiver will send back an end-of-stream (EOS) symbol to the
sender, which, on receiving EOS, terminates the frame transmis-
sion. If the sender does not yet receive an EOS, but also does not
have any GOS marked lost, it will simply re-encode a GOS from
the very beginning (see details in Section3.3).

We now present the µACK feedback design. Based on this de-
sign, in Section 3.2 we describe the error and collision detection at
the sender. We then describe in details the µACK in-frame error
recovery protocols in Section 3.3. We discuss other applications

feed-forward channel

feed-back channel

FF-BB

FB-BBFB-BB

FF-BB

Decoding �
resultFeedbacks

Figure 2: Architecture of µACK. Two tightly synchronized ra-
dios are deployed at both sender and receiver. The receiver
sends real-time feedback symbols to the sender over a narrow-
band channel.

of µACK in Section 3.4. Finally, we finish by discussing several
related design issues in Section 3.5.

3.1 µACK feedback
µACK relies on a multi-radio architecture for a receiver to send

fine-grained feedback when simultaneously receiving data symbols
from the sender. With the increased popularity of wireless commu-
nication, multi-radio structure has extensively studied and exploited
in previous systems [3]. However, µACK differs from these previ-
ous systems in that we integrate both radios into a single board and
thus they can be tightly synchronized at micro-second level. Fig-
ure 2 shows the system architecture of µACK. Two tightly synchro-
nized radios are deployed at both sender and receiver. The receiver
receives data symbols in wide-band FF channel, and based on the
decoding results, dynamically modulates and sends feedback sym-
bols in real-time using a narrow-band FB channel. The sender also,
in real-time, re-encodes and sends the lost symbols based on re-
ceived feedbacks.

The key design question here is what shall be the granularity of
µACK and how much bandwidth should be allocated to the feed-
back channel. Ideally, we want to get µACK as fine as possible
(i.e., µACK for each received byte) to minimize the overhead of
redundant bits. However, too fine granularity µACK will require
more bandwidth at the feedback channel to convey this information,
which will add overhead to the system. Second, too fine µACK
might not be necessary at all since wireless errors are essentially
bursty [19]. Bits transmitted within the coherent time usually share
the same channel state and are lost in one burst, and therefore may
be acknowledged with one µACK. The coherence time depends on
the speed of multi-path fading in the wireless channel. In an indoor
environment, it varies from around 100µs (fast fading) to tens of
milliseconds (slow fading) [19, 20].

In this paper, we propose to generate one µACK every 20µs,
which is much shorter than the coherence time in common indoor
wireless channel. This period of time contains five 802.11 OFDM
symbols. In theory, the receiver may need to convey only one bit
information (i.e., correct or wrong) for every group of symbols it re-
ceives. Thus, the feedback channel can be very narrow. For exam-
ple, the required baud rate the feedback is merely 1/20 = 50KHz.



Table 2: Symbol encoding in feedback PHY.

Symbol name Symbol binary
(b3b2b1b0) Chip values

ACK 1100 0111100010

NACK 1001 0011001101

EOS 0110 1100110110

Even with 100% guard-band, it takes around 0.5% overhead of a
WiFi 20MHz channel. However in practice, we may want more
bits in µACK to perform proper coding for reliability. In this paper,
we choose the bandwidth of the feedback channel to be 1MHz.
The feedback signal has a width of 500KHz and another 500KHz
spectrum serves as guard-band. We choose 500KHz guard-band
by referencing to the DECT standard [15], which deploys similar
guardband of 576KHz with a channel width of 1.728MHz.

Compared to 802.11, the feedback channel of µACK adds around
5% overhead to the system. But it obviates the need for the orig-
inal ACK frame and thereby reduces the time-domain overhead.
Recall in Section 2, when the frame size is 1500 bytes, the ACK
frame normally takes about 8% overhead when the modulation rate
is 24Mbps, which is comparable to our feedback channel overhead.
It should also be noted that at higher data rates that involve wider
channels (e.g., 40MHz channel in 802.11n), the feedback channel
overhead decreases reciprocally; while the overhead of ACK frame
increases (e.g., 20% with 300Mbps rate) due to shorter transmission
time of data symbols [17].

µACK uses very robust code and modulation scheme to ensure
high reliability of the feedback. The symbol time of the feedback is
equal to the duration of a GOS, which is 20µs. Given 500KHz sig-
nal bandwidth, each feedback symbol can be coded into 10 chips. In
current design, we map four bits to one feedback symbol and these
bits are encoded into 10 chips, each of which is modulated using
basic differential binary phase-shift keying (DBPSK). Table 2 sum-
marizes the three feedback symbols currently defined in our system.
The remaining symbol values are reserved for future extensions.
The entire feedback frame (consisting of smaller ACKs for the data
symbols) is preceded with a 20µs synchronization symbol that al-
lows the sender to detect and synchronize to the feedback frame.
The SYNC symbol value is 0x2FF.

3.2 Error detection
µACK requires the receiver to reliably detect erroneous symbol

groups to generate real-time fine-grained feedbacks. This partial
packet detection problem has been well studied in previous work
[8, 12]. In [8], Ganti et. al. proposed to split the frame into frag-
ments and insert a CRC check sequence for each fragment. The
overhead to transmit these check sequences increase proportionally
with the number of fragments in a frame. Alternatively, Jamieson,
et. al. [12] proposed to use physical layer hints to classify correct or
erroneous symbols. These PHY hints usually use the soft-output of
the channel decoder. While PHY hints save the overhead of check-
sums, in our experiments, we find the PHY hint based classifier
becomes less reliable when the SNR is just enough to support the
modulation rate on a wireless link. Figure 3 shows such an exam-
ple. The PHY hint in this experiment is the soft-output of Viterbi
decoder [11] 1 and the modulation rate is 24Mbps. Figure 3 plots
the cumulative fraction of soft-outputs for both correct and erro-
neous symbols. We see that when the link SNR is 12dB high, using
1The output is quantized log-likelihood (LLR) of a correct trellis
path in Viterbi decoder.
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Figure 3: CDF of Viterbi soft-outputs in two SNR settings. The
modulation rate is 24Mbps. (a) SNR = 10dB; (b) SNR = 12dB.

PHY hints can detect both correct and erroneous symbols reliably
(Figure 3(b)). But when the link SNR reduces slightly to 10dB
(just enough to support 24Mbps), the PHY hint cannot easily sep-
arate erroneous symbols from the correct ones, and it becomes a
difficult tradeoff between higher false negative (choosing a lower
threshold) or higher false positive (by choosing a higher threshold).
This is expected, since the PHY hints are generally good statistical
estimations of error probability for a large amount of symbols [20].
However, they may fall short in reliably predicting correctness of
specific set of symbols, especially when the probability of correct
and erroneous symbols are comparable at marginal SNR.

Unfortunately, it is not uncommon for a wireless link to work at
this marginal SNR regime, as modern rate adaptation mechanisms
tend to choose the highest modulation rates for better efficiency.
Consequently, in this paper, we allow the sender explicitly embed a
CRC checksum along each GOS to facilitate reliable error detection
at the receiver.

However, embedding an extra checksum would add extra packet
overhead. To avoid this overhead, we exploit a side-channel that
has not been used by existing 802.11 OFDM PHY. Current 802.11
PHY deploys four pilot subcarriers in each OFDM symbol, each of
which transmits dummy bits. These dummy bits carry no informa-
tion and are used by the receiver to track channel changes [13]. We
argue that such a design, although simple, is not efficient. In this
paper, we propose to modulate one bit information on each pilot
subcarrier without significantly reducing the channel tracking per-
formance. Specifically, let Pi,j denotes the known pilot sequence
for symbol i on pilot subcarrier j. Then, instead of inserting Pi,j ,
the sender sends P ′

i,k = ckPi,j , where ck = {1,−1} is a differ-
entially coded binary data. The receiver, however, decodes ck first,
before performing normal pilot tracking. To decode ck, the receiver
uses the pilot value of the previous symbol, P ′

(i−1),j , as a reference,
just like a differential demodulation. A group of cks can further be
protected with error-correction codes, and small number of bit er-
rors may not affect the correctness of ck. Once ck is decoded, the
receiver can recover Pi,j and feed it to normal pilot tracking algo-
rithms. Since in this scheme, we need to detect ck first, we name
our approach as decision-directed pilot tracking (DDPT).

We briefly present some reasons on why DDPT does not degrade
tracking performance compared to original dummy pilots. We eval-
uate DDPT in detail in Section 6. First, we note that once ck is
successfully decoded, DDPT is just equivalent to original dummy-
bit pilot tracking (DBPT) scheme. This is easy to see, as once ck
is decided, the original pilot value Pi,j can be directly recovered.
Second, it is reasonable to use a previous received pilot value as a
reference to demodulate ck, since the wireless channel holds stable
during the coherence time, which is from 100µs to several mil-
liseconds for indoor environment like WiFi. The symbol period is
about 4 µs which is much shorter than the channel coherence time
in our setting. Third, even if there is a sudden interference causing



erroneous detection of ck, which is BPSK modulated with proper
channel coding, we note that in this case the original pilot tracking
algorithm may also not perform well, since the interference may al-
ready corrupt the tracking results. Therefore, the symbols, in either
DDPT or DBPT, suffer a strong interference and fail to decode any-
way. Finally, to prevent the decision errors from propagating, we
perform DDPT only within a GOS. For the first symbol in a GOS,
we always insert normal pilot bits, while modulating information
only on the remaining four symbols.

With DDPT, µACK can embed up to 16 bits on the pilot subcar-
riers of a GOS. In this design, we use a simple Hamming (16,11)
code to protect this side-channel. There, we have eleven informa-
tion bits. Ten bits are used to encode a CRC-10 checksum, which is
used in B-ISDN and ATM networks. The other bit is used to indi-
cate whether or not the GOS contains retransmission metadata (de-
tailed in next section). We note that the Hamming code is slightly
weaker than the 1/2 code used for 6Mbps rate in 802.11, and may
have higher bit error rate (Section 6.1.2). In our future work, we
will investigate a better coding scheme for the pilot side channel.

Upon decoding a GOS, the receiver computes a CRC checksum
of the decoded bits and compares it to the one embedded in the pilot
subcarriers. If they match, the receiver sends out a positive µACK;
otherwise it sends a negative µACK.

3.3 In-frame recovery protocol
Based on the error detection and feedback mechanisms discussed

earlier, µACK can perform in-frame recovery of erroneous sym-
bols. The in-frame recovery protocol works in the following way.

After detecting a preamble, the receiver starts to transmit the syn-
chronization symbol on the feedback channel. Then, for each GOS
it receives, the receiver will send a µACK or µNACK based on the
correctness of the GOS. All correctly received data are kept in an
assembly buffer. If all received data pass the frame CRC-check, the
receiver sends an EOS symbol to notify the sender. If after that, the
receiver continues receiving GOS, possibly due to the corruption of
the EOS symbols, it simply returns another EOS.

Based on the µACKs received, the sender puts the negatively ac-
knowledged bytes into a retransmission queue. After the last GOS
is sent, the sender fetches all data from the retransmission queue
and starts re-coding them into retransmission GOS(RGOS). RGOSs
are sent directly after the last GOS of the frame. Since the data in
the retransmission queue are no longer continuous, the first RGOS
should contain retransmission metadata to identify the correspond-
ing symbols at the receiver. The RGOS containing the retransmis-
sion metadata is marked by the meta-bit on its pilot side-channel.
The format of the retransmission meta-bit is simple. It contains at
least 6 bytes, as shown in Figure 4. The first field, number of sym-
bols(10-bit), indicates how many of symbols are re-encoded. The
field size (6-bit) indicates the number of retransmission block en-
tries in the metadata. Each block entry is 32-bit, including 16-bit
start position and 16-bit length. In our current implementation, the
size of this metadata header cannot exceed one GOS. For example,
if the frame is modulated with 6Mbps, the metadata may contains
only 2 entries; while for 54Mbps, the metadata header may hold up
to 26 entries. If there are more retransmission blocks that cannot
be fitted into one metadata header, multiple metadata headers may
need to be added.

All acknowledged data are then removed from the retransmission
queue. After one round of RGOS, if there is still any data remain-
ing in the queue, the sender will start a second recovery round. A
rare, but possible, scenario is that there is no data remaining, and
the sender has not yet received an EOS. For example, there might
be a hash collision in CRC-10, such that the receiver mistakes an er-

0 8 15
num. of sym.

start pos 1
len 1

start pos n
len n

size

Figure 4: The format of retransmission metadata.

roneous GOS as a correct one, and returns a positive µACK. There-
fore, to handle this corner case, the sender has to mark all data as
lost and retransmit every byte in following symbols.

The sender will terminate transmission if it receives an EOS from
the feedback channel, or an upper bound of symbols have been
transmitted. We set this upper limit to prevent the sender from occu-
pying the channel for an unreasonably long period (Section 3.5). In
this paper, we set this upper limit as three times the frame size. The
sender will also abort transmission and retry after a backoff time if a
significant number of erroneous GOS have been detected (≥ 50%),
which usually indicates a persistent collision has occurred.

3.4 Other applications of µACK feedback
Beside the error recovery, the tightly synchronized µACK feed-

back can also improve the wireless network in following two ways.

Collision detection and early backoff. Using µACK, a sender can
detect collisions before the entire transmission is complete. If the
sender does not receive the first few µACK symbols, this means the
preamble was not likely received by the receiver, which usually im-
plies a collision may occur. Therefore, the sender can immediately
stop its transmission, and retry the frame after a backoff time.

Hidden terminal mitigation. µACK can also mitigate the hid-
den terminal problem without relying on explicit RTS/CTS hand-
shakes, which adds significant overhead. In µACK system, a sender
can simply monitor both FF and FB channels. Since the receiver
constantly continually sends the µACKs during the data transmis-
sion, the feedback can be viewed as a busy tone channel (similar to
DBTMA [6]). The contender will defer its transmission once de-
tecting the µACK feedback. Finally, µACK can also help to reduce
exposed terminals following the similar heuristic in [6].

3.5 Discussion
We now briefly touch upon some factors in the design of the

µACK mechanism.

When to send µACK sync symbol? The receiver should send back
synchronization symbol in feedback channel as soon as it detects a
frame for it in the data channel. However, in current 802.11 de-
sign, the destination address is embedded in the MAC header. That
means the receiver can send µACK only after the first GOS has
been decoded, adding a large additional delay. Therefore, we pro-
pose the extend current PLCP header by an OFDM symbol to store
a physical layer address of the receiver. In this way, the receiver
can start µACK feedback right after the preamble of the data frame.
We note that PHY layer addressing has been previously exploited



in [16,23], and we can use similar approach to dynamically allocate
them inside a wireless network.

Range Mismatch: An important requirement is to ensure that the
FB channel has a similar range as the FF channel. Otherwise, the
hidden/exposed terminal problem will become worse. To ensure the
same range, both the channels are in the same band, i.e. either 2.4
GHz or 5 GHz. Furthermore, we leverage prior work on channel
widths [4] to adjust the transmit power of the FB channel such that
its range matches the FF channel.

Rate Anomaly: Packet fairness of IEEE 802.11 hurts the perfor-
mance of high data rate nodes in the presence of low data rate
nodes [22]. µACKs can make the situation worse since a trans-
mission with large number of bit errors will effectively increase its
packet size and occupy the medium for a longer period of time,
thereby hurting the performance of transmissions over completely
reliable links. To solve this problem, we (i) limit the maximum
time a node can occupy the medium including retransmissions, and
(ii) reduce the probability of a node that just occupied the medium
for a long time from immediately regaining access, similar to the
technologies proposed in [22].

Rate Adaptation: Using µACK, a sender can get a good estimate
of the BER on the link at any time. Therefore, it is possible to
dynamically pick the best rate for each symbol inside a frame. We
leave this as our future work.

FB channel allocation: In current two-radio implementation of
µACK, we statically assign a narrow FB channel for every FF chan-
nel. However, in the future, the frequency of the FB channel in a
wireless network may be dynamically selected to avoid potential
noisy channels. All FB channel may be allocated to a specific por-
tion of spectrum band. For example, in US, the 11 MHz of FB
spectrum (for the 11 channels) can be allocated in the unused chan-
nels 12 and 13 of IEEE 802.11b in 2.4GHz band. This spectrum is
only available for low-power operation, but given that our ACK is
low bandwidth, and hence lower power, we expect to be within the
FCC regulations for these channels. Alternatively, we may split a
portion of existing 802.11 channel for µACK FB use. For example,
we may allocate the upper (or lower) 1MHz of 20MHz WiFi chan-
nel to feedback, while the remaining 19MHz spectrum is used for
FF data communication. Finally, we note that in the future, with
full-duplex technology [5], we expect µACK may have single radio
designs and the feedback can be sent using the same frequency as
the FF channel.

Frame duration field setting: In 802.11 standard, the MAC header
contains a duration field that records the expected frame transmis-
sion time plus the ACK. A contender after decoding the field will
defer according to the value in this field to avoid possible collision
to the ACK frame. For µACK, since the sender may dynamically
pad the frame with retransmission symbols, the transmission dura-
tion may not be known before hand and cannot be accurately set.
However, we note that µACK does not need this duration field for
correct protocol behavior. This is because of the following two rea-
sons. First, µACKs are sent in a different feedback channel. There-
fore, it is safe for a contending sender to pick up the medium im-
mediately after the FF data channel is sensed idle. Second, as dis-
cussed in Section 3.4, µACK can effectively detect collisions and
mitigate hidden terminals using the feedback. Therefore, it does
not need the traditional RTS/CTS handshake, which further relies
on this frame duration field to reserve channel time.

4. ANALYTICAL STUDY
We build on the model presented in Section 2 and analyze the

performance of the µACK technique. We also compare its perfor-
mance to Wi-Fi and the most closely related work, PPR [12].

Model: Suppose the symbol error rate is es and a frame contains
Ns symbols. Assuming the OFDM symbols are independent, the
frame error probability is ef = 1−(1−es)

Ns . To compare different
techniques, we define retransmission overhead (RO) as the fraction
of additional time to successfully transmit a frame.

RO = (TReTx − Tdata)/Tdata

= TReTx/Tdata − 1,

where TReTx is the time taken to successfully deliver the packet at
the receiver including retransmissions. So, the RO is zero if there
is no loss, and greater than zero if there is any retransmission. In
our model, we assume the sender will persistently retransmit the
lost packet until it is successfully received. We note this is only
an approximation to practical systems that may only retry up to a a
maximum number (e.g., four times in 802.11). A complete model
that considers this maximum retransmission number will be our fu-
ture work.

Wi-Fi: The expected number of frame retransmissions for Wi-Fi
is:

Kwifi = 1 ∗ (1− ef ) + 2 ∗ ef (1− ef ) + ...

+k ∗ e(k−1)
f (1− ef ) + ...

= 1/(1− ef )

Therefore, extending the formulation of Section 2:

TReTx = Tdata(R) +

Kwifi∑
i=1

Tdata(Ri).

where Ri is the data rate used for the ith retransmission packet.

PPR: We assume that there is no retansmission aggregation in PPR
for latency reduction. Also, we do not model the dynamic pro-
gramming algorithm that PPR uses to compute the optimal trunks
to retransmit. Modeling such a dynamic algorithm is non-trivial. So
we leave it as our future work. Here, we just try to build an approx-
imate model: We assume PPR retransmits only erroneous bits and
we don’t consider the overhead of CRC-checksum for the runs of
good bits. Clearly, our approximate model captures an performance
upper bound of PPR.

Based on this simplification, we can compute the size of the kth

retransmission frame, sk, in PPR as

sk = ess(k−1).

The frame error rate of the kth retransmission is:

ef (k) = 1− (1− es)
(sk).

Therefore,

TReTx = Tdata(R) +

∞∑
k=1

(
k−1∏
i=0

ef (i)

)
T k
data(Rk),

where T k
data(Rk) is the air-time to send the kth retransmission (sk

symbols) with rate Rk.
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Figure 5: Retransmission overhead versus the symbol loss rate
on the wireless link. The packet size is 1500B and the data rate
is 54Mbps.

µACK: In our system, the erroneous symbols are directly appended
at the end of the frame. The number of retransmitted symbols is

Nrx = Ns·
∞∑
i=1

(eis) = Nses/(1− es)

Let l is the average burst length of erros. Then, the expected frame
size in µACK is

Ndata = Ns +Nrx + λNrx/l,

where λ is the metadata overhead to describe a burst loss in µACK
(Section 3.3). Finally, we can derive the expected air-time to send
a frame using µACK,

TReTx(R) = tCW + tDIFS + tDATA + tµACK_delay

= 72µs+ 28µs

+(20µs+ tsymb⌈Ndata/(4R)⌉+ 6µs)

= Tdata(R) + tsymb(⌈Nrx(1 + λ/l)/(4R)⌉)
−Tack + tµACK_delay,

where Tack = tSIFS+tACK is the ACK overhead and tµACK_delay

is the latency of µACK feedback.
Figure 5 presents the quantitative results of 802.11, PPR, and

µACK under different symbol error rates. When the symbol error
rates are low, the link is very reliable and the retransmission over-
head is also low. As the link becomes lossy, the retransmission
overhead of 802.11 increases exponentially and soon hits a wall
at symbol error rate of 10−2, meaning that no matter how many
times it retransmits, the packet cannot be delivered. PPR reduces
the retransmission overhead by resending only the lost bits. There-
fore, the retransmission overhead increases slower than 802.11, but
the header and contention overhead is still high. µACK, however,
maintains a very low retransmission overhead even in very lossy
environments, i.e., the symbol error rate is as high as 1/2.

5. IMPLEMENTATION

5.1 Platform
We have implemented µACK based on the Sora software radio

platform [18]. To fully support µACK, we extended Sora in follow-
ing two ways:

Sora RCB

RF front-end
Multi-radio RAB

Figure 6: Multiradio RAB for Sora. It can connect to up to four
RF front-ends. Two RF boards have been plugged on the board,
and there are two slots empty.

Multi-radio RAB. We built a new Sora RAB2 that is able to con-
nect to four RF front-ends as shown in Figure 6. These four RF
front-ends are synchronized using the same oscillator, but can be
independently programmed. For example, they can be configured
in different spectrum bands with different channel widths. Or they
can be in different transmitting or receiving modes. Each RF front-
end exposes an abstract radio object in Sora system and the software
radio applications can separately control each of them.

Streaming Tx interface. Current Sora SDK supports only frame-
based transmission control interface. A frame of modulated signal
should be entirely transferred into the RCB memory first, before it
can be transmitted over the RF front-end [18]. This two-phase Tx
method has a latency that is unacceptable for µACK. In this work,
we extend the Sora system to support a new streaming Tx interface.
Instead of downloading the entire modulated signal, the system can
start transmitting a block of samples, while at same time fetching
the next sample block from PC memory. Therefore, the modulation
process and the signal transmission can be pipelined on Sora. In
current implementation, the sample block contains 1.4 µs samples.
This way, we can achieve dynamic modulation in real-time at the
granularity of OFDM symbols.

5.2 µACK implementation
µACK is implemented as a user-mode SDR application based on

Sora UMX API [1]. The program contains two exclusive threads
(ethread). One ethread runs the standard 802.11 OFDM PHY (Soft-
WiFi); the other one runs the feedback PHY as described in Sec-
tion 3.1. We modified about 250 lines of code to SoftWiFi to sup-
port the streaming Tx interface and the pilot side-channel. The
feedback channel occupies 1MHz frequency, within which 500KHz
is used for communication and the rest serves as guard-band. Since
the feedback PHY is very simple and contains limited number of
symbols (three valid symbols plus the sync symbol), we build a
lookup table to modulate µACK feedback and we apply the maximum-
likelihood decoding to a received feedback symbol. In other words,
the feedback receiver simply compares the demodulated symbol to
each valid symbols and pick the one with the minimal Hamming
distance.
2Radio adaptive board, which is used to connect a 3rd party RF
board to Sora RCB.



Figure 7: The software radio testbed layout: there are total 9
Sora nodes located in offices and lobby in an indoor environ-
ment.

6. PERFORMANCE EVALUATION
We evaluate µACK in this section. We begin in Section 6.1 the

micro-benchmark of our system implementation on the software ra-
dio platform. Then, we perform trace-driven simulation to evaluate
µACK in a relatively large networking setting and compare µACK
to original 802.11 as well as PPR [12].

Method. The micro-benchmarks are mainly conducted in a con-
trolled environment. We connect two nodes’ RF front-end using
cables and manually add attenuation to create different SNR on the
link.

We have built a test-bed contains 9 Sora nodes. Figure 7 shows
the layout of our testbed. The Sora nodes are placed in offices and
lobby in an indoor environment. The channel on which we collect
data is centered at 2422MHz. This is the least busy channel in our
office building, but still has uncontrollable interference from neigh-
boring APs. Since we use software radio, we can log the decoding
status of each symbol as well as the exact time a frame is received
or transmitted. The large PC memory can easily hold a few minutes
of frame logs without loss before writing to hard disk. We verify
the links between nodes by selecting one node in turn as the sender
to broadcast to all other nodes. We find the most links have a packet
loss rate between 10 ∼ 40%. Few links have very good quality to
support 48Mbps data rate with few losses. There are also hidden
terminals in our testing network. In average, each node may find
one hidden node in the network.

We try all data rates on each link and identify the best modulation
rate that has the best throughput on the link. We use this best modu-
lation rate for both original frames and retransmissions on the link.
Then, we pick up one node as a receiver and all other nodes send
a saturate unicast traffic to it. All senders use the best modulation
rate measured before. All sending and receiving frames are logged
on senders and the receiver. We measure 10 runs for each receiver;
each run last 30 seconds. Then, we change the receiver and repeat
the measure until all nodes in the network have been covered.

6.1 Micro-benchmark
We first evaluate the end-to-end latency of µACK. This latency

defined here is the period between the time when the last sample
of a GOS is transmitted and first sample of a corresponding µACK
that is received by the sender. This latency includes the demodula-
tion/decoding of the GOS, modulation the acknowledgment, as well
as the delay incurred by the hardware platform. Figure 8 shows the
distribution of the end-to-end latency measured at the sender. We
can see that our system can quickly generate and return µACK in a
short delay. The mean value is only about 17.5 µs.
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Figure 8: End-to-end delay of µACK feedback.

Table 3: Breakdown latency of µACK feedback (µs).

Viterbi decoding µACK modulation Hardware

7.5 (5.82, 8.06) 1.96 (1.4, 2.23) 9.103 (8.22, 10.5)

To better understand the latency, we break down the latency of
each component in Table 3. The Viterbi decoder introduces about
8µs delay. This is reasonable. Since the Viterbi algorithm requires
certain trellis depth before it can trace-back the results 3, the de-
coder needs to finish processing symbol (i+1) to output symbol i.
Consequently, it adds the processing delay of 2 symbol time. The
modulation of µACK is trivial, less than 2 µs. This is because we
have optimized the modulation process using lookup tables. Thus,
this latency is only the time needed to copy samples of one feed-
back symbol. The hardware platform contributes the most latency
in our system. Since we use a software radio platform, both sending
and receiving a symbol will introduce a delay about 1.4µs to pass
the PCIe bus. Therefore, there will add up to 5.4 µs in the end-to-
end latency as the samples need to pass the PCIe bus for four times
- sending and receiving data/µACK symbols at both sender and re-
ceiver. The Sora Fast Radio Link (FRL) used to connect the RCB
and the RF front-end contributes the rest latency. Together, the total
hardware latency is about 9 µs. We note this hardware latency can
be significantly reduced if we implement µACK in silicon.

6.1.1 µACK feedback
Second, we evaluate the reliability of our feedback channel. We

perform this measurement in a controlled environment. We connect
the two nodes with wires and manually adds attenuation to control
the SNR value. Figure 9(a) shows the µACK feedback error rate
versus SNR curve of our feedback PHY as discussed in Section 3.1.
When SNR is as low as 2.5dB, our µACK feedback has a low error
rate of 10−2. The error rate quickly drops to 10−4 when SNR is
about 6.5dB. Figure 9(b) compares the reliability of µACK feed-
back channel with the lowest data rate (6Mbps) of 802.11. Each
data point presents the BER of µACK feedback and 802.11 6Mbps
rate in the same wireless link condition. From the figure, we can
conclude that the feedback PHY is much more reliable than the
lowest data rate used in 802.11, and adding such a fine-grained
feedback will not significantly increase the end-to-end symbol error
ratio.

3(The depth is usually no less than 5K, K is the constraint size of
the convolutional encoder.
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Figure 9: The reliability of µACK feedback channel. (a) BER of
feedback PHY versus SNR. (b) Comparision of µACK feedback
with 802.11 OFDM 6Mbps rate.

6.1.2 DDPT performance
In this experiment, we evaluate the performance of DDPT (Sec-

tion 3.2). Again, we perform the experiment in the controlled en-
vironment where the channel coherent time is relatively large. The
sender broadcasts frames to the receiver over the controlled link.
The broadcast traffic is 2Mbps with a frame size of 1000 byte. We
configure various SNR values on the link. For each data rate, we
first send frames without DDPT (normal 802.11 rates), and then we
turn on DDPT. We record the frame loss rate at the receiver. Each
measure takes 20 second. Figure 10 plots the results. Each data
point in the figure represents the frame loss rate we get for a data
rate with and without DDPT. In general, we can see the difference
is quite small, especially when the data rates are high. With low
rates (i.e., 6Mbps and 9Mbps), using DDPT may slightly increase
the frame error rate. This is reasonable. Since 6 and 9Mbps rates
are already using BPSK modulation, their bit error rate is compa-
rable to DDPT side channel. Therefore, the error rate added by
DDPT modulation may be observable. But with high data rates, the
data subcarriers are using high modulation/coding mode, and may
already become very erroneous while DDPT is still able to track the
channel reliably.

Figure 11 quantifies the BER of the DDPT side channel. The
performance is comparable to that of 6Mbps modulation rate of
802.11. For example, to achieve BER of 10−3, DDPT requires
8dB SNR, which is slightly higher (around 1dB) than 6Mbps rate
of 802.11.
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Figure 11: Performance of DDPT side channel.

6.2 Single link performance
We compare the wireless link throughput of three schemes:

1. 802.11g. This is normal 802.11g that always retransmits the
entire frame.

2. PPR. We implement PPR [12]. As mentioned earlier in Sec-
tion 3.2, the PHY hits may work unreliably when the link
SNR marginally supports the chosen data rate. For a fair
comparison, we also use the pilot side-channel to transmit
CRC checksum for PPR as well. After a partial frame is
received, the receiver will compute a feedback in an ACK
frame and the sender, upon receiving the ACK, send the re-
transmission in a new frame.

3. µACK. µACK exploits the fine-grained feedback from the
receiver in a separate channel to re-encode the lost symbols
and append them right after the frame. In current implemen-
tation, µACK uses more bandwidth – we use total 21MHz
spectrum, i.e., 20MHz for forward data channel and 1MHz
for µACK feedback. For a fair comparison, we reduce the
measured throughput by 5% before we plot it in the figure.

For every SNR setting, we try all data rates for each scheme and
we present the result of each scheme with the best modulation rate
that yields the highest throughput on the link. For all schemes, we
use this best modulation rate for both original frames and retrans-
missions.
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Results. Figure 12 shows the results. When SNR is low, the link is
very lossy even though the most reliable rates are applied. There-
fore, the retransmission overhead is high for 802.11g. By avoiding
retransmission of the redundant data, PPR and µACK can signifi-
cantly improve the link throughput. With the increase of SNR, the
link becomes less lossy, and higher modulation rates can be applied.
Therefore, the benefit of PPR also becomes less, since in this case
the backoff, headers and ACK dominates the retransmission over-
head. They become more severe as the frame size decreases (The
bottom row of Figure 12). µACK, however, removes such over-
heads using a narrow-band feedback channel and thus always gains
over other two schemes. Further, as µACK decreases the retrans-
mission overhead, it has better chance to use a higher modulation
rate, which gives more throughput gain. Figure 13 shows this ef-
fect. We can see that µACK can utilize a higher rate one or two dB
earlier than other two schemes. In summary, µACK improves the
link throughput by 8 ∼ 220% over 802.11g, and 5 ∼ 30% over
PPR.

During our experiments, we also find PPR sometimes may de-
liver less throughput than original 802.11g (as shown in Figure 12.
The reason is due to PPR’s postample. In this situation, the postam-
ple adds a fairly amount of overhead, but gains nothing – there is
no hidden terminal here. So, we remove the postample and rerun
the experiments, listed as PPR-no post in Figure 12. PPR-no post
always performs better than 802.11g, but still below µACK.

6.3 Testbed experiments
In this section, we present the trace-driven emulation to evaluate

µACK performance in a busy network. The trace is collection from
a 9-node software radio network as described at the beginning of
Section 6. The question we are answering here is what performance
gain we can get if we apply µACK in such a network comparing to
other schemes, i.e., 802.11g and PPR. The trace-driven emulation
is performed as follows: We examine each receiver trace one-by-
one. We parse the decoding results of each symbol of each frame.
For PPR, once a partial frame is detected, we compute the feedback
message that should be embedded inside an ACK. Then, we adjust
the ACK size accordingly, and treat the next frame as the retrans-
mission. We further adjust the size of the frame according to the
PPR protocol and determine the delivery status based on this new
frame size. For µACK, we re-encode lost symbols after the frame.
We also refer to the recorded results of the next frame to decide the
decoding status of these retransmitted symbols. The backoff win-
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Figure 15: Error recovery latency.

dow are carefully adjusted according to the decoding results of the
previous packet.

Figure 14 shows the per-link throughput distribution of our test-
bed. The throughput is normalized to 802.11g. We see that PPR has
up to 60% (median 20% ) throughput gain compared to 802.11g.
This gain is much larger compared to a controlled environment
in Figure 12. This is because in our test-bed network, the loss is
much more prevalent due to the interference from other transmit-
ters. µACK can achieve up to 140% (median 60%) throughput gain
over 802.11g and up to 60% (median 30%) gain compared to PPR.

Figure 15 illustrates the delay distribution to recover a lost packet.
The recovery delay is defined as the time between the first transmis-
sion and the finally delivery of packet. We assume the sender uses
up to 4 times retransmission for both PPR and 802.11. We can see
that both PPR and 802.11 has large recovery delay (up to 40ms!).
This is because each retransmission packet should go entirely con-
tention process to gain the access to the channel. In a busy network,
this contending period can be very long. µACK, however, does not
give up the channel and all errors are recovered inside the frame.
So the recovery delay is very low (up to 4ms). This property is es-
pecially beneficial to real-time applications, like real-time confer-
encing or gaming, that requires very short delay in packet delivery.
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7. RELATED WORK
There is a large body of work on improving the reliability of

wireless communication. Due to lack of space we only touch upon
the most closely related work in this section, and refer the reader
to [19] for more background.

ARQ is a well-known technique to recover from losses, where
packets without ACKs are retransmitted. Hybrid ARQ [14] reduces
the retransmission overhead using FEC, in addition to ARQ. Type
I Hybrid ARQ resends the entire packet (along with FEC and er-
ror detection (ED)) when the packet is lost. Type II Hybrid ARQ
reduces the ARQ overhead when the medium is mostly loss-free.
Packets include ED but no FEC the first time they are sent. Re-
transmissions include both FEC and ED. Our µACK mechanism is
complementary to the 802.11 Hybrid ARQ. Once the mapping from
the data including FEC and ED is done to symbols, we only modify
the ACK mechanism to be on a finer granularity, i.e. per symbol,
instead of per-packet.

The most closely related work to µACKs is PPR [12], which we
have referred and compared to in various sections in this paper. PPR
reduces retransmission overhead by eliminating redundant bits. We
reduce the overhead further, by not requiring separate packet trans-
missions (and the consequent overhead) for retransmissions.

CSMA/CN [16] utilizes the feedback to detect collision. It uses
soft-phy hint to detect collisions. Once a collision is identified,
a notification is sent back in the same frequency band, assuming
the sender has full-duplex radio. Then, the sender may abort the
transmission earlier. µACK has significant different design com-
pared to CSMA/CN. First, µACK utilizes a narrow-band, dedi-
cated feedback channel with little overhead; while the notification
in CSMA/CN is a pseudo-random wide-band signal. Second, CS-
MA/CN notification conveys only one bit information (collision or
not); while µACK feedback can contain multiple bits information.
As a consequence, µACK design is much more powerful. It can
not only detect collisions (similar to CSMA/CN), but also be able
to perform in-frame retransmission to improve the error recovery
efficiency. Further, the µACK feedback is continuous during the

transmission of the data frame, and therefore can serve as an ex-
tended busy-tone to mitigate hidden and expose terminal problems.

Using separate channel to send acknowledgments is common in
FDD wireless systems, e.g., FDD LTE [7]. However, in such sys-
tems, the ACK is still at the frame level. For example, LTE NodeB
will send an ACK/NACK subframe in the downlink channel after
it receives a sub-frame in the uplink channel from a mobile node.
In contrast, µACK sends back feedback symbols during the trans-
mission of the data frame that allows in frame adaption (e.g., sym-
bol retransmission). Further, LTE is a tightly synchronized wire-
less system and only applied in licensed spectrum bands. However,
µACK is designed for a random access wireless network, like WiFi,
and is suitable for unlicensed spectrum bands.

Rate control algorithms try to make transmissions more reliable
without losing capacity by appropriately adjusting the rate. For ex-
ample, SoftRate [20] uses the SoftPHY hints to determine the best
rate to send the packet. Using µACKs, a sender can get more im-
mediate feedback about symbol error rate, and can in fact adapt
the rate in between the transmission, i.e. as and when it receives
the µACK for the previous GOS. Another recent rate adaptation al-
gorithm is Strider [10], which proposes using rateless codes, which
can significantly improve the reliability of transmissions. Similar to
SoftRate, µACKs can improve the performance of Strider, as it can
adjust the codes on a GOS time scale instead of the entire packet.

Another body of related work uses control channels. For exam-
ple, RI-BTMA [21] and DBTMA [6] use busy tones on the control
channels to resolve contention and hidden terminals, respectively.
Although other work has also looked at offloading control traffic to
the control channel, we believe µACK is the first system that inte-
grates the control channel for in-line acknowledgment of symbols
as the packet is being transmitted.

8. CONCLUSION
In this paper, we quantify the overhead of frame retransmissions,

and show that the overhead is significant in a lossy wireless net-
work. We breakdown the overhead from duplicate headers, con-



tention as well as redundant bits, and propose a new in-frame re-
transmission scheme using µACKs. Instead of waiting for the en-
tire transmission to end before sending the ACK, the receiver sends
smaller µACKs on every few symbols, on a separate narrow feed-
back channel. Based on these µACKs, the sender only retransmits
the lost symbols after the last data symbol in the frame, thereby
adaptively changing the frame size to ensure it is successfully de-
livered.

We have implemented µACK on the Sora platform. Experiments
with our prototype demonstrate that µACK can significantly reduce
the retransmission overhead. Therefore, the sender can aggressively
use higher data rate on a lossy link, which further improves the
overall network efficiency. We believe that µACK is a powerful
idea and has other applications beyond error-recovery. The feed-
back mechanism developed in the context of µACK can be used by
a variety of future wireless protocols.
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