

Jiansong Zhang^{†#}, Haichen Shen[†], Kun Tan[†], Ranveer Chandra^{*}, Yongguang Zhang[†] and Qian Zhang[#]

[†]Microsoft Research Asia

*Microsoft Research Redmond
#HKUST

Feedback in Wireless Networks

- Feedback is critical for network protocols
 - ☐ Confirm reception / detect loss (i.e. ACKs)

 Current network protocols are primarily based on frame level feedback

Frame-level Feedback Considered Harmful in Wireless

Example 1: Collision detection based on ACK

- May be too late
 - ☐ Feedback received after all damage has been done

Frame-level Feedback Considered Harmful in Wireless

Example 2: Frame retransmission is inefficient

May contain limited information

Frame-level Feedback Considered Harmful in Wireless

Example 2: Frame retransmission is inefficient

- May contain limited information
- May be costly to re-establish transmission context

We should do symbol level feedback

μACK Towards Symbol-level Feedback

- Two Tightly synchronized radio chains
 - Wide-band forward channel
 - Narrow-band feedback channel
- Tiny acknowledgement symbols

μACK Application 1 – Collision Detection and Early Backoff

Feedback Timeout

Early collision detection by feedback timeout

μACK Application 2 – Hidden & Exposed Terminal Mitigation

Hidden Terminal:

 μACK from R prevents H from colliding

μACK Application 2 – Hidden & Exposed Terminal Mitigation

Exposed Terminal:

• μACK is an extended busy tone

μACK Application 3 – In Frame Retransmission

GOS: group of symbols EOS: end of stream

Retransmission appends to original frame

μACK Benefits Wireless in Various Ways

- Application 1:
 - ☐ Collision Detection and Early Backoff

- Application 2 (extended):
 - ☐ Hidden & Exposed Terminal Mitigation

- Application 3:
 - ☐ In-frame Retransmission

μACK Benefits Wireless in Various Ways

- Application 1:
 - ☐ Collision Detection and Early Backoff

- Application 2 (extended):
 - ☐ Hidden & Exposed Terminal Mitigation

- Application 3:
 - ☐ In-frame Retransmission

In-frame Retransmission Details

- Design questions
 - ☐ What is the symbol group size?
 - \square What is μACK physical layer?
 - ☐ How to determines a group of symbol is correct?

GOS: group of symbols EOS: end of stream

Data Symbol Group Size

- Symbols in a group are fate-sharing
 - ☐ GOS length < coherent time of the channel
- Tradeoff between redundant bits and feedback channel requirement
 - ☐ Larger GOS → more redundant bits, and less feedback bandwidth
- Design choice
 - \square 20 μs GOS \rightarrow 5 OFDM symbols
 - ☐ 1MHz feedback channel ~ 5% for 20MHz data channel

μACK PHY

- Simple spectrum spreading PHY
 - \Box Feedback symbol time is $20\mu s$ (the length of GOS)
 - ☐ Four bits per symbol (encode 3 states)
 - ☐ Channel width is 1MHz (50% guard band) → Bandwidth 500KHz → Chip rate is 500Kcps
 - ☐ Ten chips per symbol

Symbol name	Symbol binary $(b_3b_2b_1b_0)$	Chip values
ACK	1100	0111100010
NACK	1001	0011001101
EOS	0110	1100110110

Error Detection

- Two methods
 - ☐ Segment CRC (additional overhead)
 - ☐ PHY hints

We found PHY hints becomes less reliable in some cases ...

24Mbps, 10dB (marginal)

24Mbps, 10dB (marginal)

24Mbps, 10dB (marginal)

24Mbps, 10dB (marginal)

Segment CRCs add additional overhead

Can we avoid the overhead?

- How?
 - ☐ Differential BPSK (similar to 802.11b)

Dummybit = (1, 0)

Symbol	Encoded	(I, Q)
S_0		(1,0)

- How?
 - ☐ Differential BPSK (similar to 802.11b)

Symbol	Encoded	(I, Q)
S_0		(1,0)
S_1	0	(1,0)

- How?
 - ☐ Differential BPSK (similar to 802.11b)

Symbol	Encoded	(I, Q)
S_0		(1,0)
S_1	0	(1,0)
S_2	1	(-1, 0)

- How?
 - ☐ Differential BPSK (similar to 802.11b)

Symbol	Encoded	(I, Q)
S_0		(1,0)
S_1	0	(1,0)
S_2	1	(-1, 0)
S_3	0	(-1, 0)

- How?
 - ☐ Differential BPSK (similar to 802.11b)

Symbol	Encoded	(I, Q)
S_0		(1,0)
S_1	0	(1,0)
S_2	1	(-1, 0)
S_3	0	(-1, 0)
S_4	1	(1,0)

- How?
 - ☐ Differential BPSK (similar to 802.11b)

Symbol	Encoded	(I, Q)
S_0		(1,0)
S_1	0	(1,0)
S_2	1	(-1, 0)
S_3	0	(-1, 0)
S_4	1	(1,0)
•••	•••	•••

Decision Directed Pilot Tracking

- Pilots should be decoded first before used for channel tracking
 - ☐ No performance loss if pilots are correctly decoded
 - ☐ No performance loss even if pilots are not correctly decoded

- Normal pilots are inserted at beginning of an GOS
 - ☐ Pilot decision error will not propagate to next GOS

Sora Based Implementation

- Extend Sora
 - ☐ Multi-radio board
 - ☐ Direct symbol transmission to radio

Performance Evaluation

- Is μACK feasible?
 - ☐ Micro-benchmarks
- What is the benefit of μACK?
 - ☐ Wired single link
 - ☐ 9 node real network

End-to-end Latency of µACK

Breakdown:

Viterbi Decoding	μACK modulation	Hardware
7.5µs	1.96µs	9.103µs

μ**ACK PHY Performance**

μACK vs. 802.11 6Mbps

DDPT Performance

DDPT vs. Normal

54Mbps - 36Mbps ⇒ 24Mbps □ 18Mbps
 ∆ 12Mbps × 9Mbps → 6Mbps

μACK on Wired Single Link

- μACK sender aggressively use higher data rates.
- Up to 220% over 802.11a, up to 30% over PPR

Trace-based Emulation

Throughput

Latency

Related Work

- Hybrid ARQs
 - \square Complementary to μACK
- Partial Packet Recovery
- CSMA/CN
- Rate adaptation
 - \square μACK shows by reducing loss recovery overhead, one can use more aggressive rates
 - \square μACK also enables in-frame rate adaptation
- Busy-tone schemes (DBTMA)
 - $\square \mu ACK$ can serve as an extended busy tone

Conclusion

- μACK enables sending fine-grained feedback
 - ☐ Collision detection
 - ☐ Mitigation of hidden & exposed terminal problem
 - ☐ In-frame loss recovery
- μACK is feasible & significantly improves spectrum efficiency
 - ☐ Reduces retransmission overhead
 - ☐ Increases transmission rate
 - ☐ Improves collision management