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Feedback in Wireless Networks 

 Feedback is critical for network protocols 
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DATA ACK 

 Confirm reception / detect loss (i.e. ACKs) 

 Current network protocols are primarily based 
on frame level feedback 



Frame-level Feedback Considered 
Harmful in Wireless 

 May be too late 

 Feedback received after all damage has been done 
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𝑻𝟏 

𝑻𝟐 

ACK Timeout 

Example 1: Collision detection based on ACK 



Frame-level Feedback Considered 
Harmful in Wireless 

 May contain limited information 
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Example 2: Frame retransmission is inefficient 
Medium 

Access 

Preamble 

& Header 
Data ACK 

DIFS SIFS 

Retransmission: 
𝑹𝒆𝒅𝒖𝒏𝒅𝒂𝒏𝒄𝒚 



Frame-level Feedback Considered 
Harmful in Wireless 
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Medium 

Access 

Preamble 

& Header 
Data ACK 

DIFS SIFS 

Retransmission: 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕𝒊𝒐𝒏 
𝑯𝒆𝒂𝒅𝒆𝒓𝒔 

 May be costly to re-establish transmission context 

 May contain limited information 

Example 2: Frame retransmission is inefficient 



We should do symbol level feedback 
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µACK Towards Symbol-level Feedback 
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Data Frame 

uACK uACK … uACK uACK 
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 Two Tightly synchronized radio chains 

 Wide-band forward channel 

 Narrow-band feedback channel 

 Tiny acknowledgement symbols 



µACK Application 1 –  
Collision Detection and Early Backoff 

 Early collision detection by feedback timeout 
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Preamble Few symbols 

Feedback Timeout 

Collision 



µACK Application 2 –  
Hidden & Exposed Terminal Mitigation 
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𝑻 
𝑹 

𝑯 

𝜇𝐴𝐶𝐾 from R prevents H from colliding 

Hidden Terminal: 
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𝑹𝟏 
𝑻 

𝑹𝟐 

Exposed Terminal: 

 𝜇𝐴𝐶𝐾 is an extended busy tone 

 

𝑬 

𝐸 can detect it is under exposure 

µACK Application 2 –  
Hidden & Exposed Terminal Mitigation 



µACK Application 3 – In Frame 
Retransmission 

 Retransmission appends to original frame 
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Preamble GOS 1 GOS 2 GOS 3 GOS 4 GOS 2 

Preamble uACK uNACK uACK uACK EOS 

GOS: group of symbols EOS: end of stream 



µACK Benefits Wireless in Various Ways 

 Application 1:  

 Collision Detection and Early Backoff 

 

 Application 2 (extended):  

 Hidden & Exposed Terminal Mitigation 

 

 Application 3:  

 In-frame Retransmission 
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µACK Benefits Wireless in Various Ways 

 Application 1:  

 Collision Detection and Early Backoff 

 

 Application 2 (extended):  

 Hidden & Exposed Terminal Mitigation 

 

 Application 3:  

 In-frame Retransmission 



In-frame Retransmission Details 

 Design questions 

 What is the symbol group size? 

 What is 𝜇𝐴𝐶𝐾 physical layer? 

 How to determines a group of symbol is correct? 
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Preamble GOS 1 GOS 2 GOS 3 GOS 4 GOS 2 

Preamble uACK uNACK uACK uACK EOS 

GOS: group of symbols EOS: end of stream 



Data Symbol Group Size 

 Symbols in a group are fate-sharing 

 GOS length < coherent time of the channel 

 Tradeoff between redundant bits and feedback 
channel requirement 

 Larger GOS  more redundant bits, and less 
feedback bandwidth 

 Design choice 

 20𝜇𝑠 GOS  5 OFDM symbols 

 1MHz feedback channel ~ 5% for 20MHz data channel 
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µACK PHY 
 Simple spectrum spreading PHY 
 Feedback symbol time is 20𝜇𝑠 (the length of GOS) 

 Four bits per symbol (encode 3 states) 

 Channel width is 1MHz (50% guard band)  
Bandwidth 500KHz  Chip rate is 500Kcps  

 Ten chips per symbol 
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Error Detection 

 Two methods  

  Segment CRC (additional overhead) 

  PHY hints 
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We found PHY hints becomes less 
reliable in some cases … 



PHY hints become unreliable on 
marginal SNR 

24Mbps, 10dB (marginal) 24Mbps, 12dB (higher) 
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PHY hints become unreliable on 
marginal SNR 

24Mbps, 10dB (marginal) 24Mbps, 12dB (higher) 
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PHY hints become unreliable on 
marginal SNR 

24Mbps, 10dB (marginal) 24Mbps, 12dB (higher) 
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PHY hints become unreliable on 
marginal SNR 

24Mbps, 10dB (marginal) 
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False 
negative 

24Mbps, 12dB (higher) 



PHY hints become unreliable on 
marginal SNR 

24Mbps, 10dB (marginal) 
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False 
negative 

False 
positive 

24Mbps, 12dB (higher) 

We explicitly embed CRC 
in each GOS 



Segment CRCs add additional overhead 
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Can we avoid the overhead? 



Pilot Side-Channel 
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Dummy-bit 
Pilots 

  Encode information in 
the pilots  

 Embed 16 bits in a GOS 

 Hamming (16, 11) code 

 CRC-10 



Pilot Side-Channel 

 How? 

 Differential BPSK 
(similar to 802.11b) 
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Q 

𝑫𝒖𝒎𝒎𝒚𝒃𝒊𝒕 = (𝟏, 𝟎) 

Example: 

Symbol Encoded (I, Q) 

𝑺𝟎 (𝟏, 𝟎) 



Pilot Side-Channel 
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𝑺𝟏 = (𝟏, 𝟎) 

Example: 

Symbol Encoded (I, Q) 

𝑺𝟎 (𝟏, 𝟎) 

𝑺𝟏 𝟎 (𝟏, 𝟎) 

 How? 

 Differential BPSK 
(similar to 802.11b) 



Pilot Side-Channel 
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𝑺𝟐 = (−𝟏, 𝟎) 

Example: 

Symbol Encoded (I, Q) 

𝑺𝟎 (𝟏, 𝟎) 

𝑺𝟏 𝟎 (𝟏, 𝟎) 

𝑺𝟐 𝟏 (−𝟏, 𝟎) 

 How? 

 Differential BPSK 
(similar to 802.11b) 



Pilot Side-Channel 
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𝑺𝟑 = (−𝟏, 𝟎) 

Example: 

Symbol Encoded (I, Q) 

𝑺𝟎 (𝟏, 𝟎) 

𝑺𝟏 𝟎 (𝟏, 𝟎) 

𝑺𝟐 𝟏 (−𝟏, 𝟎) 

𝑺𝟑 𝟎 (−𝟏, 𝟎) 

 How? 

 Differential BPSK 
(similar to 802.11b) 



Pilot Side-Channel 
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Example: 

Symbol Encoded (I, Q) 

𝑺𝟎 (𝟏, 𝟎) 

𝑺𝟏 𝟎 (𝟏, 𝟎) 

𝑺𝟐 𝟏 (−𝟏, 𝟎) 

𝑺𝟑 𝟎 (−𝟏, 𝟎) 

𝑺𝟒 𝟏 (𝟏, 𝟎) 

𝑺𝟒 = (𝟏, 𝟎) 

 How? 

 Differential BPSK 
(similar to 802.11b) 



Pilot Side-Channel 

30 

I 

Q 

Example: 

Symbol Encoded (I, Q) 

𝑺𝟎 (𝟏, 𝟎) 

𝑺𝟏 𝟎 (𝟏, 𝟎) 

𝑺𝟐 𝟏 (−𝟏, 𝟎) 

𝑺𝟑 𝟎 (−𝟏, 𝟎) 

𝑺𝟒 𝟏 (𝟏, 𝟎) 

… … … 

𝑺𝟒 = (𝟏, 𝟎) 

 How? 

 Differential BPSK 
(similar to 802.11b) 



Decision Directed Pilot Tracking 

 Pilots should be decoded first before used for  
channel tracking 

 No performance loss if pilots are correctly decoded 

 No performance loss even if pilots are not correctly 
decoded 

 

 Normal pilots are inserted at beginning of an GOS 

 Pilot decision error will not  propagate to next GOS  
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Sora Based Implementation 

 Extend Sora 

 Multi-radio board 

 Direct symbol transmission to radio 
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Performance Evaluation 

 Is µACK feasible?  

 Micro-benchmarks 

 What is the benefit of µACK? 

 Wired single link 

 9 node real network 
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End-to-end Latency of μACK  

Viterbi Decoding µACK modulation Hardware 

7.5µs 1.96µs 9.103µs 
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Breakdown: 

17.5µs 



μACK PHY Performance 
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 µACK vs. 802.11 6Mbps 



DDPT Performance 
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 DDPT vs. Normal 



μACK on Wired Single Link 

 𝜇𝐴𝐶𝐾 sender aggressively use higher data rates. 

 Up to 220% over 802.11a, up to 30% over PPR 
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Trace-based Emulation 
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Throughput Latency 



Related Work 
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 Hybrid ARQs 
 Complementary to 𝜇𝐴𝐶𝐾 

 Partial Packet Recovery 
 CSMA/CN 
 Rate adaptation 
 𝜇𝐴𝐶𝐾 shows by reducing loss recovery overhead, one 

can use more aggressive rates 
 𝜇𝐴𝐶𝐾 also enables in-frame rate adaptation  

 Busy-tone schemes (DBTMA) 
 𝜇𝐴𝐶𝐾 can serve as an extended busy tone 



Conclusion 
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 𝜇𝐴𝐶𝐾 enables sending fine-grained feedback 
 Collision detection 

 Mitigation of hidden & exposed terminal problem 

 In-frame loss recovery 

 

 𝜇𝐴𝐶𝐾 is feasible & significantly improves 
spectrum efficiency 
 Reduces retransmission overhead 

 Increases transmission rate 

 Improves collision management 

 


