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ABSTRACT
We describe input devices and two-handed interaction
techniques to support map navigation tasks. We discuss
several design variations and user testing of two-handed
navigation techniques, including puck and stylus input on a
Wacom tablet, as well as a novel design incorporating a
touchpad (for the nonpreferred hand) and a mouse (for the
preferred hand). To support the latter technique, we
introduce a new input device, the TouchMouse, which is a
standard mouse augmented with a pair of one-bit touch
sensors, one for the palm and one for the index finger.
Finally, we propose several enhancements to Buxton’s
three-state model of graphical input and extend this model
to encompass two-handed input transactions as well.
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INTRODUCTION
Two-handed input is a promising technique to improve the
directness and degree of manipulation afforded by desktop
computers. A strong foundation of research exists
[7][8][16][24], yet techniques that allow both hands to
drive continuous input signals are still not in common use.

There are many reasons for this. Designers have only
recently begun to develop an understanding of human
bimanual behaviors [9][15][13][12]. The application of this
knowledge to the design and development of interaction
techniques, with transducers capable of capturing
appropriate input signals, is still lacking. We also lack
descriptive models to specify our interaction techniques, or
to explore alternate designs. On the pragmatic side, until
the recent introduction of the Universal Serial Bus standard,
it has been difficult to connect multiple input devices to
PC’s, and furthermore users are very accustomed to the
mouse and keyboard and thus transitioning the installed
user base to new input techniques is a major issue.

 
Fig. 1 Input devices for our desktop two-handed
interaction techniques: a touchpad for the nonpreferred
hand and the TouchMouse, a modified Microsoft
IntelliMouse that can sense when the user is touching it.

The current work makes a number of contributions. We
describe implementations of bimanual input techniques for
a map manipulation task using two different sets of input
devices: (1) a 12x12” Wacom tablet with a puck and
pressure-sensitive stylus and (2) a novel input design
incorporating the TouchMouse and a touchpad (Fig. 1). We
provide informal usability observations and suggest
strengths and weaknesses for each approach.

With the goal of more precisely modeling our devices and
techniques, we suggest enhancements to Buxton’s three-
state model [4], a descriptive model for pointing devices,
and we extend this model to two-handed transactions using
a Petri net representation. We present these extended
models in the context of the current work because our input
devices and design problems helped to suggest the new
models, while at the same time the new models helped us to
better understand and describe our designs.

PREVIOUS WORK
A number of systems demonstrate two-handed input
techniques. Buxton and Myers’ two-handed input study [7]
shows that using a pair of touch-sensitive strips for jumping
and scrolling with the nonpreferred hand can result in
improved performance. The T3 interface paradigm [16]
explores the use of tablets, two hands, and transparency for
high-end artwork applications. The ToolGlass metaphor [2]
uses a mouse and a trackball, driven by the nonpreferred
hand, to position semi-transparent tool sheets. Zeleznik et
al. [24] use both hands on a Wacom tablet to perform
camera manipulations. Previous examples of two-handed
map manipulation include the metaDesk [23] and the
HoloWall [20]. Other examples that leverage physical
objects for two-handed interaction include Bricks [8] and
real-world interface props [11].
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Balakrishnan and Patel describe the PadMouse, which is a
touchpad integrated with a mouse for nonpreferred hand
input [1]. Balakrishnan and Patel use the touchpad for
command selection, whereas we use our touchpad for
spatial positioning tasks. The PadMouse also has some
similarity to our TouchMouse since it can sense when the
user is touching the pad. We present models that distinguish
these devices later in this paper (Fig. 8, Fig. 9).

Electric field sensing devices [26][21] can detect the
capacitance of the user’s hand or body to allow deviceless
position or orientation sensing in multiple dimensions. Our
TouchMouse also senses capacitance, but we use this signal
in a contact sensing role, and we describe a number of
novel applications for such contact-based signals. These
two different modes of sensing capacitance could
potentially be combined in future input devices. Finally,
Harrison et al. [10] use pressure sensors to detect contact
with handheld displays to (for example) automatically
detect the user’s handedness.
INPUT DEVICES AND INTERACTION TECHNIQUES
The first implementation of our two-handed map
manipulation techniques utilizes a single 12x12” Wacom
ArtZ II tablet (Fig. 2, left) with a puck for the nonpreferred
hand and a pressure-sensitive stylus for the preferred hand.
Our design goal is to support annotation, panning, and
zooming of maps from a user interface that is free of
heavyweight mode switches (e.g., mode switches that
require the user to click on an icon or perform a menu
selection to change the behavior of the pointing devices).
The additional degrees-of-freedom afforded by a two-
handed interface can potentially simplify the syntax of
required input actions and thus result in a simpler user
interface [3].

In essence, the two-handed interface allows users to think
in terms of “navigating the map,” rather than strictly in
terms of the atomic actions of panning or zooming. Using
Buxton’s cognitive chunking approach [3], a hierarchy of
subtasks for map navigation is illustrated in Fig. 2 (right).
Note that even performing just the Zoom subtask with a
mouse is problematic because the mouse senses two
continuous degrees of freedom, while continuous zooming
requires three degrees of freedom (the scaling factor and an
(x, y) origin for the scaling transformation).
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Fig. 2 Left: 12x12” Wacom tablet with puck and stylus.
Right: Chunking of subtasks for the map navigation task.

The puck and stylus interface provides this functionality as
follows: clicking and dragging with the puck alone pans the

map. Pressing down with the stylus alone annotates the map
by leaving behind an ink trail. Clicking the puck while
pressing down with the stylus allows two-handed dragging.

The two-handed dragging follows a “stretch and squeeze”
metaphor: pulling one’s hands apart stretches the map (to
get more detail) while pushing one’s hands together
squeezes the map (to compress the map, getting a bird’s eye
view). While stretching and squeezing, users can also
translate both hands in the same direction, and thus achieve
compound panning and zooming actions1. This navigation
metaphor is similar to a technique described by Kurtenbach
et al. [16], except that rotation is not allowed.

For our user testing, we first had 6 test users2 practice using
each device individually on the tablet. We told users about
the “stretch and squeeze” metaphor and had them try out
several map manipulations. Users then performed tasks
(such as “Pan and zoom the map so that Los Angeles and
Salt Lake City are both visible”) on their own.

Some users were initially uncomfortable using the puck in
the nonpreferred hand. Several users had trouble
discovering that the stylus sensed pressure, or that they
needed to click a button on the puck for it to pan the map.
However, after the initial practice phase, all users were able
to complete the structured tasks without further intervention
from the usability tester. When first trying out the two-
handed dragging actions, most users performed pure
zooming actions (stretching or squeezing), but after just a
few trials, users gained sufficient skill to perform
compound panning and zooming actions.

Test users also tried using a mouse with Microsoft
TripPlanner98, a commercially available mapping program.
Several users commented that the availability of standard
mouse functions (e.g. right-clicking) made it easier to
discover how to use it. However, even given the incomplete
nature of our tablet-based prototype, reactions from users
were generally quite positive when compared to the
TripPlanner98 application and the mouse. One user
commented that it “seemed pretty natural to me,” while
another felt that the tablet was “the most efficient way to do
it… it’s just a matter of learning to use the left hand first.”
Another user remarked that using the mouse to look at
maps requires “lots of steps” whereas using both hands “is
more continuous… one movement is one thing.”

The TouchMouse
We were encouraged by user responses to our tablet-based
techniques, but we knew that in the long run a design

                                                          
1 The technique samples the position of the puck (call this P0) and
the stylus (S0) when the user first grabs the map. It computes the
midpoint of the cursors, M0 = (P0 + S0) / 2. It repeatedly takes that
initial point M0 and for the device positions P1 and S1 (with midpoint
M1) at each subsequent frame it computes a transformation matrix
X consisting of a translation offset and a uniform scale (with the
scaling relative to an origin at M0), such that X satisfies: M0 X = M1.
2 Test users were recruited through the Microsoft usability labs and
had varying computer experience. All users had mouse experience.



including a mouse would probably be more practical for
common desktop applications. As we began to explore this
design space, we found it was useful to have a mouse that
could sense when it was being touched, so we begin with a
description of this device, which we call the TouchMouse.

The TouchMouse (Fig. 1, right) is a modified Microsoft
IntelliMouse that integrates the mouse with the ability to
sense when the user’s hand is touching it. Our prototype
design can support up to 4 touch sensors; the “touch
sensors” are made with a conductive paint that is applied to
the mouse shell. The conductive paint is connected to the
TouchMouse internal circuitry, which senses the parasitic
capacitance of the user’s hand when it contacts the touch
sensor(s)– no mechanical actuation of a switch is necessary.
The capacitance of the user’s hand induces a slight time
delay in the circuit. When this time delay passes a critical
threshold, a “Touch” or “Release” event is generated. To
provide a strong coupling with the passive tactile feedback
that the user feels when he or she touches the device, the
capacitance sensors generate Touch/Release events only
and exactly when the user’s finger or palm actually makes
(or breaks) contact with the surface. Our current prototype
sends the touch data to the host PC’s parallel port.

The TouchMouse described here provides two independent
bits of touch data, one for the palm area (which actually
extends along the side of the mouse to sense thumb contact)
and one on the left mouse button which senses the index
finger. The palm sensor is useful for implicit actions that
can take advantage of knowing when the user grabs or
releases the mouse. For example, when the user first
touches the mouse, the computer reveals the mouse cursor
and performs a quick animation (0.3 seconds long) of a
200-pixel radius circle collapsing on the mouse cursor
position. This helps direct the user’s attention to the focus
of interaction. When the user lets go of the mouse, the
computer hides the mouse cursor by fading it out over 2
seconds. The palm sensor may also have applications for
user modeling [14]; for example, one can now differentiate
a user dwelling over an icon with the mouse, versus a user
that has let go of the mouse and just happened to leave the
cursor over an icon.

The finger sensor is intended for more explicit user actions,
since it is easy to lift one’s finger from the button as an
intentional action. For example, in our two-handed
TouchMouse + touchpad interaction technique, we use the
finger sensor (in combination with the touchpad’s ability to
sense contact) as a cue that the user is beginning an
interaction involving both input devices. We have also
experimented with touching the button as a “touch-to-talk”
mechanism for voice recognition applications that gives the
user fine-grain control over whether or not the computer
should listen for voice commands. Although we have not
yet user-tested this feature, we feel it is more effective than
common alternatives such as using a push-to-talk button on
the keyboard or using voice commands to activate and
deactivate the recognizer.

Users were able to quickly learn and use the touch-sensing
features of the TouchMouse and their reactions to the
device were generally positive, although discovering the
sensors may be an issue [10]. In order to get an unbiased
first impression, we did not tell users about the touch
sensors during initial use; half of 6 test users discovered
both touch sensors without any prompting. Two users
would grab the mouse very quickly and thus never notice
that it sensed when they touched it. Another user was in the
habit of always holding his index finger off of the button
when not actually clicking or dragging, and thus he did not
initially notice the finger sensor.
Two-handed TouchMouse + Touchpad Map Navigation
Here, we propose a two-handed technique that uses the
TouchMouse and a Synaptics touchpad to support the
“stretch and squeeze” metaphor. We decided to explore
designs incorporating a mouse plus a touchpad for
nonpreferred-hand use because we felt that touchpads have
a number of desirable properties for this application, such
as low cost, a small, fixed device footprint, rapid device
acquisition speed, and the ability to sense when being
touched. A critical distinction between the tablet
implementation of these techniques versus a mouse and
touchpad implementation is that a mouse and touchpad
cannot sense the same state information as the puck and
stylus devices. Buxton’s three-state model [4] illustrates
this distinction by defining three states as shown in Table 1:

State Description
0 Out Of Range: the device is not in its physical

tracking range.
1 Tracking: moving the device causes the

tracking symbol to move.
2 Dragging: allows one to move objects in the

interface.
 Table 1  The states defined by Buxton’s 3-state model [4].

The puck and stylus on the Wacom tablet can each sense all
three of these states. For example, Fig. 3 shows the state
diagram for the puck:

State
0

State
1

Puck On Tablet

Puck Off Tablet

State
2

Button Down

Button Up

OUT-OF-RANGE TRACKING DRAGGING

Fig. 3 State transitions for the puck on the Wacom tablet.

By comparison, the touchpad senses only states 0 and 1,
while a standard mouse senses only states 1 and 2 [4][6], as
shown in Fig. 4:

Button Down

Button Up

State
1

State
2

Mouse

Touch

Release

State
0

State
1

Touch-
pad

OUT-OF-RANGE TRACKING TRACKING DRAGGING

Fig. 4 State models for a touchpad (left) and a standard
mouse (right).



In principle, a dragging state (state 2) can be introduced for
the touchpad, as is commonly done on laptops with a
touchpad. Typically the user holds down a button while
touching the pad, or performs a “tap-and-drag” gesture to
drag objects. In practice, however, such mechanisms can be
tedious or can interfere with cursor motion [17]. Thus, we
considered these mechanisms unacceptable for our
nonpreferred-hand usage of the touchpad.

The touchpad’s lack of a dragging state can be overcome by
conceiving of the TouchMouse and touchpad as a “unified”
two-handed device that supports an out-of-range state
(when you are not touching the devices), a cursor tracking
state, and dragging states (both one-handed and two-
handed). The devices can be used individually or in
combination: using the touchpad alone pans the map, while
clicking and dragging the TouchMouse alone annotates the
map by leaving behind an ink trail. When used in
combination, touching the index finger to the mouse allows
cursor tracking with both devices, while clicking the mouse
allows dragging (“stretching and squeezing the map”) with
both devices. Thus the nonpreferred hand provides only
positional and contact information; we never require the
nonpreferred hand to click button(s) or control pressure on
the touchpad. Fig. 5 shows the visual feedback provided by
our prototype mapping application.

Although we feel that the TouchMouse + touchpad design
results in effective two-handed input, we should note that
this feels different than the tablet-based technique. Based
on our usability observations, two-handed actions with the
TouchMouse + touchpad are not as natural as they are on
the tablet. We see two main limitations of the TouchMouse
+ touchpad input technique. The first is that the
TouchMouse and touchpad operate in a separate coordinate
space for each hand (unlike the tablet, where both devices
operate in a common absolute coordinate system). Thus, the
TouchMouse + touchpad design cannot benefit from the
user’s natural ability to know where one hand is relative to
the other [12]. A second difficulty is that the control /

display ratios of the two devices may not be equivalent.
This means that equal physical movements of the hands
might result in unequal cursor movements on the screen. In
practice, we find that this is only a significant problem if
mouse motion is set to one of its fastest settings.

The split control space is both a limitation of the technique
and an advantage. On the tablet, the puck and stylus can
bump into one another, making it impossible to place the
cursors right next to one another (unless an offset is
introduced). With the TouchMouse and touchpad, this
cannot happen. But this in itself is also a problem because
the map transformation is much more sensitive to small
movements whenever the cursors are close to one another.

We refer to this as the “cross-over problem” because if the
user is trying to zoom out by squeezing the map together, it
is easy to overshoot, have the cursors cross over one
another, and suddenly find that the map is zooming back in
(because the distance between the cursors is now
increasing, and thus stretching the map). This is very
disorienting. To address this issue, we implemented
software constraints that limit where the cursors can go
during two-handed dragging. It prevents the cursors from
crossing over by setting up an imaginary wall between the
touchpad cursor and the mouse cursor. It also defines a
small “dead zone,” currently set to a radius of 30 pixels;
when the cursors are within this radius of one another, the
map is not scaled regardless of the cursor separation. We
find that this technique effectively eliminates the problem.

We also provide interactive audio feedback for panning and
zooming of the map. Audio feedback for panning takes the
direction and speed of panning and maps these to volume,
pitch, and timbre to produce a realistic “paper sliding on a
desk” sound. Stretching the map (zooming) creates a sound
like a guitar string being stretched. The volume also
becomes slightly louder as the size of the region being
manipulated increases. The sounds are generated by
sequencing parametric sound events using the MIDI
synthesizer on a Creative Labs AWE64 Gold card.

Fig. 5   Stretching the map with the TouchMouse and touchpad. The user first positions the cursors around an area of interest
(left). Clicking and dragging the mouse and touchpad stretches the map; a dragging rectangle helps to show the area of the
map that has been “grabbed”  (middle). When the user releases the mouse button, the map updates, filling in additional detail
(right). The new map fades in (as a 1 second animation) to reduce any visual discontinuities.



During user tests3, after a brief tutorial and some practice to
get a feel for the devices, users were able to make effective
use of both hands and complete all of the structured tasks
on their own. User reactions were more varied than with the
tablet version of the interface. One user commented that “I
think it’s great. It just takes some time to learn it.” while
another felt strongly that “It didn’t work that well for me.
I’d prefer to just use one hand.” Another user commented
that “to get the two hands to operate together is a new
feeling—it only took a minute, though.”

Alternative Mouse + Touchpad Techniques
An alternative design uses the touchpad and a standard
mouse (without touch sensing). Without a touch sensor, it is
impossible to know if the user is using the touchpad alone,
or if the user is trying to use both the mouse and the
touchpad together. Thus in this design touching the pad
alone only moves the cursor for the nonpreferred hand.
Clicking and dragging the mouse alone performs the inking
behavior. Clicking and dragging the mouse while touching
the pad initiates two-handed dragging.

Panning the map can be achieved by clicking the mouse
without moving it, and then moving the nonpreferred hand
on the touchpad. The rationale for this design choice is that
it is not natural to perform two-handed actions where the
nonpreferred hand moves relative to the preferred hand [9];
thus such a movement with the devices should be
interpreted as a one-handed behavior. It is also possible to
pan by resorting to clicking a button on the touchpad, but
this feels awkward with the nonpreferred hand4.

Another variation uses the touchpad only for panning,
while the wheel on the IntelliMouse is used for zooming
(centered on the mouse cursor). This technique does not
support compound panning and zooming tasks very well; in
practice, panning the map with the touchpad or zooming the
map with the wheel must be serially interleaved. However,
it does not depend upon coordinating the action of the two
devices and thus is not affected by the split control spaces
or potentially unequal control / display ratios of the devices.

EXTENDING THE THREE-STATE MODEL
As we implemented our interaction techniques and input
devices and contemplated design alternatives, we started to
feel that Buxton’s 3-state model, as it currently exists, was
not quite appropriate for some of the design problems we
faced. For example, we felt that the TouchMouse afforded
some very different interactions than a puck on the Wacom
tablet, but the 3-state model treats these as nearly identical
three-state devices (both devices sense out-of-range,
tracking, and dragging states).

In light of this experience, our goal here is to extend
Buxton’s 3-state model to a wider range of design
                                                          
3 Another 6 users (who had not tried the tablet, but were from the
same pool of users)  participated in this user test.
4 A pressure-sensing touchpad might be useful in resolving this
problem (where light pressure moves the cursor, heavier pressure
pans the map). The Synaptics touchpad senses contact area [17].

problems, input devices, and interaction techniques. We
offer two straightforward extensions to the 3-state model.
First, we show how annotating states of the model with
continuous properties (such as position, rotation, or
pressure) sensed while in that state is a useful tool for
design and can better describe the idiosyncrasies of various
devices. Second, we draw a distinction between out-of-
range events based on touch, versus those based on
proximity of an input device to a sensor.

Annotating States with Continuous Properties
We propose that annotating each state with the continuous
device properties that are sensed while in that state is useful
as a reminder of exactly what actions are possible while in
a given state, and can potentially suggest new devices. This
notation can also capture many properties of multi-channel
input devices (such as the IntelliMouse or PadMouse [1]).

This has some similarities to the design space proposed by
Mackinlay, Card, and Robertson [19], which describes
devices with multiple continuous and discrete sensors.
Although the design space shows connections among the
properties that a device senses, it does not describe the state
transition behavior of devices. This is an important issue
because the continuous properties of a device often vary
depending on its current state. Our contribution is to add a
notation for continuous properties (Table 2) to the 3-state
model, which does capture state transition behavior.

Notation Description of property sensed
x absolute position sensing
dx relative position sensing (motion sensing)
R absolute angular (e.g. calibrated dial)
dR relative angular (e.g. Intellimouse wheel)
F, dF Force or change in force
T, dT Torque or change in torque
nil State cannot sense any continuous signal.

 Table 2  Notation for continuous properties. This is
essentially the same shorthand notation used by Mackinlay
et al. [19]. We add nil to indicate states that cannot sense
any continuous property.

This notation addresses one limitation of the original 3-state
model that Buxton pointed out, namely, representing
transducers capable of sensing pressure. For example, Fig.
6 describes the Wacom pressure-sensitive stylus.

0

nil

1

x, y

Stylus On Tablet

Stylus Off Tablet

2

x, y
F

F > 0

F = 0

OUT-OF-RANGE TRACKING DRAGGING

Fig. 6 Annotated states for a pressure-sensing stylus,
with stylus pressure (F) used to control a continuous
property (e.g. line thickness) in an “inking” mode.

State models for the IntelliMouse (Fig. 7) and the
PadMouse [1] further illustrate the utility of this approach.
For both of these devices, the continuous properties that can
be effectively sensed vary depending on the current state of
the device. We defer our model of the PadMouse (Fig. 9)



until after the following section because the PadMouse also
incorporates touch-sensing capabilities.

1

dx, dy
dR

2

dx, dy

Button Down

Button Up

TRACKING DRAGGING

Fig. 7 The IntelliMouse. We omit dR from state 2 because
it is difficult to turn the wheel while dragging the mouse. This
precludes some useful transactions, such as scrolling a
document while dragging a figure into place.

Distinguishing Touch vs. Device Proximity
Buxton’s 3-state model does not distinguish between out-of-
range states based on touch versus those based on device
proximity. However, when considering how we should
model the TouchMouse, the touchpad, and the Wacom
tablet, we found it useful to differentiate the two. We
should note that Buxton’s input device taxonomy [5] does
draw a similar distinction between devices that work by
touch versus devices that require a mechanical
intermediary. Our contribution is to apply this distinction to
the 3-state model and to show that devices that have some
discrete properties of each classification are possible. In
short, we propose that Buxton’s out-of-range state 0 is
actually the union of two potentially different states:

• State T0, an out-of-range state triggered by Touch (hand
or body contact with a device); and

• State P0, an out-of-range state triggered by device
Proximity to a sensor. (We do not consider the hand
itself to be a device; only a physical intermediary can
play this role for state P0.)

We claim this distinction is useful for several reasons. First,
we found it useful in the design of our two-handed
techniques. For example, it shows why it would be
awkward to implement a similar technique with the
TouchMouse and a puck (instead of a touchpad): the puck
can generate an out-of-range event only when it is lifted
and that would be much more awkward than lifting one’s
finger from the pad. The technique would only work well if
the puck could also sense when it was being touched.

Second, both states can be used profitably in the design of
interaction techniques, but are natural to use for different
things. We have already seen application of state T0 in the
palm sensor of the TouchMouse to provide enhanced cursor
functionality. State P0 on the Wacom puck can be used to
implement a relative mode where the user can make
"skating" gestures (much like mouse users will do) by
lifting the puck to allow relative motion on the tablet.

Third, this suggests new devices that sense both states T0
and P0. We are not aware of any such device, either
commercially or in the research literature. To show that
there could be such devices, we propose three examples:

(1) The "TouchPuck," a puck for the Wacom tablet
that senses when the user is holding it;

(2) A TouchMouse that can also sense when it is lifted
off of the desk (state P0).

(3) The "TouchBricks," a modified version of
Fitzmaurice's Bricks where each Brick would
sense when the user is holding it.

At this point, we can introduce a descriptive model for the
TouchMouse (Fig. 8). For the interaction techniques that
we have developed, we like to think of the TouchMouse as
a four-state device that supports state T0 but not state P0,
with the fourth state being a “touch-dragging” state that is
triggered by touching the index finger to the mouse button.
We call this state T2 (short for Touch-based state 2). Note
that in comparison to the mouse of Fig. 7, state T2 is an
intermediary state between mouse tracking (state 1) and
dragging by clicking the button (state 2).  State T2 provides
an example of how distinguishing touch vs. mechanical
actuation can be useful to differentiate dragging states.

Palm
Rel.

Button
Down

Palm
Rel.

T0

nil

1

dx, dy
dR

T2

dx, dy

2

dx, dy

Palm Touch
Finger
Rel.

Finger Touch

Palm Release

Button
Up

OUT-OF-RANGE
(TOUCH)

TRACKING TOUCH-DRAGGING & DRAGGING

Fig. 8 The TouchMouse. State T2 is the “touch-dragging”
state supported by this device.

The PadMouse [1] offers a second example of state T2
(Fig. 9). This is also our first example of a device state that
can sense multiple pairs of coordinates; we indicate that the
touchpad coordinates x, y are not necessarily in the same
coordinate system as the mouse coordinates dx, dy by
distinguishing them with a prime symbol: x’, y’. For an input
device such as the Wacom tablet, which can sense multiple
devices (puck and stylus) registered to the same coordinate
system, the prime symbol would be omitted.

1

dx, dy

T2

dx, dy
x’, y’

Touch Pad

Release Pad

TRACKING TOUCH-DRAGGING

Fig. 9 The PadMouse [1] also supports state T2, since
the touchpad can sense finger contact.

DESCRIBING TWO-HANDED TRANSACTIONS
The state models that we have considered so far handle
individual devices well, but they are less effective when
one considers two-handed interaction techniques. For
example, the puck and stylus on the Wacom tablet each
support all three states of Buxton’s model. To avoid
ambiguity, we name the states for the stylus P0p, 1p, and 2p

(p subscript for preferred-hand usage), and the states for the



puck P0n, 1n, and 2n (n for nonpreferred-hand). The cross
product yields a state model with a total of 9 compound
states, shown in Fig. 10:

P0p+P0n

nil

1p + 1n
x, y
x, y

2p + 2n
x, y
x, y

1n + P0p

x, y

1p + P0n

x, y

2n + P0p

x, y

2n + 1p
x, y
x, y

2p + 1n
x, y
x, y

2p + P0n

x, y

Puck Clk / Rel.

Puck On /
Off Tablet

Stylus Clk / Rel.

Stylus On /
Off Tablet

Stylus On / Off

Puck On / Off

Puck Click / Rel.
Stylus Clk / Rel

Puck Click /
Release

Stylus Click /
Release

Puck On /
Off Tablet

Stylus On /
Off Tablet

OUT-OF-RANGE

(PROXIMITY)
TRACKING STATES DRAGGING STATES

Fig. 10 Full state model for Wacom puck and stylus. The
dashed arcs show events for the puck, solid arcs events for
the stylus. It is hard to see how this model corresponds to
the individual 3-state models for the puck and stylus.

Although this straightforward state model provides a
technically correct model of the puck and stylus, we find it
unwieldy because:

• It is hard to see how the states correspond to the original
3-state models for each individual device.

• It does not express the inherent parallelism of two hands
with two devices.

• “Extra” states that may not be of interest for the
interaction technique must be included. For example,
in Fig. 10 states 1p + P0n, 1p + 1n, and 1n + P0p are all
just variations of states that track one or both cursors.

Petri net model
Here, we propose a new model which is essentially a
special case of a Petri net model (see Tanenbaum for a
quick review [22]). The Petri net model is appropriate for
thinking about two-handed interaction design problems in
terms of device states and input events, and is intended for
“whiteboard design” sessions where one is hypothesizing
about what transitions between states would be most
effective. Unlike the state model shown in Fig. 10, the Petri
net model preserves much of the flavor of the 3-state model
while also explicitly representing the inherent parallelism
of two-handed input. Note that we use the Petri net model
to describe composite two-handed interaction techniques,

rather than the specific capabilities of the individual
devices; in practice, we often use our Petri net model side
by side with the 3-state diagrams for the individual devices.

The Petri net model starts with a set of desired states that a
two-handed interactive technique is to support. These states
always contain exactly two tokens, a black token
(representing the preferred-hand device) and a gray token
(representing the nonpreferred-hand device). Two rules
govern movement of the tokens:

(1) The black token can only visit states with a solid
border; the gray token can only visit states with a
dashed border. That is, the borders indicate which
token(s) are allowed to visit a particular state.

(2) A token may traverse any arc, either dashed or solid, as
long as the arc leads to a state the token is allowed to
visit (as in rule (1) above). The coloring (solid or
dashed) of the arcs indicates which input device
generates the signal corresponding to that arc.

Let’s start with a very simple example for puck and stylus
devices that do not interact at all (Fig. 11):
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Fig. 11 Simple model for puck and stylus on the tablet. The
tokens start in states P0p and P0n, indicating that neither
device is in proximity.  We label the tokens here for clarity.

Fig. 11 shows how the states in our Petri net model
correspond directly to the 3-state models for the individual
devices. It also shows how the Petri net represents the
parallel nature of the multiple devices by using a separate
token to represent the current state for each device. The
tokens move through states in response to device events.
For example, placing the stylus on the tablet moves the
black token to state 1p, as shown below (Fig. 12):
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Fig. 12 Movement of the black token in response to
placing the stylus on tablet.



Now let’s refine the example of Fig. 11 to incorporate two-
handed dragging, where the puck and stylus do interact. We
introduce one additional state to the model, state 2np, which
is a dragging state using both the nonpreferred-hand device
(puck) and the preferred-hand device (stylus). State 2np is
the only state in the diagram that both the black and the
gray token can enter; thus state 2np is colored with both a
solid and a dashed border. We also add several arcs from
state 2np to indicate how the interaction technique maps
device events to allow the user to start and stop two-handed
dragging  (Fig. 13):
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Fig. 13 Complete Petri net model for puck and stylus
showing an additional state (2np) that models the interaction
of the devices for two-handed dragging.

To see how this works, let’s assume the user is currently
dragging with both puck and stylus (black and gray tokens)
in state 2np; thus the tip of the stylus is depressed (clicked)
and the puck button is held down. Relaxing pressure on the
stylus causes the tip to release, and thus the black token
moves from 2np to 1p (following the Tip Release arc). The
gray token cannot follow this arc because it is not allowed
to move to a solid-colored state. Relaxing pressure on the
stylus also causes the gray token to move from 2np to 2n

(following the shorter Tip Release arc). The black token
cannot follow this arc because it leads to a dashed state, and
only the gray token is allowed to enter the dashed states.
This example shows how a single input event can
potentially cause both tokens to move.

So, after relaxing pressure on the stylus, the black token is
in state 1p and the gray token is in state 2n; this corresponds
to dragging with the puck only. From this point, if we once
again click with the stylus, the black token moves from 1p

to 2p, and then directly to 2np (because the puck button is
still down, and thus the token can move across the Button
Down arc as well). This example shows how a token might
pass through an intermediary state on the way to its final
destination state. In parallel, the gray token moves from 2n

to 2np, and both tokens are once again in state 2np indicating
a two-handed dragging operation.

Modeling the TouchMouse + Touchpad
We now model the interactions between the TouchMouse
and touchpad for our two-handed interaction technique. The
touchpad supports 2 states (T0n and 2n) and the
TouchMouse supports 4 states (T0p, 1p, T2p, and 2p), as
shown in Fig. 14. We use dragging (2n), rather than cursor
tracking (1p), as the default state for touchpad contact since
our technique uses touchpad contact to pan (drag) the map:
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Fig. 14 Simple Petri net model for device states of the
TouchMouse (top 4 states) and touchpad (bottom 2 states).

Our touchpad + TouchMouse interaction technique
augments these basic device states with two additional
states: 1n for cursor tracking with the touchpad, and 2np for
two-handed dragging with both touchpad and TouchMouse.
First, let’s add state 1n to these basic device states (Fig. 15):
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Fig. 15 Adding state 1n to the device states to support both
cursor tracking and dragging with the touchpad.



To see how the tokens move in this example, suppose the
user grabs the mouse (moving the black token from T0p to
1p) and then touches the finger sensor (moving the black
token from 1p to T2p). If the user then touches the touchpad,
the gray token moves from T0n to 2n, and since the
preferred hand is still touching the finger sensor, the gray
token immediately continues along the Finger Touch arc to
state 1n., initiating the cursor tracking state with the
touchpad.

Finally, let’s incorporate two-handed dragging (state 2np)
into the Petri net model for the TouchMouse and touchpad
(Fig. 16). This model provides a full specification of the
device states and events used in our two-handed
TouchMouse + touchpad map navigation technique:
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Fig. 16 Complete Petri net model for all states and events
in our TouchMouse + touchpad interaction technique.

CONCLUSIONS AND FUTURE WORK
The various examples above provide specific instances of
how our Petri net model can be applied, but in future work
we still need to flesh out this model and characterize the
design options for two-handed interaction techniques in
general. Also, our Petri net model doesn’t help the designer
to see what pairs of states are possible (or not possible). For
example, in Fig. 16, tokens cannot be in states 2n and 2p at
the same time. As another example a token can only reach
state 2np when it is accompanied by the second token. For
some tasks, such analyses might be important.

We have described several new interaction techniques and
input devices to support user interfaces that use both hands.
The current demonstration uses map navigation as an
example application for these techniques, but we would like
to explore how these ideas generalize to other applications.

We need to perform further user testing with our designs to
get a better sense of their strengths and limitations. We
would also like to explore alternative input devices to
support two-handed input, such as a trackball instead of a
touchpad, as well as additional configurations of touch
sensors and touch-sensing input devices. Experimental
studies are needed to analyze the factors influencing two-
handed input and touch-sensing devices in general.

It may be possible to further extend the interaction models
presented here with quantitative data. For example, one
could add “weighting factors” to state transitions to
quantify the cognitive and motor costs of an interaction
technique. One could also quantify the extent to which
maintaining a particular state interferes with device motion
(such as holding down a button while moving the mouse);
an approach such as that described by MacKenzie may be
appropriate here [17][18]. A comprehensive model might
also incorporate the extent to which multiple continuous
degrees of freedom in a single state can interfere with one
another, perhaps using a coordination metric such as that
introduced by Zhai [25]. Such a model might unify these
various performance metrics, if possible, with a state
transition model to help characterize an input technique’s
overall performance.
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