
Realistic Rendering and Animation of Knitwear

Yanyun Chen Stephen Lin Hua Zhong
Ying-Qing Xu Baining Guo Heung-Yeung Shum

Contact information for all authors except Hua Zhong:

Microsoft Research, Asia
3F, Beijing Sigma Center
No. 49, Zhichun Road, Haidian District
Beijing 100080, P.R.C.
Telephone: 8610-6261-7711 (Ext. for corresponding author: 5422)
Fax: 8610-8809-7306
Email for corresponding author: bainguo@microsoft.com

Contact information for Hua Zhong, who was an intern at Microsoft Research, Asia, during this
project:

Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

We present a framework for knitwear modeling and rendering that accounts for characteristics
that are particular to knitted fabrics. We first describe a model for animation that considers knitwear
features and their effects on knitwear shape and interaction. With the computed free-form knitwear
configurations, we present an efficient procedure for realistic synthesis based on the observation
that a single cross-section of yarn can serve as the basic primitive for modeling entire articles of
knitwear. This primitive, called thelumislice, describes radiance from a yarn cross-section that
accounts for fine-level interactions among yarn fibers. By representing yarn as a sequence of
identical but rotated cross-sections, the lumislice can effectively propagate local microstructure
over arbitrary stitch patterns and knitwear shapes. The lumislice accommodates varying levels of
detail, allows for soft shadow generation, and capitalizes on hardware-assisted transparency blend-
ing. These modeling and rendering techniques together form a complete approach for generating
realistic knitwear.

Index terms: knitwear, image-based rendering, photorealistic rendering, animation models, para-
metric surfaces, transparency blending

1 Introduction

The widespread presence of textiles and clothing in everyday life has motivated much computer

graphics research on their modeling and rendering [32, 27, 3, 4, 5, 7, 9, 2, 37, 15]. In particu-

lar, knitwear poses a considerable challenge because of its special characteristics. Unlike woven

fabrics that can be well-represented by specialized BRDF models [36, 31, 8], knitwear is charac-

terized by a macroscopic stitch structure that requires an explicit model of the knitting pattern and

geometry. Knitwear additionally differs from other fabrics in that its thickness requires volume

modeling and significantly affects its interaction with its environment.

While cloth woven from thread is generally modelled as having zero thickness, the relatively

large diameter of yarn and its 3D stitch patterns require consideration of thickness to reasonably

exhibit the physical appearance of knitwear as shown in Figure 1. This feature moreover affects

the interaction of knitwear articles with other objects. Since knitwear is a volume whose layers of

thin fibers are penetrable, the forces counteracting penetration affect knitwear shape and friction.

A second knitwear attribute that we model arises from the yarn loops that comprise stitches.

Although stretching and compression of knitwear have been addressed in previous works [9, 26,

20, 2, 29], the effect of gaps within yarn loops has yet to be considered. In our system for fabric

simulation, we propose a model that incorporates the behavior associated with these gaps. The

inclusion of these special knitwear characteristics in a physically-based model leads to more con-

vincing appearance and animation.

Aside from modeling the behavior of knitwear, challenges exist in realistic synthesis due to

the complicated microstructure of yarn. Close examination of yarn reveals countless thin fibers

which give knitwear a fuzzy appearance. Improper rendering of this delicate structure can result

in aliasing that causes a scene to look artificial. Given this fine-level complexity, rendering these

fibers with existing techniques such as [1, 33, 28, 16, 10, 22] is cumbersome, if not impossible.

Moreover, the appearance of fibers changes in detail with different viewing distances.

An additional difficulty in rendering knitwear is its variations in shape. The microstructure

of flat knitwear has been efficiently displayed using volume-rendering techniques [12]; however,

the only known techniques for rendering free-form knitwear with microstructure utilize Gouraud-

1

shaded triangles [37], which do not handle close-up views, and curved ray tracing [13], which is

computationally expensive and does not effectively deal with multiple scattering that is especially

evident in light-colored yarn.

Photorealistic rendering of knitwear must efficiently handle free-form surfaces, varying levels

of detail from different viewing distances, and complex stitch geometry. We address these chal-

lenges with a primitive element called thelumislice, which we first introduced in [35]. The lumis-

lice represents radiance from a yarn cross-section, and arises from the key observation that based

on the repetitive structure of yarn, articles of knitwear may be composed entirely of lumislices.

This suggests a two-level structural hierarchy that can be formed for yarn to facilitate efficient

photorealistic rendering. Locally, fine-level interaction among yarn fibers (occlusion, shadowing,

multiple scattering) is modelled in the lumislice for a representative yarn cross-section. Globally,

the repetitive nature of knitted yarn and its known path along a skeleton allows knitwear to be

represented as a collection of identical lumislices in various positions and orientations, where we

model the fiber density distribution as being the same for all yarn cross-sections.

It is this detailed but flexible quality that gives the lumislice much utility. Local microstructure

can be closely represented in the lumislice, yet it can easily be disseminated to all points of a

knitwear. The lumislice furthermore does not introduce restrictions on the global structure of the

knitted yarn. The advantages elicited by our lumislice-based method are listed as follows:

• Fine local interaction can be precomputed and used throughout a piece of knitwear.

• Different levels of detail for varying viewing distances are elegantly handled by multireso-

lution lumislices, in a manner similar to mip-maps.

• The lumislice can be applied to arbitrary free-form surfaces, facilitating physically-based

animation and other applications.

• The lumislice can be used for rendering arbitrary stitch patterns with better visual effects

and lower cost than raytracing. Existing volumetric representation methods have significant

difficulties in dealing with complex stitches on a deformable surface [12, 13].

• It can easily be implemented by standard graphics APIs, such as OpenGL.

2

Additionally, enhanced realism can be achieved with a proposed shadow map for yarn that is

integrated into our method for soft shadow generation. Inclusion of such shadows allow individual

yarn fibers to be distinguished, as deep shadow maps have done for hair [19].

This method efficiently produces knitwear rendering results not previously achievable. Exam-

ples of lumislice rendering are displayed in Figure 2 for different viewing situations. The close-up

views on the left side exhibit the delicate fiber characteristics of knitted yarn, and from a normal

viewing distance shown on the right side, the rendering of variable macroscopic structure is demon-

strated. The efficient and effective generation of this range of details distinguishes lumislice-based

rendering. The lumislice may furthermore be extended to other materials consisting of subpixel

elements such as hair, carpet or distant foliage. Applications of photorealistic knitwear rendering

include web-based display of clothing products and fabric animation on moving characters. Au-

tomated generation of knitwear would particularly be desirable for motion pictures such as Stuart

Little, where the fur and clothing required significant labor for generation [24].

The remainder of this paper is organized as follows. Section 2 provides an overview of related

work on fabric and knitwear modeling and rendering. In Section 3, we describe our basic model for

the knitwear skeleton and stitch patterns. We present in Section 4 our knitwear representation for

animation that includes special knitwear features, and then discuss their effects on animation. The

lumislice and knitwear rendering are described in Section 5, and simulation results of our system

are exhibited in Section 6. Lastly, we present conclusions in Section 7.

2 Related Work

Realistic motion of cloth has been an area of interest in computer graphics, but these previous

works have generally dealt with finely woven fabrics rather than knitwear. Works for woven fabrics

include those based on finite element simulations [27] and on particle systems [2, 29], in which

the fabric is represented by a set of particles that interact with each other. The aggregate motion

of these particles produces the global behavior of the fabric. Breenet al. [4] developed a particle-

based system for static cloth draping where local interactions are defined by energy functions

approximated from real cloth draping data.

3

Particle-based systems were later applied to knitwear, where spring meshes are used for model-

ing knitwear deformations [9, 26, 20]. In our work, we consider additional knitwear characteristics

such as knitwear thickness and gaps of space in the knitwear yarn loops. The modeling of these

additional factors results in increased realism of knitwear appearance and motion.

For rendering, there have been several previous methods that deal with knitwear or other sim-

ilar materials. An initial approach to rendering of complex repetitive patterns uses volumetric

textures [16, 22]. The teddy bear rendered by Kajiya and Kay’s original volumetric texture model

[16], called the texel, remains one of the most successfully synthesized furry objects to date, and

its associated ray-tracing algorithm continues to be one of the most general realistic rendering

techniques for such scenes.

Other approaches for rendering furry objects include the so-called fake fur rendering that was

introduced by Goldman [10] and the real-time fur rendering method introduced by Lengyel [17].

Goldman used a probabilistic lighting model for rendering a thin coat of fur on skin seen from nor-

mal distances. Lengyel used an alpha-blending technique to approximately render fur represented

by volumetric texture.

Knitwear has unique features different from fur and other fabrics that should be considered

when rendered. As previously mentioned, the microstructure of knitted yarn typically consists of

a large number of thin fibers, and the size of yarn and stitches exceeds that of thread, thus pre-

cluding representation by BRDF models. Graphics researchers have successfully applied volume-

rendering techniques to efficiently display yarn microstructure for knitwear on a flat surface [12],

but for free-form knitwear, few techniques for rendering yarn microstructure exist [13, 37].

The curved ray-tracing method introduced in [13] has three major drawbacks. One is the high

cost of rendering. Second, users must build different volumetric textures for different knitting

patterns. This makes it difficult to model knitwear with advanced stitching patterns. Third, evident

artifacts arise when the knitwear is severely deformed. Zhonget al. developed an effective model

for rendering yarn microstructure using Gouraud-shaded triangles [37]. Their method works well

for situations of normal viewing distances, but it does not address close-up views.

Because of the detailed structure of knitwear, past methods are burdened with high computa-

tional costs and/or large storage requirements for synthesis of photorealistic free-form knitwear

4

over multiple scales. We approach this problem by developing a reflectance primitive for yarn

that concisely represents microstructure in a manner that allows for various levels of detail and

hardware-assisted rendering.

To avoid the high cost of raytracing, volumetric objects can be rendered by hardware-aided

texture mapping with transparency blending [7, 21, 17]. However, limitations arise from the use

of graphics hardware. First of all, it cannot in general compute the shading or shadowing for

each individual texture pixel [21], with the exception of GeForce3 which can do per-pixel lighting

but cannot capture multiple scattering nor the attenuation effect of light passing through yarn.

Secondly, if 2D alpha texture is employed, the volumetric texture should be split into slices parallel

to the viewport and sorted from far to near for accurate blending computation [7].

While splitting and sorting can be solved, the rendering result would likely appear artificial

if shading and shadowing cannot be accurately computed according to the lighting and viewing

conditions of the volumetric texture. A way to achieve realistic shading effects is to compute

the results of all possible lighting and viewing conditions offline, and save them in a volumetric

texture data structure. However, a moderately complex scene would require a prohibitive amount

of storage and computation resources.

To address this problem, a key observation is made. An examination of knitwear reveals that

although patterns of knitted yarn can be complex, they are entirely composed of a single basic

element. For a given type of yarn, the distribution of fibers for each cross-section is similar. To

make our knitwear rendering goals realizable, we model a yarn strand by winding a fixed 2D fiber

distribution along the path of the yarn. Hence, we can completely synthesize knitwear from a single

volumetric yarn cross-section. To exhibit microscopic realism, this cross-section incorporates fine

visual effects, such as self-occlusion, self-shadowing, and multiple scattering. For different levels

of detail, the resolution of this slice can be varied with smooth visual transitions. It is compactly

represented in 2D as a single thin volumetric layer and can be computed offline. In addition, this

structure is amenable to transparency blending for efficient rendering.

5

3 Knitwear Model

In our work, the knitwear model begins with a free-form surface, a stitch pattern and optionally a

color pattern. We take the global structure of knitwear given by a free-form surfaces and parame-

terize it by indices(u, v) such that the(u, v) correspond to the yarn loops as exhibited in Figure 3.

These loops are determined by the stitch pattern and have the color given by the color pattern.

As shown in Figure 3, each yarn loop is defined by six points{ki = (ui, vi) | 0 ≤ i ≤ 5} in

the(u, v) parameter domain that map to six key points{s(ui, vi) | 0 ≤ i ≤ 5} on the 3D knitwear

surfaces(u, v). For a given loop as exhibited in the figure, we define the points{ki = (ui, vi) | 0 ≤
i ≤ 5} by

k0 = 0.35(n3 − n0) + n3, k1 = 0.375(n2 − n3) + n3,

k2 = 0.125(n1 − n0) + n0, k3 = 0.35(n4 − n0) + 0.5(n0 + n1),

k4 = 0.875(n1 − n0) + n0, k5 = 0.625(n2 − n3) + n3.

The corresponding 3D key pointss(ui, vi) can be slightly offset to account for random loop varia-

tions, and then are interpolated using cubic cardinal splines to give the yarn path.

The use of key points allows us to easily model advanced stitch patterns by arbitrary placement

of the points. As described in instructional knitting books such as [14], advanced stitches can be

produced by combining basic stitches, as exhibited in Figure 4. The key points of the two basic

stitches in (a) can be repositioned to give the stitch shown in (b). This alteration may introduce

thread collisions, as seen in the red circles. To remedy this problem, additional key points are

added as shown in (c) and are assigned appropriate offsets to avoid collision. In this case, the

points are offset by the yarn diameter in the normal direction of the surface. Arbitrary stitches can

be represented by key points and collision avoidance, and are easily incorporated into our system.

4 Knitwear Animation

To account for the special characteristics of knitwear, we enhance the basic knitwear model of the

previous section to allow for more physically realistic shape appearance and motion. In our anima-

6

tion model, a simple mass-spring mesh is employed to handle basic fabric motion, and integrated

into this basic framework are novel features that are particular to knitwear.

4.1 Animation Model

Characteristics of knitwear that are of relatively little significance in finely-woven fabrics include

deformations of yarn loops and knitwear thickness. These features result in physical behaviors such

as multiple stable configurations, volume and friction, which are essential for realistic animation

of knitwear. In this subsection, we present our knitwear animation model and its resulting effects.

4.1.1 Yarn Loop Deformations

Yarn loops that comprise knitwear are represented in a mass-spring mesh like the one used in [29]

such that the mass points correspond to the(u, v) indices in the parametric surface of the preceding

section. This correspondence relates the yarn loops, which are the basic elements of knitwear, to

the fundamental structures of the mass-spring system so that a knitwear loop reacts to external

forces like a combination of springs.

The length of the mesh springs is related to four external forces: stretching, compression,

bending and shearing. These forces affect the lengthsl of their associated springs according to a

set of basic formulas. For stretching

|Fstretch| = c0 ∗ e(l−θ1)/θ1−1

whenl > θ1, and for compression

|Fcompress| = c1 ∗ e(θ2−l)/θ2−1

when l < θ2. θ1, θ2 each represent the balance length of the spring when there are no external

forces, andc0, c1 are constants. Bending and shearing forces can be expressed proportionally

to the angle between neighboring loops, with respective constantsc2 and c3. In this paper, the

mechanical simulation model we use is very simple, to more clearly highlight the novel features

7

we introduce for knitwear. The presented knitwear features could potentially be combined with a

more sophisticated model such as [2, 29] used for general cloth simulation.

One attribute of knitwear is the free spaces between stitch loops. Because of these gaps, loops

are loosely linked with one another, and consequently some change in loop shapes and positions

should be possible without stretching or compressing the yarn. To account for this property, we

represent the balance length in the spring stretching and compression equations not with a single

point whereθ1 = θ2, but with an interval whereθ1 > θ2. This allows these springs to vary

in length by a certain amount without the presence of stretching or compression forces. In our

implementation, we modeled a5% change in length corresponding to values ofθ1 = 0.95 and

θ2 = 1.05, but different values may be used depending on the desired tightness of the weave.

Because of the physical correspondence between the mass-spring mesh and yarn loops, this

model simulates only the basic stitch structure. We did not specifically address complex stitch

patterns, since a physical correspondence cannot easily be made with a 2D mass-spring mesh.

Nevertheless, the behavior of complex stitches can be approximated with our elementary mesh by

empirical adjustment of the model parameters. More precise modeling is an area of future work.

4.1.2 Thickness

The structure of springs and masses forms merely a 2-D surface that we represent with a triangle

mesh, but knitwear requires thickness modeling for it to exhibit realistic motion and interaction

with objects. Because of the fiber protrusions and the compressibility of yarn in its normal di-

rection, pressure placed against the thickness of knitwear will be opposed by a repulsion force

from the volume layer. This repulsion increases as an object more deeply penetrates the knitwear

volume. We express this physical characteristic with a force field model.

At a distanced from the center of a knitwear with thickness2T , an object is affected by the

force field according to the following empirical equations:

|Fthickness| = c5(T − d)2 for τ ≤ d < T (1)

|Fthickness| = c6e
α/(d+β) for 0 < d < τ (2)

8

wherec5, c6, α, β are constants, andτ is a parameter less thanT that denotes the thickness of the

knitwear yarn structure excluding the fiber protrusions. When an object penetrates only the fiber

protrusion layer, (1) is used, and when an object enters deeper into the fabric and penetrates the

main yarn structure, (2) is utilized instead. The values ofα, β must be selected to ensure continuity

between the two equations.

For an object point, its distance to a given triangle in the knitwear mesh is denoted byd. If this

distance is less thanT and the angle of the distance vector from the triangle’s normal is less than

a specified value, which is 45 degrees in our implementation, then this point is considered to be

affected by the force field of this triangle. The intensity of this repulsion force as computed in (1)

or (2) is in the direction of the distance vector, and an object point can potentially be affected by

more than one triangle.

4.1.3 Friction

The modeling of knitwear thickness with a force field leads to realistic interaction effects between

a knitwear and its environment. Movement of a knitwear article can produce opposing forces when

the knitwear is in contact with other objects or itself. We handle this friction as two components,

static and dynamic, formulated from basic physics.

For a force to move knitwear, it must exceed a certain thresholdτs defined by the static friction

coefficientKs and the pressure|Fthickness| from the force field equations (1) and (2):

τs = Ks|Fthickness|.

If the knitwear moving force does not exceed this value, then it is effectively nullified by an op-

posing force of the same magnitude.

If the static friction threshold is surpassed, then the knitwear will move under the resistance of

the dynamic friction forceFd opposite to the movement direction:

|Fd| = Kd|Fthickness| (3)

9

whereKd is the dynamic friction coefficient.

More complex is the case of self-friction, friction caused by knitwear self-collisions. In the

previous section, we discussed the force field model of knitwear thickness and also the range of

influence for each triangle in the polygonal mesh. When the ranges of influence for two non-

adjacent triangles overlap, the triangles exert an equal and opposing force on each other. This

force is translated into friction using the same dynamic friction equation, but the coefficientsc5, c6

for |Fthickness| in (1) and (2) are replaced by different valuesc7, c8. Static self-friction is ignored

in our model, since it is difficult to formulate reasonably, and the result is nonetheless convincing

without this factor.

The final friction force we consider is viscosity, or friction with the air. We model this simply

with the equation

~ν = −c9~v

wherec9 is a constant and~v is the velocity vector of a knitwear point. The friction forces described

in this subsection together lead to more physically plausible interaction of knitwear articles with

other objects and itself.

4.2 Implementation Details

In this subsection, we present our algorithm for realistic animation from the preceding formula-

tions. The algorithm is followed by a smoothing stage that provides stability to the integration of

all the mesh forces.

Before outlining the steps of our algorithm, we note that a self-collision in knitwear simula-

tion is a “soft” collision, because of the force field surrounding the triangle mesh. These forces

physically should prevent mesh triangles from penetrating each other, but because of calculations

at discrete time intervals, triangle penetration becomes a possibility. Since this is not physically

accurate, it is necessary to retreat in time and then proceed again in smaller time increments for

more precise computation.

The algorithm begins with initializing the positions of the mesh points in the mass-spring sys-

tem and of the object points in the environment. Then for each time step, which is set by default

10

according to 25 frames per second, the following steps are performed:

1. Clear the force accumulator for each mass point.

2. For each mass point, calculate the spring forces (stretching, compression, bending and shear-

ing) and gravity, then add them to its force accumulator.

3. Perform collision detection, and add the resulting forces to the corresponding force accumu-

lators.

4. Calculate friction and add it to the force accumulators.

5. Perform triangle penetration detection, and if penetration is detected, repeat this iteration but

reduce the time step by half.

6. Apply the Courant-Friedrichs-Levy (CFL) condition to adjust the time step.

7. Using force accumulator values, update the positions, velocities and accelerations of the

mass points with second-order Runge-Kutta integration.

For the time steps in the above algorithm, we begin each iteration with the default value, and

at item 5, we check whether this time step would result in triangle collision. If a collision would

occur, the iteration is repeated at half the current time step, until collision is avoided. Subsequently

in item 6, we check whether this time step satisfies the CFL condition for integration stability. If

it does not, then the time step is reduced to the maximum value that satisfies the CFL condition.

Although beginning each iteration with a default time step might not be computationally optimal,

it nevertheless yields effective results for offline processing.

Though we utilize an adaptive time step with the CFL test to facilitate integration stability, the

integration result can nevertheless exhibit some jitter in parts of the knitwear due to fast fluctuations

of the viscosity and friction forces. This jitter can be considered as a high frequency noise of the

forces on the mass points. This problem could be handled by applying a lowpass filter to the force

of each mass point, but we instead implement this by filtering the position result, since acceleration

is proportional to force, and filtering the position is equivalent to filtering the acceleration. This is

11

simple to implement, and our simulations have shown that a simple averaging filter can effectively

stabilize an otherwise jittery result.

The algorithm for collision detection is a standardO(n2) algorithm that performs well for

detailed meshes such as our knitwear model with two triangles per knit loop. Each knitwear vertex

is checked for penetration through any of the scene triangles including the knitwear itself, with

some computational acceleration based on bounding boxes.

By consideration of fabric characteristics particular to knitwear, this method can produce ani-

mation results with realistic shape and feasible interaction with the environment.

5 Photorealistic Rendering

From our presented model for realistic animation, the remaining challenge is to render knitwear

in the computed configurations. But similar to the differences in animation between knitwear and

other fabrics, knitwear characteristics lead to unique obstacles in rendering as well. We handle

these difficulties with our lumislice modeling primitive.

An overview of our rendering approach is illustrated in Figure 5. In Sections 2-4, we described

the movement of knitwear control points and their corresponding placements of key points for the

yarn path. This knitwear skeleton is divided into yarn segments that are further divided into cross-

sectional volumetric slices. The reflectance characteristics of these yarn cross-sections are each

represented by the lumislice, the basic structural element for the entire knitwear. In this section,

we present the lumislice model and then describe lumislice-based rendering for knitwear.

5.1 Lumislice Model

The lumislice is the fundamental structure we introduce for knitwear rendering. It is this element

that facilitates the rendering of knitwear at different viewing distances while maintaining appro-

priate microscopic and macroscopic features.

For a given illumination direction, the lumislice is essentially a computed Lumigraph or light

field [11, 18] for a cross-sectional slice of yarn. The slice is composed of voxels, each with an as-

sociated four-dimensional array that contains its opacity and reflectance function. This reflectance

12

function represents the brightness of a voxel viewed from directionV (θv, φv) when illuminated by

a unit intensity light from directionL(θl, φl), and it differs from the traditional notion of BRDF in

that it accounts for the attenuation of incident light passing through the surrounding yarn. Using

this voxel reflectance function(VRF) allows us to precompute the effects of the surrounding yarn.

In this subsection, we present the method for computing the lumislice for a given type of yarn,

and then describe the calculation of viewed radiance from a lumislice voxel.

5.1.1 Lumislice Computation

As mentioned, each lumislice voxel has two associated quantities, the opacity of its collective yarn

fibers and the VRF. The opacity value is derived from the fiber density distribution, illustrated in

Figure 6, which is assumed to be identical for all cross-sections of a given yarn. Different types of

yarn may have different density distributions.

Our formulation of the VRF is presented in terms ofRp, the outgoing radiance from a voxelp.

Three primary physical elements factor into the reflectance atp: the fiber densityρp, the shading

modelΨ of yarn, and the incident light distributionImsp that results from multiple scattering among

neighboring voxelsN . The emission intensity from a voxel can in principle also affect a VRF, but

this quantity for yarn is zero. These factors influenceRp according to the equation

Rp = ρpΨ(Ip + IL

∑

N

Imsp) (4)

whereIL is the light intensity andIp is its attenuated intensity upon reachingp, as shown in

Figure 7. The shading modelΨ of [16] for diffuse reflection is used, and the multiple scattering

term is described in [35]. Based upon the emission-absorption model of volume illumination [6],

Ip may be expressed as

Ip = ILe−γ
∑Pin

r=p
ρr (5)

wherePin is the point of light entry into the yarn bounding box,γ is a light transmission factor in

the emission-absorption model, and voxel dimensions are unit length. Then (5) can be substituted

13

into (4) to produce

Rp = ρpΨIL(e−γ
∑Pin

r=p
ρr +

∑

N

Imsp). (6)

Rp can then be restated in terms of the spherical angles in Figure 7:

Rp(θl, φl, θv, φv) = ILCp(θl, φl, θv, φv) (7)

where

Cp(θl, φl, θv, φv) = ρpΨ(θl, φl, θv, φv)[e
−γ

∑Pin
r=p

ρr +
∑

i∈N Imsp(θi, φi)]. (8)

Here,Cp is the VRF, which is a 4D function ofθl, φl, θv, andφv. It can be approximately repre-

sented by a 4D color array after discretization of the four angles, where the discretization incre-

ments are determined by the accuracy required. For all lumislices used in this paper, the longitude

angleθ ∈ [0, 2π] and altitude angleφl ∈ [−π/2, π/2] are discretized into32 × 21 directions,

such that the 2D lumislice is computed from a 3D swept rotation of yarn cross-sections. In nor-

mal situations, the distance between the knitwear and the light source greatly exceeds the radius

of the knitted yarn, so we assume parallel illumination. The spacing of the lumislices along yarn

segments is related to the resolution of the lumislice, which is presented in Section 5.2.2 on levels

of detail.

For additional simplification, the specular component of the VRF is ignored in our implementa-

tion, resulting in a view-independent reflectance function. This allowsCp to become a 2D function,

and consequently the computational costs and storage requirement are significantly reduced. All

lumislices used in this paper consider only the diffuse effect.

The lumislice of a given yarn is precomputed and stored in tables, with the VRF in a 2D RGB

color table indexed by(θL, φL), and the opacity in an alpha table.

5.1.2 Volumetric Yarn and Radiance Calculation

Since the same lumislice represents all cross-sections of a knitted yarn, it is rotated and translated

along the yarn path to form the yarn volume, as shown in Figure 6. The radianceR of the knitwear

14

at a given image pixel from viewpointV in Figure 8 can be computed as

R =
Pfar∑

p=Pnear

e−γ
∑p

s=Pnear
ρs ·Rp (9)

whereRp is calculated from (4).

When the knitwear is rendered, all yarn segments are subdivided into a series of volumetric

cross-sections, each represented by the lumislice. When a slice is drawn, its location, its local

coordinate system, the light source position and the viewpoint together determine the reflection

anglesθL, φL, θV , andφV , as shown in Figure 7. These angles, specifically onlyθL andφL, are

then used to index the 2D color table of the lumislice. This color texture and the opacity table of

the slice together form the RGBA transparency texture, which is rendered by the texture mapping

and transparency-blending functions of standard graphics APIs [21].

The path of the yarn, and likewise the arrangement of the lumislices, is given by the knitwear

skeleton. An important feature of this representation by key points is that it becomes simple to

model and edit advanced stitch patterns [14]. This free-form structure for knitwear complements

our lumislice rendering model.

5.2 Rendering

For rendering, the lumislice model is first incorporated into the knitwear skeleton. The yarn along

the skeleton is divided into a series of short straight segments with a twisting angle. These slices

undergo depth sorting and slice partitioning, which is needed because the transparency-blending

function supported by graphics hardware is computed along slices parallel to the viewport, while

the lumislices can have various orientations. The details of our depth sorting and slice partitioning

are presented in [35].

With these slices, we describe the rendering issues of shadow casting and levels of detail, and

this is followed by a step-by-step description of our rendering algorithm.

15

5.2.1 Shadows

Shadows are an essential factor for realism [30, 25], and there exist many well-known techniques

for shadow generation. The shadow map method introduced by Williams [34] is perhaps the most

basic. This technique was improved by Reeveset al. [23] and was extended to the so-called

deep shadow map by Lokovic and Veach [19]. Shadows are particularly important for realistic

rendering of knitwear because they not only indicate the spatial relationship between knitwear and

other geometric objects, but also visually reveal the knitting pattern of yarns. Figure 9 exemplifies

the significant effects of shadows.

Deep shadow maps can deal with semi-transparent or sub-pixel objects such as hair, fur and

smoke because they represent the fractional visibility through a pixel at all possible depths, rather

than only a single depth value. However, this technique is incompatible with the lumislice, because

part of the light attenuation has been already computed and stored in the lumislice to provide better

effects of yarn microstructure. We therefore extend the traditional shadow map to handle yarn, an

object with geometry not clearly defined. Experimental evidence suggests that while shadows are

important in 3D rendering, they need not be exact [30, 25], so we develop a rough shadowing

technique consisting of two steps.

Like traditional shadow map techniques, the first step of our method places a camera at the

light source, making sure that all shadow generators and receivers are within the field of view. All

objects except for knitwear are then projected to produce a shadow map containing a depth value.

For knitwear, only the centerlines of yarns are projected to the shadow map. Thus the shadow map

we build will contain depth information of geometric objects and yarn centers.

Next, the effect rangeRy of yarn in the shadow map is computed according to the radius of

yarn. This parameter is used to determine whether light is partially absorbed by the yarn before

reaching more distant positions.

Finally, before a pointp is rendered, it is projected onto the shadow map for shadow testing.

If the projection resultps(xs, ys, zs) indicates total occlusion by geometric surfaces, then it is in

shadow. Otherwise, the yarn-occlusion test is performed by computing on the shadow map the

closest distanced from (xs, ys) to the centerline of any yarn. Ifd is smaller thanRy, light is

16

partially absorbed by that yarn. Given the fiber density distributionρ as shown in Figure 10, we

compute the light transmission for distanced through voxels(d, i) of the lumislice as

Ty(d) = 1− k0

1−∏Ry

i=−Ry
e−γρ(d,i)

1−∏Ry

i=−Ry
e−γρ(0,i)

(10)

where we empirically takek0 = 0.8 and the voxel dimensions to be unit length.

The lumislice-based method renders knitwear by a volumetric yarn slice using hardware-aided

transparency blending. As described in [21], shadow cannot be calculated for every pixel on a

texture if the alpha-texture is employed to render volume-represented objects. Thus the shadow test

can be performed only at the slice vertices, and the result is blended to the lumislice by adjusting

the texture brightness so that the shadow effect can be seen. If higher accuracy is required, such as

for rendering close-up views, the slice could be divided into sub-slices so that shadow computation

can be done at more points to improve the result quality.

5.2.2 Level of Detail Representation

To handle a wide range of viewing distances, a view-dependent level of detail representation of the

lumislice is utilized to reduce the computational cost, to ensure smooth visual transitions, and to

reduce rendering error. When the viewing distance changes, the projection size and visible features

of a yarn slice on the screen should change accordingly. A lumislice of fixed resolution will cause

error because there is no simple method for determining proper opacity values even though the

color values of the lumislice can be obtained by using a mip-map. For this reason, we precompute

lumislices of different resolutions and render each slice with the one most appropriate to its current

viewing condition.

For decreasing resolution of the lumislice, its unit of thickness should increase by the same fac-

tor. For instance, we can form a low-resolution lumislice from a high-resolution slice by doubling

its thickness, then grouping together 2x2 blocks. Locally, a voxel on a low-resolution slice can be

computed from corresponding voxels in a high-resolution slice such that its low-resolution density

ρ′ and its colorC ′ are

ρ′ =
ρ1 + ρ2 + ρ3 + ρ4

4

17

C ′ =
C1ρ1 + C2ρ2 + C3ρ3 + C4ρ4

ρ1 + ρ2 + ρ3 + ρ4

(11)

whereC1, C2, C3 andC4 are colors of the high-resolution slice, andρ1, ρ2, ρ3 andρ4 are densities

of the high-resolution slice. The formulation ofρ′ can be derived from the resultant transmission

T ′ from the voxel grouping:

T ′ =
√

T1T2T3T4 =
√

e−γρ1e−γρ2e−γρ3e−γρ4 = e−2γ
ρ1+ρ2+ρ3+ρ4

4 = (e−γρ′)2

where the squaring factor results from thickness doubling. For more accurate results when the

resolution is below8 × 8, we form the low-resolution lumislice by sampling the high-resolution

lumislice.

The resolution for rendering a slice depends upon the projection area of the slice on the screen.

For a projection whose dimensions are at mostm pixels, a lumislice with resolution2n × 2n is

chosen such thatn is an integer and2n ≥ m, to prevent aliasing. Although our implementation

precomputes lumislices at intervals according to2n, finer intervals may be used for more accuracy.

The unit length corresponding to the determined resolution also describes the thickness of

the lumislice. Lumislice densities along yarn are determined by dividing yarn segments by these

computed resolution units. So if we were to instead consider lumislices as two-dimensional, then

the resolution unit describes the distance between lumislices along yarn segments.

5.2.3 Rendering Algorithm

From the described processes, we outline the steps of the rendering algorithm, given models of

the lumislice and the knitwear skeleton. The use of hardware-aided graphics APIs entails the

masking or disabling of the z-buffer depth test for accurate transparency-blending computation.

Consequently, scene rendering requires more than one step. Our rendering routine proceeds as

follows:

1. Create the shadow map as described in Section 5.2.1.

2. Using the ID color method, draw the color and depth of geometric objects as seen from the

viewport into Buffer1.

18

3. Draw yarn as cylindrical polygons on the result of step 2, then turn the resulting image into

a bitmap called Image1. Pixels that are covered by yarn are set to 0, and others are set to 1.

4. Draw the geometric objects with the shadow test under the same projection condition and

then save as Image2.

5. Sort all discrete yarn segments by distance from the viewpoint.

6. Disable the depth test, draw volumetric yarn on the result of step 4. Before each slice is

rendered, project its vertices into Buffer1. If it is totally occluded by geometric objects, it

is not rendered. Render all slices of the yarn segments from far to near. Save the result as

Image3.

7. For every pixel in Image3, check its associated value in Image1. If the value is 1, then this

pixel should display a geometric object, so the color of this pixel is replaced by the color of

the corresponding pixel in Image2. This step is necessary to properly process slices that are

partially occluded. The final result is obtained after all the pixels are checked.

6 Results

Several synthesis results of our method are displayed in this section. Figure 11 exhibits a range

of complex stitching patterns that can be rendered with our technique. The soft shadows in the

knitwear are evident and contribute significantly to the realism of the images.

Another set of renderings is shown in Figure 12. The left column displays real images of a

scarf, while renderings from corresponding view distances are shown on the right. Comparison

of the two columns demonstrates the similarity of our synthesis results to actual knitwear. Lastly,

Figure 14 shows a sweater that displays deformations that can easily be made to fit the form of a

given person.

These renderings were performed on a 864MHz Pentium III with 256M RAM and a Matrox

Millenium G400 DualHead Max display adapter. For the images in Figure 11, the number of

rendered slices are, clockwise from the upper left, 211k, 215k, 225k and 216k. The respective

19

rendering times in minutes using our unoptimized implementation are 14.30, 15.07, 15.33 and

15.08. The rendering time for the sweater in Figure 14, which consists of 368k slices, is 31.93

minutes.

The results of our knitwear animations, which utilize lumislice-based rendering, are exhibited

in a few snapshots. The spring parameters used in our simulations are as follows: 1500.0 for

stretchingc0 in the wale direction, 2000.0 for stretchingc0 in the course direction, 3000.0 for

compressionc1, 100.0 for bendingc2 in the wale direction, 150.0 for bendingc2 in the course

direction, and 1000.0 for shearingc3, c4. For an initial balance length between mass points ofl,

the balance length parameters areθ1 = 0.95l andθ2 = 1.05l. The force field coefficients are

c5, c6 = 0.2, τ = 0.1 andT = 0.9. The friction parameters arec7, c8 = 0.3, Kd = 0.5, Ks = 1 and

c9 = 0.6.

Figure 1 displays two still photographs of a semi-transparent ball rebounding off a folded scarf,

where light refraction through the ball is disregarded to clearly show the scarf deformation. The

effect of the thickness force field is evident on the scarf, which would otherwise appear flat. Ad-

ditionally, the force of the ball produces a realistic deformation of the scarf that includes effects

from both springs and force fields.

Frames from a falling scarf animation, shown in the top row of Figure 13, demonstrate both

self-collision and self-friction, which are challenging to animate realistically. The scarf consists

of approximately 15000 triangles, and a 40-second sequence at 25 fps was rendered on a 864MHz

Pentium III in approximately 30 minutes. The bottom row of Figure 13 shows images of a scarf

being stretched then released to snap back into a stable configuration. Because of friction from

the underlying surface and because of the gaps of space within the knitwear that allow for various

balance lengths of the yarn loops, the ending stable configuration is not a straight scarf. This

animation required about 11000 triangles for the scarf and took about 2 minutes to render a 3-

second sequence. These realistic results are achievable by consideration of the aforementioned

knitwear properties.

All the presented images utilize a single light source. Multiple light sources can potentially be

handled using multi-texturing.

20

7 Conclusion

In this paper, we presented models for realistic animation and efficient photorealistic rendering

of free-form knitwear. These models are designed to incorporate fabric characteristics that are

particular to knitwear. For animation modeling, knitwear thickness and gaps within knitwear loops

are represented, and their effects are manifested in simulations involving knitwear layering, friction

forces and knitwear deformations.

With this animation model for global shape control, efficient rendering is performed by taking

advantage of the repetitive structure of yarn. We introduced a reflectance element called the lu-

mislice that represents the reflected radiance of light, as influenced by the yarn microstructure. It

provides an effective means for propagating local microstructure features over a knitwear article

while allowing for arbitrary global characteristics, such as the stitch pattern and overall knitwear

shape. In conjunction with a proposed shadow technique for yarn, the lumislice can provide con-

vincing visual results.

Although all examples in this paper are knitwear, the lumislice can potentially be applied

to other fabric objects consisting of repetitive macroscopic structures, such as carpet and coarse

weaves. Additional possibilities for future work include development of a smooth transition be-

tween levels of detail at closer viewing distances and BRDFs from farther away.

Acknowledgements

We thank David Salesin and Xin Tong for useful discussions, and the anonymous reviewers for

their constructive critiques on the lumislice.

References

[1] K. Anjyo, Y. Usami, and T. Kurihara. A Simple Method for Extracting the Natural Beauty of Hair.

Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):111–120, July 1992.

[2] D. Baraff and A. Witkin. Large Steps in Cloth Simulation.Proceedings of SIGGRAPH 98, pages

43–54, July 1998.

21

[3] D. E. Breen, D. H. House, and P. H. Getto. A Physically-Based Particle Model of Woven Cloth.The

Visual Computer, 8(5-6):264–277, June 1992.

[4] D. E. Breen, D. H. House, and M. J. Wozny. Predicting the Drape of Woven Cloth Using Interacting

Particles.Proceedings of SIGGRAPH 94, pages 365–372, July 1994.

[5] D. E. Breen, D. H. House, and M. J. Wozny. A particle-based model for simulating the draping

behavior of woven cloth.Textile research joural, 64(11):663–685, November 1994.

[6] S. Chandrasekar.Radiative Transfer. Dover Publications, New York, 1960.

[7] M. Courshesnes, P. Volino, and N. M. Thalmann. Versatile and Efficient Techniques for Simulating

Cloth and Other Deformable Objects.Proceedings of SIGGRAPH 95, pages 137–144, August 1995.

[8] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink. Reflectance and Texture of Real-world

Surfaces.ACM Transactions on Graphics, 18(1):1–34, January 1999.

[9] B. Eberhardt, A. Weber, and W. Straßer. A Fast, Flexible, Particle-System Model for Cloth Draping.

IEEE Computer Graphics & Applications, 16(5):52–60, September 1996.

[10] D. B. Goldman. Fake Fur Rendering.Proceedings of SIGGRAPH 97, pages 127–134, August 1997.

[11] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph.Proceedings of SIGGRAPH

96, pages 43–54, August 1996.

[12] E. Gr̈oller, R. T. Rau, and W. Straßer. Modeling and Visualization of Knitwear.IEEE Transactions on

Visualization and Computer Graphics, 1(4):302–310, December 1995.

[13] E. Gr̈oller, R. T. Rau, and W. Straßer. Modeling Textiles as Three Dimensional Textures.Eurographics

Rendering Workshop 1996, pages 205–214, June 1996.

[14] Harmony.The Harmony Guide to Knitting Techniques. Collins & Brown, 1992.

[15] D. H. House and D. E. Breen.Cloth Modeling and Animation. A K Peters, Natick Massachusetts,

2000.

[16] J. T. Kajiya and T. L. Kay. Rendering Fur with Three Dimensional Textures.Computer Graphics

(Proceedings of SIGGRAPH 89), 23(3):271–280, July 1989.

22

[17] J. Lengyel. Real-Time Fur.Eurographics Rendering Workshop 2000, pages 243–256, June 2000.

[18] M. Levoy and P. Hanrahan. Light Field Rendering.Proceedings of SIGGRAPH 96, pages 31–42,

August 1996.

[19] T. Lokovic and E. Veach. Deep Shadow Map.Proceedings of SIGGRAPH 2000, pages 385–392, July

2000.

[20] M. Meißner and B. Eberhardt. The Art of Knitted Fabrics, Realistic & Physically Based Modeling Of

Knitted Patterns.Computer Graphics Forum, 17(3):355–362, 1998.

[21] A. Meyer and F. Neyret. Interactive Volumetric Textures.Eurographics Rendering Workshop 1998,

pages 157–168, June 1998.

[22] F. Neyret. Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures.IEEE

Transactions on Visualization and Computer Graphics, 4(1):55–70, January-March 1998.

[23] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering Antialiased Shadows with Depth Maps.

Computer Graphics (Proceedings of SIGGRAPH 87), 21(4):283–291, July 1987.

[24] B. Robertson. Building a better mouse.Computer Graphics World, 22(12), December 1999.

[25] C. Soler and F. X. Sillion. Fast Calculation of Soft Shadow Textures Using Convolution.Proceedings

of SIGGRAPH 98, pages 321–332, July 1998.

[26] W. Straßer and B. Eberhardt. Representation of Knit Fabrics.SIGGRAPH Course Notes: Cloth and

Clothing in Computer Graphics, pages F–1–18, 1998.

[27] D. Terzopoulos and K. Fleischer. Deformable models.The Visual Computer, 4(6):306–331, December

1988.

[28] N. M. Thalmann, S. Carion, M. Courchesne, P. Volino, and Y. Wu. Virtual Clothes, Hair and Skin for

Beautiful Top Models .Computer Graphics International, 1996.

[29] P. Volino and N. M. Thalmann. Implementing Fast Cloth Simulation with Collision Response.Com-

puter Graphics International, 2000.

[30] L. R. Wanger, J. A. Ferwerda, and D. P. Greenberg. Perceiving Spatial Relationships in Computer-

Generated Images.IEEE Computer Graphics and Application, 12(3):44–58, May 1992.

23

[31] S. H. Watson, J. R. Arvo, and K. E. Torrance. Predicting Reflectance Functions From Complex Sur-

faces.Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):255–264, July 1992.

[32] J. Weil. The Synthesis of Cloth Objects.Computer Graphics (Proceedings of SIGGRAPH 86),

20(4):49–54, August 1986.

[33] S. H. Westin, J. R. Arvo, and K. E. Torrance. Predicting Reflectance Functions From Complex Sur-

faces.Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):255–264, July 1992.

[34] L. Williams. Casting Curved Shadows on Curved Surfaces.Computer Graphics (Proceedings of

SIGGRAPH 78), 21(3):270–274, August 1978.

[35] Y. Q. Xu, Y. Chen, S. Lin, H. Zhong, E. Wu, B. Guo, and H. Y. Shum. Photo-Realistic Rendering of

Knitwear Using the Lumislice.Proceedings of SIGGRAPH 2001, pages 391–398, August 2001.

[36] T. Yasuda, S. Yokoi, and J. Toriwaki. A Shading Model for Cloth Objects.IEEE Computer Graphics

& Applications, 12(6):15–24, November 1992.

[37] H. Zhong, Y. Xu, B. Guo, and H. Shum. Realistic and Efficient Rendering of Free-Form Knitwear.

Journal of Visualization and Computer Animation, Special Issue on Cloth Simulation, 12(1), 2001.

24

Figure 1: Rendered images of a folded scarf. Unlike animation models for other fabrics, our
knitwear method accounts for thickness and its effect on shape. The lower figure exhibits a realistic
deformation caused by the weight of a ball.

25

Figure 2: Knitwear synthesized using the lumislice and including soft shadows. Left side: close-up
views of knitwear microstructure. Right side: stitch pattern and irregular macroscopic structure.

Figure 3: Construction of the knitwear skeleton. A loop in the parameter space is shown as a red
rectangle on the left and in 3D on the right. For0 ≤ i ≤ 5, the key pointki is marked byi on the
loop in the top left. In 3D, the key points before offsetting are marked by red dots and are denoted
after offsetting by green dots.

26

Figure 4: An advanced stitch form by combining two simple stitches.

Figure 5: An overview of lumislice-based rendering. Pattern stitching: (a) free-form surface, (b)
placement of control points determined by physical animation model, (c) knitwear skeleton with
stitches. Lumislice modeling: (d) density distribution of yarn fibers, (e) lumislice computation and
winding over a yarn segment. With (c) and (e), a piece of knitwear can be rendered as (f).

27

Figure 6: Generation of a volumetric yarn segment. The fiber density distribution in the upper-left
corner is rotated along the path of the yarn to yield a yarn segment.

Figure 7: Notation for lumislice calculation. Left: Light of intensityIL enters the yarn segment
at voxelPin and is attenuated to intensityIp by the yarn upon reaching voxelp; the reflected light
intensity upon exitingp towards the viewing direction isRp. Right: Spherical angles at voxelp of
the light directionL and the viewing directionV .

Figure 8: Radiance calculation through a yarn segment. An emission-absorption model is used to
compute the contributions to viewed radiance atV from voxels betweenPnear andPfar.

28

Figure 9: Effects of shadows in rendered knitwear. (A) Synthesized image without shadows. (B)
Enhanced realism resulting from our shadow technique.

Figure 10: Soft shadows from knitwear. Transmission factorTy of light passing a distanced ≤ Ry

from a yarn center.

29

Figure 11: Rendered stitching patterns that depict various knitting styles which can be synthesized
by lumislice-based rendering. The desirable effects of soft shadows are evident.

30

Figure 12: Comparison of lumislice-based rendering to actual images. (a)(c)(e) display real images
of a scarf captured from various viewing distances. (b)(d)(f) show corresponding renderings by our
method.

31

Figure 13: Frames from animation sequences. Top row: Knitwear falling. Bottom row: Knitwear
stretching, where the left image exhibits the deformation of stretching, and the right image shows
the scarf configuration after release of the stretching force.

Figure 14: Sweater worn on a person.

32

