

Offline Evaluation and Optimization for Interactive Systems

Lihong Li

Microsoft Research

http://research.microsoft.com/en-us/people/lihongli

Tutorial URL

http://research.microsoft.com/apps/pubs/default.aspx?id=240388

User Interaction

BIG DATA

correlation

Statistics, ML, DM, ...

KNOWLEDGE

DIG DATA

correlation

Statistics, VII., DV, ...

Big Trap

KNOWLEDGE

Correlation ≠ Causation

Somewhat Toy-ish Example

 Studies show... people who search their names in search engines tend to have higher income

Decision making:

WWII Example

- Statistics collected during WWII...
 - Bullet holes on bomber planes that came back from mission

- Decision making:
 - Where to armor?
 - Abraham Wald: the opposite!

Outline

- Introduction
- Contextual bandits
- Basic offline evaluation
- Enhanced techniques
- Practical issues
- Concluding remarks

Introduction

News Recommendation

- Recommend 2 news articles {sport, movie} to users
- To maximize CTR (click-through rate)

	Overall CTR	Male	Female
Sport	0.5	0.4	0.8
Movie	0.6	0.3	0.7

- Known as Simpson's Paradox
 - Observed in medical research, student administration, ...
 - More data does not help (because of "confounding")
 - More features do not reliably address the problem

Correlation ≠
Causation!

Correlation vs. Causation

Can I predict click well assuming fixed RecSys?

Metrics
Precision, Recall,
MSE, NDCG, ...

Similar in Web search, advertising, ...

Controlled Experiments to Identify Causality

	Overall	Male	Female	EXP
Sport	0.5	0.4	0.8	0.6
Movie	0.6	0.3	0.7	0.5

Everyday practice of scientist, doctors, ... See survey of Web applications [KLSH'09]

Also known as A/B tests, randomized clinical trials, ...

Offline vs. Online Gap in Practice

	Correlation	Causation
Offline	ML to improve prec/recall, MSE, NDCG,	
Online		Verify CTR/\$\$\$ lift by controlled experiments

Common practice

"guess and check"

Limitations

- Online experiments are expensive
- Online experiments take a long time
- Often correlation ⇒ causation

^{*}Offline/online: whether to run a new system on live users to collect new data

Related Areas

- (Stats/Econ) Estimating causal effects from observational data
 - Neyman-Rubin causal model [R'74] [H'86]
 - Heckman correction [H'79]
 - "Causality" [P'09]

• (AI) Off-policy reinforcement learning [PSS'00]

• (ML/Stats) Covariate shift [CSSL'08]

Recap

- Correlation \Rightarrow causation
 - E.g., lower MSE ⇒ CTR/revenue lift
- Controlled experiments measure causal effects (e.g., CTR lift)
 - but are expensive
- This tutorial: how to use historical data to estimate causal effects without running new online experiments

Note: Offline experiments cannot fully replace online experiments!

Contextual Bandits

Contextual Bandit [BA85, LZ08]

Observe K "actions" A_t and "context" x_t

Follow "policy" π to choose $a_t \in A_t$

Receive "reward"

$$t \leftarrow t + 1$$

Stochastic assumption: $x_t \sim D_x(\cdot)$, $r_t \sim D_r(\cdot | x_t, a_t)$ Goal is to maximize "value": $V(\pi, T) = E\left[\frac{1}{T}(r_1 + r_2 + \cdots r_T)\right]$

 $a_t = \pi(x_t)$ Stationary policy:

Non-stationary policy: $a_t = \pi(x_1, a_1, r_1, ..., x_{t-1}, a_{t-1}, r_{t-1}, x_t)$ (e.g., online learning algorithms)

historical data up to time t

Contextual Bandit Applications

- Clinical trials
- Resource allocation
- Queuing & scheduling
- ...
- Web (more recently)
 - Recommendation
 - Advertising
 - Search
- Intelligent assistant (Office)
- Adaptive user interface

Example: Personalized News Recommendation

www.yahoo.com

 x_t : user features (age, gender, location, ...)

 A_t : available articles at time t

 a_t : recommended article

 r_t : 1 for click, 0 for no-click

Policy value $V(\pi)$ is click-through rate (CTR)

Example: Online Advertising

Shanghai Travel China: Facts, Attractions, City Map ...

Shanghai city tour, Suzhou and Hangzhou tours, from \$69 per person

www.travelchinaguide.com/cityguides/shanghai.htm •

China Flight · China Tours · China Hotels · Guide

Ad ChinaTour.Net

China Shanghai travel information on **Shanghai** facts, **tours**, maps, **tourist** attractions, holiday hotels, weather, pictures, dining, shopping, nightlife as well as ...

Context: query, user info, ...

Action: displayed ads

Reward: revenue

Example: Web Search Ranking

Search as a bandit (naive formulation):

- Context: query
- Action: ranked list
- Reward: search success-or-not

Policy Optimization

• Given data $D=\{(x_i,a_i,r_i)\}_{i=1,2,\dots,L}$ collected in the past, find $\pi^*=\mathrm{argmax}_\pi V(\pi)$

- Examples: use log data to optimize...
 - recommender model to maximize CTR
 - ad ranking system to maximize revenue
 - search engine's query suggestion model to maximize user satisfaction
 - personal treatment plan to maximize survival rate
 - ...

Policy Evaluation

- Given D and π , estimate $V(\pi)$ or $V(\pi,T) = \mathbf{E}\left[\frac{1}{T}(r_1 + r_2 + \cdots r_T)\right]$
- Example: use log data to estimate...
 - daily CTR of a news recommendation system
 - click lift of a new user feature in ad ranking
 - reduction of time for user to find a relevant URL on SERP
 - ...
- Why care evaluation
 - An important question on its own
 - Optimization can be reduced to evaluation: $\pi^* = \operatorname{argmax}_{\pi} V(\pi)$

Online vs. Offline Evaluation of $V(\pi, T)$

- Online evaluation
 - Controlled experiments (AB tests)
 - Wait for days/weeks/months and compute average reward
 - Reliable but expensive

- Offline evaluation
 - Use historical data $D = \{(x, a, r_a)\}$
 - Cheap, fast, and risk-free
 - Counterfactuality of rewards: do not observe $r_{\pi(x)}$ if $\pi(x) \neq a$

Recap

- Contextual bandit as natural model for many interactive ML problems
- Policy evaluation vs. optimization
- Online vs. offline policy evaluation

Basic Offline Evaluation

Direct Method (aka Regression Estimator)

this (difficult) step is often biased

unreliable evaluation

$$\widehat{V}_{dm}(\pi) = \frac{1}{L} \sum_{i} \widehat{r}(x_i, \pi(x_i))$$

Biases of Direct Method

- Sampling/selection bias
 - From production systems
 - Simpson's paradox

	Overall	Male	Female	
Sport	0.5	0.4	0.8	
Movie	0.6	0.3	0.7	

 r_a

light weighted

heavy weighted

- Modeling bias
 - Insufficient features to fully represent r(x, a)

Neither issue goes away even with infinite data! Usually difficult to quantify modeling bias!

Randomized Data Collection

Randomized data collection: at step t,

- Observe current context x
- Randomly chooses $a \in A$ according to $(p_1, p_2, ..., p_K)$ and receives r_a

End result: "exploration data" $D = \{(\mathbf{x}, a, r_a, p_a)\}$

Will use it to evaluate both stationary and nonstationary policies.

Randomized Data Collection: An Example

Randomized Data Collection: An Example

Inverse Propensity Score: Stationary Policy

 $\widehat{V}_{\text{ips}}(\pi) = \frac{1}{L} \sum_{(x,a,p_a,r_a) \in D} \frac{r_a \cdot \widehat{\mathbf{1}}(\pi(x) = a)}{p_a}$

Indicator function: 1 if TRUE, 0 if FALSE

"propensity score"

Theorem: $\hat{V}_{ips}(\pi)$ is unbiased

Proof:
$$E[\hat{V}(\pi)] = E\left[\frac{r_a \cdot \mathbf{1}(\pi(x) = a)}{p_a}\right]$$
$$= E\left[\sum_a \left(p_a \times \frac{r_a}{p_a} \mathbf{1}(\pi(x) = a)\right)\right]$$
$$= E\left[\sum_a \left(r_a \times \mathbf{1}(\pi(x) = a)\right)\right]$$
$$= E_x[r_{\pi(x)}] = V(\pi)$$

Confidence Interval Estimation for IPS

$$\widehat{V}_{\text{ips}}(\pi) = \frac{1}{L} \sum_{(x,a,p_a,r_a) \in D} \frac{r_a \cdot \mathbf{1}(\pi(x) = a)}{p_a}$$

- Consistency: if p_a is not too small, \hat{V}_{ips} converges to $V(\pi)$ as $L \to \infty$
- Variance: $Var[\hat{V}_{ips}(\pi)] = \frac{1}{L} Var\begin{bmatrix} r_a \cdot 1(\pi(x) = a) \\ p_a \end{bmatrix}$
- 95% confidence interval

$$\hat{V}_{ips}(\pi) \pm \left(1.96 \times \frac{\hat{\sigma}}{\sqrt{L}}\right)$$

Just another simple random variable

• Generally, width of confidence interval shrinks to 0 at rate $O(1/\sqrt{L})$

An Illustration

ID	$\boldsymbol{\mathcal{X}}$	a	r_a	p_a	$\pi(x)$	$\pi'(x)$
1	Alice	F	1	1/2	M	F
2	Bob	M	0	1/3	S	M
3	Chuck	S	1	1/6	S	F
4	Diane	M	1	1/3	M	F
5	Eric	F	0	1/2	S	M
6	Frank	F	0	1/2	S	F
7	Gordon	M	1	1/3	S	S
8	Henry	S	0	1/6	S	F
9	Irene	F	0	1/2	M	F
10	Jennifer	F	1	1/2	M	S

$$A = \{\text{Finace, Movie, Sport}\}$$

$$p = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right\}$$

$$\hat{V}_{ips}(\pi) = \frac{1}{|D|} \sum_{(x,a,p_a,r_a) \in D} \frac{r_a \cdot 1(\pi(x) = a)}{p_a}$$

$$= \frac{1}{10} \left(\frac{1}{1/6} + \frac{1}{1/3} + \frac{0}{1/6} + 0 + \dots + 0\right)$$

$$= \frac{9}{10}$$

$$\hat{\sigma}_{ips}^2 = \hat{\sigma}^2 \left(\frac{1}{1/6}, \frac{1}{1/3}, \frac{0}{1/6}, 0, \dots, 0\right)$$
Seven 0s

Case Study 1: News Recommendation [LCLW'11]

- Experiments run in 2009
 - 40M impressions over 10 days in exploration data
 - $p_a = \frac{1}{K}$ (uniform random exploration)
- Fixed an news-selection policy π
- Online experiment with π to measure CTR
 - The online ground truth
- ullet Use exploration data to offline-evaluate π
 - The offline estimate

- A_t : available articles at time t
- \mathbf{x}_{t} : user features (age, gender, interests, ...)
- a_t : the displayed article at time t
- r_{t,a_t} : 1 for click, 0 for no click

Unbiasedness: Article CTR

Unbiasedness: Daily Overall CTR

Estimation Error

Case Study 2: Bing Speller

counterfatual

MS Beta

397,000 RESULTS

Any time ▼

Including results for *counterfactual*.

Do you want results only for counterfatual?

counterfactual - definition of counterfactual by the Free ...

www.thefreedictionary.com/counterfactual *

The **counterfactual** modification, then, allows us to increase the range of applications for economic laws, since it allows other discussed economic factors to change ...

Counterfactual | Define Counterfactual at Dictionary.com

dictionary.reference.com/browse/counterfactual ▼

counterfactual (ˌkauntəˈfæktʃʊəl) —adj: 1. expressing what has not happened but could, would, or might under differing conditions —n

What Speller does:

- Corrects typos
- May produce multiple candidates (with search results blended later)

Popular approach:

- Obtain human labels for $(q_0, q'_c, label)$
- Apply ML to rank candidates
- But...

Bing Speller: A Harder Example

Bing Speller: A Harder Example

Click metrics are hard to work

(b/c counterfactual nature)

with offline

Speller as Contextual Bandit

A round-by-round interaction between Speller and User

At each round,

- U issues query q_0 ("context")
- S calculates a small set of promising candidates $Q = \{q_1, \dots, q_L\}$
 - Note: Q is assumed given (from other ML models)
- S then chooses an "action" $a \subset Q$
- S finally observes the reward (some click metric) r_a for a
- Repeat

Goal of Speller is to maximize average per-round reward.

Exploration Data Collection [LCKG'14]

 λ_1 and λ_2 control exploration aggressiveness

Accuracy of Offline Evaluator

Position-specific click-through rate

Daily click-through rate

Normality of Offline Estimates

Quantifying Uncertainty in Offline Evaluation

Offline Optimization for Speller

- 70% exploration data to learn Pr(GoodResult | Query, CorrectionCandidate)
- 30% exploration data to offline-compare new and old Spellers

- Tends to be better if more are included
- But limited by capacity → threshold needed
- Use unbiased IPS offline evaluation to set a threshold

Offline Optimization for Speller

- Tune Speller parameters to optimize offline estimate of $V(\pi)$
- Online-test one of most promising models
 - ✓ showing statistically significant gain

Some winning examples

```
"umecka and zinc" → "umcka and zinc" (treatments for cold symptoms)

"catalina left attorney" → "catalina leff attorney" (right correction)

"acer e1-5726870" → "acer e1-572 6870" (correct word breaking)
```

{umecka and zinc} vs. {umecka}

10,200,000 RESULTS Any time ▼

Can **Zinc** Lozenges and Nasal Sprays Remedy Your **Cold**?

www.webmd.com > ... > Cold, Flu, & Cough Health Center > Cold Guide Can zinc prevent or reduce the duration of cold symptoms? Learn more about zinc's benefits as a cold remedy from the experts at WebMD.

Zinc, umcka & elderberry for cold season | Pharmaca ...

www.pharmaca.com/projectwellness/2014/10/10/my-3-favorite-natural... ▼

Dr. Tieraona Low Dog talks about her medicine cabinet must-haves during **cold** and flu season, including **zinc**, **umcka** laobo and elderberry.

ZINC: Uses, Side Effects, Interactions and Warnings - WebMD

www.webmd.com > WebMD Home > Vitamins & Supplements *

Find patient medical information for **ZINC** on **WebMD** including its uses, effectiveness, side effects and safety, interactions, user ratings and products that have it.

Zinc — Health Professional Fact Sheet - Office of ...

ods.od.nih.gov/factsheets/Zinc-HealthProfessional -

Zinc is an essential mineral that is naturally present in some foods, added to others, and available as a dietary supplement. **Zinc** is also found in many **cold** lozenges ...

Umcka® - Get back to life faster with all natural Umcka ...

www.umcka.com

Umcka® - Get back to life with **Umcka**® Coldcare and Cold+Flu! Recover from the cold and flu faster with **Umcka** natural cold and flu products including liquids ...

Jolanta Umecka - IMDb

www.imdb.com/name/nm0880840 -

Jolanta Umecka, Actress: Nóz w wodzie. Jolanta Umecka is an actress, known for Knife in the Water (1962), Panna zázracnica (1967) and Echo ...

News · Biography · Awards · Films

Related searches for umecka

Umcka Cold Remedy Umcka Drops

Umckaloabo Walgreens Where to Buy Umcka

Umcka Cold Umcka Walgreens

Knife in the Water - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Knife_in_the_Water *

Knife in the Water is a 1962 Polish drama film co-written and directed by Roman Polański, which was nominated for Academy Award for Best Foreign Language Film. It ... Plot · Cast · Production · Critical reception · Home video

Evaluating Nonstationary Policies

- To estimate: $V(\pi, T) = E\left[\frac{1}{T}(r_1 + r_2 + \cdots r_T)\right]$ where $a_t = \pi(x_1, a_1, r_1, \dots, x_{t-1}, a_{t-1}, r_{t-1}, x_t)$
- Examples: all explore-exploit learning algorithms

- Simple inverse propensity score does not work
- Need to simulate the trajectory

The Replay Method [LCLS'10, LCLW'11]

Key requirement for data collection: $p_a \equiv \frac{1}{K}$

Nonstationary policy π

Finally output
$$\widehat{V}\left(\pi, \frac{L}{K}\right) = \frac{K}{L} \times \sum_{i=1}^{L} \left(r_i \cdot 1(\widehat{a}_i = a_i)\right)$$

Unbiasedness of Replay

• **Theorem**: if L is large enough to generate T matches in replay, then

$$E[\widehat{V}(\pi,T)] = V(\pi,T)$$

- Unfortunately, cannot use L or T to estimate confidence intervals
- Can use bootstrapping instead
- How large L do we need to have T matches?
 - On average, L = KT
 - With high probability, need L $\approx 2KT$
- More discussions later

Replay with Non-uniform Exploration

- Data $D = \{(x, a, r_a, p_a)\}$ where $p_a \neq \frac{1}{K}$
- ullet Can apply rejection sampling to obtain a subset of uniform p_a

- Not very efficient when p_i 's vary a lot
- Adaptive rejection sampling [DELL'12]

Case Study 3: News Recommendation

- Data collected in 2009
 - 40M impressions over 10 days in exploration data
 - $p_a = \frac{1}{K}$ (uniform random exploration)
- Low variance when evaluating representative nonstationary policies

algorithm	mean	std	max	\min
ϵ -greedy	1.2664	0.0308	1.3079	1.1671
UCB	1.3278	0.0192	1.3661	1.2812
LinUCB	1.3867	0.0157	1.4268	1.3491

100 independent runs with different randomization seed

Conjecture: Replay has low variance for *reasonable* nonstationary policies

Application of Replay: Personalized Explore-Exploit Algorithms [LCLS'10]

Application of Replay: Effects of Reward Delay [CL'11]

Application of Replay: Multi-objective Optimization [ACEW'11&12]

Recap

- Direct method by estimating $\hat{r}(x, a)$ is inherently biased
- Stationary policies: Inverse propensity Score ensures unbiasedness
 - With easily quantified variance
- Nonstationary policies: Replay method

- Case studies:
 - News recommendation
 - Bing search engine

Enhanced Techniques

Unknown propensity scores

Direct policy optimization Doubly robust estimation Bootstrapped replay

Unknown Propensity Scores

- So far we have assumed exploration data $D = \{(x, a, r_a, p_a)\}$
- Sometimes p_a is unavailable
 - Data was generated by multiple deterministic policies ($p_a \equiv 1$ in this case) "natural exploration"
 - Data loss or contamination (p_a not truthful of real action distribution in data)
 - ...
- Not all hope is lost

IPS with Estimated Propensity Scores

- Data $D=\{(x_1,a_1,r_1),(x_2,a_2,r_2),...,(x_L,a_L,r_L)\}$ where $a_t \sim p_t(\cdot \mid x_t)$ [p_t unknown or deterministic]
- **Assumption**: π_t independent of D
- Define "averaged" distribution $p = \frac{1}{L}(p_1 + p_2 + \dots + p_L)$
- Estimate $\hat{p}(a|x) \approx p(a|x)$
 - Multinomial logistic regression, neural network, decision trees, ...

$$\hat{V}_{ips}(\pi) = \frac{1}{L} \sum_{i} \frac{r_i \cdot 1(\pi(x_i) = a_i)}{\max\{\hat{p}(a_i|x_i), \tau\}}$$

Avoid division by tiny numbers

Properties

$$\hat{V}_{ips}(\pi) = \frac{1}{L} \sum_{i} \frac{r_i \cdot 1(\pi(x_i) = a_i)}{\max\{\hat{p}(a_i|x_i), \tau\}}$$

- Slightly biased
 - τ : Under-estimation since it makes ratio smaller
 - $1/\hat{p}$: Over-estimation
- Variance control
 - τ helps stability (preventing division by tiny numbers)
- Combined [SLLK'10]

$$\left| E[\hat{V}_{ips}(\pi) - V(\pi)] \right| \le E_x \begin{bmatrix} r(x, \pi(x)) & \text{if } p(\pi(x)|x) < \tau \\ \max_{a} |p(a|x) - \hat{p}(a|x)| / \tau & \text{otherwise} \end{bmatrix}$$

Enhanced Techniques

Unknown propensity scores

Direct policy optimization

Doubly robust estimation

Bootstrapped replay

Policy Optimization

• Most often ultimate goal is to find optimal π with maximum $V(\pi)$

- Approach 1: guess and check
 - Offline optimization against MSE/NDCG
 - Online experiment to verify gain in CTR/satisfaction/revenue
- Approach 2: direct solution
 - Offline optimization against $\widehat{V}(\pi)$
 - Example: Bing Speller
 - Can be substantially generalized

Classification as Contextual Bandit

• Multi-class, multi-label classification

- Example x associated with subset of correct labels $c \subseteq L = \{1, 2, ..., K\}$
 - x ("imitation game") $\rightarrow c$ ({historical, thriller})

Multi-label Classification as Contextual Bandit

- Use classification example (x, c) to simulate interaction in bandit
 - *x*: context
 - A = L: candidate actions
 - $r_a = 1(a \in c)$
 - Essentially, $(x,c) \implies (x; r_1, r_2, ..., r_K)$

• Policy π is treated as classifier

$$V(\pi) = E_{\mathcal{X}}[r(x,\pi(x))] = E_{\mathcal{X}}[1(\pi(x) \in c)]$$

Policy value is classification accuracy!

Policy Optimization as Classification

Contextual bandit \rightarrow weighted multi-class classification $(x, a, r_a, p_a) \implies (x, a, w_a) \quad w_a = r_a/p_a$

Same trick as IPS!

$$E_{x,a}[w_a \cdot 1(\pi(x) = a)] = E_x[r(x,\pi(x))] = V(\pi)$$

Policy value is same as weighted classification accuracy!

Maximize policy value $V(\pi)$

Maximize weighted classification accuracy $V(\pi)$

Multi-class classification algorithm

Offset tree [BL'09]: a similar and sometimes more effective optimization algorithm

Case Study 4: Advertising [SLLK'10]

- Problem: choose ad α for x = (user, page) to maximize clicks
- Goal: learn from production data a warm-start policy better than random
- Non-exploration data $D = \{(x, a, r_a)\}$
 - 35M impressions for training
 - 19M impressions for test
 - 880K ads
 - 3.4M distinct webpages
 - $r_a \in \{0,1\}$: click or not

Three Algorithms for Comparison

- Random (baseline)
- Naive (supervised learning):
 - Learn scoring function s(x, a) from data D
 - Policy $\pi(x) = \arg \max s(x, a)$
- Our approach (addressing bias in data):
 - Estimate propensity scores $\hat{p}(a|x)$ from data D
 - Learn regressor f to minimize $\frac{\left(r_a f(x,a)\right)^2}{\max\{\hat{p}(a|x),\tau\}}$ Policy $\pi(x) = \arg\max_{a:\hat{p}(a|x)>0} f(x,a)$

Warm Start Results

Method	τ	Estimate	Interval
Learned	0.01	0.0193	[0.0187,0.0206]
Random	0.01	0.0154	[0.0149,0.0166]
Learned	0.05	0.0132	[0.0129,0.0137]
Random	0.05	0.0111	[0.0109,0.0116]
Naive	0.05	0.0	[0,0.0071]

- Ignoring bias in data, naive supervised learning even worse than random!
- Reasonably strong warm-start policies, even learned from non-exploration data

Enhanced Techniques

Unknown propensity scores
Direct policy optimization
Doubly robust estimation
Bootstrapped replay

Doubly Robust Estimation

Direct Method (DM)

$$\widehat{V}_{dm}(\pi) = \frac{1}{L} \sum \widehat{r}(x, \pi(x))$$

Inverse Propensity Score (IPS)

$$\hat{V}_{\text{ips}}(\pi) = \frac{1}{L} \sum \frac{r_a \cdot \mathbf{1}(\pi(x) = a)}{\hat{p}_a}$$

Estimate $\hat{r}(x, a) \approx r(x, a)$ Small variance Large bias

No or small bias Large variance if $p_a \approx 0$

• Doubly Robust (DR) [RRZ'94]

$$\hat{V}_{dr}(\pi) = \frac{1}{L} \sum_{\substack{(x, a, r_\alpha, \hat{p}_\alpha) \in D}} \left(\hat{r}(x, \pi(x)) + \frac{\left(r_a - \hat{r}(x, \pi(x))\right) \cdot \mathbf{1}(\pi(x) = a)}{\hat{p}_a} \right)$$

DR: Unbiasedness

$$\hat{V}_{dr}(\pi) = \frac{1}{L} \sum_{i} \left(\hat{r}(x, \pi(x)) + \frac{\left(r_a - \hat{r}(x, \pi(x)) \right) \cdot \mathbf{1}(\pi(x) = a)}{\hat{p}_a} \right) \quad \hat{r} = r \implies E[\hat{V}_{dr}] = V(\pi)$$

$$= \frac{1}{L} \sum_{i} \left(\hat{r}(x, \pi(x)) \left(1 - \frac{\mathbf{1}(\pi(x) = a)}{\hat{p}_a} \right) + \frac{r_a \cdot \mathbf{1}(\pi(x) = a)}{\hat{p}_a} \right) \quad \hat{p} = p \implies E[\hat{V}_{dr}] = V(\pi)$$

- Two ways to ensure unbiasedness ("doubly protected")
- Implemented in Vowpal Wabbit (http://hunch.net/~vw)
- Well-known in statistics, but not entirely satisfying
 - Almost impossible to have $\hat{r} = r$ or $\hat{p} = p$ in reality
 - Refined analysis for practically relevant situations [DLL'11]

DR: Bias Analysis

•
$$E[\hat{V}_{dr}] - V(\pi) = E_x[\operatorname{err}_p(x) \cdot \operatorname{err}_r(x)]$$

Error in \hat{p} Error in \hat{r}

•
$$E[\hat{V}_{ips}] - V(\pi) = E_x[err_p(x) \cdot r(x, \pi(x))]$$

DR has lowest bias with "reasonable" \hat{p} and \hat{r}

•
$$E[\hat{V}_{dm}] - V(\pi) = E_x \left[\operatorname{err}_r(x, \pi(x)) \cdot \max_{x, a} \{r(x, a)\} \right]$$

DR: Variance Analysis

•
$$Var[\hat{V}_{dr}] \approx \frac{1}{L} E_x \left[\frac{\operatorname{err}_r(x)^2 \cdot \left(1 - \operatorname{err}_p(x) \right)^2}{p(\pi(x)|x)} \right]$$

•
$$Var[\hat{V}_{ips}] \approx \frac{1}{L} E_x \left[\frac{r(x,\pi(x))^2 \cdot (1 - err_p(x))^2}{p(\pi(x)|x)} \right]$$

•
$$Var[\hat{V}_{dm}] = \frac{1}{L} Var_x[\hat{r}(x,\pi(x))]$$

DR has lower variance than IPS with "reasonable" \hat{r}

DM often has low variance, <u>not</u> affected by p(a|x)

Case Study 5: UCI datasets [DLL'11]

Dataset	ecoli	glass	letter	optdigits	page-blocks	pendigits	satimage	vehicle	yeast
Classes (k)	8	6	26	10	5	10	6	4	10
Dataset size	336	214	20000	5620	5473	10992	6435	846	1484

Classification to bandit: $(x,c) \implies (x; r_1, r_2, ..., r_K)$

Bandit to classification: $(x, a, r_a, p_a) \implies (x, a, w_a)$ $w_a = r_a/p_a$

Policy Evaluation

• 50% data for training (regular classification) to obtain π

- 50% data for testing with bandit labels
 - For each x, randomly pick $a \in \{1, ..., K\}$ and reveal $r_a = 1(a = c)$ [classification to bandit reduction]
 - Only 1/K fraction of labels observed
 - Compare DM, IPS, DR

Policy Evaluation

Policy Optimization

- 70% data for training with bandit labels to obtain π
 - For each x, randomly pick $a \in \{1, ..., K\}$ and reveal $r_a = \mathbf{1}\{a = c\}$
 - Only 1/K fraction of labels observed

Optimization algorithms

- Direct loss minimization [MHK'11]
- Filter tree [BLR'08]

Generic multi-class classification (Combined with DM, IPS, DR)

Offset tree [BL'09]: alternative policy optimization algorithm

• 30% data for testing accuracy of π (regular classification)

Policy Optimization

Enhanced Techniques

Unknown propensity scores
Direct policy optimization
Doubly robust estimation
Bootstrapped replay

Time Acceleration Problem [NMP'14]

- With L=|D| data and uniform exploration $p_a=1/K$
 - Expected number of matches is L/K
 - Replay can estimate $V(\pi, T)$ up to $T \approx L/K$

Replay cannot evaluate π for too large T

(from [NMP'14])

BRED [NMP'14] "Bootstrapped Replay on Expanded Data"

Subsample w/ replacement & jittering on x_i

BRED Theory

- For stationary policies, confidence intervals are estimated much faster
 - O(1/T) as opposed to $O(1/\sqrt{T})$
 - under mild assumptions (similar to the bootstrap theory)
- For stationary policies, can estimate $V(\pi,T)$ for $T\gg L/K$
 - although the bootstrap theory does not apply
- Practical limitation: computationally expensive
 - fast, approximate bootstrap [OR'01]
 - implemented in Vowpal Wabbit [QPKLL'13]

Replay vs. BRED on Yahoo! News Recommendation

Practical Issues

How to Design Exploration Distributions

- Use of natural exploration (without collecting truly randomized data)
 - Cheap, and potentially useful
 - But risky (by ignoring potential confounding)
- Need to design A properly before collecting data

How to Design Exploration Distributions (2)

- $Var\left(\widehat{V}(\pi)\right)$ depends on how much π "agree" with p
 - Usually π not known in advance
 - Choice #1: uniform (best in the worst case) [news recommendation]
 - Choice #2: randomize around current/production policy [Speller]
- More exploration with p causes greater potential risk
 - Negative user satisfaction, monetary loss, ...
- May use inner/outer confidence intervals to guide design [B+13]

Best decisions have to be on a case-by-case level

What Information to Log

- Data $D = \{(x, a, r_a, p_a)\}$
- Should log x if possible to avoid inconsistency
 - Eg., x has time-sensitive features
 - Eg., x may be missing due to timeouts
- Should $\log p_a$ (unless it's precisely known)
- Should log immediate actions (not final actions)

Initial SERP Final SERP

Detecting Data Quality Issues

$$Data D = \{(x, a, r, p)\}\$$

Mean tests [LCKG'14]

arithmetic:
$$\forall a'$$
: $\sum_{D} 1(a = a') \approx \sum_{D} p(a'|x)$

harmonic: $\sum_{D} \frac{1}{p} \approx L \times K$

Use standard t-test to detect ≠

ullet Can log randomization seed in D and check offline to detect bugs

Concluding Remarks

Review

General theme: use historical data to offline-discovery online metrics (estimate causal effects from historical data)

- Policy evaluation/optimization
- Unbiasedness with IPS and Replay
- Variance reduction techniques with DR, etc.
- Case studies in news, search, advertising, and benchmark

More Bing Examples

Including results for contextual bandit.

Do you want results only for contextal bandit?

Contextual Bandits « Machine Learning (Theory)

hunch.net/?p=298 ▼

When you compare **contextual bandit** to RL in general, **contextual bandit** is a special case for the most general RL formulations (as essentially everything is).

[PDF] A Contextual-Bandit Approach to Personalized ...

www.research.rutgers.edu/~lihong/pub/Li10Contextual.pdf

A **Contextual-Bandit** Approach to Personalized News Article Recommendation Lihong Li†, WeiChu†, †Yahoo! Labs lihong,chuwei@yahoo-inc.com John Langford‡

Multi-armed bandit - Wikipedia, the free encyclopedia

Related searches

Contextual Bandit Learning

Contextual Bandit Problem

Multiworld Testing

Multi Armed Bandits

Vowbal Wabbit Machine Learning

Bandit Learning

Bandit Problem

Bandit Algorithms

More Bing Examples

Las Conde

LA REINA

Multi-armed bandit - Wikipedia, the free encyclopedia

Many More Applications

- Yahoo!, Google, Microsoft, LinkedIn, Adobe, Criteo, ... [LP'07] [LSW'08] [CGGHL'10] [PPBK'11] [ACEW'11] [TRSA'13] [A+'14] ...
- Can be combined with other methods like interleaving [HWR'12&14]
- WWW 2015 Workshop in May (Florence, Italy) http://evalworkshop.com
- Datasets available at Yahoo! Webscope (R6B)
 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Limitations and Open Questions

- Many actions
 - Relies on natural exploration and approximate matching [LKZ'15]
 - Use production data to approximate online behavior [YBL'15]
 - Continuous actions [B+'13]
- Cannot model long-term effects
 - Off-policy reinforcement learning
 - Equilibrium analysis [B+'13]
- Relies on stationary assumption
- Statistically more efficient (even optimal) offline estimation

References

- [A+'14] Deepak Agarwal, Bee-Chung Chen, Rupesh Gupta, Joshua Hartman, Qi He, Anand Iyer, Sumanth Kolar, Yiming Ma, Pannagadatta Shivaswamy, Ajit Singh, Liang Zhang: Activity ranking in LinkedIn feed. KDD 2014: 1603-1612
- [ACEW'11] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, Xuanhui Wang: Click shaping to optimize multiple objectives. KDD 2011: 132-140
- [ACEW'12] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, Xuanhui Wang: Personalized click shaping through lagrangian duality for online recommendation. SIGIR 2012: 485-494
- [B+'13] Léon Bottou, Jonas Peters, Joaquin Quiñonero Candela, Denis Xavier Charles, Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Y. Simard, Ed Snelson: Counterfactual reasoning and learning systems: the example of computational advertising. Journal of Machine Learning Research 14(1): 3207-3260 (2013)
- [BA'85] Andrew G. Barto, P. Anandan: Pattern-recognizing stochastic learning automata. IEEE Transactions on Systems, Man, and Cybernetics 15(3): 360-375 (1985)
- [BL'09] Alina Beygelzimer, John Langford: The offset tree for learning with partial labels. KDD 2009: 129-138
- [MCLZC'12] Taesup Moon, Wei Chu, Lihong Li, Zhaohui Zheng, Yi Chang: An online learning framework for refining recency search results with user click feedback. ACM Trans. Inf. Syst. 30(4): 20 (2012)
- [CGGHL'10] David Chan, Rong Ge, Ori Gershony, Tim Hesterberg, Diane Lambert: Evaluating online ad campaigns in a pipeline: Causal models at scale. KDD 2010: 7-16
- [CJRY'12] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, Yisong Yue: Large-scale validation and analysis of interleaved search evaluation. ACM Trans. Inf. Syst. 30(1): 6 (2012)
- [CL'11] Olivier Chapelle, Lihong Li, An empirical evaluation of Thompson sampling. NIPS 2011: 2249-2257
- [CSSL'08] Joaquin Quiñonero Candela, Masashi Sugiyama, Anton Schwaighofer, Neil D. Lawrence, editors. Dataset Shift in Machine Learning. MIT Press, 2008.
- **[DELL'12]** Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li, Sample-efficient Nonstationary-policy evaluation for contextual bandits. UAI 2012: 247-254

- [DELL'14] Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li, Doubly robust policy evaluation and optimization. Statistical Science 29(4):485-511 (2014)
- [DLL'11] Miroslav Dudík, John Langford, Lihong Li, Doubly robust policy evaluation and learning. ICML 2011: 1097-1104
- [H'79] James J. Heckman. Sample selection bias as a specification error. Econometrica 47(1):153-161 (1979)
- [H'86] Paul W. Holland. Statistics and causal inference. Journal of the American Statistical Association 81(6):945–960 (1986)
- [HWR'12] Katja Hofmann, Shimon Whiteson, Maarten de Rijke: Estimating interleaved comparison outcomes from historical click data. CIKM 2012: 1779-1783
- [HWR'13] Katja Hofmann, Anne Schuth, Shimon Whiteson, Maarten de Rijke: Reusing historical interaction data for faster online learning to rank for IR. WSDM 2013: 183-192
- [HWR'13a] Katja Hofmann, Shimon Whiteson, Maarten de Rijke: Fidelity, Soundness, and Efficiency of Interleaved Comparison Methods. ACM Trans. Inf. Syst. 31(4): 17 (2013)
- **[KLSH'09]** Ron Kohavi, Roger Longbotham, Dan Sommerfield, Randal M. Henne: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1): 140-181 (2009)
- [LCLS'10] Lihong Li, Wei Chu, John Langford, Robert E. Schapire: A contextual-bandit approach to personalized news article recommendation. WWW 2010: 661-670
- **[LCLW'11]** Lihong Li, Wei Chu, John Langford, Xuanhui Wang: Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. WSDM 2011: 297-306
- [LCKG'14] Lihong Li, Shunbao Chen, Jim Kleban, Ankur Gupta, Counterfactual estimation and optimization of click metrics for search engines, no. MSR-TR-2014-32, March 2014
- [LKZ'15] Lihong Li, Jinyoung Kim, Imed Zitouni: Toward predicting the outcome of an A/B experiment for search relevance. WSDM 2015: 37-46
- [LMS'15] Lihong Li, Remi Munos, Csaba Szepesvari. Toward minimax off-policy value estimation. AISTATS 2015

- [LP'07] Diane Lambert, Daryl Pregibon: More bang for their bucks: assessing new features for online advertisers. SIGKDD Explorations 9(2): 100-107 (2007)
- [LSW'08] John Langford, Alexander L. Strehl, Jennifer Wortman: Exploration scavenging. ICML 2008: 528-535
- [LZ'08] John Langford, Tong Zhang: The Epoch-Greedy Algorithm for multi-armed bandits with side information. NIPS 2007: 817-824
- [NMP'14] Jérémie Mary, Philippe Preux, Olivier Nicol: Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques. ICML 2014: 172-180
- [OR'11] Nikunj C. Oza, Stuart Russell. Online bagging and boosting. In AISTATS, 2001.
- [P'09] Judea Pearl. Causality: Models, Reasoning and Inference (2nd edition). Cambridge University Press, 2009.
- [PPBK'11] Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Desmond Brand, Tapas Kanungo. Model characterization curves for federated search using click-logs: Predicting user engagement metrics for the span of feasible operating points. WWW 2011: 67-76
- [PSS'00] Doina Precup, Richard S. Sutton, Satinder P. Singh: Eligibility traces for off-policy policy evaluation. ICML 2000: 759-766.
- [QPKLL'13] Zhen Qin, Vaclav Petricek, Nikos Karampatziakis, Lihong Li, John Langford, Efficient online bootstrapping for large scale learning, no. MSR-TR-2013-132, December 2013
- [R'74] Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology 66(5):688-701 (1974)
- [RRZ'94] James M. Robins, Andrea Rotnitzky, Lue P. Zhao. Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association 89:846-866 (1994)
- [SLLK'10] Alexander L. Strehl, John Langford, Lihong Li, Sham Kakade: Learning from Logged Implicit Exploration Data. NIPS 2010: 2217-2225
- [TRSA'13] Liang Tang, Rómer Rosales, Ajit Singh, Deepak Agarwal: Automatic ad format selection via contextual bandits. CIKM 2013: 1587-1594
- [YBL'15] Dragomir Yankov, Pavel Berkhin, Lihong Li. Evaluation of explore-exploit policies in multi-result ranking systems. Working paper.