Measuring the Loss of Privacy from Statistics

Michael Carl Tschantz Aditya V. Nori
Computer Science Department Rigorous Software Engineering
Carnegie Mellon University Microsoft Research India
nt schant @s. cnu. edu adi t yan@n crosoft.com
Abstract

We present a specialization of quantitative informatiowfto programs that compute statistics. We
provide an approach for estimating the information flowspre in such programs based on Monte Carlo
simulation and argue that it is more accurate than previppsaaches in this domain.

1 Introduction

Organizations often collect sensitive information abawtvey respondents. To protect the privacy of the
respondents, they only publish aggregate statistics dheuesponses rather than the responses themselves.
These statistics are designed to provide information abmitresponses as a whole without providing a
detailed view of any one response. However, under somerstances, these statistics may reveal sensitive
information about a particular respondent. We would likegoantify how much information about a single
respondent can be learned from a given statistic.

For example, a trivially unsafe program might just repod tesponses themselves including the name
of the person who provided each response. Likewise, altsivdafe program might always report “access
denied” providing no information.

For a less trivial example, consider a program that takesrtarenegative integer salaries and returns
their sum:

return (salaryl + sal ary?2)

Such a program provides an upper bound on each respondalat’g since neither can be greater than twice
the average. Furthermore, if the sum is zero, the sum alsoda® the exact salary of each respondent. If,
on the other hand, the sum is one, then two possibilitiesdoheespondent’s salary remain: zero and one.
As the sum goes up, the number of possibilities goes up. Tunlke the trivial cases above in which the
program could be analyzed independently of the responsedupes, in this case, the value of the produced
statistic influences the amount of privacy maintained.

Our goal is to provide an automated method for determinireg amount of information that flows
through a program that computes a statistic. We furtherel@sat our analysis is accurate enough to provide
reasonable results for common statistics. For examplek@faal. provide an analysis for measuring the
mutual information flow from sensitive inputs to public outp [1]. While their approach produces results
accurate enough for their problem domain, confidentialitjs not accurate enough for use on statistics.

*This work was primarily done while the first author was aniintat Microsoft Research India.

For example, it cannot distinguish between a program timaplsi lists the responses and a program that
provides the sum of all the responses.

To meet this goal, we use Monte Carlo simulation. This singgproach has many advantages. By
treating the program as a black box, it can work on any progvaitten in any language and is fully
automated. We need not create any models or ensure thatdhepr obeys a typing discipline. Running
the actual implementation rather than analyzing a spetititaf what a statistic should calculate catches
the effects of bugs. Despite not having a soundness guarawtth enough samples, our approach will
approach the exact values, whereas sound analyses oftadepuery loose bounds.

Rather than simply provide one number that measures thss Ves provide both the probability distri-
bution over the sensitive attribute for a respondent bedme after learning the value of the statistic. From
these distributions, many measures of information flonwgmy loss) used in other works can be easily
calculated including mutual information [1] and the chamgdistribution accuracy [2].

First, we present an formal model of programs that produagssics from a list of survey responses.
Second, we formalize the problem and discuss a related garobihat is more practical in many settings.
Third, we discuss our analysis. Fourth, evaluate our aisatys simple statistics. Lastly, we discuss related
work and conclude. While an intuitive understanding of @ioibty suffices for understanding this work,
the appendix formalizes our models with measure theory.

2 Modd

We model a program that computes a statistic as a fungtitimt accepts as input a finite list of survey
responses and produces as output the value of the statisticeach survey response be an element of
the countable sef2” and let the value of the statistic range over the countalile/seThus, the program

is treated as a functioii from 27* to . While the restriction to countable sef&” and % might seem
unnatural given a survey of continuous values such as wemttieights, this is not a limitation in practice
since respondents only ever provide this information to ediaccuracy (such as to the nearest kilogram for
weight). Also, we can model probabilistic programs by hgvinaccept a second argument that determines
the probabilistic choices. In our implementation, it'sigvant since it treats programs as black boxes.

The program operates in an environment from which its inpmes. Let the se® represent the set of
possible worlds and® be a probability measure over these worlds. The survey iduded and program
ran in one of these worlds, the actual world.

Let X be a random variable frof2 to 2™ that provides the inputs to the program. This models the
process of conducting the survey, which provides the pragsame information about the actual wogdd
We usex = (x4, ..., z,) to denote the actual survey responses provided to the prodghat is,x = X(w).

The programf computes the value of a statistic of the provided surveyaesps. This defines a new
random variabl&” = f o X from 2 to /. We usey to denote the actual value of the statistjc= f(x) =
f(X(w)).

For example,X; could be random variable that relates the weight of dhesurveyed person. That
is, X;(w) represents the weight of théh surveyed person in the possible woeld Sincew is the actual
world, z;, = X;(w) is the actual weight of théth surveyed person. The prografncould accept a list of
such weights and compute their mean. Thémould be a random variable that provides the mean of the
respondents given a possible world with the actual mearghgeia f(z,...,z,).

We model an adversary as attempting to determine the vake® tay some random variablé where
Z ranges overZ. That is, the adversary, would like to determine- Z(w). For exampleZ might beThe
weight of Bob or Bob has AIDS. The surveyor must determine for which random varialifethe adversary

should not be able to determine the value taken. These randdables will vary from survey to survey
depending on the information collected by the survey anehpyi expectations of the respondents.

The adversary has some prior beliefs abgutWe assume that the adversary knows what worlds are
possible, how the survey was conducted, and what statisticoemputed (that is, he knos X, and f).
However, we assume that the adversary does not know thd aaitd w or the actual responses= X(w).
Rather than knowing the actual probability measBrevhich is impossible to know exactly in many realistic
environments, the adversary has beliefs about the worigsepted as a probability measdye

3 Problem Formalization

Before formalizing the problem, we provide some notationve@ a random variableZ and probability
measurgy), we useQ), to denote the distributiod over 2 such thatD(z) = Q[Z = z] for all z in Z.
Similarly, (Q|Y = y), represents the distributioP such thatD(z) = Q[Z = z|Y = y| fory € # such
thatQ[Y = y] # 0.

Our goal is to provide an analysis that computes a compadétire adversary’s knowledge before and
after seeing the statistig That is, a comparison of the distribution @f; and the distributiof@[Y" = y) .
Since many such comparisons exist, our analysis will p@bdth@Q, and (Q|Y = Q)Z and allow the
analysis user to perform any selected comparison upon them.

While a comparison of), and (Q|Y = Q)Z is ideal, it seems unreasonable that the surveyor would
know the adversary’s prior belief9. Furthermore, the surveyor cannot do a worse case analysisatl
possible values fof)~ since it could be arbitrarily bad as an adversary could b#rarlly ignorant before
seeing the program output. Thus, we must make some assuisptiout the adversary to produce a problem
that the surveyor can practically solve given reasonabtgsgible information.

First, we assume that the adversary bases his prior digtib@ ; on the actual probability measure
That is, we assume théiy is P;. This assumption, as pointed out by Clarkson et al. [2], idenenplicitly
by most works on quantitative information flow (e.g., the wof Clark et al. [1]). This first assumption
might appear to not help us since we have traded one unkn@wifor another unknownp. However,
unlike Q z, the surveyor can estimafe,; using the next three assumptions.

Second, we assume thdtis determined byX. That is, we assume that the surveyor can decomgose
using some functiom such thatZ = g o X. For example, iZ is the response of the first respondent, then
is a function that returns the first response from the sequeheactual responses(w). This assumption is
reasonable since such random variables are the most vbladoeattack. (1£7 is not completely determined
by X, then the surveyor would have to also provide an estimatfdheother factors that determirie. It
would still be possible to use our approach, but we wish tadatlos complication.)

Third, we assume that the adversary knows the number of meggoin the actual responsgs=
(x1,...,z,) = X(w). That is, he knows:. Since most surveys publish the number of responses ex-
amined, this assumption is not too limiting. Fixing we can trealX as consisting ofi random variables
X, to X, with each.X; producing one responss.

Fourth, we assume thaf; to X,, are independent and identically distributed. Statidiicatcurate sur-
veys will meet this assumption by design. Under this assiompt; to z,, aren samples from a single
distribution Px. Given then samplesx, the surveyor can approximatey. Let Py be one such approxima-
tion selected by surveyor. This estimatég asPx~ (i.e., the distribution resulting from independent and
identically distributed copies aoX).

These assumptions combine to allow the surveyor to esti@gtasﬁgoxn. The problem then becomes

to compute a comparison éfgoxn and(P|Y = E)goXn from the following inputs:

the programf whereY = f o X,

the actual value of the responses- X (w),

a functiong where adversary is attempting to ledfifiw) = ¢g(X(w)), and

an approximatior”y of the distributionPyx that generated the responses and deternfihes

Note the problem depends not just on the statigtibut also on the actual value of the statistic, the in-
formation that the adversary would like to learn, and thénestion of the distributionPx. This requires
that the survivor solve this problem each time the statistim be applied to different responses or with a
different adversary. However, as argued in the introdugtthe amount of information flow is sensitive to
these changes.

4 Analysis

We now present a simple analysis for providing an approxénaaiswer to the practical version of the prob-
lem above. We also discuss our implementation of this aizlys

We use Monte Carlo simulation to estiméfe|y” = y), as follows. We repetitively us€y to generate
a samplex’ from Px», we run f onx’ to producey’, and we rung onx’ to producez’. By keeping track
of the valuez’ takes on each timg is equal toy, we can construct estimations 8%, and(P|Y = y),, in

the usual way: we estimaﬂéz(z) as the number of samples that resultin= z divided by the number of
samples and we estimat®|Y = y) ,(z) as the number of samples that resulted in W6tk = andY = y
divided by the number of samples that resulted’ia= y.

An advantage of this method is it works for affiyandg that are functions. (The method also works for
randomized functions provided that the surveyor can mdust sources of randomness.) The method runs
on large, complex programs even without source code.

Since constructingP|Y =y), takes memory linear i’ (not counting any memory used yor g),
this approach will not work for largeZ. However, one may choose to focus on a subse¥’dhat indicate
sensitive outcomes to reduce memory usage to the size afithget. For example, one might focus only on
z, the actual value that takes on, and calculate(Z = z|Y = y) for comparison taP(Z = z).

Several factors can slow down gaining an accurate estimaligf or g is a time intensive computation,
our dynamic analysis will be slow. A large size 8f or n, or a low value for]f’(Y = y) can each result in
needing a large humber of samples for constructing an aestimation o(P\Y =y),. While surveys
that ask for exact answers can have a laffje many only ask multiple choice questions yielding a more
manageable?’.

In general a large: can be problematic, but in the following special case, weaggammize our analysis
to not depend upon. Some statistics strips sensitive information (such asa)dram eachX; and lists the
sanitized form. Such statistigs have the formf ([X1, X2, ..., X)) = [f/(X1), f/(X2), ..., f(X,)] for
some functionf’. If Z is independent of alK; except one of them, say;, then

PlZ =2|f([X1, - Xiy oo X)) = [U1s - Yis - Unl]
P[Z: Z|f,(X1) :ybvf,(Xl) :yuvf,(Xn) :yn]
P(Z = 2| f(X;) = yi]

P(Z =2y =vy)

where the last equality follows fromr being independent of alk’; other thanX;. Thus, we can ignore all
X other thanX;. This greatly speeds up the approximation.

5 Evaluation

To evaluate our approach, we fix a method of compaf-?@gand(P|Y = y) The method we choose uses
entropy, an information theoretic measure of the amount of un(mméassoaated with a distribution. The
entropy of the distributior”; is

— Z P[Z = z]log, P[Z = 2
2€Z

and the entropy of the distributioi|Y" = y) , is

H((PIY =y),)=— > PlZ =2V =y]log, P|Z = 2|Y =y
ze€¥

(One usually speaks of the entropy of a random variable vaghunderlying probability measur being
understood. Since we are dealing with two probability mess andP]Y =y, we choose to make them
explicit.)

The comparison of the distribution8; and (P|Y = y), we use is the difference of their entropies:
H(Pz) — H((P|Y =y),). Clark et al. [1] argues that this difference measures theuaof information
that flows fromY = y to the adversary about since it is the decrease in the uncertaintyZadfter learning
that Y is equal toy. Indeed, this difference is related to mutual informatiam, information theoretic
measure of how much information one random variable previglsout another. Ignoring that = v is

a condition and not a random variablg,(P;) — H((P|Y = y),) may be seen as providing the mutual
informationZ(Z;Y = y) betweenZ andY” = y for a deterministic program.

Using entropy, we computed the difference betwé@nand(ﬁw =y) ,, for various statistics. In all
cases we used the uniform distribution o0dp 99 for each.X;. We selected the uniform distribution since
by having a high variance, we expected it to be a challengisgiloltion for the analysis in the sense of
requiring a large number of samples. Eorwe used the value of the first inpa; .

The first statistic we consider is the parity &f. This is not a particularly interesting statistic, but we
can exactly calculaté{(Py) to belog,(100) and H((P|Y = y),) to belog,(50) allowing us to see the
accuracy of our analysis. To study convergence and shovothlainalySB can provide accurate estimations,
we show the estimations produced using various numbersngbles in Figure 1(a). The y-axis shows the
estimated values for the entropies and mutual informatibileanthe x-axis shows the number of samples
performed, which ranges froa? to 22°. This table shows that the estimations of the valuek 6P;) and
H((P|Y = y),,) approach their real values as the number of samples ingeddwus, the estimation of

H(Pz) —H((P|Y = y)) approaches its real value as well. B samples, the mutual information is less
then0.0000003 bits away from the exact value of

Note that the estimations 6f(P;) andH((P|Y = y),,) tend to approach from below. Indeed, our es-
timator is a biased one. While others have created less sgtbiestimators ([5] provides a recent overview),
we simply opt to use more samples instead.

The results for more realistic statistics (mean, mediad, rmode) are shown in Figure 1(b). Note that
the value of the estimations for all three statistics sizdml by 223 samples. The raise and fall of the
estimations is due to both the estimations}ofP;) and H((P[Y = y),) approaching their real values

from below with H(P) approaching it's real value more quickly thae((P[Y =y),). This creates a
period wherel (P) is a reasonable estimation aft{(P|Y = y),,) is aradical underestimation resulting
in H(Pz) — H((P|Y = y),,) being a radical overestimation.

Bits.

H(Z|Y=y) o
i6g,(5
H@) - HEY=y) e

Bits.

H(Z) - H(Z|Y=y) for mean —&—
H(Z) - H(Z|Y=y) for median —-e-—
H(Z) - H(Z|Y=y) for mode -------

R o Aoiaa

! !
5 10 15

! ! 0
20 25

Exponent of the number of samples (log, scale)

(a) Parity

e Py "
10 15 20 25
Exponent of the number of samples (log, scale)

(b) Mean, Median, and Mode

Figure 1: Estimations for Various Statistics

Statistic

H(Pz) —H((PIY =y),)

Run Time (secs

Parity
Mean
Median
Mode

0.999999797131
0.0125233560025
0.00205987477602
0.0376910036281

639
684

1498
2444

Table 1: Summery of Analysis Results for Four Statistics

Table 1 summarizes the estimations 37 samples and shows the amount of time taken to com-
pute these results for running on32 GHz, 64-bit processor. Note that the estimations?e)(ﬁz) —
H((P|Y = y),,) for the mean, median, and mode are all lower than for parithiis Tonforms our sus-
picion that aggregate statistics tend to reveal little atibeir respondents. The time for estimating these
values grow linearly with the number of samples as expedibd.slowest was mode, which todk minutes
for 225 samples. However, an estimation that differs by less th@2il bits (0.32%) is available in under a

minute using2!”? samples.

To explore how the number samplesaffects the value ot (P;) — H((P|Y = y),) and the rate of
convergence to it, Figure 2(a) shows the estimatiori¥ @) — H((P|Y = y)) for the mean for varying
sizesn. Using more respondents decreased the difference betiféEp) andH ((P|Y = y),). However,

it increased the number of samples needed for convergemoe sbnvergence requires seeing many samples
such thaty” = y, which becomes a less common event.ascreases. Furthermore, it increased the amount
of time needed to compute the value of the statistic keepiegimber of samples constant since calculating
the mean over more respondents takes longer. In the worse tt@smean over024 respondents, it took
109 minutes for2?® samples with convergence still not reached. Figure 2(diilese run times.

Our implementation may be downloaded fréwint p: / / www. c¢s. crmu. edu/ ~mt schant/ ncqi f/

Bits.

4096 -

1024

N

o

>
T

Seconds (log, scale)
o
Y
T

16

1 1 1 i 1 1
5 10 15 20 25
Exponent of the number of samples (log, scale) Exponent of the number of samples (log, scale)

(a) Estimations oH(Pz) — H((P[Y =y)) (b) Run Times for Analysis
Figure 2: Results for Mean with Various Numbers of Respotslen

6 Redated Work

Quantitative Information Flow. Much work has been done on information flow analysis. We willyo
discuss those works that deal with quantifying the flow obinfation. These works concern themselves
with either confidentiality or integrity. In both cases, tto®l user partitions the inputs and outputs of the
program into high-level and low-level classes. Quantitainformation flow for confidentiality measures
how much the high-level inputs affect the low-level outpu@siantitative information flow for integrity, on
the other hand, measures how much the low-level inputstafiecigh-level outputs. The two problems are
dual and an analysis for one will apply to the other. Sincework fits under the confidentiality problem,
we will discuss all related works from this angle even if thvegre created with integrity in mind.

The work of Clark, Hunt, and Malacaria presents a formal nhadig@rograms for quantifying infor-
mation flows and a static analysis that provides lower anceuppunds on the amount of information
that flows [1]. They measure information flow as the mutuabiinfation between the high-level inputs
and low-level outputs given that the adversary has contret the low-level inputs. That is, they measure
T(Le“t; H"|Li") whereL°'t is a random variable representing the low-level outpkt, is one represent-
ing the high-level inputs, and™™ is one representing low-level inputs. Unlike our work thaasures the
information flow in a program given a particular input, thaimalysis provides upper and lower bounds on
the size of the information flow in a given program regardlesthe actual inputs or the distributions that
generate them. Since the upper bound holds for all inputilligions, it is an upper bound on the channel
capacity of the program.

Their analysis, if implemented, could be used for our probley treating the inputX asH'™, usingy’
asL°'t, and assuming thaf = X. (L'" is unused since we do not allow the adversary to control gmyte
to the statistic.) However, their analysis produces bouhdsare too loose for our purposes. For example,
no matter how many independent and identically distribig@ahples goes into a mean, their analysis will
state that all the information about the first sample is medias output despite the fact that it would be
hidden amongst other samples.

McCamant and Ernst provide a dynamic analysis for quaimg&anformation flow using the mutual
information formalization [6]. Their analysis provides apper bound on the flow of information of a single

path of execution in a program. Their analysis converts a paexecution into a flow network. They then
find the max cut of the network to bound the information flowlikinus, they provide a sound upper bound
for that path of execution instead of an estimate. Howeilar,the work of Clark et al., their analysis does
not account for information hiding in the calculations lizesum making the bound too loose to be useful
for our purposes.

Newsome and Song also provide a dynamic analysis for gatimitinformation flow using the mutual
information formalization [7]. Their analysis convertsiagle path of execution into a logical formula that
characterizes the path. Each solution to this formula spoads to a value that the outplitcan take
on while taking that path of execution. If all such solutiare found, this provides the channel capacity
betweenX andY provided only the analyzed path of execution is ever usegranatice, a theorem prover
can rarely find all such solutions, and thus, their analysily provides a lower bound on the channel
capacity. Whether or not this bound is tight enough for owesudepends on the theorem prover and the
formula.

Clarkson, Myers, and Schneider object to the mutual inféiendormulation of quantitative information
flow [2]. Instead they proposed a formulation using the elid the adversary. However, such a formulation
is often not practical since the surveyor often will not kntive adversary’s beliefs. After adjusting their
definitions for our uses, information flow is defined toB¢l)z — 2) — D((Q|Y = y), — £) whereQ is
the adversary’s beliefg; = Z(w) is the actual value of the random variable the adversarytésngting to
learn,z is a distribution overZ that assigns to z and0 to every other element a¥’, andD(Q, — Pz) is
the relative entropy:

Py(2)
D — Py) = Pz(2)lo
(Qz Z) ;Z 7(2) & 020)
For deterministic programs, they prove thiatQ, — %) — D((Q|Y =y), — %) reduces to- log Qy (y).
We can calculate this given an approximatiortaf directly. We could also calculate this using our sampling
approach given an approximation @for Q) x.

Preserving Privacy. Statistical disclosure limitation attempts to preseniggmy despite releasing statis-
tics. (For an overview see [4].) Most of the methods used i lthe of work are specialized for a single
class of statistics. Most often this is the class of freqyeiables, tables that record the number of re-
spondents with various combinations of attributes. Tabfesagnitudes and sanitized individual responses
(microdata) are also considered. While our approach is reffi@ent for some statistics than others, it can
work on any statistic provided it is calculated by a computer

Other works in statistical disclosure limitation use Mo@trlo simulation for purposes other than ours.
For example, Slavkovit uses it construct an estimationrobability distributions over outputs¥y in our
notation) [8].

Differential privacy is a formalization of what it means farstatistic to maintain the privacy of the
respondents about which it is calculated [3]. It requires the output that the program produces is probably
no different from the output it would have produced if onep@sdent were dropped from or added to the
survey. In particular, for a statisti¢ to havee-differential privacy, it must be the case that for all séts
and D, of responses that differ on at most one response and alltsubeé the range off

Pr[f(D;) € S] < e Pr[f(D2) € S]

This ensures that the probability of the statistic’s oufpliing in some sefS changes only by a factef as a
single respondent’s information is either added or remdx@t the survey. Intuitively, if the statistic prob-
ably looks the same regardless of if a person is surveyedtpan@dversary cannot learn much information

about the person. While we could consideio be measure of information flow, it does not lend itself to
the analysis of many standard statistics since they do netddifferential privacy for any value of. For
example, the mean of respondent incomes would not satidifferential privacy for any since it would
surely change by at least a small amount with a responderdvesin (A version of the mean statistic that
adds random noise to the result could be constructed tdysatdifferential privacy for are that depends
upon the amount of noise added.)

7 Conclusions and Future Work

We have provided an analysis for determining the amount fofmation that an adversary learns from a
statistic given various assumptions. Future work coula ¢hsse assumptions. However, this work and all
works on quantitative information flow must make some asgigmmbout the adversary. In most works,
including our own, they assume that the adversary’s belietse in line with the actual wor@ and that
adversary has no additional background knowledge. Clarkdaal. instead assume they can model the
adversary. Both of these assumptions are troubling. Thjgests that methods that do not depend on the
adversary, such as differential privacy [3], might provalbetter solution to protecting privacy. However, it
considers every standard statistic (mean, median, mocl¢ egfually and completely unprivate.

Other future work could combine our method with static apgtes for information flow such as the
work of Clark et al. [1]. Such a hybrid approach, if possilig@ght scale to systems too large or slow for
our Monte Carlo approach while using our approach to closggmine key components of the program.

References

[1] CLARK, D., HUNT, S.,AND MALACARIA, P. A static analysis for quantifying information flow in a
simple imperative languagdournal of Computer Security 15 (2007), 321-371.

[2] CLARKSON, M. R., MYERS, A. C., AND SCHNEIDER, F. B. Belief in information flow. InNCSFW
"05: Proceedings of the 18th IEEE workshop on Computer Security Foundations (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 31-45.

[3] DwoRk, C. Differential privacy. In33rd International Colloquium on Automata, Languages and
Programming (ICALP 2006) (2006), vol. 2, pp. 1-12.

[4] FEDERAL COMMITTEE ON STATISTICAL METHODOLOGY. Statistical disclosure limitation method-
ology. Statistical Policy Working Paper 22, 2005.

[5] KENNEL, M. B., SHLENS, J., ABARBANEL, H. D. I., AND CHICHILNISKY, E. J. Estimating entropy
rates with bayesian confidence intervaigural Computation 17, 7 (jul 2005), 1531-1576.

[6] MCcCAMANT, S.,AND ERNST, M. D. A simulation-based proof technique for dynamic imf@tion
flow. In PLAS’07: Proceedings of the 2007 workshop on Programming languages and analysis for
security (New York, NY, USA, 2007), ACM, pp. 41-46.

[7] NEwWSOME, J., AND SONG, D. Influence: A quantitative approach for data integrityecii. Rep.
CMU-CyLab-08-005, CyLab, Carnegie Mellon University, 300

[8] SLAvKoVIC, A. B. Satistical Disclosure Limitation Beyond the Margins, Characterization of Joint
Distributions for Contingency Tables. PhD thesis, Carnegie Mellon University, 2004.

A TheModel MoreFormally

In this section, we provide definitions that are more forrhaht the ones found in Sections 2 and 3.

Formally, we model the environment from which program irgpedme as a probability spa¢e, F, P)
with the sample space, eventsF, and probability measur® that models this environment.

Let 27* be the set of inputs that the modeled program can consume.s$eng that?” is countable,
implying that.2"* is countable. This ensures thig *,2# *) a measurable space. The random varidbje
which models program inputs, is from the probability sp&ee, P) to the measurable spa¢g ™, 2%).

Let % be the set of outputs that the modeled program can produces®ene tha® is countable, and
thus, (#,27”) is a measurable space. Lgt 2™* — % be a function that models the program. Lébe
foX, which models the output of the prograii.is from the probability spac&?, 7, P) to the measurable
space(?,2”). Y is a well-defined random variable since for asiy: 27, f~!(S) must be ie* "~ and the
state space dX is (27*,2% ") ensuring thal ~!(f~1(S)) = Y~1(S) isin F.

We model an adversary as attempting to determine the vahkedio by some random variablé from
(Q, F, P) to some measurable spac#’, 27, again, assuming tha is countable.

We model the adversary’s beliefs about the world as a préibatiieasurel) on (€2, F).

Given a random variabl& from (€2, F, P) to (2", ¥), thedistribution Px is the pushforward measure
of Pby X. Thatis,Px(E) = P(X~'(E)) for E € X.

Given a probability spac&?, 7, P) and random variabl& from (Q2, F, P) to (2",), we write P|Y" =
y for the probability measure such th@P|Y = y)(E) = P(ENY~'({y}))/P(Y~'({y})). Note that
(Q,F, P|Y = y) is a probability space with the same random variable$as, P).

Thus, given probability spacg?, F, P), random variabl&” from (Q, F, P) to (¢, Xy), and random
variableZ from (Q, F, P) to (2,3), (P|Y = y), is the distributionD such thatD(z) = P(Z~({z}) N
Y= ({y})/P(Y "' ({y})) fory € & such thatP(Y ' ({y})) # 0.

