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1 Introduction 
 
Microsoft Research Redmond participated for the first time in TREC this year, focusing on the 
question answering track.  There is a separate report in this volume on the Microsoft Research 
Cambridge submissions for the filtering and Web tracks (Robertson et al., 2002).  We have been 
exploring data-driven techniques for Web question answering, and modified our system 
somewhat for participation in TREC QA.  We submitted two runs for the main QA track 
(AskMSR and AskMSR2). 

Data-driven methods have proven to be powerful techniques for natural language processing.  It 
is still unclear to what extent this success can be attributed to specific techniques, versus simply 
the data itself.  For example, Banko and Brill (2001) demonstrated that for confusion set 
disambiguation, a prototypical disambiguation-in-string-context problem, the amount of data used 
far dominates the learning method employed in improving labeling accuracy.  The more training 
data that is used, the greater the chance that a new sample being processed can be trivially related 
to samples appearing in the training data, thereby lessening the need for any complex reasoning 
that may be beneficial in cases of sparse training data. 

The idea of allowing the data, instead of the methods, do most of the work is what motivated our 
particular approach to the TREC Question Answering task.  One of the biggest challenges in 
TREC-style QA is overcoming the surface string mismatch between the question formulation and 
the string containing its answer.  For some Question/Answer pairs, deep reasoning is needed to 
relate the two.  The larger the data set from which we can draw answers, the greater the chance 
we can find an answer that holds a simple, easily discovered relationship to the query string. 

Our approach to question answering is to take advantage of the vast amount of text data that is 
now available online.  In contrast to many question answering systems that begin with rich 
linguistic resources (e.g., parsers, dictionaries, WordNet), we begin with data and use that to drive 
the design of our system.  To do this, we first use simple techniques to look for answers to 
questions on the Web.  Since the Web has orders of magnitude more data than the TREC QA 
document collection, simple techniques are likely to work here.  After we have found suitable 
answer strings from online text, we project them onto the TREC corpus in search of supporting 
documents. 
 

2 Answer Redundancy and Question Answering 
Answer redundancy (multiple, differently phrased, answer occurrences) serves two purposes for 
our task of question answering.  First, the occurrence of multiple linguistic formulations of the 
same answer increases the chances of being able to find an answer that occurs within the context 
of a simple pattern matching the query. For instance, it is not difficult to match the question 
“Who killed Abraham Lincoln” with the text “John Wilkes Booth killed Abraham Lincoln,” but it 
is more challenging to find the answer to this question in the text “John Wilkes Booth is perhaps 
America’s most infamous assassin. He is best known for having fired the bullet that ended 
Abraham Lincoln’s life.” 



The TREC corpus has considerably less answer redundancy than the Web – the TREC QA 
database consists of fewer than 1 million documents, whereas Web search engines are now 
indexing more than 2 billion pages.  By analyzing the set of documents returned by the union of 
all groups, we see that only 37 of the TREC 2001 queries have 25 or more documents with a 
correct answer, and only 138 have 10 or more documents.  Given a source, such as the TREC 
corpus, that contains only a relatively small number of formulations of answers to a query, we 
may be faced with the difficult task of mapping questions to answers by way of uncovering 
complex lexical, syntactic, or semantic relationships between question string and answer string.  
The need for anaphor resolution and synonymy, the presence of alternate syntactic formulations 
and indirect answers all make answer finding a potentially challenging task.  However, the greater 
the answer redundancy in the source, the more likely it is that we can find an answer that occurs 
in a simple relation to the question, and therefore, the less likely it is that we will need to resort to 
solving the aforementioned difficulties facing natural language processing systems. 

The second use of answer redundancy is to facilitate answer extraction.  Even if we find a simple 
relationship between the question and the proposed answer, the answer might be incorrect.  It is 
possible that the source made a mistake, or that the seemingly correct answer string appears in a 
context that identifies it as possibly incorrect (e.g. “John thinks that Andrew Jackson killed 
Abraham Lincoln”).  Additionally, even with a highly redundant information source, there will be 
questions for which no simple-relationship answer can be found.  To lessen these challenges, we 
can use answer redundancy to combine a number of uncertain guesses into a single, much more 
reliable guess.  This is the kind of redundancy explored in Abney et al. (2000), Clarke et al. 
(2001) and Kwok et al. (2001). 
 

3 System Overview 
Our system utilizes a search engine1 to find answers on the Web, an approach similar to that 
described in Kwok et al. (2001).  Given a question, we formulate multiple queries to send to the 
search engine, we ask for the 100 best matching pages for each, and then harvest the returned 
summaries for further processing.   A set of potential answers is extracted from the summary text, 
with each potential answer string weighted by a number of factors, including how well it matches 
the expected answer type and how often it occurred in the retrieved page summaries. 

Given a set of possible answers, we then perform answer projection, searching for supporting 
documents in the TREC QA document collection.  The system returns the four best <answer, 
document ID> pairs.  We made no attempt to determine when an answer did not exist in the 
TREC corpus; instead we always returned “NIL” in the fifth position.  A flow diagram of our 
system is shown in Figure 1.  Below we discuss each component in detail. 
 
3.1 Query Reformulation 
Given a query Q, we would like to search our document collection for possible answer strings S.  
To give a simple example, from the question “When was Abraham Lincoln born?” we know that 
a likely answer formulation takes the form “Abraham Lincoln was born on <DATE>”.  
Therefore, we can look through the data, searching for such a pattern.  While it may be possible 
to learn query-to-answer reformulations (e.g., Agichtein et al., 2001; Radev et al., 2001), we 
created these manually.  We did not use a parser or part-of-speech tagger for query reformulation, 
but did use a lexicon in order to determine the possible parts-of-speech of a word as well as its 
morphological variants. 

We first classify the question into one of seven categories, each of which is mapped to a 
particular set of rewrite rules.  Rewrite rule sets ranged in size from one to five rewrite types.  
The output of the rewrite module is a set of 3-tuples of the form [string, L/R/-, weight], where 
“string” is the reformulated search query, “L/R/-” indicates the position in the text where we 
expect to find the answer with respect to the query string (to the left, right or anywhere) and 

                                                 
1 For the experiments reported here, we used Google as the backend Web search engine. 



“weight” reflects how much we prefer answers found with this particular query.  The idea behind 
using a weight is that answers found using a high precision query (e.g. “Abraham Lincoln was 
born on”) are more likely to be correct than those found using a lower precision query (e.g. 
“Abraham” “Lincoln” “born”). 
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 Figure 1.  AskMSR System Architecture 
 
The rewrites generated by our system were simple string-based manipulations.  For instance, 
some question types involve query rewrites with possible verb movement; the verb “is” in the 
question “Who is the world’s richest man married to?” should be moved in formulating the 
desired rewrite to “The world’s richest man is married to”.  While we might be able to determine 
where to move a verb by analyzing the sentence syntactically, we took a much simpler approach.  
Given a query such as “Who is w1 w2 … wn”, where each of the wi is a word, we generate a 
rewrite for each possible position the verb could be moved to (e.g. “w1 is w2 … wn”, “w1 w2 is … 
wn”, etc).  While such an approach results in many nonsensical rewrites (e.g. “the world’s is 
richest man married to”), these very rarely result in the retrieval of bad pages, and the proper 
movement position is guaranteed to be found via exhaustive search.  If we instead relied on a 
parser, we would require fewer query rewrites, but a misparse would result in the proper rewrite 
not being found.  We currently use only simple string matching, but could enhance our rewrites to 
include richer patterns as Soubbotin and Soubbotin (2002) have done. 

The rewrites for the query “What is relative humidity?” are: 
[”+is relative humidity”, LEFT, 5] 
[”relative +is humidity”, RIGHT, 5] 
[”relative humidity +is”, RIGHT, 5] 
[”relative humidity”, NULL, 2] 
[”relative” AND “humidity”, NULL, 1] 

 
3.2 N-Gram Harvesting 
Once we have obtained the set of rewrites, we submit each reformulated query to the search 
engine.  For efficiency reasons, we worked only with the summaries returned for each hit rather 
than retrieving the full-text of pages (as was done by Kwok et al. (2001) and Clarke et al. (2002)).  



The returned summaries contain the query terms, usually with a few words of surrounding 
context.  The summary text is then processed to retrieve only strings to the left or right of the 
query string, as specified in the rewrite triple.  In some cases, this surrounding context has 
truncated the answer string, which may negatively impact our results. 

We obtain 1-gram, 2-grams and 3-grams from the short summaries.  We score each n-gram 
according to the weight of the query that retrieved that it and sum these weights across all 
summaries containing the n-gram.  So, the weight for each candidate n-gram is given by: 

∑
∈

=
summariesngram

weightrewriteweightngram __  

There are a couple of important things to note about this weighting scheme.  First, we count an n-
gram only once within each summary, so there is no tf component.  Second, the more summaries 
an n-gram occurs in the higher weight it gets, which is the opposite of the usual idf approaches to 
term weighting.  Shorter n-grams will occur more often, but we use tiling to increase the counts 
for longer n-grams, as described below.  Because we do not use any global term weights, we do 
not need to index the documents directly nor maintain a local database of term weights. 

When searching for candidate answers, we enforce the constraint that stop words are not 
permitted to appear in any potential n-gram answers.  In retrospect, this was too stringent a 
requirement. 
 
3.3 Answer Typing 
Next, we use type filters to increment/decrement each n-gram count based on expected type 
(gleaned from the question) and a guess as to the type of the n-gram.  The system uses filtering in 
the following manner. First, the query is analyzed and assigned one of seven question types, such 
as who-question, what-question, or how-many-question.  Based on the query type that has been 
assigned, the system determines what collection of filters to apply to the set of potential answers 
found during n-gram harvesting. The answers are analyzed for features relevant to the filters, and 
then rescored according to the presence of such information. 

A collection of approximately 15 filters were developed based on human knowledge about 
question types and the domain from which their answers can be drawn.  Most filters used surface 
string features, such as capitalization or the presence of digits, and consisted of hand-crafted 
regular expression patterns.  Some filters were driven by more sophisticated properties such as 
semantic features or part-of-speech assignments, and used natural language analysis (Jensen et 
al., 1993) capable of associating such characteristics with strings.  For example, these filters 
indicate that the strings “Pope Julius”, “Julius II”, and “David” refer to people, whereas 
“Vatican” refers to a location, which will be helpful for correctly answering who- or where-
questions. 

The selected filters are applied to each candidate string and used to adjust the initial score of the 
string.  In most cases, filters are used to boost the score of a potential answer when it has been 
determined to possess the features relevant to the query type. In other cases, filters are used to 
remove strings from the candidate list altogether. This type of exclusion was only performed 
when the set of correct answers was determined to be a closed set (e.g. “Which continent….?”)  
or definable by a set of closed properties (e.g. “How many…?”). 

The filters were determined to yield 26.4% relative improvement in MRR on a held-out subset of 
TREC9 queries, compared to using no type filter re-weighting. 
 
3.4 Answer Tiling 
Finally, we applied an answer tiling algorithm, which both merges similar answers and assembles 
longer answers out of answer fragments.  Tiling constructs longer n-grams from sequences of 
overlapping shorter n-grams.  For example, "A B C" and "B C D" is tiled into "A B C D."  The 
weight of the new n-gram is the maximum of the constituent n-gram weights.  The algorithm 
proceeds greedily from the top-scoring candidate - all subsequent candidates (up to a certain 



cutoff) are checked to see if they can be tiled with the current candidate answer.  If so, the higher 
scoring candidate is replaced with the longer tiled n-gram, and the lower scoring candidate is 
removed.  The algorithm stops only when no n-grams can be further tiled. 
 

4 System Combination 
We had developed two semi-independent versions of the system, differing in the set of rewrite 
rules, tiling algorithm and type filters.  It has been demonstrated in many settings that, given 
several algorithms for a prediction problem, combining their results via a voting scheme can 
frequently result in performance better than that of any of the individual algorithms, since 
different systems can reinforce each other’s strengths and also help correct each other's wrong 
answers.  Towards realizing such gains for our system, we learned an automatic method for 
combining the results from the two systems (AskMSR-A and AskMSR-B). 

The first step in combining the answers was to run through AskMSR-A and AskMSR-B's lists of 
outputs to determine when two of their answers can be deemed equivalent and hence should be 
merged.  This is a step that  can frequently be omitted by most voting schemes that have to deal 
with only a small set of possible output values  (rather than the large set of all possible strings in 
our setting),  and we note that determining whether two answers match is a more subtle  task than 
might appear at first blush.  For instance, exact string matching will fail to recognize that 
``redwood trees'' and ``redwoods’’ are almost certainly the same thing; simple substring matching 
also fails on this example. 

In our system, we tested whether two answers A and B matched by checking if either every stem 
of every word in A matches a stem of some word in B, or vice versa.  Armed with this test, we 
then merge AskMSR-A and AskMSR-B's lists of answers into a single, combined list, as follows: 
We initialize the ``combined list'' to the empty list, and then repeatedly test pairs of answers (one 
from AskMSR-A, one from AskMSR-B) to see if they match; upon finding a match, both 
answers are deleted from their respective lists, and the (lexicographically) longer answer is added 
to the combined list. When no more pairs of matches are to be found, we then add the answers 
still remaining in the AskMSR-A and the AskMSR-B lists to the combined list. 

Having formed a combined list of answers, we then learn a way for ranking them. For almost any 
learning method, the choice of features critically impacts performance.  In our specific 
application, we desire features that can be used to characterize how ``confident'' we are about 
each answer's correctness, so that we can rank the answers we are confident about higher. While 
AskMSR-A and AskMSR-B both output their own confidence scores, the absolute values of these 
scores were only very weakly predictive of confidence. On the other hand, the rankings of the 
answers output by each of the two methods were far more predictive of confidence; this can also 
be thought of as using the relative, rather than absolute, values of these scores. 

We therefore learned a function that took as input the rankings of an answer output by either or 
both algorithms, and whose task it was then to output a ``score'' determining how confident we 
are that this answer is correct.  Here, these ``scores'' have no intrinsic meaning (such as the 
probability of being correct), and our goal is only that when the results are sorted according to the 
scores, that the resulting expected MRR be high. 

Using TREC-9 QA queries 201-400 as our training data, the parameters of our function 
approximator were automatically tuned to maximize the empirical MRR on the training set.  On 
holdout test data, we estimated that this method improved our overall MRR by 11% over the 
better of AskMSR-A and AskMSR-B.  
 

5 Answer Projection 
At this point the system has produced a list of the n-best answers for a question.  These answers 
were determined using web data.  The next task was to find supporting documents in the TREC 
document collection for each answer candidate.  In the projection phrase, five possible supporting 
documents are found for each of the five candidate answers.  The Okapi IR system was used for 



finding the supporting documents for each candidate answer (Robertson et al., 1995).  The query 
submitted to Okapi was just the list of query words along with the candidate answer.  Documents 
were ranked using the standard best match ranking function, bm25.  We did not use any phrase or 
proximity operators to increase precision nor any pseudo relevance feedback to increase 
coverage.  We did not use Boolean operators to ensure that the candidate answer be matched. 

To generate the final answers, the first supporting document for each candidate answer was 
chosen, unless there existed a supporting document for the candidate answer that was also 
retrieved as the supporting document for another candidate answer, in which case the duplicate 
supporting document is returned. For example, if a candidate answer had supporting documents 
d1, d2, etc., d2 is returned if another candidate answer is supported by d2. The reasoning behind 
this strategy is that candidate answers tend to be related to the correct answer, and multiple 
occurrences of a document suggested that the document contain either the answer or terms related 
to the answer. In practice, however, this mechanism was rarely used - almost all supporting 
documents returned were the first one. 

Although we designed the answer projection component to work for the TREC QA track, we 
believe it is more generally applicable.  For example, if one had a small reliable source like an 
encyclopedia, newspaper, or help documentation, one could use the same idea – first find possible 
answers using our simple system in a large noisy collection like the Web and then project the 
answers to the reliable sources for verification. 
 

6 Results and Analysis 
We present the official TREC 2001 results for our two submitted runs, AskMSR and AskMSR2, 
in the table below.  We used exactly the system described above for the AskMSR run.  For 
AskMSR2, we used a somewhat different projection algorithm than described above, which 
improved performance on our TREC9 hold-out set but had little impact on the actual test data, as 
shown in the table.  The average answer length was 14.6 bytes for both systems, well below the 
50 byte limit.  Since we had no training data to calibrate the system scores, we did nothing to 
handle NIL queries, and simply placed a NIL response in position 5 for every query. 

System Strict Lenient
AskMSR
   MRR 0.347 0.434
   % no answers 49.2 40.0
AskMSR2
   MRR 0.347 0.437
   % no answers 49.6 39.6

Table 1.  TREC 2001 results  
 

We were quite pleased with the results of our very simple system in our first participation in the 
TREC QA track.  Although we had been working on Web QA for a few months, our entire TREC 
QA endeavor was done, from scratch, in two weeks.  There is still a great deal that can be done to 
improve the system.  One of the biggest weaknesses of our system was the simple strategy we 
used to map an answer onto a supporting document, as seen in our .09 drop in MRR from finding 
an answer to finding a supporting document for that answer.  Clarke et al. (2002) and Buchholz 
(2002) also report lower TREC performance compared to Web performance.  A number of 
projection errors came from the temporal differences in the Web and TREC collections.  E.g., for 
query 1202: Who is the governor of Alaska?, we return Tony Knowles, who is the governor in 
2001, but not Steve Cowper who was the governor in 1989. 

There were several other bugs and sub-optimal design decisions in our initial TREC QA system.  
One problem was our decision not to include stop words in the n-gram strings (e.g., For query 
1358: In which state would you find the Catskill Mountains?, our top answer was ‘Regional York 



State’, but we omitted ‘New’ because it was a stop word.  We have removed this constraint in our 
current system and it improves performance considerably.  Other problems occurred in answer 
tiling (e.g., For query 1288: What is nepotism?, our top answers were: ‘favoritism shown’; 
‘relatives’; and ‘employment’ which we did not tile correctly because ‘to’ and ‘in’ were linking 
stop words that we removed.  Other areas for improvement are: handling of quantities, answer 
typing, and question reformulation, which are useful more broadly than the TREC question-
answering task. 

There are several examples where our simple approach does quite well compared to other 
systems.  Typically these are cases where simple rewrites work well with the large Web 
collection but much more complex processing is required to find answers within the small TREC 
document collection.  Consider the following query-document pairs.  (These are the only relevant 
documents for these queries within the TREC collection.) 
1083: What is the birthstone for June?  <answer: pearl> 
<DOC> … For anyone fascinated by pearls who wants to learn more about them, a tiny but 
magical London jewellery shop, Manguette, is having a festival of pearls (faux and  real) for two 
weeks during June (the pearl is the birth-stone for those born in that month)…  Only three groups 
find this document.  There are two difficulties in finding this document in the TREC collection -- 
pronominal reference must be used to know that ‘that month’ refers to June, and the query term 
birthstone needs to be rewritten as birth-stone which occurs in the document.  With the wealth of 
data available on the Web, we can find the answer without solving either of these problems. 
1340: What is the rainiest place on Earth?  <answer: Mount Waialeale> 
<DOC> … In misty Seattle, Wash., last year, 32 inches of rain fell. Hong Kong gets about 80 
inches a year, and even Pago Pago, noted for its prodigious showers, gets only about 196 inches 
annually. … (The titleholder, according to the National Geographic Society, is Mount Waialeale 
in Hawaii, where about 460 inches of rain falls each year.)… Again, only three groups find this 
document.  This is a much more interesting case.  Some fairly sophisticated processing needs to 
be done to know that titleholder means rainiest. 

After submitting our TREC run, we continued to improve the system for general web QA 
capabilities.  After receiving the TREC relevance judgments, we tried the new system on the 
TREC queries, and were pleased to see some sizable improvements.  We analyzed our new 
system on the 30 “worst” questions for our system – that is, the questions with the greatest 
difference between mean score across groups and our score for a question.  On these 30 
questions, our official submission attained an MRR of 0.  The improved system attained an MRR 
of 0.390 on these 30 questions.  There would be improvements on other queries as well although 
we have not scored the full set by hand. 

We believe that data redundancy is a readily available and valuable resource that should be 
exploited for question answering in much the same way as linguistic resources often are.  The 
performance of our system shows promise for approaches to question answering which make use 
of very large text databases, even with minimal natural language processing. 
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