Chapter 9
Location-Based Social Networks: Locations

Yu Zheng and Xing Xie

Abstract While chapter 8 studies the research philosophy behind a location-based
social network (LBSN) from the point of view of users, this chapter gradually ex-
plores the research into LBSNs from the perspective of locations. A series of re-
search topics are presented, with respect to mining the collective social knowledge
from many users’ GPS trajectories to facilitate travel. On the one hand, the generic
travel recommendations provide a user with the most interesting locations, travel
sequences, and travel experts in a region, as well as an effective itinerary condi-
tioned by a user’s starting location and an available time length. On the other hand,
the personalized travel recommendations find the locations matching an individual’s
interests, which can be learned from the individual’s historical data.

9.1 Introduction

The increasing availability of location-acquisition technologies and Internet access
in mobile devices is fostering a variety of location-based services generating a myr-
iad of spatio-temporal data, especially in the form of trajectories [45, 42, 41, 6].
These trajectories reflect the behavior and interests of users, thereby enabling us
to better understand an individual and the similarity between different individual-
s [20, 34, 7, 15, 36]. Research and applications were introduced in Chapter 8 in
which the users are the focus and locations are employed as enhanced information
for better understanding them. Instead, this chapter discusses the research topics that
aim at understanding locations based upon the collective social knowledge of users
(e.g., the knowledge contained in their GPS trajectories) starting with generic travel
recommendations [48, 44, 37, 38, 40] and then looking at personalized recommen-
dations [46, 43, 39, 13, 33].
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Regardless of an individual’s preferences,the generic travel recommender sys-
tems mine a vast number of trajectories (generated by multiple users) and provide
an individual with travel recommendations following a paradigm of “trajectories —
interesting locations — popular travel sequences — itinerary planning — activi-
ties recommendation.” Specifically, these recommender systems first infer the most
interesting locations in a region from the given trajectories, and then detect the pop-
ular travel sequences among these locations [48]. An interesting location is defined
as a culturally important place, such as Tiananmen Square in Beijing or the Statue
of Liberty in New York (i.e., popular tourist destinations), and commonly frequent-
ed public areas, such as shopping malls/streets, restaurants, cinemas, and bars. With
these interesting locations and travel sequences, an ideal itinerary can be planned for
a user according to her departure location, destination, and available time [37, 38].
Finally, the generic travel recommendations provide users with some popular activi-
ties, e.g., dinning and shopping, that could be performed in a location [40]. All these
recommendations mentioned above facilitate a user to travel to an unfamiliar place
and plan a journey with minimal effort.

However, the personalized recommender systems learn an individual’s interests
from her personal location data (e.g., GPS trajectories) and suggest locations to the
individual matching her preferences. Specifically, the personalized recommender
uses the times that a particular individual has visited a location as her implicit rat-
ings on that location, and estimates an individual’s interests in unvisited places by
considering her location history and those of other users [46, 44]. As a result, some
locations with high ratings that might match the user’s tastes can be recommended.

Two collaborative filtering (CF) models are individually used to infer a user’s rat-
ings of these unvisited locations. First, the personalized location recommendation is
equipped with a user-based CF model, which employs user similarity introduced in
Section 8.3 as a distance function between different users [46]. This model is able to
capture people’s mobility, such as the sequential and hierarchical properties of hu-
man movement in the physical world, while suffering from poor scalability caused
by the heavy computation of user similarity. This user-based CF model is detailed
in Section 9.3.2. Second, to address the problem of scalability, a location-based CF
model is proposed [44]. This model uses the correlation between locations mined
from many users’ GPS traces [43] as a distance measure between two different
locations. The location-based CF model is slightly less effective than the user-based
one while being much more efficient. Refer to Section 9.3.3 for details.

9.2 Generic Travel Recommendations

This section describes the generic travel recommendation following the paradigm
of “trajectories — interesting locations — popular travel sequences — itinerary
planning — activities recommendation.” Specifically, Section 9.2.1 introduces the
detection of interest locations and travel sequences [48]. Section 9.2.2 then presents
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itinerary recommendation [37, 38]. Finally, a location-activity recommender [40] is
discussed in Section 9.2.3.

9.2.1 Mining Interesting Locations and Travel Sequences

9.2.1.1 Background

Traveling to an unfamiliar city or region, people usually like to know the most inter-
esting locations and the most popular travel sequences. In fact, this kind of informa-
tion evolves as time goes by and varies in quite a few factors, such as time of day,
day of the week, and the seasons. For example, the Forbidden City was the most
popular tourist attraction in the urban area of Beijing before 2008. However, it has
recently been replaced by the Olympic Park of Beijing. Locals particularly enjoy
the Olympic Park on weekend evenings during the summer. Other popular destina-
tions include Houhai Bar Street for sightseeing in the daytime and drinking in the
evening, or some newly-built movie theatres offering half-price tickets every Tues-
day night. Note that the interesting places do not only include tourist attractions but
also restaurants and shopping malls popular among residents. Consequently, trav-
el agencies and travel books cannot always provide the latest and most effective
recommendations that a user needs.

In order to deal with this dilemma, it is necessary to gather travel recommen-
dations automatically and in a timely manner from social media such as the vast
amount of GPS trajectories generated by the large number of users travelling in a
city. GPS trajectories can be formulated in terms of users’ geo-tagged photos and
check-in records, or obtained from some trajectory-sharing social networking ser-
vices like GeoLife [45, 42, 41]. A number of studies [23, 2] have introduced the
methods for extracting trips from geo-tagged photos, and some professionals have
explored the idea of mining generic travel recommendations from GPS trajectories
[48, 5, 44]. Particularly, one paper [48] first proposed a learning model to infer the
most interesting locations in a city as well as the popular travel sequences among
these locations, followed by a few expanded studies reported in [5, 44]. The mined
locations and travel sequences are used to enable a generic travel recommender il-
lustrated in Fig. 9.1 and Fig. 9.2.

Figure 9.1 illustrates the user interface of a generic travel recommender run-
ning on desktop computers. The right column shows the top five most interesting
locations and the five most experienced users in the region (specified by the present
view of the map). The top five most popular travel sequences within this region are
also displayed on the map. By zooming in/out and panning, a user can retrieve such
results within any region. In addition, the photos taken in an interesting location will
be presented on the bottom of the window after a user clicks the icon representing
the location on the map.

As shown in Fig. 9.2, a user with a GPS-phone can find the top five most interest-
ing locations as well as the five most popular sequences near her present geographic
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position (denoted as the red star). Additionally, when the user reaches a location,
the recommender system will provide her with a further suggestion by presenting
the top three most popular sequences starting from this location.
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Fig. 9.1 The user interface of a generic location recommender

Fig. 9.2 Location recommendations on a GPS-phone

However, we will be faced with some challenges when conducting the generic
recommendations. The first is to determine the interest level of a location. Intrinsi-
cally, the interest level of a location does not only depend on the number of users
visiting this location but also on these users’ travel experiences (knowledge). In-
tuitively, different people have different degrees of knowledge about a geospatial
region. During a journey, the users with more travel experience of a region would be
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more likely to visit interesting locations in that region. For example, the residents of
Beijing are more capable than overseas tourists of finding high quality restaurants
and shopping malls in Beijing. If we do not consider the travel knowledge of a user,
the hot spots like railway stations and airports will be most recommended. Second,
an individual’s travel experience and interest level of a lo-cation are relative values
(i.e., it is not reasonable to judge whether or not a location is interesting), and are
region-related (i.e., conditioned by the given geospatial region). An individual who
has visited many places in New York might have no idea about Beijing. Likewise,
the most interesting restaurant in a district of a city might not be the most interesting
one in the whole city (as restaurants from other districts might outperform it).

9.2.1.2 Methodology for Mining Interesting Locations
To address the above challenges, the location histories of users are first modeled

with a tree-based hierarchical graph (TBHG) according to the following two steps
demonstrated in Fig. 9.3.
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Fig. 9.3 Building a tree-based hierarchical graph

1) Formulate a shared hierarchical framework F: This step is the same as that
presented in Section 8.2.2.2. That is, the stay points detected from users’ GPS logs
are put into a dataset, and then hierarchically clustered into geospatial regions using
a density-based clustering algorithm in a divisive manner. As a consequence, the
similar stay points from various users would be assigned to the same clusters on
different levels. Here, a stay point stands for a location where a user stayed for a
certain period of time, formally defined in Definition 8.3.
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2) Build location graphs on each layer: Based on shared framework F and users’
location histories, the clusters on the same level are connected with directed edges. If
two consecutive stay points from one trip are individually contained in two clusters,
a link is generated between the two clusters in a chronological direction according to
the time serial of the two stay points. Note that different from the third step of mod-
eling an individual’s location history (introduced in Section 8.2.1), this step feeds
all users’ location histories (sequences of stay points) into the shared framework.
Therefore, this tree-based hierarchical graph models the location history of all users
in a location-based social networking service.

Then, a HITS(Hypertext Induced Topic Search)-based inference model is pro-
posed with the TBHG. This inference model regards an individual’s access to a
location as a directed link from the user to that location. This model infers two
values, the interest level of a location and a user’s travel experience, by taking into
account 1) the mutuallly reinforcing relationship between the two values and 2) the
geo-regional conditions. See details in the following paragraphs.

Concept of HITS model: HITS stands for hypertext induced topic search [17],
which is a search-query-dependent ranking algorithm for Web information retrieval.
When the user enters a search query, HITS first expands the list of relevant pages
returned by a search engine and then produces two rankings for the expanded set
of pages, authority ranking and hub ranking. For every page in the expanded set,
HITS assigns them an authority score and a hub score. As shown in Fig. 9.4, an
authority is a Web page with many inlinks, and a hub is a page with many out-links.
The key idea of HITS is that a good hub points to many good authorities, and a
good authority is pointed to by many good hubs. Thus, authorities and hubs have a
mutually reinforcing relationship. More specifically, a page’s authority score is the
sum of the hub scores of the pages it points to, and its hub score is the integration of
authority scores of the pages pointed to by it. Using a power iteration method, the
authority and hub scores of each page can be calculated. The main strength of HITS
is ranking pages according to the query topic, which may provide more relevant
authority and hub pages. However, HITS requires time consuming operations, such
as online expanding page sets and calculating the hub and authority scores.

An authority

A Hub Authorities Hubs

Fig. 9.4 The basic concept of HITS model

Mutually reinforcing relationship: Using the third level of the TBHG shown
in Fig. 9.3 as an example, Fig. 9.5 illustrates the main idea of the HITS-based in-
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ference model. Here, a location is a cluster of stay points, like ¢31 and c3;. This
model regards an individual’s visit to a location as an implicitly directed link from
the individual to that location. For instance, cluster c¢3; contains two stay points re-
spectively detected from u;’s and u,’s GPS traces, i.e., both u; and u; have visited
this location. Thus, two directed links are generated respectively to point to c3; from
u1 and uy. Similar to HITS, in this model, a hub is a user who has accessed many
places, and an authority is a location which has been visited by many users. Intu-
itively, a user with rich travel experience (knowledge) in a region is able to visit
many interesting places in that region, and a very interesting place in that region
could be accessed by many users with rich travel experiences. Therefore, users’
travel experiences (hub scores) and the interest level of locations (authority scores)
have a mutually reinforcing relationship. More specifically, a user’s travel experi-
ence is represented by the sum of the interest values of the locations that the user
has been to, and the interest value of a location is denoted by the sum of the experi-
ences of users who have visited this location. For simplicity’s sake, in the remainder
of this chapter, a user with rich travel experience (i.e., relatively high hub score) in
aregion is called an experienced user of that region and a location that attracts peo-
ple’s profound interests (relatively high authority score) is denoted as an interesting
location.
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Fig. 9.5 The HITS-based inference model

Region-related: Intrinsically, a user’s travel experience is region-related, i.e., a
user who has a great deal of travel knowledge of a city might have no idea about
another city. Also, an individual, who has visited many places in a particular part of
a city might know little about another part of the city (especially if the city is very
large, like New York). This concept is aligned with the query-dependent property of
HITS. Thus, specifying a geospatial region (a topic query) and formulating a dataset
that contains the locations in this region are needed for conducting the HITS-based
inference model. However, an online data selection strategy (i.e., specifying a region
based on an individual’s input) will generate a great deal of resource-consuming
operations, thereby diminishing the feasibility of our system. Therefore, a smart
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data selection strategy should be considered to fit this region-related feature of the
HITS-based inference model.

Strategy for Data Selection: Actually, on a TBHG, the shape of a graph node
(cluster of stay points) provides an implicit region for its descendent nodes. These
regions covered by the clusters on different levels of the hierarchy might stand for
various semantic meanings, such as a city, a district, or a community. Therefore, the
interest of every location can be calculated in advance using the regions specified
by their ascendant clusters. In other words, a location might have multiple authority
scores based on the different regions it falls in. Also, a user might have multiple hub
scores conditioned by the regions of different clusters.

Definition 9.1 (Location Interest). In this system, the interest of a location (c;;) is
represented by a collection of authority scores /;; = {Iilj7 Iizj7 e ,Ii[ ]-}. Here, If]- denotes
the authority score of cluster ¢;; conditioned by its ascendant nodes on level /, where

1<I<i.

Definition 9.2 (User Travel Experience). In our system, a user’s (e.g., uy) travel
experience is represented by a set of hub scores ek = {ef-‘j |[1<i<|L|,1<j<|CG|}
(refer to Definition 8.5), where ef.‘j denotes u;’s hub score conditioned by region c;;.

Figure 9.6 demonstrates these definitions. In the region specified by cluster ¢y,
it is possible to respectively calculate an authority score (3, and I;,) for clusters
c21 and c¢z. Meanwhile, within this region, the authority scores (I3, I3,, I3, I},
and 1315) for clusters c¢31, 32, €33, ¢34 and ¢35 can be inferred. Further, using the
region specified by cluster ¢;1, we can also calculate authority scores (1321 and 1322)
for c3; and c3;. Likewise, the authority scores (1323, 1324 and 1325) of ¢33, ¢34 and ¢35
can be re-inferred within region c;;. Therefore, each cluster on the third level has
two authority scores, which can be used on various occasions based on user inputs.
For instance, as depicted in Fig. 9.6 A), when a user selects a region only covering
locations c¢31 and c3,, the authority scores 132l and 1322 can be used to rank these two
locations. However, as illustrated in Fig. 9.6 B), if the region selected by a user
covers the locations from two different parent clusters (cz; and ¢»,), the authority
values I},, I35 and I3, should be used to rank these locations.

A strategy that allows for multiple hub scores for a user and multiple authority
scores for a location has two advantages. First, it is able to leverage the main strength
of HITS to rank locations and users within the context of geospatial regions (query
topics). Second, these hub and authority scores can be calculated offline, thereby
ensuring the efficiency of a recommender system while allowing users to specify
any region on a map.

Inference: Given the locations pertaining to the same ascendant cluster, we are
able to build an adjacent matrix M between users and locations based on the users’
visits to these locations. In this matrix, item vf-‘j stands for the times that i, (a user)
has visited to cluster ¢;; (the jth cluster on the ith level). Such matrixes can be
built offline for each non-leaf node. For instance, the matrix M formulated for the
example shown in Fig. 9.5 can be represented as follows, where all five clusters
pertain to cqp:
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Fig. 9.6 Some cases demonstrating the data selection strategy
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Then, the mutually reinforcing relationship of user travel experience ef-‘j and location
interest 1/ ; is represented as follows:

I _ k k.
lij = Z elq X Vij? (92)
ur U
k k .
e, = Y, Vijxli (9.3)
CijECly

where ¢y, is ¢;;’s ascendant node on the /th level, 1 <[ < i. For instance, as shown
in Fig. 9.6, c31’s ascendant node on the first level of the hierarchy is c;j, and its
ascendant node on the second level is ¢z1. Thus, if [ = 2, ¢, stands for ¢z; and
(C31,C32) € ¢y1. Also, if I =1, Clq denotes ¢, and (031,6‘32, . ,035) SESTR

Writing them in matrix form, we use J to denote the column vector with all the
authority scores, and use E to denote the column vector with all the hub scores. Con-
ditioned by the region of cluster c11,J = (I3}, I3, ..., Lis), and E = (e}, €3}, ..., €})).

J=M-E (9.4)
E=M-J 9.5)
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If we use J, and E, to denote authority and hub scores at the nth iteration, the
iterative processes for generating the final results are

Jo=M M- -J,_, 9.6)
E,=M-M"-E,_, 9.7

Starting with Jo = Eg = (1,1,...,1), we are able to calculate the authority and hub
scores using the power iteration method. Later, we can retrieve the top n most inter-
esting locations and the top k most experienced users in a given region.

9.2.1.3 Methodology for detecting travel sequences

This step detects the top k most popular sequences of locations from the graph on
a layer of the TBHG (refer to Fig. 9.3 for an example). A popularity score is calcu-
lated for each location sequence within a given region based upon two factors: the
travel experiences of the users taking this sequence and the interests of the locations
contained in the sequence. Since there would be multiple paths starting from the
same location, the interest value of this location should be distributed to these paths
according to the probability that users would take a path.

Figure 9.7 demonstrates the calculation of the popularity score for a 2-length
sequence (i.e., a sequence containing two locations), A — C. In this figure, the graph
nodes (A,B,C,D, and E) stand for locations, and the graph edges denote people’s
transition sequences among them. The number associated with an edge represents
how many times that users have taken the sequence. Eq. 9.8 computes the popularity
score of sequence A — C, consisting of contributions from the following three parts:

e The authority score of location A(I4) weighted by the probability of people
leaving by this sequence (Out4c). Clearly, there are seven (5+2) links pointing
to other nodes from node A, and five out of seven of these links point directly to
node C. So, Outac = 5/7 , i.e., only five sevenths of location A’s authority (I4)
should be propagated to sequence A — C, and the rest of 14 should be distributed
toA — B.

e The authority score of location C(I¢) weighted by the probability of people’s
entering by this sequence (In4¢).

e The hub scores of the users (Usc) who have taken this sequence.

Fig. 9.7 Demonstration of mining popular travel sequences from a graph
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Following this method, the popularity score of sequence C — D is calculated as
follows:

1 1
&m:1x<xk+b>+ Yy (9.9)
7 7 ur€Ucp

Thus, the popularity score of sequence A — C — D equals:
Sacp = Sac +Scp (9.10)

The detection of popular travel sequences starts with computing the popularity score
for each 2-length sequence, and then searches for 3-lenth sequences based on these
2-length sequences. Though searching for the top k n-length most popular sequences
in a graph is time consuming, there are a few optimization methods using some
upper bound to filter unnecessary search spaces. Moreover, the size of a location
graph is usually small as the number of interesting locations in a city is limited.
Meanwhile, as people do not normally travel to too many places during a trip, it
is not necessary to provide a user with very long travel sequences. Sometimes, a
sequence with three locations is more useful than longer ones.

9.2.2 Itinerary Recommendation

9.2.2.1 Background

The interesting locations and travel sequences mentioned above can facilitate travel
to an unfamiliar place. However, people are still faced with particular challenges
when planning their trips.

First, while there are many location candidates that can be considered, a travel-
er usually wants to maximize her travel experience, i.e., visit as many interesting
locations as possible in a comfortable manner without wasting too much time trav-
eling between locations. To achieve this task, the typical duration that people stay
in a location and the average travel time between two locations should be consid-
ered. Second, an effective itinerary needs to adapt to a traveler’s present location
and available time length as well as her destination. Some popular travel routes can
be available in a book but may not be feasible for a particular individual in the real



288 Yu Zheng and Xing Xie

world because the attractions contained in these routes might be too far away, or the
individual does not have enough time for the trip.

What a traveler needs is an effective itinerary, which can be adapted to the trav-
eler’s requests (consisting of a starting location, destination, and available time) and
includes the information of not only a travel route passing some interesting locations
but also the typical duration spent in each location and the general travel time be-
tween locations.

Itinerary recommendation has been studied in quite a few research projects.
Some recommender systems [9, 3, 16] need a user’s intervention when generating
an itinerary for the user. For example, [9] presented an interactive travel itinerary
planning system where a user defines which places to visit and avoid. Similarly, [3]
reported on an interactive system where a user specifies general constraints, such as
time and attractions to be included in the itinerary. The advantage of such interac-
tive recommender systems is that the more a user knows about traveling in the area,
the better the itinerary is. However, this assumption is not practical for most novice
travelers who lack prior knowledge of a region.

To alleviate the human intervention and prior knowledge needed, [37, 38, 18, 8]
presented relatively automated recommenders. Particularly, [37, 38] proposed a so-
cial itinerary recommendation service that generates an effective itinerary based on
a user’s query and social knowledge learned from user-generated GPS trajectories,
with a major application scenario described as follows. Imagine that a researcher
is attending a conference in Beijing. At the end of the conference, she has 8 hours
to spend before catching her flight. She is a first time visitor to the city and has no
idea how to plan an effective travel route, and is thereby relying on a social itinerary
recommendation service. She is starting from her current location, which is auto-
matically recognized with a GPS-enabled phone. She marks the Beijing Capital In-
ternational Airport in the map as her destination, inputs 8 hours for travel duration,
and sends the query. As a result, she receives an itinerary recommendation visual-
ized on the map which shows interesting locations to be visited, a recommended
amount of time to stay in each location, and an estimate of the time needed to travel
between any two locations. With the information at hand, she obtains a good idea of
where she might go and is able to manage her time effectively.

9.2.2.2 Methodology for Itinerary Recommendation

As illustrated in Fig. 9.8, the framework for this itinerary recommender consists of
an online component and an offline component.

Offline component: This component data mines the collective social intelligence
from a database of GPS trajectories in terms of the following two steps:

The first step detects stay points from each GPS trajectory and clusters these stay
points into locations. A location graph can be formulated according to the method
described in Section 9.2.1.2 (the bottom layer of the hierarchy shown in Fig. 9.3
is used here as a demonstration). Remember that each stay point has properties
pertaining to arrival and departure times, which indicate the length of time stayed in
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Fig. 9.8 Framework of the itinerary recommender

a location. So, the typical stay duration in each location and general travel duration
between two locations (in a location graph) can be calculated, for example, using the
median of all people’s stay times in a location. These values associated with each
location are used to estimate the duration of an itinerary. This clustering operation
picks out the locations accessed by a significant number of people, ensuring the
accuracy of the estimated travel and stay times. This operation also contributes to
the second step by reducing the sparseness of the connections between users and
locations.

The second step infers the interest value of each location in the location graph
using the approach introduced in Section 9.2.1.2 (see Fig. 9.5), and calculates the
popularity score of each 2-length travel sequence in terms of the method presented
in Section 9.2.1.3. As a result, the output of this component is a location-interest
graph, in which a node is a location associated with an interest value and a typical
stay duration and an edge denotes people’s transitions (between locations) and the
general travel duration. The offline component will not be detailed further since they
have been introduced in previous sections and in Chapter 8.

Online component: This component accepts a user-generated query (consisting
of a starting location, a destination, and an available duration), and returns an effec-
tive itinerary comprised of a sequence of locations with a stay time in each location
and travel times between two consecutive locations. This component can be decom-
posed into three steps, introduced as follows:

1) Query Verification: This step checks the feasibility of a query according to
spatial and temporal constraints. In some cases, a user might set a short time length
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with a far destination, making all itineraries impossible. Such queries can be filtered
out by checking the distance between the start and end location with respect to the
duration (of a query).

2) Trip Candidate Selection: This step searches a location-interest graph for can-
didate itineraries satisfying a user’s query, i.e., each path has to start from the source
and reach the destination within the given time length and pass some interesting
locations on the way. Though there are some advanced path-finding algorithms, a
straightforward method retrieving all the possible paths in a brute-force manner will
work given the small size of a location-interest graph. When the start and end point
of a query do not fall into any existing location in the graph, the nearest location to
these points will be used.

3) Trip Candidate Ranking: This step first ranks candidate itineraries according
to three factors: elapsed time ratio, stay time ratio, and interest density ratio, as in-
troduced below. Then, these itineraries will be re-ranked according to the popularity
score of the travel sequences pertaining to an itinerary.

o FElapsed Time Ratio (ETR): ETR is a ratio between the time length of a recom-
mended itinerary and that given by a user. The bigger value this factor has, the
more substantially the time given by a user is leveraged by an itinerary. If the
total time needed for an itinerary is much shorter than the available time, the
remaining time is wasted.

e Stay Time Ratio (STR): This factor considers how the available time is spent by
calculating a ratio between the time that a user could stay in a location and that
for traveling between locations. Intuitively, travelers prefer to spend more time
in interesting locations rather than traveling to them. Therefore, an itinerary
with a bigger STR is considered a better choice, i.e., a user can spend a longer
time visiting actual places.

e [nterest Density Ratio (IDR): IDR is the sum of the interest values of the
locations contained in an itinerary. The general assumption is that visitors like
to visit as many highly interesting locations as possible on a trip. Therefore, the
bigger the IDR value, the better the itinerary. In the implementation, the IDR of
an itinerary should be normalized to [0, 1] and divided by the maximum IDR in
the candidate itineraries.

As shown in Fig. 9.9, a good itinerary candidate is a point located in the upper-
right corner of this cube, i.e., simultaneously having larger ETR, STR, and IDR
values.

To rank candidate itineraries, a Euclidian distance in these three dimensions is
calculated as Eq. 9.11:

ED = \/ oy - (ETR)? + 0 - (STR) + 03 - (IDR)? 9.11)

o Popular Travel Sequence: This factor represents how popular a recommended
itinerary is (according to people’s travel history), by summing up the popularity
scores of the travel sequences contained in the itinerary (the popularity score
of a travel sequence is computed in Section 9.2.1.3). This factor uses collec-
tive social knowledge to further differentiate the itineraries returned by the first
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Fig. 9.9 Idea itinerary candidates

ranking step and guarantees the feasibility of an itinerary. As a result, the top k
itineraries will be recommended to a user.

9.2.3 Location-Activity Recommendation

Besides the need for an itinerary, people usually have two types of questions in
mind when traveling. They wonder where to go for sightseeing and food, and they
wonder what there is to do at a particular location. The first question corresponds
to location recommendation given a particular activity query, which might include
restaurants, shopping, movies/shows, sports/exercise, and sightseeing. The second
question corresponds to activity recommendation given a particular location query.

This section introduces a location-activity recommender system [40] which an-
swers the above questions by mining a myriad of social media, such as tips-tagged
trajectories or check-in sequences. Regarding the first question, this system pro-
vides a user with a list of interesting locations, e.g., the Forbidden City and the
Great Wall, which are the top k candidate locations for conducting a given activity.
With respect to the second question, if a user is visiting the Olympic Park of Bei-
jing, the recommender suggests that the user can also try some exercise activities
and nice restaurants nearby. This recommender integrates location recommendation
and activity recommendation into one knowledge-mining process, since locations
and activities are closely related in nature.

9.2.3.1 Data Modeling

Location-activity matrix: As mentioned before, to better share experiences, an
individual can add comments or tips to a point location in a trajectory. For example,
in Foursquare a user can leave some tips or a to-do-list in a venue so that her friends
are able to view these tips when they arrive at the venue. Sometimes, these tips and
to-do-lists clearly specify a user’s activity in a location, enabling us to study the cor-
relation between user activities and a location, for instance, what kinds of activities
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can be performed in a location, and how often a particular activity is conducted in
the location. Consequently, a location-activity matrix can be built, in which rows
stand for locations and columns represent activities, as shown in the middle part of
Fig. 9.10. An entry in the matrix denotes the frequency of an activity performed in
a location. For example, if 5 users had dinner and 7 people watched a movie in this
location in a week, the frequency of activity “dining” and “watching movies” is 5
and 7 respectively. This frequency denotes the popularity of an activity in a location
and indicates the correlation between an activity, and a location.

If this location-activity matrix is completely filled, the above-mentioned recom-
mendations can be easily achieved. Specifically, when conducting the location rec-
ommendation given an activity, we can rank and retrieve the top k locations with
a relatively high frequency from the column that corresponds to that activity. Like-
wise, when performing activity recommendation for a location, the top k activities
can be retrieved from the row corresponding to the location.

However, the location-activity matrix is incomplete and very sparse. Intuitively,
people will not leave tips and to-do-lists in every restaurant and shopping mall. In
short, many venues will not have labels of user activities. To address this issue,
the information from another two matrices, respectively shown in the left and right
part of Fig. 9.10, can be leveraged. One is a location-feature matrix; the other is an
activity-activity matrix.

Features Activities Activities
w 2] »
5 U £ v g
= Y=UWT = X=UVT = 7 =yVr
g g g
- ) <

Fig. 9.10 The collaborative location-activity learning model

Location-feature matrix: In this matrix, a row stands for a location, and a col-
umn denotes a category (referred to as feature in this section), such as restaurants,
cafes, and bars, illustrated in the left part of Fig. 9.10. Usually, a location might
include multiple points of interest (POI) pertaining to different categories. For ex-
ample, a mall would include different types of shops, movie theaters, and cafes.
Further, a movie theater could have a few bars and restaurants inside. At the same
time, a single venue could belong to multiple categories. For instance, some bars can
also be regarded as a restaurant or a cafe. The motivation for building this location-
feature matrix lies in the insight that people could carry out similar activities in
similar locations.

Specifically, this matrix is built based on a POI database. Each POI in this
database is associated with a set of properties, including name, address, GPS co-
ordinates, and category. Given a location, the number of POIs pertaining to each
category (and falling in this location) can be counted. Note that a location can be
represented by a point or a small region [48, 46] like a cluster of stay points men-
tioned in Section 8.2.1.1, depending on the data source from different applications.
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Suppose there are 4 restaurants, 2 bars and 5 shops in a location, a feature vector
v=<...,4,2.5,... > is formulated for the location. To further differentiate the rep-
resentativeness of each category in a location, a TF-IDF (term frequency-inverse
document frequency [26, 27]) value is calculated for each category according to
Eq. 8.7. Intuitively, if POIs of a category occur in a region many times, this POI
category is important in representing this region. Furthermore, if a POI category
(e.g., “museum” or “natural parks”) occurs rarely in other regions, the category is
more representative for the region in which it is located than a common POI cat-
egory (e.g., “restaurant”) that appears in many places. As a result, each item in a
location-feature matrix is a TF-IDF value of a category in a location.

Activity-activity matrix: The activity-activity matrix, demonstrated in the right
part of Fig. 9.10, models the correlation between two different activities, which
contributes to the inferences of user activities that can be performed at a location.
In other words, if a user performs some activity at a location, how likely would she
perform another activity? One possible way to calculate this correlation is based
upon user-generated tips and to-do-lists. In case the user-generated data is not large
enough, the results returned by a search engine (like Google and Bing) can be used
to compute the correlation as the correlation between two activities should be gener-
ally reflected by the World Wide Web. Specifically, we can send a pair of activities
like “shopping” and “food” as a query to a search engine and count the returned
results. The bigger this count is, the more these two activities are correlated. For
example, the count of results returned for “shopping” and “food” is much larger
than that of “sports” and “food,” indicating that the former pair of activities is more
related than the latter. Later, these counts are normalized into [0, 1], representing the
correlation between different pairs of activities.

9.2.3.2 Collaborative Inference

The data modeling has allowed for the compilation of location-activity, location-
feature, and activity-activity matrices. The objective is to fill the missing entries in
the location-activity matrix with the information learned from the other two matri-
ces. A collaborative filtering (CF) approach based on collective matrix factorization
[31] can be employed to train a location-activity recommender, using these matrices
as inputs. Specifically, to infer the value of each missing entry an objective function
is defined according to Eq. 9.12, which is iteratively minimized using a gradient de-
scent method. Based on the filled location-activity matrix, it is possible to rank and
retrieve the top k locations/activities as recommendations to users.

As shown in Fig. 9.10, a location-activity matrix X,,x, can be decomposed into
a product of two matrices U, and V, xx (the superscript “T” for VnTxk denotes the
matrix transpose), where m is the number of locations and n stands for the number
of activities. k is the number of latent factors (topics), usually k < n. In the im-
plementation, k was set to 3 as there are three topics: location, activity, and feature.
Likewise, location-feature matrix Y, »; is decomposed as a product of matrices Uy, x
and W, and activity-activity matrix Z, ., is decomposed as a self-product of V, .
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So, this location-activity matrix shares the location information with the location-
feature matrix via Uy, «k, and shares the activity knowledge with the activity-activity
matrix via V.. In short, the inference model propagates the information among
Xinxn> Ymxi and Z,,, by the low-rank matrices U,,«; and V,,«. Finally, an objective
function is formulated as Eq. 9.13:

1 A
LWV, W) =3[0 (X ~UVD)[F+ Y —UWT [+

)
2

A (9.12)
fllZ* VVIE+ S (WU +IVIE+IWIE)

where ||-|r denotes the Frobenius norm, and 7 is an indicator matrix with its entry
I;j = 0 if X;; is missing, I;;=1 otherwise. The operator “o” denotes the entry-wise
product. The first three terms in the objective function control the loss in matrix
factorization, and the last term controls the regularization over the factorized ma-
trices so as to prevent over-fitting. 11,4, and A3 are three parameters respectively
weighting the contributions of location features, activity correlations, and the regu-
larization term. These parameters can be learned using a training dataset.

In the objective function, the first term (X — UVT) measures the prediction loss
of the location-activity matrix. The second term (Y — UWT) measures the prediction
loss of the location-feature matrix. Minimizing it enforces the location latent factor
U to be good as well in representing the location features. In other words, it helps
to propagate the information of location features Y to the prediction of X. The third
term (Z — VVT) measures the prediction loss of the activity-activity correlations.
Minimizing it enforces the activity latent factor V to be good as well in representing
the activity correlations. In other words, it helps to propagate the information of
activity correlations Z to the prediction of X.

In general, this objective function is not jointly convex to all the variables, U, x.,
Viixck, and Wy . Also, there is no closed-form solution for minimizing the objective
function. As a result, a numerical method such as the gradient descent is employed
to determine the local optimal solutions. Specifically, the gradient (denoted as V)
for each variable is represented as follows. Using the gradient descent, a converged
X,nxn 18 returned with all the entries filled:

VyL = [Io(UVT —X)|V + M (UWT —Y)W + 43U, (9.13)
VyL=[Io(UVT=X)]"U+24(VVT = 2)V + sV, (9.14)
VwL =M (UOW" 1)U+ 23W. (9.15)
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9.3 Personalized Travel Recommendations

While a generic travel recommender system can provide users with a variety of
locations regardless of their personal interests, a personalized recommender of-
fers locations matching an individual’s preferences, which are learned from the
individual’s location history [44, 46]. Specifically, a personalized recommender us-
es a particular individual’s number of visits to a location as their implicit rating of
that location, and predicts the user’s interest in an unvisited location in terms of their
location history and those of other users. A matrix between users and locations, like
the M shown in Eq. 9.16, is formulated, where rows stand for users and columns
denote users’ ratings of locations (represented by the times that a user has been to a
location). One approach for building this matrix with user-generated GPS trajectory
has been introduced in Section 8.2.1.

€31 €32 €33 (34 C35

ur| 1 1 2 0 4
w3l 00 1 2 0
w0 0 0 1 1

Based on user-location matrix M, a collaborative filtering model can be employed
to infer a user’s ratings of some unvisited location. Later, by ranking and retrieving
the top k unvisited locations in terms of the inferred values from the row (in M)
corresponding to a particular user, we can provide the user with a personalized rec-
ommendation.

In the following sections, the general idea of a CF model is first introduced and
then two types of CF-based models that have been used in previous literature to
create a personalized location recommender system. One is a user-based location
recommender [46]; the other is an item-based one [44].

9.3.1 Collaborative Filtering

Collaborative filtering is a well-known model widely used in recommender systems.
The general idea behind collaborative filtering [11, 24] is that similar users make rat-
ings in a similar manner for similar items. Thus, if similarity is determined between
users and items, a potential prediction can be made as to the rating of a user with
regards to future items. According to [4], algorithms for collaborative recommenda-
tions can be grouped into two general classes: memory-based (or heuristic-based)
and model-based.

Memory-based: Memory-based algorithms are essentially heuristics that make
ratings predictions based on the entire collection of previously rated items by users
[1]. That is, the value of the unknown rating for a user and an item is usually comput-
ed as an aggregate of the ratings of some other (usually, the N most similar) users



296 Yu Zheng and Xing Xie

for the same item. There are two classes of memory-based collaborative filtering:
user-based [29, 25] and item-based techniques [19, 28].

1) User-based techniques are derived from similarity measures between users.
The similarity between two users (A and B) is essentially a distance measure and
is used as a weight. In other words, when predicting user A’s rating of an item, the
more similar user A and B are, the more weight user B’s rating of the item will carry.
In most approaches, the similarity between two users is based on their ratings of
items that both users have rated, using the Pearson correlation or the Cosine simi-
larity measures. Spertus et al. [32] present an extensive empirical comparison of six
distinct measures of similarity for recommending online communities to members
of the Orkut social network. As a result, under the circumstances of the above-
mentioned approach, they found that the Cosine similarity measure showed the best
empirical results ahead of other measures, such as log odds and point-wise mutual
information.

2) Item-based techniques predict the ratings of one item based on the ratings of
another item. Examples of binary item-based collaborative filtering include Ama-
zon’s item-to-item algorithm [22], which computes the Cosine similarity between
binary vectors representing the purchases in a user-item matrix. Slope One [19]
is the simplest form of non-trivial item-based collaborative filtering. Its simplicity
makes it especially easy to implement it efficiently while its accuracy is often on par
with more complicated and computationally expensive algorithms. This algorithm
is detailed in Section 9.3.2.2.

Model-based: In contrast to memory-based methods, model-based algorithms
[10, 12] use the collection of ratings to form a model, which is then used to predict
ratings. For example, Breese et al. [4] proposed a probabilistic approach to collab-
orative filtering. It is assumed that rating values are integers between 0 and n, and
the probability expression is the probability that a user will give a particular rating
to an item given that user’s ratings of previously rated items. Hofmann et al. [12]
proposed a collaborative filtering method in a machine learning framework where
various machine learning techniques (such as artificial neural networks) coupled
with feature extraction techniques can be used.

9.3.2 Location Recommenders Using User-Based CF

This section presents a personalized location recommender system [46] using a user-
based CF model. Given a user-location matrix like M shown in Eq. 9.16, this loca-
tion recommender operates according to the following three steps:

1) Infer the similarity between users: This personalized location recommender
estimates the user similarity between two users in terms of their location histories
(detailed in Section 8.3), instead of using traditional similarity measures, such as the
Cosine similarity or the Pearson correlation. Typically, in a user-based CF model,
the similarity between two users is based upon the ratings provided by both users.
For example, the similarity between u; and u; (shown in Eq. 9.16) can be represent-
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ed by the Pearson correlation between the ratings < 1,1,2,4 > and < 1,1,3,2 >.
Eq. 9.17 details the computation of the Pearson correlation.

Lies(r,)ns(ry) (pi = Rp) - (Rgi = Ry)
\/ZIES (Rp)NS Rq)(r[)l p)2 'ZiES(Rp)mS(Rq)(qu 7R7q)2

sim(up,up) = 9.17)

Notations: The ratings from a user u, are represented as an array R, =<
Tp0sTpl,- .-, Fpn >, Where rp; is up,’s implicit ratings (the occurrences) in a location
i. S(Ry) is the subset of R, Vry; € S(R,), rpi # 0, i.e., the set of items (locations)
that has been rated (visited) by u,. The average rating in R, is denoted as R),. In
this example, R; =< 1,1,2,0,4 >, R, =< 1,1,3,0,2 >, S(R;) =< 1,1,2,4 >, and
S(Ry) =< 1,1,3,2 >.

This rating-based similarity measure well represents the similarity between two
users when the items rated by users are relatively independent, such as books,
videos, or music. However, dealing with locations (especially, when these locations
are derived from user-generated trajectories), this approach loses the information
of people’s mobility (e.g., the sequential property) and the hierarchical property of
locations. As we mentioned in Section 8.3, users accessing the same locations (A,
B, C) could be similar to each other. However, they would be more similar if they
visited these locations in the same sequence like A — B — C. Also, people who vis-
ited the same building could be more similar to one another than those who traveled
to the same city.

Two studies based on a real GPS trajectory dataset generated by 109 users over
a period of 2 years, one using the geographical model [21], the other using the
semantic model [35], have shown that the user similarity based on location history
outperforms the Cosine similarity and the Pearson correlation.

2) Location selection: For a user, this step selects some locations that have not
been visited by the user but have been accessed by other users. Note that the inferred
rating of a location would not be very accurate if the location has only been accessed
by a few users. At the same time, using the personalized recommender, a user needs
to have some location data accumulated in the system.

3) Rating inference: Given the user-location matrix, user p’s interest (7p;) in a
location i can be predicted according to the following three Equations, which is a
common implementation of user-based collaborative filtering. All the notations used
here have the same meanings with that of Eq. 9.17:
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d=—:Y sim(up,uy); (9.19)
|U | ugel’
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R, = Y (9.20)

As shown in Eq. 9.18, the similarity between users u, and uy, sim(up,u,), is
essentially a distance measure and is used as a weight. That is, the more similar u,
and u, are, the more weight r,; will carry in the prediction of r,;. Here, sim(u,u,) is
calculated according to the method introduced in Section 8.3.3. However, different
people may visit places a varying number of times (e.g., one user might visit a park
twice while another person may access the same park four times, although both of
them are equally interested in the park), i.e., they use the rating scale differently.
Therefore, an adjusted weighted sum is used here.

First, instead of using the absolute values of ratings, the deviations from the av-
erage rating of the corresponding user are used, i.e., r, — R,, where R, denotes
the average rating of u,. Second, a normalizing factor d is involved, calculated in
terms of Eq. 9.19 where U’ is the collection of users who are the most similar to u.
Third, u,’s rating scale is considered by calculating the average rating (R)) of u, as
Eq. 9.20, where S(R,) represents the collection of locations accessed by u,,.

Actually, these equations illustrate a well-known method [1, 24], which has been
used widely in many recommendation systems. Therefore, it is not necessary to
explain them in more detail.

9.3.3 Location Recommenders Using Item-Based CF

The user-similarity-based CF model accurately reflects the sequential and hierar-
chical properties of locations, providing an individual with effective location rec-
ommendations. However, this model has a relatively poor scalability as it needs
to compute the similarity between each pair of users. Though the approximated
method introduced in 8.4.1 can be used to alleviate this problem to some extent, the
constantly increasing number of users in a real system leads to a huge computational
burden. To address this issue, a location recommender using item-based collabora-
tive filtering was proposed in [44], which is comprised of the following two steps:
1) Mining the correlation between locations, and 2) rating inference.

9.3.3.1 Mining the Correlation between Locations

There are a variety of approaches to determine the correlations between locations,
for example, according to the distance between them (i.e., in geographical spaces)
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[14], or in terms of the category of POIs located in a location (i.e., in category
spaces) [30]. However, this section focuses on introducing the correlation between
locations in the spaces of user behavior, specifically, to what extent two locations
are correlated in people’s minds [43, 47].

Typically, people might visit a few locations during a trip, such as going to a few
shopping malls, traveling to a bunch of landmarks on a sightseeing tour, or going
to a cinema after a restaurant. These locations might be similar or dissimilar, or
nearby or far away from one another; but they are correlated from the perspective
of human behavior. For example, a cinema and a restaurant are not similar in terms
of the business categories they pertain to. However, in a user’s mind, these places
would be correlated as many people visit both these places during a trip. As another
example, when shopping for something important like a wedding ring, an individual
will visit similar shops selling jewelry sequentially. In short, these shops visited by
this individual might be correlated. However, these similar shops might be far away
from each other, i.e., they might not be co-located in geographical spaces. Therefore,
this kind of correlation between locations can only be inferred from a large number
of users’ location history in a collective way.

The correlation between locations mentioned above can enable many valu-
able services, such as location recommender systems, mobile tour guides, sales
promotions and bus route design. For instance, as shown in Fig. 9.11 A), a new
shopping mall was built in location A recently. The mall operator is intending to
set up some billboards or advertisements in other places to attract more attention,
thereby promoting sales at this mall. Knowing that locations B, C and E have a much
higher correlation with location A in contrast to locations D and F (according to a
large number of users’ location histories), the operator is more likely to maximize
the promotion effect with minimal investment by putting the billboards or promotion
information in locations B, C and E. Another example can be demonstrated using
Fig. 9.11 B). If a museum and a landmark are highly correlated to a lake in terms
of people’s location histories, the museum and landmark can be recommended to
tourists when they travel to the lake. Otherwise, people would miss some fantastic
places even if they are only two hundred meters away from these locations.

E . A Museume @
F
A Lake %

A Landmark
A) Put promotion information or B) Recommend places to tourists
ads. at correlated locations in terms of location correlation

Fig. 9.11 Some application scenarios of this location correlation
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However, mining the correlation from people’s location histories faces the fol-
lowing two challenges. First, the correlation between two locations does not only
depend on the number of users visiting the two locations but also lies in these users’
travel experiences. The locations sequentially accessed by the people with more
travel knowledge would be more correlated than the locations visited by those hav-
ing little idea about the region. For instance, some overseas tourists might randomly
visit some places in Beijing because they are not familiar with the city. However,
the local people of Beijing are more capable of determining the best itineraries for
a visit there.

Second, the correlation between two locations, A and B, also depends on the
sequences in which both locations have been visited. 1) This correlation between A
and B, Cor(A, B), is asymmetric; i.e., Cor(A, B) # Cor(B,A). The semantic meaning
of a travel sequence A — B might be quite different from B — A. For example, on
a one-way road, people would only go to B from A while never traveling to A from
B. 2) The two locations continuously accessed by a user would be more correlated
than those being visited discontinuously. Some users would reach B directly from
A (A — B) while others would access another location C before arriving at B (A —
C — B). Intuitively, the Cor(A, B) indicated by the two sequences might be different.
Likewise, in a sequence A — C — B, Cor(A,C) would be greater than Cor(A, B), as
the user consecutively accessed A — C, but traveled to B after visiting C.

In short, the correlation between two locations can be calculated by integrating
the travel experiences of the users visiting them on a trip in a weighted manner.
Formally, the correlation between location A and B can be calculated as Eq. 9.21.

Cor(A,B)=Y a-e, (9.21)

MkGU/

where U’ is the collection of users who have visited A and B on a trip; ey is u;’s
travel experience, u; € U’, (Section 9.2.1.2 details the method for calculating a us-
er’s travel experience) . 0 < ¢ < 1 is a dumping factor, decreasing as the interval
between these two locations’ index on a trip increases. For example, in the experi-
ment of [43, 44], ox = 2_(|j_i‘_1), where i and j are indices of A and B in the trip
they pertain to. That is, the more discontinuously two locations being accessed by a
user (|i — j| would be big, thus a will become small), the less contribution the user
can offer to the correlation between these two locations.

Figure 9.12 illustrates Eq. 9.21 using an example, in which three users (i1, us,
u3) respectively access locations (A, B, C) in different manners and create three trips
(Trip1, Tripy, Trips). The number shown below each node denotes the index of
this node in the sequence. According to Eq. 9.21, for Trip;, Cor(A,B) = e; and
Cor(B,C) = ey, since these locations have been consecutively accessed by u;(i.e.,
a = 1). However, Cor(A,C) = 1/2 ¢ (i.e., o = 2~ (12701=1) = 1/2) as u; traveled
to B before visiting C. In other words, the correlation (between location A and C)
that can be sensed from 7rip; might not be that strong if they are not consecutively
visited by u;. Likewise, Cor(A,C) = ey, Cor(C,B) = ep, Cor(A,B) =1/2-¢; in
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terms of Tripy, and Cor(B,A) = e3, Cor(A,C) = e3, Cor(B,C) = 1/2-e3 by Trips.
Later, the correlation inferred from each user’s trips is integrated as follows.

1 1
Cor(A,B) =e; + 3 -ey; Cor(A,C) = 3 -e1+ex+tes;

1
Cor(B,C)=e; + 5 e Cor(C,B) =ep; Cor(B,A) = es.
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Fig. 9.12 An example calculating the correlation between locations

9.3.3.2 Rating Inference

The typical way to estimate the similarity between two items is calculating the Co-
sine similarity between two rating vectors that correspond to the two items. For
instance, the similarity between location /3 and /5 can be represented by the Cosine
similarity between the two rating vectors, < 3,2,1,0 >T and < 4,2,0,1 >T. This
rating-based similarity measure is fast, however it neglects the information of user
mobility patterns among locations. As a result, the rating-based method is not a very
effective similarity measure for an item-based location recommender, in which peo-
ple’s mobility patterns is a key factor determining the quality of recommendations.
Instead of using the rating-based similarity measure, the recommender present-
ed in [44] integrates the location correlation (introduced in Section 9.3.3.1) into
an item-based collaborative filtering (specifically, the Slope One algorithm) [19],
thereby inferring the ratings of a particular user to some unvisited locations.

1)The Slope One algorithms

Notations: The ratings from user u,, called an evaluation, are represented as
array R, =<r,0,"pl,-..,"'pn >, Where rp; is u,,’s implicit ratings in location j. S(R,)
is the subset of R, Vr,; € S(R)), rpj # 0. The collection of all evaluations in the
training set is x. S;(x) means the set of evaluations containing item j, VR, € S;(x),
J € S(R,). Likewise, S; j(x) is the set of evaluations simultaneously containing item
iand j.

The Slope One algorithms [19] are famous and representative item-based CF
algorithms, which are easy to implement, efficient to query, and reasonably accu-
rate. Given any two items i and j with ratings r,; and r,; respectively in some user
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evaluation R, € S;;(x), the average deviation of item i with regard to item j is

calculated as Eq. 9.22.

devi;= Y T (9.22)
RpES;i(x) $54(2)

Given that dev;; + r,; is a prediction for r,; based on rp;, a reasonable predictor
might be the average of all the predictions, as shown in Eq. 9.23.

R

. Y (devji+ryi), (9.23)

l€W/'

P(rpj) =

where w; = {ili € S(Rp),i # J,|S;i(x)| > 0} is the set of all relevant items.

Further, the number of evaluations that simultaneously contain two items has
been used to weight the prediction regarding different items, as presented in E-
g. 9.25. Intuitively, to predict u),’s rating of item A given u),’s ratings of item B and
C, if 2000 users rated the pair of A and B whereas only 20 users rated pair of A and
C, then u,’s ratings of item B is likely to be a far better predictor for item A than
u,’s ratings of item C is.

Xy (devjitrpi)-[S;i(X)]
P(ry;) = £ 500 (9.24)

2) The Slope One algorithm using the location correlation: Intuitively, to predict
u,’s rating of location A given u,’s ratings of location B and C, if location B is more
related to A beyond C, then u),’s ratings of location B is likely to be a far better
predictor for location A than u,’s ratings of location C is. Therefore, as shown in
Eq. 9.25, the |S;;(x)| in Eq. 9.24 is replaced by the correlation cor; (inferred in
Section 9.3.3.1):

i i j(devji+rpi)-corji
P(l’p/’) _ ):zeS(R,,)Az;éj( Jyl pt) Ji : (9.25)
):ies(R,,)Ai;é jCorji

where corj; denotes the correlation between location i and j, and dev; ; is still cal-
culated as Eq. 9.22.

In contrast to the number of observed ratings (i.e., |S;,;(x)|) used by the weighted
Slope One algorithm, the mined location correlation considers more human travel
behavior, such as the travel sequence, user experience, and transition probability
between locations. Using Eq. 9.25, an individual’s ratings of locations they have not
accessed can be inferred. Later, the top n locations with relatively high ratings can
be recommended to the user.
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9.3.4 Open Challenges

Although they are able to provide useful recommendations to an individual, person-
alized location recommender systems are faced with some open challenges during
real implementation. These challenges include cold start problems, data sparseness,
and scalability, which will be discussed individually.

9.3.4.1 Cold Start

A cold start is a prevalent problem in recommender systems, as a system cannot
draw inferences for users or items when it has not yet gathered sufficient informa-
tion. Generally, the problem is caused by new users or new items entering a rec-
ommender system. This sub-section discusses the possible solutions dealing with
new locations and new users with respect to personalized location recommender
systems.

New Location problem: When a new location is added to a location recommen-
dation system, it usually has few ratings with which to determine the correlation
(or similarity) between this new location and other places. As a consequence, the
new location is hardly recommended to users even if it is a good place to visit. One
possible solution is assigning the new location with a small number of users’ rat-
ings of existing places that are similar to the new location. Specifically, this method
estimates the similarity between a new location and some existing locations (with
an adequate number of ratings) according to their category information (e.g., the
feature vector shown Fig. 9.10) [46]. For example, if both the new location and an
existing place belong to the category of <restaurant, café, and bar>, the ratings that
a user gave to a previous existing place might be similar to the new location. The
locations in the system having a closer distance to the new location will be giv-
en a higher weight. As a result, the k most similar places can be selected for new
locations. Then, the ratings of a few users to these similar places can be utilized
to estimate their ratings to the new location, for instance, using the average mean
of existing ratings. With these virtually generated ratings, the new location can be
recommended to real users, thereby getting real ratings in return. The virtual ratings
can be removed from the system once the new location has obtained enough ratings.
Note that we can only select a few similar locations and users to generate the virtu-
al ratings for a new location. Otherwise, these virtual ratings will dominate future
inferences.

New User problem: When signing up in a recommender system, a new user has
no location data accumulated in the system. Therefore, the recommender cannot of-
fer her personalized recommendations effectively. One possible solution is provid-
ing an individual with some of the most popular recommendations at first regardless
of her interests. If we have an individual’s profile (e.g., likes movies), the popular
locations with a category matching the individual’s preferences can be recommend-
ed. Regarding the users who have only visited a very limited number of locations,
some similarity-based mapping methods can be used to propagate a user’s rating to a
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visited location to a few similar places that have not been accessed by the individual.
Specifically, a similarity between two locations can be determined using either the
location correlation (if both locations have sufficient ratings), or categories of these
two locations as mentioned in the new location problem.

9.3.4.2 Data Sparseness

Intuitively, a user-location matrix is very sparse as a user can only visit a certain
number of locations. The prediction of an individual’s interest in a location is un-
able to be very accurate based on such a sparse matrix. Some approaches using
additional information can improve the inferences. For example, the method intro-
duced in Section 9.2.3 uses the category information of a location. Also, propagation
and similarity-based mapping methods (mentioned in the above section) can be em-
ployed to reduce the empty entries in a matrix. Alternative methods can transfer
this user-location matrix into a user-category matrix, which has a smaller number of
columns and fewer empty entries than the former. As shown in Fig. 9.13, the sim-
ilarity between users can be determined in terms of this user-category matrix with
sufficient ratings, and then used in turn in the user-location matrix for location rec-
ommendation. However, this is still a very challenging problem that remains open
to research and real implementation.
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Fig. 9.13 Transforming a user-location matrix into a user-category matrix

9.3.4.3 Scalability

While the number of locations is limited in the real world and usually much smaller
than that of users, the problem concerning the scalability of a location recommender
arises in large part from the increasing number of users. Some approximation ap-
proaches can be used to reduce this problem to some extent.

For example, in the user-based CF model (introduced in Section 9.3.2), the mech-
anisms demonstrated in Fig. 8.10 can be employed to diminish the computations
when a new user joins the system. First, existing users in a recommendation sys-
tem can be clustered into groups according to the similarity between one another.
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The users who are similar to a new user can then be found solely in the groups that
the new user pertains to. Second, a location history can be quickly built for a new
user by directly inserting her stay points into existing framework F. Later, we can
compute the similarity between the new user and the representative user of a clus-
ter based on this location history, thereby determining which group the new user
belongs to. Third, the shared framework and user clusters can also be updated at a
relatively low frequency, e.g., 1 update per month, as the arrival of a few users will
not significantly change them. Fourth, once the similarity between the new users
and other users in the cluster is computed, the similarity can be used for a time even
if the new user has new data uploaded to the system. Adding a few trajectories will
not change the similarity between two users significantly.

An alternative way to enhance the scalability of a location recommender system
uses the item-based CF model presented in Section 9.3.3. The correlation (or sim-
ilarity) between two locations can be updated at a very low frequency, e.g., once a
month, as the arrival of a few new users does not change them significantly.

9.4 Summary

This chapter explores research topics in a location-based social network from the
perspective of understanding locations with user-generated GPS trajectories. Using
travel as a main application scenario, both generic and personalized travel recom-
mendations are studied.

The generic travel recommender starts by finding interesting locations and travel
sequences from a large amount of raw trajectories, and then offers itinerary and
location-activity recommendations. By tapping into the collective social knowledge,
these recommendations help people to travel to an unfamiliar place and plan their
journey with minimal effort.

The personalized location recommender provides a particular user with locations
matching her preferences, based on the location history of this user and that of oth-
ers. Regarding a user’s visits to a location as an implicit rating to that location, two
kinds of collaborative filtering-based models are proposed to predict the user’s in-
terests in unvisited places. One is a user-based CF model, which incorporates the
similarity between two different users (derived from their location histories) as a
distance function between them. The other is a location-based CF model using the
correlation between two different locations (inferred from many users’ GPS trajec-
tories) as a distance measure between them. The user-based CF model is able to
accurately model an individual’s behavior while it suffers from the increasing scale
of users. The location-based CF model is efficient and reasonably accurate.

Some challenges are also discussed in the end of this chapter, aiming to encour-
age more research effort into this field.
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