
Chapter 8

Location-Based Social Networks: Users

Yu Zheng

Abstract In this chapter, we introduce and define the meaning of location-based
social network (LBSN) and discuss the research philosophy behind LBSNs from
the perspective of users and locations. Under the circumstances of trajectory-centric
LBSN, we then explore two fundamental research points concerned with under-
standing users in terms of their locations. One is modeling the location history of an
individual using the individual’s trajectory data. The other is estimating the similar-
ity between two different people according to their location histories. The inferred
similarity represents the strength of connection between two users in a location-
based social network, and can enable friend recommendations and community dis-
covery. The general approaches for evaluating these applications are also presented.

8.1 Introduction

8.1.1 Concepts and Definitions of LBSNs

A social network is a social structure made up of individuals connected by one or
more specific types of interdependency, such as friendship, common interests, and
shared knowledge. Generally, a social networking service builds on and reflects the
real-life social networks among people through online platforms such as a website,
providing ways for users to share ideas, activities, events, and interests over the
Internet.
The increasing availability of location-acquisition technology (for example GPS

and Wi-Fi) empowers people to add a location dimension to existing online social
networks in a variety of ways. For example, users can upload location-tagged photos
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to a social networking service such as Flickr [2], comment on an event at the exact
place where the event is happening (for instance, in Twitter [6]), share their present
location on a website (such as Foursquare [3]) for organizing a group activity in the
real world, record travel routes with GPS trajectories to share travel experiences in
an online community (for example GeoLife [60, 57, 53, 61]), or log jogging and
bicycle trails for sports analysis and experience sharing (as in Bikely [1] and [15]).
Here, a location can be represented in absolute (latitude-longitude coordinates),

relative (100 meters north of the Space Needle), and symbolic (home, office, or
shopping mall) form. Also, the location embedded into a social network can be
a stand-alone instant location of an individual, like in a bar at 9pm, or a location
history accumulated over a certain period, such as a GPS trajectory: “a cinema→a
restaurant→a park→a bar.”
The dimension of location brings social networks back to reality, bridging the gap

between the physical world and online social networking services. For example,
a user with a mobile phone can leave her comments with respect to a restaurant
in an online social site (after finishing dinner) so that the people from her social
structure can reference her comments when they later visit the restaurant. In this
example, users create their own location-related stories in the physical world and
browse other people’s information as well. An online social site becomes a platform
for facilitating the sharing of people’s experiences.
Furthermore, people in an existing social network can expand their social struc-

ture with the new interdependency derived from their locations. As location is one
of the most important components of user context, extensive knowledge about an
individual’s interests and behavior can be learned from her locations. For instance,
people who enjoy the same restaurant can connect with each other. Individuals con-
stantly hiking the same mountain can be put in contact with each other to share their
travel experiences. Sometimes, two individuals who do not share the same abso-
lute location can still be linked as long as their locations are indicative of a similar
interest, such as beaches or lakes.
These kinds of location-embedded and location-driven social structures are known

as location-based social networks, formally defined as follows:

A location-based social network (LBSN) does not only mean adding a location to
an existing social network so that people in the social structure can share location-
embedded information, but also consists of the new social structure made up of
individuals connected by the interdependency derived from their locations in the
physical world as well as their location-tagged media content, such as photos, video,
and texts. Here, the physical location consists of the instant location of an individual
at a given timestamp and the location history that an individual has accumulated
in a certain period. Further, the interdependency includes not only that two persons
co-occur in the same physical location or share similar location histories but also
the knowledge, e.g., common interests, behavior, and activities, inferred from an
individual’s location (history) and location-tagged data.
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In a location-based social network, people can not only track and share the
location-related information of an individual via either mobile devices or desktop
computers, but also leverage collaborative social knowledge learned from user-
generated and location-related content, such as GPS trajectories and geo-tagged
photos. One example is determining this summer’s most popular restaurant by min-
ing people’s geo-tagged comments. Another example could be identifying the most
popular travel routes in a city based on a large number of users’ geo-tagged pho-
tos. Consequently, LBSNs enable many novel applications that change the way we
live, such as physical location (or activity) recommendation systems [65, 63, 59, 50,
51, 58, 10] and travel planning [45, 46], while offering many new research oppor-
tunities for social network analysis (like user modeling in the physical world and
connection strength analysis) [28, 39, 16, 20, 21, 19, 25, 44], spatio-temporal da-
ta mining [29, 47, 49, 42, 64], ubiquitous computing [55, 54, 52, 56, 48, 62], and
spatio-temporal databases [35, 13, 12, 37, 14, 18].

8.1.2 Location-Based Social Networking Services

Existing applications providing location-based social networking services can be
broadly categorized into three folds: geo-tagged-media-based, point-location-driven
and trajectory-centric.

• Geo-tagged-media-based. Quite a few geo-tagging services enable users to add
a location label to media content such as text, photos, and videos generated in
the physical world. The tagging can occur instantly when the medium is gener-
ated, or after a user has returned home. In this way, people can browse their con-
tent at the exact location where it was created (on a digital map or in the physical
world using a mobile phone). Users can also comment on the media and expand
their social structures using the interdependency derived from the geo-tagged
content (for example, in favor of the same photo taken at a location). Represen-
tative websites of such location-based social networking services include Flick-
r, Panoramio, and Geo-twitter. Though a location dimension has been added to
these social networks, the focus of such services is still on the media content.
That is, location is used only as a feature to organize and enrich media content
while the major interdependency between users is based on the media itself.

• Point-location-driven. Applications like Foursquare and Google Latitude en-
courage people to share their current locations, such as a restaurant or a muse-
um. In Foursquare, points and badges are awarded for “checking in” at venues.
The individual with the most number of “check-ins” at a venue is crowned
“Mayor.” With the real-time location of users, an individual can discover friends
(from her social network) around her physical location so as to enable certain
social activities in the physical world, e.g., inviting people to have dinner or go
shopping. Meanwhile, users can add “tips” to venues that other users can read,
which serve as suggestions for things to do, see, or eat at the location. With this
kind of service, a venue (point location) is the main element determining the in-
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terdependency connecting users, while user-generated content such as tips and
badges feature a point location.

• Trajectory-centric. In a trajectory-centric social networking service, such as
Bikely, SportsDo, and Microsoft GeoLife, users pay attention to both point
locations (passed by a trajectory) and the detailed route connecting these point
locations. These services do not only tell users basic information, such as dis-
tance, duration, and velocity, about a particular trajectory, but also show a us-
er’s experiences represented by tags, tips, and photos for the trajectory. In short,
these services provide “how and what” information in addition to “where and
when.” In this way, other people can reference a user’s travel/sports experience
by browsing or replaying the trajectory on a digital map, and follow the trajec-
tory in the real world with a GPS-phone.

Table 8.1 provides a brief comparison among these three services. The major
differences between the point-location-driven and the trajectory-centric LBSN lie in
two aspects. One is that a trajectory offers richer information than a point location,
such as how to reach a location, the temporal duration that a user stayed in a loca-
tion, the time length for travelling between two locations, and the physical/traffic
conditions of a route. As a result, we are more likely to accurately understand an
individuals behavior and interests in a trajectory-centric LBSN. The other is that in
a point-location-driven LBSN users usually share their real-time location while the
trajectory-centric more likely delivers historical locations as users typically prefer
to upload a trajectory after a trip has finished (though it can be operated in a contin-
uously uploading manner). This property could compromise some scenarios based
on the real-time location of a user, however, it reduces to some extent the privacy
issues in a location-based social network. In other words, when people see a users
trajectory the user is no longer there.

Table 8.1 Comparison of different location-based social networking services

LBSN Services Focus Real-time Information

Geo-tagged-media-based Media Normal Poor
Point-location-driven Point location Instant Normal

Trajectory-centric Trajectory Relatively Slow Rich

Actually, the location data generated in the first two LBSN services can be con-
verted into the form of a trajectory which might be used by the third category of
LBSN service. For example, if we sequentially connect the point locations of the
geo-tagged photos taken by a user over several days, a sparse trajectory can be for-
mulated. Likewise, the check-in records of an individual ordered by time can be
regarded as a low-sampling-rate trajectory. However, due to the sparseness, i.e., the
distance and time interval between two consecutive points in a trajectory could be
very big, the uncertainty existing in a single trajectory from the first two services
is increased. Aiming to put these trajectories into trajectory-centric LBSN services,
we need to use them in a collective and collaborative way.
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The following sections will pay closer attention to trajectory data, which is the
most complex data structure to be found in the three LBSN services, and provides
the richest information. If it is handled well, other data sources become easier to deal
with. Moreover, as mentioned above, location data can be converted into a trajectory
on many occasions. Consequently, some methodologies designed for trajectory data
can be employed by the first two LBSN services.

8.1.3 Research Philosophy of LBSN

User and location are two major subjects closely associated with each other in a
location-based social network. As illustrated in Fig. 8.1, users visit some locations
in the physical world, leaving their location histories and generating location-tagged
media content. If we sequentially connect these locations in terms of time, a trajec-
tory will be formulated for each user. Based on these trajectories, we can build three
graphs: a location-location graph, a user-location graph, and a user-user graph.

Fig. 8.1 Research philosophy of a location-based social network

In the location-location graph (demonstrated in the bottom-right of Fig. 8.1), a
node (a point on the graph) is a location and a directed edge (a line on the graph)
between two locations indicates that some users have consecutively traversed these
two locations during a trip. The weight associated with an edge represents the cor-
relation between the two locations connected by the edge.
In the user-location graph (depicted in the left part of Fig. 8.1), there are two

types of nodes: users and locations. An edge starting from a user and ending at a
location indicates that the user has visited this location, and the weight of the edge
can indicate the number of visits.
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In the user-user graph (shown in the top-right of Fig. 8.1), a node is a user and
an edge between two nodes consists of two folds. One is the original connection
between two users in an existing social network like Twitter. The other is the new
interdependency derived from their locations, e.g., two users have visited the same
location, or similar types of places, in the real world over a certain number of visits.
The latter information, initially inferred from a user’s locations, can be transferred
to the former through a recommendation mechanism. In other words, we can rec-
ommend users to an individual based on the inferred interdependency. Once the
individual accepts the recommendation, the relationship switches from the second
category to the first.
Using these graphs, we can understand users and locations respectively, and ex-

plore the relationship between them. Though the research topics are listed indi-
vidually from the perspective of users and locations as follows, these two subjects
have a mutually reinforcing relationship that cannot be studied alone:

1) Understanding users: Here, we aim to understand users based upon their locations.

• Estimate user similarity [28, 16]: An individual’s location history in the real
world implies, to some extent, her interests and behaviors. Accordingly, peo-
ple who share similar location histories are likely to have common interests
and behavior. The similarity between users inferred from their location his-
tories can enable friend recommendations, which connect users with similar
interests even when they may not have known each other previously [63],
and community discovery that identifies a group of people sharing common
interests.

• Finding local experts in a region [65]: With users’ locations, we are able
to identify the local experts who have richer knowledge about a region than
others. Their travel experiences, e.g., the locations where they have been,
are more accountable and valuable for travel recommendation. For instance,
local experts are more likely to know about high-quality restaurants than
some tourists.

• Community discovery [39, 25]: Using the similarity inferred from users’
locations, we can cluster these users into groups in which users share com-
mon interests like visiting museums. Consequently, an individual can easily
initiate a group activity, such as hiking or purchasing tickets at a group price,
by sending an invitation to the appropriate users in a social site.

2) Understanding locations: Here, we focus on understanding locations based upon
user information.

• Generic travel recommendations:

– Mining the most interesting locations [65]: Finding the most interesting
locations in a city as well as the travel sequences among these locations is
a general task that a tourist wants to fulfill when traveling to an unfamiliar
city. Location-based social networks provide us with the opportunity to
identify such information by mining a large number of users’ location
histories (represented by trajectories). Refer to Section 9.2.1.
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– Itinerary planning [45, 46]: Sometimes, a user needs a sophisticated
itinerary conditioned by the user’s travel duration and departure place.
The itinerary could include not only stand-alone locations but also de-
tailed routes connecting these locations and a proper schedule, e.g., the
typical time of day that most people reach the location and the appropri-
ate time length that a tourist should stay there. Planning a trip in terms
of the collective knowledge learned from many people’s trajectories is an
interesting research topic. Refer to Section 9.2.2.

– Location-activity recommender [51]: This recommender provides a user
with two types of recommendations: 1) The most popular activities that
can be performed in a given location and 2) the most popular locations
for conducting a given activity, such as shopping. These two categories of
recommendations can be mined from a large number of users’ trajectories
and location-tagged comments. Refer to Section 9.2.3.

• Personalized travel recommendations

– User-based collaborative filtering [63]: In this scenario, the similarity be-
tween each pair of users (introduced above) is incorporated into a collabo-
rative filtering model to conduct a personalized location recommendation
system, which offers locations matching an individual’s preferences. The
general idea behind collaborative filtering [23, 30] is that similar users
vote in a similar manner on similar items. Thus, if similarity is deter-
mined between users and items, predictions can be made about a user’s
potential ratings of those items. For instance, if we know user A and B are
very similar (in terms of their location histories), we can recommend the
locations where user A has already been to user B and vice versa. Refer
to Section 9.3.2 for details.

– Location-based collaborative filtering [59, 58]: User-based collaborative
filtering is able to accurately model an individual’s behavior. However,
it suffers from the increasing scale of users (in a real system) since the
model needs to calculate the similarity between each pair of users. To
address this issue, location-based collaborative filtering is proposed. This
model regards a physical location as an item and computes the correla-
tion between locations based on the location histories of the users visiting
these locations. Given the limited geographical space (i.e., the number
of locations is limited), this location-based model is more practical for a
real system. The main challenge to the location-based model is how to
embody an individual’s behavior which is the advantage of a user-based
model. Refer to Section 9.3.3 for details.

• Events discovery from social media [29, 27]
Quite a few projects aim to detect anomalous events, such as concerts, traffic
accidents, sales promotions, and festivals, using media (such as geo-tagged
photos and tweets) posted by a large number of users in a location-based
social network. Intuitively, people witnessing such an event would post a
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considerable amount of media (e.g., tweets) in the location where the event
occurs. By grouping and mining media that co-occurs in particular locations,
we can get a sense of geo-social events automatically.

Actually, the problems that traditional social networks have exist in location-based
social networks, and become more challenging due to the following reasons:

• The graph representing a location-based social network is heterogeneous, con-
sisting of at least two types of nodes (user and location) and three kinds of links
(user-user, location-location, and user-location). Or, we can say there are at least
three tightly associated graphs modeling a LBSN (as mentioned previously). If
it is a trajectory-centric LBSN, trajectories can be regarded as another kind of
node in the social network; so do geotagged videos and photos. Location is not
only an additional dimension of the user, but also an important object in a LB-
SN. Under the circumstances, determining the connecting strength between two
users in a LBSN needs to involve the information from the other graphs, such as
the linking structure of user-location and location-location, besides that of users
(refer to Fig. 8.1).

• Location-based social networks are constantly evolving at a faster pace than
traditional social networks, in both social structure and properties of nodes and
links. Though academic social networks are also heterogeneous with authors,
conferences, and papers, its evolves at a much slower speed than LBSNs do.
For example, it is much easier to add a new location to a LBSN (by check-in)
than launching a new conference or publishing a paper. That is, the number of
nodes in a LBSN increases faster than an academic social network. Also, it is
common for users to visit locations (e.g., restaurants and shopping malls) they
have never been before. However, researchers will not constantly attend new
conferences. Thus, the linking structure of a LBSN evolves much faster than
an academic social network. Furthermore, the properties of nodes and links in
a LBSN evolve more quickly than in an academic social network. A user can
become a travel expert in a city after visiting many interesting locations over
several months, while a researcher needs years before becoming an expert in a
research area.

• A location has unique features beyond that of other objects in a social net-
work. Besides general linking relationship between locations, the hierarchical
and sequential properties of locations are unique. A location can be as small as
a restaurant or as big as a city. Locations with different granularities formulate
hierarchies between them. For example, a restaurant belongs to a neighborhood,
and the neighborhood pertains to a city. Further, the city will belong to a county
and a country, and so on. Using different granularities, we will obtain different
location graphs even given the same trajectory data. This hierarchical proper-
ty does not hold in an academic social network as a conference never belongs
to others. Regarding the sequential property, each link between two locations
is associated with temporal and directional information. Moreover, these links
can construct a sequence carrying a particular semantic meaning, e.g., a popular
travel route.
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There are other important research points in location-based social networks. For ex-
ample, from the perspective of data management, streaming databases and indexing
user-generated location data are vital. Also, user privacy in location-based social
networks deserves to be further studied. As these topics have been discussed exten-
sively in other chapters, they will not be covered here.
So far, there is no dedicated conference for researchers and professionals to share

the research into LBSNs. While people submit LBSN-related papers to a number of
conferences such as WWW, Ubicomp, and ACM GIS, ACM SIGSPATIAL Work-
shop on Location-Based Social Networks provides a dedicated international forum
for LBSN researchers and practitioners from academia and industry to share their
ideas, research results, and experiences. This workshop was launched in 2009 and
has been in conjunction with ACM SIGSPATIAL GIS conference from 2009 to
2011.

8.2 Modeling Human Location History

8.2.1 Overview

To carry out the above-mentioned research, it is first necessary to model the lo-
cation history of an individual from raw sensor data, such as GPS readings. The
methods presented in most literature [8, 24] solely pay attention to detecting signif-
icant places from the sensor data, without considering the social computing among
different users. That is, they do not study how to compare different users’ location
histories when modeling the location data of multiple persons. Since 2008, a series
of publications [65, 63, 59, 10, 28, 39] proposed a systematical solution for this
problem, following the paradigm of “sensor data→ geospatial locations (significant
places)→semantic meanings (e.g., restaurants).” Beyond the related methods, this
solution has the following two advantages: 1) Modeling the location history of an
individual and that of many users simultaneously, thereby making different users’
location histories comparable and computable; 2) Modeling an individual’s travel in
geospatial and semantic spaces respectively, allowing deeper understanding of the
individual’s behavior and interests.
Given these advantages, this solution will be further introduced in later sections.

This paradigm is further illustrated using Fig. 8.2 as an example, in which two users
visited some locations and created two trajectories, Tr1 and Tr2, respectively.
Directly measuring these two users’ location histories based on the GPS readings

(denoted by points) is difficult for two reasons. First, the raw sensor readings of
these two users are different even if they were visiting the same location, such as
A and C. This is caused by the intrinsic positioning error of a location-acquisition
technology and the randomness of people’s movement (e.g., people exit a building
from different gates). Second, defining a proper distance threshold (e.g. 100 meters)
is often arbitrary in determining whether two readings belong to the same location. If



252 Yu Zheng

we regard two points with a Euclidian distance smaller than 100 meters as readings
from the same location, why do those points having a distance of 101 meters not
also pertain to the same location? To address this issue, we need to convert a user’s
location history from sensor readings into a sequence of comparable locations in the
geographic spaces, for instance, Tr1 : A→C, and Tr2 : A→ B→C→ D. Note that
the focus is on the significant places like A and B where an individual carried out
some meaningful behavior (reflecting her interests), such as shopping and watching
a movie, instead of some points generated when an individual passes by a location
like a crossroad without taking any essential action. This process will be discussed
in more detail in Section 8.2.2.
However, knowing an individual’s movement in the geographic spaces is not

enough to understand the individual’s interests. The semantic meaning of a physical
location, e.g., a shopping center, will bring richer knowledge and context to explore
a user’s behavior. Given this reason, a user’s trajectory is further converted from
“Tr1 : A→C” to “a lake→ a shopping center,” thereby modeling the user’s location
history in terms of semantic spaces. Refer to Section 8.2.3 for details.

D

Park

Shopping centre

B
C

A

Lake

Tr2

Tr1

User1

User2

Fig. 8.2 Modeling the location history of a user from sensor data

8.2.2 Geospatial Model Representing User Location History

In this section, a framework is proposed, called a hierarchical graph, to uniform-
ly model each individual’s location history in the geospatial spaces [63, 28]. The
framework consists of the following three steps, which are further illustrated in
Fig. 8.3 and respectively detailed in later sections.
1) Detect significant places: The stay points are determined, each of which de-

notes a geographic region where an individual stayed for a certain duration, from
the trajectory data. As compared to a raw sensor reading, each stay point carries a
particular semantic meaning, such as the shopping malls and restaurants visited by
an individual. Refer to Section 8.2.2.1 for details.
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2) Formulate a shared framework: All users’ stay points are placed together in-
to a dataset. Using a density-based clustering algorithm, this dataset is recursively
clustered into several clusters in a divisive manner. Thus, similar stay points from
various users are assigned to the same cluster, and the clusters on different layers
represent locations (geographical regions) of different granularities. This structure
of clusters, referred to as a hierarchical framework, provides various users with a
uniform framework to formulate their own graphs. Refer to the middle box shown
at the bottom of Fig. 8.3.
3) Construct a personal location history: By projecting the individual location

history onto the shared hierarchical framework, each user can build a personal
directed-graph, in which a graph node is the cluster containing the user’s stay points
and a graph edge stands for the user’s traveling sequence between these clusters
(geographic regions). To simplify the problem, we do not differentiate between the
diverse paths that a user created between two places (clusters).
In later sections, GPS logs are used as an exemplary trajectory to illustrate the

methodology. Of course, this solution can be applied to other trajectory data sources,
such as geo-tagged photos.
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Fig. 8.3 Framework for modeling users location history in geographical spaces
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8.2.2.1 Detecting Significant Places

A significant place denotes the location where an individual carried out some mean-
ingful behavior (reflecting her interests), such as shopping, watching a movie, or
visiting a museum. These significant places allow a better understanding of an
individual’s interests, thereby accurately computing the interdependency between
different users. At the same time, other sensor readings outside of these significant
places can be skipped, saving the computational load in a real system. Literature
that introduces a method for detecting significant places includes [10, 28, 8, 24].
Basically, they share the idea of using a spatial and temporal constraint to delineate
a location from a sequence of GPS coordinates. One representative method [28, 48]
is selected and introduced below. Before going into detail, it is necessary to first
define some terms that will be used in Chapters 8 and 9.

Definition 8.1 (GPS Trajectory). A GPS trajectory Tra j is a sequence of time-
stamped points, Tra = p0 → p1 → ·· · → pk, where pi = (x,y, t),(i = 0,1, . . . ,k);
(x,y) are latitude and longitude respectively, and t is a timestamp. ∀0≤ i≤ k, p(i+
1).t > pi.t.

Definition 8.2. Dist(pi, p j) denotes the geospatial distance between two points pi
and p j, and Int(pi, p j) = |pi.t− p j.t| is the time interval between two points.
Definition 8.3 (Stay Point). A stay point s stands for a geographic region where a
user stayed over a certain time interval. The extraction of a stay point depends on
two scale parameters, a time threshold (τ) and a distance threshold (δ ). Formally,
given a trajectory, Tra j : p1→ p2→ ·· · → pn, a single stay point s can be regarded
as a virtual location characterized by a sub-trajectory pi→ ·· · → p j, which satisfies
the conditions that ∀k ∈ [i, j), Dist(pk, p(k + 1)) < δ , Int(pi, p j) > τ . Therefore,
s = (x,y, ta, tl), where

s.x =
j

∑
k=i

pk.x/|s|, (8.1)

s.y =
j

∑
k=i

pk.y/|s|, (8.2)

respectively stands for the average x and y coordinates of the stay point s; s.ta = pi.t
is the user’s arriving time on s and s.tl = p j.t represents the user’s departure time.

Note that a stay point does not necessarily mean a user remains stationary in a
location. Also, we do not expect to include the circumstance when an individual
is stuck in a traffic jam or waiting for a traffic signal. Instead, we aim to detect
the significant stays reflecting the semantic meanings of an individual’s behavior
and interests, which usually occur in the following two situations. One is when
people enter a building and lose satellite signal over a time interval before coming
back outdoors. Figure 8.4 A) shows an example in which an individual visited a
shopping mall and stayed inside for a period of time. The other situation is when a



8 Location-Based Social Networks: Users 255

user exceeds a time limit at a certain geospatial area (outdoors). For instance, people
strolling along a nice beach (refer to Fig. 8.4 B)), or being attracted by a landmark
(See Fig. 8.4 C)) could generate a stay point.

A B

C

A) Visiting a Shopping mall B) Walking along a beach C) Traveling around a landmark

>100m

>200m

>150m

Fig. 8.4 Some examples of stay points

Figure 8.5 demonstrates the algorithm for stay point detection, using a trajec-
tory (p1 → p2 → ·· · → p7). Overall, the stay point detection algorithm includes
two operations: checking spatio-temporal constraint and expanding. As depicted in
Fig. 8.5 B), p1 and p2 cannot formulate a stay point as Dist(p1, p2) exceeds the
corresponding threshold δ . Then, we move to p2 and find that Dist(p2, p3)< δ and
Dist(p2, p4) < δ while Dist(p2, p5) > δ (see Fig. 8.5 C)). If the time interval be-
tween p2 and p4 is larger than time threshold τ , the three points form a small cluster
representing a stay point. However, they might not be the entire set of the points
in this stay. Accordingly, we try to expand the stay point by continuously checking
the distance between p4 and the remaining points (p5, p6, p7) in the trajectory. As
depicted in Fig. 8.5 D), p5 and p6 are added into this stay point since they also meet
the spatio-temporal constraints. Finally, we detect (p2→ p3→ p4→ p5→ p6) as a
stay point because we cannot expand the cluster any further. That is, all the points
in the cluster have a distance farther than δ to p7.

p1

p7

p1 p7

p1
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Fig. 8.5 An example of stay pints detection

At this point, some people might ask why not use an already existing clustering
algorithm like DBSCAN to determine the stay points. There are two reasons for not
doing so. On the one hand, as depicted in Fig. 8.4 A), if stay points are detected
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by directly clustering raw GPS points, most significant places like shopping malls
and restaurants will remain undetected. This is caused by the fact that GPS devices
lose satellite signal indoors, i.e., few GPS points will be generated at those places.
However, some places like intersections passed by many people will be identified
as stay points. On the other hand, if we use an interpolation operation (to fill the
lost GPS points), the computational load for clustering such a big dataset will be
extremely heavy. For instance, a 2-hour stay will generate 720 points if we use 5-
seconds as the interpolating frequency. The workload of clustering is impractical for
a real system with an increasing number of users.
However, the selection of thresholds δ and τ for the algorithm is still not easy

and depends on people’s commonsense knowledge. For example, in the experiment
of [28, 63], if an individual spent more than 15 minutes within a distance of 200
meters, the region is detected as a stay point. Although the aim is to represent each
stay of a user as precisely as possible, we have to use a proper geo-region to specify
an individual’s stay for a number of reasons.
First, a strict region size, such as 20×20 meters, might be more capable of ac-

curately identifying a business like a Starbucks visited by a user; however, it would
cause many stays to remain undetected. As demonstrated in Fig. 8.4 A), a user could
enter a shopping mall from Gate A while leaving the mall from Gate B (see the blue
line). Given that a shopping mall could cover a 150×150 meter geo-region, the dis-
tance between the last GPS point before entering the mall and the first point after
coming out from the mall could be larger than 150 meters; i.e., the user’s stay at
this shopping mall cannot be detected using a very small region constraint like 20
meters. Moreover, even if a user leaves the shopping mall from the same gate they
entered, in most cases, the distance between the last GPS point before entering and
the first point after coming out could be larger than 100 meters. Typically, GPS
devices need some time to re-locate themselves after returning outdoors.
Second, a very small region constraint could cause the stays of people to be

over-detected. As shown in Fig. 8.4 B) and C), multiple trivial stay points could
be detected in one location when people stroll along a beach or wander around a
landmark. The data does not align with a person’s perceptions that she has only
accessed one location (the beach or the landmark).
Third, these two parameters (200 meters, 15 minutes) are likely to exclude a

situation where people wait for a signal at a traffic light, and can reduce to some
extent the stay points caused by traffic jams, e.g., a traffic light does not normally
last for 10 minutes.

8.2.2.2 Formulating a Shared Framework

After detecting the stay points from an individual’s GPS trajectories, we can model
the individual’s location history with a sequence of stay points, which is defined as
follows:

Definition 8.4 (Location histroy).Generally, location history is a record of locations
that an entity visited in geographical spaces over an interval of time. In this book,
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an individual’s location history (LocH) is represented by a sequence of stay points
(s) they visited with the corresponding arrival and departure times.

LocH = (s1
 t1−−→ s2

 t2−−→ ·· ·  tn−1−−−→ sn) (8.3)

where si ∈ S and ti = si+1.ta− si.tl .

However, different people’s location histories represented by a sequence of stay
points are still inconsistent and incomparable even if they visited the same place. Be-
sides the intrinsic positioning error of GPS sensors (as explained in Section 8.3.1),
people accessing a location in a variety of ways, such as different directions, en-
trances, and exits, could also generate a variety of stay points in the location. Fig-
ure 8.4 A) gives an example where two users visit one building from two different
gates and generate two different stay points.
To uniformly model each individual’s location history, a shared framework that is

formulated by hierarchically clustering all users’ stay points is proposed, as formally
defined in Definition 8.5.

Definition 8.5 (Shared Hierarchical Framework F). F is a collection of stay
point-based clustersCwith a hierarchy structure L. F =(C,L), where L= l1, l2, . . . , ln
denotes the collection of layers of the hierarchy.C = {ci j|1≤ i≤ |L|,0≤ j ≤ |Ci|},
where ci j denotes the jth cluster of stay points on layer li(li ∈ L), and Ci is the
collection of clusters on layer li.

Figure 8.3 illustrates the process for formulating a shared hierarchical frame-
work. The stay points from different users are placed into one dataset, and recur-
sively clustered into several clusters in a divisive manner using a density-based clus-
tering algorithm, such as DBSCAN or OPTICS [7]. As compared to an agglomera-
tive method like K-Means, these density-based approaches are capable of detecting
clusters with irregular structures, which may stand for a set of nearby restaurants, a
beach, or a shopping street.
As a result, the similar stay points from different users are assigned to the same

cluster, and the clusters on different layers denote locations of different granulari-
ties. From the top to the bottom of the hierarchy, the geospatial scale of these clusters
decreases while the granularity of the locations (corresponding to the clusters) be-
comes finer. For example, cluster c20 on the second layer is divided into two clusters
c30 and c31 on the third layer. So, c30 and c31 have a smaller size in geographical
spaces while they are with a finer granularity than c20. This hierarchical feature is
useful for differentiating people with different degrees of similarity. Intuitively, peo-
ple sharing the same location histories on a deeper layer might be more correlated
than on a higher layer. For instance, people visiting the same museum are more
likely to be similar than those visiting the same city.
Overall, the shared hierarchical framework provides different users with a uni-

form foundation to re-formulate their own location history, which looks like a hi-
erarchical graph. Meanwhile, this shared framework is the model representing the
location histories of a myriad of users in a LBSN.
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8.2.2.3 Constructing Personal Location History

A user’s personal hierarchical graph can be constructed by substituting each stay
point in the user’s original location history (refer to Definition 8.4) with the cluster
(from different layers of the shared framework) the stay point pertains to. For ex-
ample, as illustrated in Fig. 8.3, User 2’s location history is originally represented
as

LocH = s1
 t1−−→ s2

 t2−−→ s3
 t3−−→ s4

 t4−−→ s5
 t5−−→ s6

 t6−−→ s7
 t7−−→ s8. (8.4)

After projecting these stay points onto the third layer of the shared framework, User
2’s location history can be transferred to,

LocH = c31
 t1−−→ c34

 t2−−→ c33
 t3−−→ c32

 t4−−→ c31
 t5−−→ c32

 t6−−→ c32
 t7−−→ c31. (8.5)

Where ci j is the jth cluster on the ith layer. For instance, s1, s5, s6, and s8 belong to
cluster c31. Further, we merge the same cluster (like c31) continuously appearing in
a user’s location history.

LocH = c31
 t1−−→ c34

 t2−−→ c33
 t3−−→ c32

 t4−−→ c31
 t6−−→ c32

 t7−−→ c31. (8.6)

This transformation from a stay point to a cluster ID is performed on each layer of
the shared framework. As a result, User 2’s location history is denoted as a set of
sequences of clusters. Since a user could visit a cluster multiple instances at dif-
ferent times, the presentation of a user’s location (in sequences) looks more like a
hierarchical graph. Generally speaking, the personal hierarchical graph is the inte-
gration of two structures: a shared hierarchical framework F and a graph G on each
layer of the F . The tree expresses the parent-children (or ascendant-descendant) re-
lationships of the nodes pertaining to different levels, and the graphs specify the
peer relationships among the nodes on the same level. Refer to the bottom part of
Fig. 8.3 for two examples.

8.2.3 Semantic Model Representing User Location History

In this section, an individual’s stay in the physical world is provided with some se-
mantic meanings, e.g., “museum→ cinema→ restaurant,” aiming to transfer human
location history from the geographical spaces into semantic spaces. The semantic
meaning of a location reveals the interests of an individual better than its original
geo-position, and enables detection of similar users without any overlapping of ge-
ographic spaces, e.g., people living in different cities.
Expanding the method introduced in Section 8.2.2, [39] proposed a solution that

is comprised of the following three steps: 1) stay point representation in semantic
spaces, 2) the formulation of a shared semantic framework, and 3) the construction
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of personal location histories. The major difference between this method and that
designed for geographical spaces lies in the first step. The three steps are detailed in
the following subsections.

8.2.3.1 Stay Point Representation

This step aims to represent a stay point (detected in Section 8.2.2.1) with the seman-
tic meaning (e.g., a restaurant) of the location where the stay occurred. However, it
is almost impossible to identify the exact point of interest (POI) an individual has
visited given a stay point, because of the GPS positioning error and the crowded
distribution of POIs in a city. In practice, as shown in Fig. 8.6, a GPS reading usu-
ally has a 10-meter or more error in its real position. Accordingly, there could be
multiple POIs of different categories involved in this distance. Unfortunately, the n-
earest POI to the center of a stay point may not be the actual place that an individual
visited. What is worse, many POIs, like restaurants, shopping malls, and cinemas,
often overlap in the same building.

The POI truly 
visited by a user

A stay point 
s=(x, y)

The closest POI to 
the GPS reading

A building with 
multiple POIs 
overlapped

2

(s.x+ , s.y+ )

Fig. 8.6 Challenges in discovery of the semantic meaning of a stay point

Due to the challenge mentioned above, it is necessary to first expand a stay point
to a stay region covering the POI that a user has visited. For example, as depicted
in Fig. 8.6, a stay point s is expanded to a region [s.x− γ,s.x+ γ]× [s.y− γ,s.y+ γ]
where γ is a parameter formulating a bounding box. The value of γ is related to the
threshold δ for detecting a stay point.
After that, a feature vector is constructed for each stay region according to the

POIs located in a region (defined in Definition 8.6). Here, TF-IDF (term frequency-
inverse document frequency) [32, 33], a statistical measurement used to evaluate
how important a word is to a document in a collection or corpus, is employed. The
importance increases proportionally to the number of times a word appears in the
document but is offset by the frequency of the word in the corpus.
Similarly, the method proposed in [39] regards categories of POIs as words and

treats stay regions as documents. Intuitively, if POIs of a category occur in a region
many times, this POI category is important in representing this region. Furthermore,
if a POI category (e.g., “museum” and “natural parks”) occurs rarely in other region-
s, the category is more representative for the region (in which it is located) beyond a
common POI category, e.g., “restaurant,” which appears in many places. Thus, both
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the occurrence frequency of a POI category in a region (similar to TF) and the in-
verse location frequency (equivalent to IDF) of this category have been considered
in [39]. Combining these two factors, the feature vector is defined as follows:

Definition 8.6 (Feature Vector). The feature of a stay region r in a collection of
regions R is fr =<w1,w2 . . . ,wK >, whereK is the number of unique POI categories
in a POI database and wi is the weight of POI category i in the region r. The value
of wi is calculated as Eq. 8.7:

wi =
ni

N
× log |R|

|{Regions containing i}| (8.7)

Suppose that s1 contains two restaurants and one museum, and s2 only has four
restaurants. The total number of stay regions created by all the users is 100, in which
50 have restaurants and two contain museums. So, the feature vectors of s1 and s2
are f1 and f2 respectively:

f1 = (
2
3
× log 100

50
,
1
3
× log 100

2
, . . .),

f2 = (
4
4
× log 100

50
,0, . . .).

Although we still cannot identify the exact POI category visited by an individual,
this feature vector determines the interests of a user to some extent by extracting the
semantic meaning of a region accessed by the individual. For example, people are
likely to conduct similar activities at similar places. Also, users visiting locations
with similar POI categories may have similar interests. Consequently, the represen-
tation of a stay point carries advanced semantic information (beyond its geograph-
ical position), contributing to a broad range of applications in LBSNs, such as the
calculating of similarity between two users in terms of their location histories and
activity inferences.

8.2.3.2 Building a Semantic Location History

Step 2: Formulating a shared semantic framework: The second step clusters the s-
tay regions into groups according to their feature vectors. The stay regions in the
same cluster can be regarded as locations of similar type with similar semantic
meanings. However, a flat clustering is insufficient to differentiate similar users of
different extents. Intrinsically, we are more capable of discriminating similar users
given categories with a finer granularity. For example, “restaurant” helps identify
users who like dining out, while “Indian restaurant” and “Japanese restaurant” en-
able us to differentiate people interested in different types of food.
Considering this factor, the feature vectors are hierarchically clustered in a divi-

sive manner, building a tree-structured sematic location hierarchy. This is similar to
generating a shared framework in the geographical spaces (refer to Section 8.2.2.2).
As shown in the middle part of Fig. 8.7, feature vectors of all users are placed into
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Fig. 8.7 Modeling human location history in semantic spaces

one cluster and this cluster is treated as the root (i.e., cluster at layer 1). Each cluster
c at layer j ( j≥ 0) is split into a set of sub-clusters by using a flat clustering algorith-
m. The resulting sub-clusters of c are considered c’s child nodes at layer j+1. This
procedure repeats a given number of times, leading to a tree-structured hierarchy
where clusters at a lower layer have a finer granularity.

Step 3: Construct personal location history: In the third step, a location history
is constructed for each user based on the semantic location hierarchy and the user’s
stay points. Originally, a user’s location history in the geographic spaces is repre-
sented by a sequence of stay points with the travel time between each two consecu-
tive stay points. Then, on each layer of the semantic location hierarchy, a stay point
is substituted with the semantic location that the stay point’s feature vector pertains
to. After this projection, different users’ location histories become comparable in
the semantic spaces.
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8.3 Mining User Similarity Based on Location History

8.3.1 Motivation and Overview

As mentioned before, the connection between users in a location-based social net-
work arises from two aspects. One is the original interdependency from an existing
social structure, e.g., family, classmates, colleagues, and relatives, or from an online
social networking service like Twitter or Facebook. The other is the new interde-
pendency that is derived from the location data generated by the users after they
joined a LBSN. The latter is the source of power expanding a location-based social
network, essentially differentiating a LBSN from a traditional social network.
The similarity between users’ location histories represents the strength of the

latter interdependency, thereby determining if a LBSN could expand successfully.
This similarity can enable many novel applications, such as friend recommendation
and community discovery, in a LBSN. For example, according to this user similarity,
a location-based social networking service can recommend to an individual a list of
potential friends who might share similar interests with her. The individual can then
consider adding these friends to her social structure, or sending a targeted invitation
to them when organizing some social activity. Because of the shared interests with
the individual, they are more likely to be receptive to such an invitation. Further,
a LBSN service can discover new locations (based upon these potential friends’
location histories) that match the user’s preferences, i.e., a personalized location
recommender system.
As discussed previously, a person’s location history in the real world implies rich

information about their interests and preferences. For example, if a person usually
goes to stadiums and gyms, the person might like sports. According to the first law
of geography, everything is related to everything else, but near things are more re-
lated than distant things, people who have similar location histories are more likely
to share similar interests and preferences. The more location histories they share,
the more correlated these two users would be. Note that the location history men-
tioned here includes its representation in both geographical and semantic spaces.
This claim even makes more sense in the semantic spaces as compared to geograph-
ical spaces. That is, people accessing locations with similar semantic meanings like
a cinema are more likely to be similar.
[28] is the first publication proposing a framework to estimate the similarity be-

tween users in terms of their location histories, followed by a series of similar work
[39, 16, 25, 44]. In this framework, the similarity between each pair of users is cal-
culated according to two steps. First, find a set of similar subsequences shared by
two users on each layer of their hierarchical graphs. Here a similar sequence stands
for two individuals who have visited the same sequence of places for similar time
intervals. Second, given the similar sequences, calculate a similarity score for the
pair of users involving the following three factors:

• Sequential property of users’ movements: This framework takes into account
not only the locations they accessed, but also the sequence in which these
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locations were visited. The longer the similar sequences shared by two users’
location histories are, the more related these two users might be.

• Hierarchical property of geographic spaces: This framework mines user simi-
larity by exploring movements on different scales of geographic (or, semantic)
spaces. Users who share similar location histories on a space of finer granulari-
ties might be more correlated. For example, people accessing the same building
could be more similar then those visiting the same city. In this example, a build-
ing belongs to a lower layer of the geographic hierarchy than the city. This claim
also holds in semantic spaces. For instance, two users sharing an interest in din-
ing at Chinese restaurants might be more similar than others who generally like
dinning in any restaurant. Here, the Chinese restaurant is a subset of restaurants,
thereby having a finer granularity.

• Popularity of different locations: Analogous to inverse document frequency
(IDF) [34], the proposed framework considers the visited popularity of a lo-
cation when measuring the similarity between users. Two users who access a
location visited by a few people might be more correlated than others who share
a location history accessed by many people. For example, a myriad of people
have visited the Great Wall, a well-known landmark in Beijing. It might not
mean all these people are similar to one another. If two users visited a small
museum, however, they might indeed share some similar preferences.

The input of this framework is the location histories (i.e., two hierarchical graphs)
of two users in geographical or semantic spaces, and the output is a similarity score
indicating how similar these two users are.

8.3.2 Detecting Similar Sequences

In this step, the sub-sequences shared by two users at each layer of their hierarchical
graph are determined. Intuitively, users sharing the habit of “cinema→ restaurant→
shopping” are more similar to each other than those visiting these three places sep-
arately or in a different order. Therefore, the simple method counting the number
of items shared by two sequences will lose a great deal of information about an
individual’s behavior and preferences. To address this issue, we must consider both
the order of visitation and the travel time between two locations when detecting
similar sub-sequences. Under the circumstances, Travel Match andMaximum Trav-
el Match are defined as follows:

Notation: Given sequence Seq = (c1
 t1−−→ c2

 t2−−→ ·· ·  tm−1−−−−→ cm), we denote
the i-th item of Seq as Seq[i] (e.g., Seq[1]=c1) and represent its subsequence
as Seq[a1,a2, . . . ,ak] where 1 ≤ a1 < a2 < · · · ≤ m, for instance, Seq[1,3,6,7]=
c1→ c3→ c6→ c7.

Definition 8.7 (Travel Match). Given a temporal constraint factor ρ ∈ [0,1] and
two sub-sequences Seq1[a1,a2, . . . ,ak] and Seq2[b1,b2, . . . ,bk] from two sequences
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Seq1 and Seq2 respectively, these two sub-sequences formulate a k-length travel
match if they hold the following two conditions:

1. ∀i ∈ [1,k], ai = bi, and

2. ∀i ∈ [1,k), | ti= t ′i |
max( ti, t ′i )

≤ p, where  ti is the travel time between ai and ai+1,

and t ′i denotes that between bi and bi+1.

This travel match is represented by (a1,b1)→ (a2,b2)→ ·· · → (ak,bk).

Definition 8.8 (Maximum Travel Match). A travel match (a1,b1)→ (a2,b2)→
·· · → (ak,bk) between two sequences Seq1 and Seq2 is a maximum travel match if,

1. No left increment: �a0 < a1,b0 < b1, s.t.,
(a0,b0)→ (a1,b1)→ (a2,b2)→ ·· · → (ak,bk);

2. No right increment: �ak+1 > a1,bk+1 > bk, s.t.,
(a1,b1)→ (a2,b2)→ ·· · → (ak,bk)→ (ak+1,bk+1);

3. No internal increment: ∀i ∈ [1,k],�ai < ai′ < ai+1 and bi < bi′ < bi+1, s.t.,
(a1,b1)→ (a2,b2)→ ·· · → (ai,bi)→ (ai′ ,bi′)→ (ai+1,bi+1)→ ·· · → (ak,bk)

Essentially, a travel match is a common sequence of locations visited by two users
in a similar amount of time, and a maximum travel match is a travel match that
is not contained in any other travel matches. Note that 1) the locations in a travel
match do not have to be consecutive in the user’s original location history, and 2)
what we need to detect for the calculating of user similarity are the maximum travel
matches. Additionally, the location in a travel match can be a cluster of stay points
in the geographical spaces, or a cluster in semantic spaces.
Figure 8.8 demonstrates an example of a maximum travel match between two

sequences Seq1 and Seq2. Here, a node stands for a location and the letter in a node
represents the ID of the location. The numbers on the top of the box denotes the
index of a node in a sequence, e.g., location A is the first node in both Seq1 and
Seq2. The number appearing on a solid edge means the travel time between two
consecutive nodes, and the number shown on a dashed edge denotes the duration
that a user stayed in a location.

A B2 C4Seq1

A B D C

D0.5 E5

E

F2

2 4 0.5 2

1 2 3 4 5

F2 G2

2
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0.5 1 1

1 0.5 2 3.5 1

Seq2

7

Fig. 8.8 An example of finding maximal travel match
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Let ρ = 0.2 in this example. First, (1,1)→ (2,2), i.e., A→ B, is a travel match,
because the travel times (A → B) in Seq1 and Seq2 are identical, |2− 2|/2 = 0.
Then, we find that (2,2)→ (3,4), i.e., B→C, also satisfies the conditions defined
in Definition 8.7. Though B and C are not directly connected in Seq2, the travel
time between these two locations is 4+0.5+0.5= 5, which is very similar to that
of Seq1. In short, |5− 4|/5 = 0.2. However, both A→ B and B→ C are not the
maximum travel match in this example as they are contained in A→ B→ C, i.e.,
(1,1)→ (2,2)→ (3,4). Later, C→ E and C→ F cannot formulate travel matches
due to the difference between corresponding travel times. Using the same approach,
we find (1,1)→ (2,2)→ (4,3)→ (5,5)→ (6,6), i.e., A→ B→ D→ E → F , is
another maximum travel match. Overall, we detect two maximum travel matches,
A→ B→C and A→ B→ D→ E → F from Seq1 and Seq2.
Some well-known sequence matching algorithms, such as longest common sub-

sequences (LCSS) searching [36]] and dynamic time wrapping (DTW) [43], cannot
satisfy the need to discover the maximum travel matches as they do not incorporate
the travel time between two locations in the matching process. Due to this reason, a
method has been proposed in [39] for detecting the maximum travel matches from
two sequences. This method consists of two steps, summarized as follows:
The first step detects the 1-length travel matches between two sequences and

identifies a precedence relation between these 1-length matches. For example, A
in Fig. 8.8, i.e., (1,1), is a 1-length travel match between Seq1 and Seq2, and A is
a precedence of B. Then, the 1-length matches and their precedence relation are
transferred into a precedence graph G, where a node is a 1-length match and an
edge corresponds to the precedence relation between 1-length matches.
The second step searches graph G for the maximum length path which has been

proved equivalent to the maximum matches.
Following the case illustrated in Fig. 8.8, Fig. 8.9 shows an example of building

graph G based on Seq1 and Seq2. As demonstrated in Fig. 8.9 A), the identical items
in two sequences are first detected by putting these two sequences into a matching
matrix. The numbers that stand on the top and left of the matrix denote the index
of an item in a sequence. For example, A11 means that A is the first item in both
sequences. In Fig. 8.9 B), each node corresponds to a trivial match, and an edge
between two nodes stands for a precedent relation between two trivial matches. The
number in a node indicates its order being added to the graph. For instance, F66 is
the first node being added to graph G.
After the graph building process, precedence graph G is a directed acyclic graph

in which a path represents a travel match (between two sequences). More specifi-
cally, if (a1,b1)→ (a2,b2)→ ·· · → (ak,bk) is a path in G, Seq1[a1,a2, . . . ,ak] and
Seq2[b1,b2, . . . ,bk] form a travel match, and vice versa. Meanwhile, path P in G cor-
responds to a maximum travel match if the first node of P has zero in-degree and
the last node has zero out-degree. For instance, path A11→ B22→C34 in Fig. 8.9 b)
corresponds to the maximum travel match (1,1)→ (2,2)→ (3,4) in Fig. 8.8.
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8.3.3 Calculating Similarity Scores

After detecting the maximum travel matches from two users’ location sequences,
a similarity score can be calculated for the two users according to the following
three factors: visited popularity of a location, sequential properties, and hierarchical
properties, which were introduced in the beginning of Section 8.3.2 and are formally
defined in Eq. 8.8, 8.9, 8.10, and 8.11.

SimUser(LocH1,LocH2) =
L

∑
l=1

fw(l)×SimSq(Seql
1,Seql

2); (8.8)

SimSq(Seq1,Seq2) =
∑m

j=1 simT M(t j)

|Seq1|× |Seq2| , (8.9)

SimT M(s) = gw(k)×
k

∑
i=1

vp(ci); (8.10)

vp(c) = log
N
n
, (8.11)

where N is the total number of users in the dataset and n is the number of users
visiting location c.
Given two users’ location histories LocH1 and LocH2, the similarity between

them can be computed by summing up the similarity score at each layer of the
hierarchical graph (refer to Definition 8.5 for details) in a weighted way. A function
fw(l) is employed to assign a bigger weight to the similarity of sequences occurring
at a lower layer, e.g., fw(l) = 2l−1, where l is the depth of a layer in the hierarchy.
Then, the similarity between two sequences Seq1 and Seq2 at a layer, SimSq(Seq1,

Seq2), is represented by the sum of the similarity score, simT M(t j), of each max-
imum travel match between Seq1 and Seq2. Here, m is the total number of maxi-
mum matches. Meanwhile, SimSq(Seq1,Seq2) is normalized by the production of
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the lengths of the two sequences, since a longer sequence has a higher probability
of having long matches. That is, a user with a longer history of data is more likely to
be similar to others (than a user having a shorter period of data) without performing
the normalization.
Further, the similarity score of a maximum travel match t, simT M(t), is calculat-

ed by summing up the vp (visited popularity) of each location c contained in t. At the
same time, the simT M(t) is weighted in terms of the length k of t, e.g., gw(k) = 2k−1.
The insight leading to Eq. 8.10 and 8.11 is based on two aspects. First, the longer
the similar sequences shared by two users’ location histories, the more related these
two users are likely to be (this is known as the sequential property). Second, users
who have accessed a location visited by a few people might be more correlated than
others who share a location history accessed by many people (the visited popularity
of a location). According to the experimental results, it was discovered that the num-
ber of shared sub-sequences exponentially decreases with the increase of the length
of the sub-sequence. So, in the implementation, it’s preferable to use an exponential
weight function, assigning a higher weight to the longer sequences.
Note that this framework can be applied to the location history modeled either

in geographical or semantic spaces. Specifically, when applying this framework to
the location history in geographical spaces, a location is a cluster of stay points as
depicted in Fig. 8.3, while a location is replaced by a group of semantic features in
the semantic spaces illustrated in Fig. 8.7.

8.4 Friend Recommendation and Community Discovery

8.4.1 Methodology

With the user similarity calculated above, we can hierarchically cluster users into
groups in a divisive manner by using some clustering algorithms like K-mean. Con-
sequently, as depicted in Fig. 8.10, we can build a user cluster hierarchy, where a
cluster denotes a group of users sharing some similar interests and different layers
represent different levels of similarity. The clusters shown on a higher layer could
stand for big communities in which people share some high-level interests, such as
sports. The clusters occurring on the lower layers denote people sharing some nar-
rower interests, like hiking (the layer of the hierarchy can be determined based on
the needs of applications). Meanwhile, we can find one representative user (the cen-
ter) for each cluster according to the similarity scores between each pair of users.
For instance, the individual with the minimal distance to other users in the cluster
(the individual pertains to) can be selected as the representative user of the cluster.
This user hierarch brings us two types of advantages:
1) Fast retrieval of similar users: Instead of checking all the users, we can retrieve

the top k similar users for an individual by only ranking the users from the same
cluster (the individual belongs to) in terms of similarity score. This retrieval process
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A representative user
A new user

A cluster of users

u1 uku2

u'

Inserting a new user

Finding similar users

C1 C2 Ck

Fig. 8.10 Finding similar users and inserting new users in hierarchical user clusters

can start from the bottom layer of the hierarchy, as depicted by the blue dash arrow
in Fig. 8.10. If the number of users is less than k in the bottom-layer cluster, we
can further check the parent node (cluster) of this cluster until finding a cluster with
more than k users.
2) Insert new users: When a new user u′ enters the system, it is not necessary to

compute the similarity score between u′ and each user in the system. This process
is very time consuming and will become more difficult as the number of users in-
creases. Instead, we only need to insert this user into the most appropriate clusters
on each layer of the hierarchy by computing the similarity between u′ and the rep-
resentative user in a cluster. For example, as demonstrated by the red solid arrows
in Fig. 8.10, we first compute the similarity between u′ and (u1,u2, . . . ,uk) who are
representative users in each cluster. If u2 is the most similar user to u′ out of the k
users, we insert u′ into u2’s cluster C2. Then, we further check the children clusters
of C2 and insert u′ into the clusters whose representative user is the most similar
to u′. This process is performed iteratively until reaching the bottom layer of the
hierarchy.
In practice, we do not need to re-build this hierarchy unless the number of newly

inserted users exceeds a certain threshold. That is, in most cases we can find similar
users for a person very efficiently.

Evaluating the applications in a location-based social network, such as friend
recommendation and community discovery, is a non-trivial research topic due to the
following challenges: data, ground truth, and metrics.

8.4.2 Public Datasets for the Evaluation

The biggest challenge of the evaluation comes from the data, consisting of location
data such as GPS trajectories and the social structure, of many users. To collect the
data, a research group typically needs to deploy a location-based social network-
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ing service and encourage enough people to use this service in a certain period,
e.g., 3 months. Without an online LBSN service, they could assign some location-
acquisition devices like GPS loggers to a group of users and collect the data offline.
Both ways are very time-consuming and resource-intensive, thereby becoming a
major barrier to many professionals stepping into this field.
In recent years, a few real-world datasets created by some pioneers were made

available on the Internet for free download, for example, “the reality mining dataset”
[5] from MIT media laboratory and “GeoLife GPS Trajectories” [4] from Microsoft
research. The reality mining dataset was collected by one hundred human subjects
with a Bluetooth-enabled mobile phone over the course of nine months, representing
500,000 hours of data on users’ location, communication, and device usage behav-
ior.
The GeoLife GPS Trajectories was collected by 170 users with a GPS logger

or GPS-phone (see Fig 8.11) over a period of four years (from April 2007 to the
date when this book was published). This dataset is still growing and upgrading
with an annual release. The latest version (released in July, 2011) is comprised of
17,085 GPS trajectories with a total distance over 1,000,000km and an effective
duration over 48,000 hours. 95 percent of these trajectories are logged in a dense
representation, e.g., every 2∼5 seconds or every 5∼10 meters per point. Figure 8.12
shows the distribution of this dataset in the urban area of Beijing, where the figures
associated with the colored bar indicate the number of GPS points in a location.

Fig. 8.11 GPS devices used for collecting data in GeoLife Project

This dataset recorded a broad range of users’ outdoor movements, including not
only daily routines like going to work but also some entertainment and sports ac-
tivities, such as shopping, sightseeing, dining, hiking, and cycling. A part of these
trajectories has a label of transportation modes including driving, riding a bike, tak-
ing a bus, and walking. These datasets provide professionals with a good resource
to evaluate their early research into LBSN, significantly boosting the LBSN com-
munity. Detailed information can be found at the website [4].
The advent of some commercial LBSN services like Foursquare brings new op-

portunities to carry out evaluations using large-scale and real-world data. For exam-
ple, Foursquare released an API set allowing LBSN researchers to crawl the publi-
cally available check-in records generated by users. The collected data includes the
venue where a user checked in and a corresponding timestamp as well as the tips
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Fig. 8.12 The distribution of GeoLife dataset in the urban area of Beijing

that the user left in the venue. At the same time, the social structure of a user can
be obtained by using this API. A great deal of research based on such data has been
published [16, 41, 40], verifying some hypothesis proposed in LBSN, e.g., people
with similar location histories can be correlated.

8.4.3 Methods for Obtaining Ground Truth

The second challenge stems from ground truth. For example, to evaluate a friend
recommendation, we need to rank people according to the similarity inferred in
terms of location histories. The ability to obtain an idea ranking (i.e., ground truth)
is important. Generally speaking, there are two ways of generating ground truth.
One is performing a questionnaire-style user study. The other is to extract ground
truth from an individual’s social structure [17, 38, 9, 31].
The former approach usually provides the users who collect location data for the

research with a questionnaire inquiring about their interests. In the GeoLife project,
for example, each user answered the questions shown in Fig. 8.13 A) by giving a
rank (1∼4) to denote different degrees of desire for an activity. A user’s answer,
e.g., Fig. 8.13 B), is regarded as an interest vector, in which each entry is the user’s
rank to a corresponding question. In the example, the user’s interest vector is <
3,2,1,4,3,1,3,1,2,3,1,1>. A cosine similarity between two users’ interest vectors
can be calculated and used to rank a group of people for an individual. As a result,
the top k people can be retrieved as a ground truth. Due to the intensive human
effort, this kind of approach can only be applied to a small scale of people such as
when using the Reality Mining Dataset and GeoLife GPS Trajectories.
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Where do you like to go in weekends? 
Please rank from 1(dislike) to 4(favorite).
1.   Shopping
2.   Theatre
3.   Karaoke
4.   Go out for dinner
5.   Outdoor sports, e.g., hiking
6.   Indoor sports, e.g., gym and bowling
7.   Natural parks
8.   Exhibition, museum
9.   Stay home; not go to any places
10. Go to office; over-time working
11. Visit parents, relatives, or friends
12. Campus

Example 
response

3
2
1
4
3
1
3
1
2
3
1
1

A)                                      B)

Fig. 8.13 A questionnaire A) and an example of answers B)

The latter approach uses the closeness between two users inferred from the con-
nections in their social structure as the ground truth. For example, random walk the-
ory [17] can be used to analyze the closeness of two nodes (i.e., friendship strength
in a social network context) using the resistance distance, which is the random walk
steps for the electrons traveling from one node to the other, in a social graph. How-
ever, the random walk theory completely overlooks semantic information contained
in social networks. As a result, recently, more advanced research have been pro-
posed to analyze the closeness between two users considering: 1) the similarity of
their profile [38, 11], e.g., demographics like age, gender, and hometown, and 2) in-
teraction activities [9, 22, 31], e.g., commenting, tagging, and group communication
patterns.

8.4.4 Metrics for the Evaluation

The third challenge is the metric used to measure the effectiveness of inferred user
similarity, given the data and ground truth. As mentioned before, user similarity is
a metric specifying to what extent two users are similar to each other, instead of a
binary value indicating whether two users are similar or not. The goal is to rank a
group of people for an individual according to similarity and recommend the top k
people as potential friends to the individual. Accordingly, it is natural to look at user
similarity as an information retrieval problem.
Given an individual, the top k similar users to the individual can be retrieved ac-

cording to their similarity scores (inferred by the approach mentioned previously).
An idea rank can be formulated from the ground truth (which was obtained by using
one of the methods mentioned in Section 8.4.3). Based on these two ranking list-
s, MAP (Mean Average Precision) and nDCG (Normalized Discounted Cumulated
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Gain) are calculated for retrieval. After testing all users, a mean value of MAP and
nDCG is computed respectively.
More specifically, when generating the ground truth for an individual, users

are divided into groups according to their similarity scores to the individual. As
demonstrated in Fig. 8.14, users are ranked in terms of the similarity scores to the
individual, and then split into 5 classes: 0∼4. The users in class 4 have a higher
similarity score than those in a lower class. The split can be driven by evenly parti-
tioning the similarity scores or by a uniform division of users. The number of classes
is determined by application which can assign each cluster a semantic meaning as in
the example shown in Fig. 8.14. Afterwards, the numeric value of a (ground truth)
similarity is replaced by the class ID it pertains to.
In the testing phase, the top k users are retrieved for an individual according to our

method (based on location history). Then, a ranking list e.g., G = (U3,U2, . . . ,U5)
can be obtained. By replacing these user IDs with the corresponding class IDs, an-
other ranking list, e.g., G = (4,3,2,3, ,0), is formulated. Now, a score for this rank-
ing list can be calculated in terms of nDCG. nDCG is used to compute the relative-
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Fig. 8.14 Evaluation metric for user similarity detection

to-the-ideal performance of information retrieval techniques [26]. The discounted
cumulative gain of G is computed as follows: (In our experiments, b = 2.)

DCG[i] =

⎧⎪⎨
⎪⎩

G[1], if i = 1
DCG[i−1]+G[i], if i < b
DCG[i−1]+ G[i]

logb i , if i≥ b
(8.12)

Given the ideal discounted cumulative gain DCG′, then nDCG at i-th position can
be computed as nDCG[i] = DCG[i]/DCG′[i]. According to Eq. 8.12, nDCG[3] of
G = (4,2,3,3,0) can be calculated as follows:

DCG[1] = G[1] = 4;
DCG[2] = DCG[1]+G[2] = 4+2= 6;
DCG[3] = DCG[2]+ (G[3])/(log2 3) = 6+1.893= 7.893;
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However, the idea ranking should be G′ = (4,3,3,2,0). According to the same
method, the DCG′[3] = 8.893. As a result,

nDCG[3] =
DCG[3]
DCG′[3]

=
7.893
8.893

= 0.888.

8.5 Summary

This chapter defined a location-based social network and discussed a research phi-
losophy from the perspective of user and location. Three categories of location-
based social networking services were classified in terms of the location data pow-
ering a service and a user’s preferences in the service. Then, research focusing
on understanding users in a location-based social network was gradually explored
from modeling the location history of an individual to estimating the similarity be-
tween different users, and then moving to high-level applications, such as friend
recommendation and community discovery. Some possible methods for evaluation
of these applications were discussed, and a number of publically available datasets
have been listed as well. All these efforts are enabled by the unprecedented wealth
of user-generated trajectories.
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