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Abstract

“Divide and conquer” has been a common practice to
address complex learning tasks such as multi-view object
detection. The positive examples are divided into multiple
subcategories for training subcategory classifiers individ-
ually. However, the subcategory labeling process, either
through manual labeling or through clustering, is subop-
timal for the overall classification task. In this paper, we
propose multiple category boosting (McBoost), which over-
comes the above issue through adaptive labeling. In par-
ticular, a winner-take-all McBoost (WTA-McBoost) scheme
is presented in detail. Each positive example has a unique
subcategory label at any stage of the training process, and
the label may switch to a different subcategory if a higher
score is achieved by that subcategory classifier. By allowing
examples to self-organize themselves in such a winner-take-
all manner, WTA-McBoost outperforms traditional schemes
significantly, as supported by our experiments on learning
a multi-view face detector.

1. Introduction
The state of the art in object detection has made sig-

nificant progress in recent years. Take face detection as
an example, the seminal work by Viola and Jones [21],
which relies on rapid Haar features, AdaBoost learning and
a cascade structure, has shown satisfactory performance for
frontal face detection tasks. On the other hand, when ob-
jects are observed from multiple viewpoints, the detection
task becomes substantially harder. If all object examples
are labeled indifferently as positive examples, the detector
learned through a straightforward learning algorithm such
as AdaBoost will not perform accurately.

The common practice in multi-view object detection has
been “divide and conquer”. Namely, the general class of
objects is first divided into subcategories. Different clas-
sifiers can then be trained for different subcategories. For
instance, faces can be categorized as frontal, left/right half
profile, left/right profile, 0 degree in-plane rotation, ±30
degree in-plane rotation, etc. In the face detection work
in [10, 8, 23], a pose estimator is first built to classify each
example into one of the above subcategories. Each subcate-
gory then trains its own classifier for detection with man-
ually labeled data. The manual labeling process is very
labor-intensive, and sometimes difficult to do for tasks such
as pedestrian detection or car detection. In [18, 24], re-
searchers proposed to obtain these labels via automatic clus-
tering. Take the clustered boosted tree classifier in [24] as
an example. They applied a conventional k-means cluster-
ing algorithm to split the sample set into two parts when
the learning rate slows down. They showed that by using
the previously selected features for clustering, the learning

algorithm converges faster and achieves better results.
One weakness that exhibited in early works [10, 8, 23] is

the misclassification caused by the pose estimator. If a pro-
file face is misclassified as frontal, it may never be detected
in later stages. In [5], Huang et al. proposed vector boost-
ing, which allows an example to be passed into multiple
subcategory classifiers during testing, and the final results
are fused through linear transform. Such a soft branching
scheme can greatly reduce the risk of misclassification dur-
ing testing.

Misclassification also happens in training. It could be
caused by mislabeling. For instance, the boundary between
frontal and half profile faces can be very subtle, and differs
from person to person. For systems that rely on automatic
clustering to derive the subcategory labels, misclassification
can be very common. The misclassified examples appear
as outliers in its designated subcategory, which may hinder
the learning process and degrade the classifier performance.
More importantly, although the manual labels or clustered
results are meaningful for the system designer, there is no
guarantee that they are optimal for learning the overall de-
tector. Traditional training processes [5, 24] lack the flexi-
bility to re-categorize examples during training, thus form-
ing updated clusters which can help achieving the optimal
performance.

In this paper, we propose multiple category learning
(MCL), which overcomes the above issue through adaptive
labeling. During the learning process, we allow the example
subcategory labels to be modified in order to make better
object/non-object decision. More specifically, we propose
a novel boosting algorithm called winner-take-all multiple
category boosting (WTA-McBoost). In our approach, mul-
tiple subcategory boosting classifiers are learned simulta-
neously with the assumption that the final classification of
an example will only be determined by the highest score of
all the subcategory classifiers, i.e., the winner will take all.
The subcategory labels of the examples are dynamically as-
signed in this process, reducing the risk of having outliers
in each subcategory. The WTA-McBoost algorithm uses
confidence-rated prediction [16] with asymmetric cost and
is thus very efficient to train and test. We demonstrate the
effectiveness of WTA-McBoost by building a multi-view
face detector, and show its superior performance to tradi-
tional approaches.

The rest of the paper is organized as follows. WTA-
McBoost is described in Section 2, followed by discussions
about McBoost and existing approaches in Section 3. Ex-
perimental results are presented Section 4. Conclusions and
future work are given in Section 5.

2. Winner-Take-All McBoost
Without loss of generality, consider a two-class classi-

fication problem as follows. A set of labeled examples



S = {(xi, zi), i = 1, · · · , N} are given for training, where
zi = 1 for positive examples and zi = 0 for negative
examples. In order to perform “divide and conquer”, let
us assume that the positive examples can be classified into
k = 1, · · · ,K subcategories, either by manual labeling or
automatic clustering. Since the manual labels or the clus-
tering results are not directly optimized for the overall two-
class classification task, it would be suboptimal if we train
K classifiers separately.

In our approach, we will train K boosting classifiers
jointly. Recall in boosting each example is classified
by a linear combination of weak classifiers. Let yT

ik =
HT

k (xi) =
∑T

t=1 λt
kht

k(xi) be the weighted sum of weak
classifiers for subcategory k, often referred as the score of
classifier k for example xi. T is the number of weak clas-
sifiers in each subcategory classifier. In WTA-McBoost, we
assume the highest score of all subcategories will be used
to determine the fate of a given example. More specifically,
let

yT
i = max

k
yT

ik. (1)

Example xi is classified as a positive example if yT
i is

greater than a threshold. Otherwise, it is a negative exam-
ple. Following [12], we define the asymmetric boost loss
as1:

LT =
N∑

i=1

[I(zi = 1) exp{−C1y
T
i }+I(zi = 0) exp{C2y

T
i }],
(2)

where C1 > 0 and C2 > 0 are the cost factor of misclassifi-
cation for positive and negative examples, respectively. I(·)
is the indicator function. According to the statistical inter-
pretation given by [4], minimizing this loss via boosting is
equivalent to a stage-wise estimation procedure for fitting
a cost-sensitive additive logistic regression model. In addi-
tion, as shown in [16], when C1 = C2 = 1, the above loss
function is an upper bound of the training error on the data
set S .

Unfortunately, minimizing the loss function in Eq. (2) is
difficult and can be very expensive in computation. Notice

exp{C2y
T
i } = exp{C2 max

k
yT

ik} ≤
∑

k

exp{C2y
T
ik},

(3)

1We use asymmetric cost factors on positive and negative examples for
the generalizability of the derivation. In our experiments on multiview face
detection, we will only use C1 = C2 = 1, which produces satisfactory
results. Asymmetric boosting could be very useful for other tasks such as
learning a detector with very high detection rates [12].

we instead optimize a looser bound as:

LT =
N∑

i=1

[
I(zi = 1) exp{−C1y

T
i }+

I(zi = 0)
∑

k

exp{C2y
T
ik}

]
. (4)

Since the subcategories of the positive examples are differ-
ent from each other, it is unlikely that a negative example
having a high score in one subcategory will have high score
in another category. Hence the looser bound in Eq. (4) shall
still be reasonably tight.

In the following, we devise a two-stage algorithm to min-
imize the asymmetric boost loss in Eq. (4). With weak clas-
sifiers at stage t, define the current run-time label of positive
example xi as:

lti = arg max
k

yt
ik. (5)

Based on these labels, we can split the loss function into K
terms, Lt =

∑K
k=1 Lt

k, where

Lt
k =

N∑

i=1

[
I(lti = k)I(zi = 1) exp{−C1y

t
ik}+

I(zi = 0) exp{C2y
t
ik}

]
, (6)

In the first stage of the algorithm, we assume the run-time
labels are fixed, and search for the best weak classifiers
ht+1

k (·) and votes λt+1
k that minimize L̃t+1 =

∑K
k=1 L̃t+1

k ,
where

L̃t+1
k =

N∑

i=1

[
I(lti = k)I(zi = 1) exp{−C1y

t+1
ik }+

I(zi = 0) exp{C2y
t+1
ik }]. (7)

This stage can be accomplished by performing boosting fea-
ture selection and vote computation for each subcategory
independently. For instance, one can adopt the MBHBoost
scheme proposed in [11], which trained multiple classes
simultaneously and shared features among multiple clas-
sifiers. Alternatively, Appendix A presents a confidence-
rated asymmetric boosting algorithm for the same purpose.
Since the asymmetric boost loss is convex [12], it is guar-
anteed that this boosting step will reduce the loss function,
i.e., L̃t+1

k ≤ Lt
k, and L̃t+1 ≤ Lt.

In the second stage, we update the run-time labels,
namely:

lt+1
i = arg max

k
yt+1

ik . (8)

The loss function is updated as Lt+1 =
∑K

k=1 Lt+1
k , where

Lt+1
k =

N∑

i=1

[
I(lt+1

i = k)I(zi = 1) exp{−C1y
t+1
ik }+

I(zi = 0) exp{C2y
t+1
ik }]. (9)



Input

• Training examples {(xi, zi, si), i = 1, · · · , N}, where
zi ∈ {0, 1} for negative and positive examples. si ∈
{1, · · · , K} is the initial subcategory ID. For positive ex-
amples, si can be manually assigned or obtained through
clustering. For negative examples, si can be randomly as-
signed (it will be ignored in WTA-McBoost).

• T is the total number of weak classifiers, which can be set
through cross-validation.

• P is the label switching frequency.

Initialize

• Assign initial scores for all examples y0
ik = 0, where k =

1, · · · , K is the index of the subcategory classifier.
• Assign run-time label l0i = si.

WTA-McBoost Learning
For t = 1, · · · , T :

• According to the current run-time labels, perform
confidence-rated asymmetric boosting for each subcate-
gory (Eq. (7) and Appendix A).

• If mod(t, P ) = 0, perform label switching for the positive
examples (zi = 1) according to Eq. (8).

Output
A set of K boosting classifiers HT

k (xi) =
∑T

t=1 λt
kht

k(xi).
Figure 1. WTA-McBoost learning.

It is straightforward to see that Lt+1 ≤ L̃t+1, hence both
stages of the algorithm will reduce the loss function. Given
that the asymmetric boost loss in Eq. (4) is non-negative, the
algorithm is guaranteed to converge to a (local) minimum.

The run-time labels in WTA-McBoost can be updated af-
ter each weak classifier is added. In practice, it may be ben-
eficial to update them less frequently to avoid label oscil-
lation. Fig. 1 shows the detailed stages of WTA-McBoost.
In this flowchart the run-time-labels are updated every P
weak classifiers are learned for each subcategory. A typical
value of P is 32. Moreover, we may choose a large P at the
very first round. This allows the subcategory classifiers to
have a “burn in” period where they learn the general prop-
erty of each subcategory. In our implementation we start la-
bel switching after 96 weak classifiers are learned for each
subcategory. Since label switching involves little compu-
tation and it is done infrequently, the additional computa-
tional cost of WTA-McBoost compared with the traditional
approach of training each sub-class separately is negligible.

Updating the run-time labels allows the positive example
clusters to be re-formed during training, which can improve
the final classification performance. In contrast, although
clustering was used in [24] during sample set splitting, their
clusters are fixed and do not change during feature selec-
tion. This may hinder the learning process due to misclas-
sification during clustering. On the other hand, note in this
paper we do not discuss subcategory splitting or merging.
We may use manual labels to assign the initial subcate-

gories, or we may use the splitting criteria and clustering
method in [24]. In either case, WTA-McBoost can be ap-
plied to combat the misclassification issue and improve the
overall classification performance.

3. Related Works and Discussions
Multiple category learning is closely related to multiple

instance learning (MIL), e.g., [22]. In MIL, a bag of exam-
ples is classified as positive as long as one of the examples
is positive. In MCL, an example is classified as positive
as long as one of the subcategory classifiers classify it as
positive. In both schemes there is uncertainty about which
example/which subcategory shall be the best choice among
a few. On the other hand, MIL and MCL have very different
applications. MIL is often used to identify common objects
in bags that have uncertainty in location or scale. MCL is
more suitable for complex learning problems where it is de-
sirable to cluster examples into different subcategories in
order to improve the learning efficiency. Furthermore, in
MIL a single classifier is learned throughout the process,
while in MCL multiple classifiers are learned jointly.

The extension of MIL to MCL has been independently
proposed by Kim and Cipolla [9] and Babenko et al. [1].
In both approaches, the formulation of MilBoost [22] was
slightly extended. The training examples no longer have a
fixed subcategory label. A set of likelihood values were
maintained for each example, which describe the proba-
bility of it belonging to the subcategories during training.
These likelihood values are combined with the same “noisy
OR” scheme in [22] to compute the probability of the exam-
ple being a positive example. To optimize the joint probabil-
ity of all the training examples, AnyBoost [13] was adopted
to derive the feature selection and vote computation dur-
ing training, which requires a line search for each feature
being tested. While such an extension shares similar ideas
with the proposed WTA-McBoost, there is a significant dif-
ference when they are applied in real-world applications.
Performing a line search for each feature candidate is a
very computationally expensive operation, which is suitable
for only small training sets and small number of features.
The computational cost will increase further if feature shar-
ing [20] shall be deployed, making the previous methods
more unattractive. In contrast, as we have shown in Sec-
tion 2, WTA-McBoost can be computed very efficiently,
even with feature sharing.

In multiclass learning [16, 20], each example may have
more than two labels or classes. The goal is to predict the
examples’ labels accurately by learning a single or multi-
ple classifiers. Take face detection as an example. There
are frontal faces, half-profile faces, profile faces, faces with
0 degree in-plane rotation, faces with ±30 degree rotation,
etc. Traditionally, faces are first labeled as one of the cat-
egories, and the detector is expected to output not only a



face/nonface decision, but also the pose of the face. It is
therefore challenging to clearly define the goal of the learn-
ing algorithm – is the face/nonface decision more important,
or the pose estimation more important? In contrast, in mul-
tiple category learning, we only focus on the face/nonface
decision. By ignoring pose estimation, multiple category
learning can make the face/nonface decision better due to
adaptive labeling. One can always resort to a different clas-
sifier/regressor to estimate the pose thereafter.

Multitask learning [2, 20] is an approach to inductive
transfer that improves learning for one task by using the
information contained in the training signals of other re-
lated tasks. For instance, Torralba et al. [20] proposed
to share features among multiple classifiers as a way to
transfer information between them. Through information
sharing, multitask learning improves generalization perfor-
mance. Such an idea can be easily integrated to multiple
category learning. In Section 4, we share features among
multiple subcategory classifiers to build a multi-view face
detector.

Recently, Dollar et al. [3] proposed multiple component
learning. The algorithm learns component classifiers in a
weakly supervised manner through multiple instance learn-
ing, where object labels are provided but part labels are not.
It then uses these component classifiers as weak classifiers
for a final boosting based strong classifier. Multiple com-
ponent learning works well for articulated objects and is
robust to occlusion. In essence, it can be viewed as an in-
teresting way to create efficient weak classifiers. We may
also combine it with multiple category learning by selecting
weak classifiers among those prepared by multiple compo-
nent learning.

Finally, we point out that when the total number of sub-
categories in multiple category learning is K = 1, WTA-
McBoost will reduce to regular asymmetric boost [12].
In Appendix A we provide a confidence-rated prediction
method for asymmetric boosting, which is very efficient to
compute. In that algorithm, when the cost factors C1 =
C2 = 1, asymmetric boosting reduces to regular AdaBoost
and our confidence-rated prediction method reduces to the
solution given in [16].

4. Experimental Results

4.1. Straightforward Application of WTA-McBoost

We first test the WTA-McBoost algorithm on a multi-
view face detection problem in its most straightforward
fashion. A total of 100,000 face images with size 24 × 24
pixels are collected from various sources including the web,
the Feret database [14], the BioID database [7], the PIE
database [19], etc. These faces are manually labeled into 5
subcategories: frontal, left half profile, left profile, right half
profile and right profile. Each subcategory contains 20,000
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Figure 2. Percentage of positive examples that switch labels during
WTA-McBoost.

faces, with -10 degree to +10 degree in-plane rotation. The
negative image set is also collected from the web, which
contains about 1.2 billion image patches of size 24 × 24
pixels.

We ran a simple k-means clustering algorithm on the face
images, where the number of clusters is given as 5. The dis-
tance between two facial images is measured as the Euclid-
ian distance between their down-sampled images (12 × 12
pixels). The initial means of the clusters are computed by
averaging the images with the same manual labels. The k-
means clustering algorithm converges in about 50 iterations.

Our experiment compares the learning performance of
WTA-McBoost, and that of the traditional approach, which
trains each subcategory separately. In fact, if we skip the la-
bel switching step in WTA-McBoost (Eq. (8)), we have an
implementation of the traditional approach. In both cases,
a total of 800 weak classifiers are learned for each cate-
gory, with shared Haar features and shared feature parti-
tions (see [21] for Haar features and Appendix A for the fea-
ture selection algorithm). Note feature sharing may speed
up the detection speed and improve generalizability, but it
is not required by either approach.

We show the percentage of positive examples that switch
labels during WTA-McBoost in Fig. 2. Note as mentioned
earlier, label switching starts at 96 weak classifiers, and
is done once every 32 weak classifiers afterwards. It can
be seen that during the first few rounds, many examples
switched labels. In particular, at 96 weak classifiers, as
many as 34.47% of the positive examples have switched
labels for clustering based initialization, and 7.10% for
manual labels based initialization. The number drops very
quickly. At 480 weak classifiers, only 2.43% positive exam-
ples switched labels for clustering based initialization, and
0.72% for manual labels based initialization. This quick
convergence of run-time labels can be very useful. For in-
stance, once there are very few positive examples that will
switch labels, a test example at this stage can be safely clas-
sified into one of the subcategories, and a single subcate-
gory classifier can be run afterwards, which saves a lot of



Manual label F F F F LHP LHP F F LHP RHP

After WTA-McBoost LP LP RP RP RP RP RHP LHP LP LP

Manual label F F LP LP RP RP LHP LHP RHP RHP

After WTA-McBoost LHP LHP LHP LHP RHP RHP LP LP RP RP

Manual label RP LP RP RHP RP LHP F RHP F LHP

After WTA-McBoost F F LHP LHP RHP RHP LP LP RP RP

Figure 3. Training examples that switch their labels after WTA-McBoost. F: Frontal; LHP: Left Half Profile; RHP: Right Half Profile; LP:
Left Profile; RP: Right Profile.

computation (see Section 4.2 for more details).
It is interesting to examine the training examples that

switch their labels after WTA-McBoost. Fig. 3 shows a
few such examples when the subcategory labels are initial-
ized manually. In the first row, the examples all have very
extreme lighting conditions. Such examples are abundant
since we included the PIE database [19] in our training. We
found that many of these examples have switched their la-
bels after WTA-McBoost. The new labels are consistent in
that when the lights are from the left, the examples tend to
be relabeled as left profile, and when the lights are from
the right, the examples tend to be relabeled as right pro-
file. It appears that for these examples with extreme light-
ing, categorizing them to one of the profile subcategories
help improve their detection accuracy. In the second row,
we show some examples where the new labels are differ-
ent from the manual label but very close. Such examples
are also plenty. These examples show the unclear boundary
between neighboring subcategories, and it is often hard for
human to be certain which subcategory the examples shall
be assigned. The third row shows a few examples where the
new labels after WTA-McBoost do not seem to make much
sense. Lucky, there are less than 50 such examples in the
total set of 100,000 face images.

Finally, we test the learned detectors on two standard
data sets that are never seen during training, the CMU+MIT
frontal data set [15], and the CMU profile data set [17]. It
is worth mentioning that the latter data set contains many
faces that have more than ±10 degree in-plane rotation,
which are not represented in our training examples and not
excluded in our experiments.

Fig. 4 shows the detector performance on the above two
standard data sets. We also include a detector that is trained
without subcategories with the learning framework in [26],
i.e., faces of all poses are mixed together and a single boost-
ing classifier is trained for face/non-face classification. The
single boosting classifier uses the same Haar features and

contains 2048 weak classifiers. A few observations can be
made from Fig. 4. First, “divide and conquer” does help
improve the performance. Even with the very naı̈ve clus-
tering based initialization, and all subcategories are trained
separately, “divide and conquer” still outperforms the sin-
gle boosting classifier trained with all poses mixed. Sec-
ond, WTA-McBoost can improve the detector performance
significantly compared with the traditional approach, even
with manual labels as initialization. For instance, on the
CMU+MIT frontal data set, at 85% detection rate, WTA-
McBoost reduces the number of false detections by 37% for
clustering based initialization; at 90% detection rate, WTA-
McBoost reduces the number of false detections by 25% for
manual label based initialization. Moreover, as mentioned
earlier, WTA-McBoost requires negligible additional com-
putation cost over the traditional approach, hence we rec-
ommend that WTA-McBoost shall always be used for train-
ing “divide and conquer” style multi-view object detectors.

Another interesting observation from Fig. 4 is that detec-
tors trained with manual label based initialization generally
outperforms the naı̈ve clustering based initialization. The
WTA-McBoost algorithm is a greedy adaptive labeling al-
gorithm. Similar to other greedy searching algorithms such
as k-means clustering, the performance of the trained de-
tector can vary given different initial labels, and good ini-
tial labels are always helpful in getting a good classifier. In
practice, the initial labels are often given manually or auto-
matically through clustering, in which case WTA-McBoost
will almost always guarantee to derive a better classifier
than the traditional approach of training each subcategory
separately.

4.2. A Practical Multi-view Face Detector

Although features can be shared among the multiple
classifiers learned with WTA-McBoost, the computational
cost for classifying a test window is still relatively high
for real-world applications. For instance, the time spent on
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Figure 4. (a) Performance on CMU+MIT frontal data set (125 im-
ages, 483 labeled frontal faces). (b) Performance on CMU profile
data set (208 images, 441 labeled faces with various poses, 73
(16.6%) of the faces have more than ±10 degree in plane rota-
tions).

running a 5-category WTA-McBoost classifier with feature
sharing is about 3 times that on a single category classi-
fier. To improve the running speed, we propose to adopt
a three-layer architecture for multi-view face detection, as
shown in Fig. 5. More specifically, a single category clas-
sifier is first trained, which includes faces at all different
poses. Although according to Fig. 4 a single category clas-
sifier trained with all poses may perform sub-optimally, this
layer is critical in improving the detection speed. The sec-
ond layer of the classifier is trained with WTA-McBoost,
which allows the training positive examples to switch their
subcategory labels during learning. As shown in Fig. 2, af-
ter a certain number of weak classifiers, the positive exam-
ple clusters will converge, and the percentage of positive
examples that switch labels during WTA-McBoost will be
close to none. Once such a state has been achieved, we stop
the WTA-McBoost learning, and train separate single cate-
gory classifiers for each cluster.

During testing, a test window is first passed into the first
layer single category classifier. With less than 100 weak
classifiers, the classifier is often capable of removing about
90% of the negative windows. If the test window is not

Single category 

node 

WTA-McBoost  

Single cat. 

Detector 

(F) 

Single cat. 

Detector 

(LHP) 

Single cat.  

Detector 

(RHP) 

Single cat. 

Detector 

(LP) 

Single cat. 

Detector 

(RP) 

Reject 

Reject 

Reject 

Faces  

Figure 5. The three-layer architecture for multi-view face detec-
tion. Note in the third layer, the cluster IDs such as F, LHP, RHP,
LP and RP are the output of WTA-McBoost and may not represent
the true pose of the test window.

rejected by the first layer, it will be passed into the WTA-
McBoost classifier. The second layer may reject another
80% of the remaining negative training examples. At the
end of WTA-McBoost, the test window will be given a clus-
ter ID based on the highest score of the multiple subcate-
gory classifiers, which is then used to determine which third
layer classifier will be run. This branching is safe because
WTA-McBoost has already converged at this stage.

We trained a multi-view face detector with the above ar-
chitecture. The positive examples were the same as those
used in Section 4.1, and the negative example set was ex-
panded to about 40 billion image patches. The first layer
contains 64 weak classifiers, the WTA-McBoost based clas-
sifier contains 96 weak classifiers2, and the third layer clas-
sifiers contains 608 weak classifiers each. Thanks to early
rejection, the average number of weak classifiers visited
per test window is 22, which is about 20% more compared
with state-of-the-art fast frontal face detectors such as that
in [26]. The running speed is also only about 20% slower
than a single category face detector.

Fig. 6 compares the performance of our detector with a
few existing approaches in the literature. It can been seen
that on the CMU+MIT frontal data set, our detector’s per-
formance is comparable to many state-of-the-art algorithms.
On the CMU profile data set, not many results have been
reported in the past. The curve of Jones-Viola [8] was on
profile face only (355 faces). Our detector’s performance is
noticeably lower than Wu et al. [23]. This can be attributed
to two main reasons. First, about 16.6% of the faces in the
CMU profile data set have more than ±10 degree in-plane
rotation, which are not represented in our training examples
and not excluded in our experiments. Second, we used the
same Haar feature sets as [21] for training. Extending this
features set may lead to much better performance for profile

2We used 32 weak classifiers as the burn-in period for WTA-McBoost,
and switched labels every 8 weak classifiers. These settings are shorter
than the examples we had in Section 4.1, but still worked fine. The short
burn-in period is mostly due to speed concerns.
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Figure 6. (a) Performance of our detector on CMU+MIT frontal
data set (125 images, 483 labeled frontal faces). (b) Performance
on CMU profile data set (208 images, 441 labeled faces with vari-
ous poses, 73 (16.6%) of the faces have more than ±10 degree in
plane rotations).

face detection, as was reported in [25, 6].

5. Conclusions and Future Work

We have presented a winner-take-all multiple category
boosting algorithm for learning complex object detectors
through training multiple subcategory classifiers jointly.
The key idea is to treat the initial subcategory labels as un-
certain labels, and allow them to change during the training
process. Through this process, positive examples that per-
form similarly measured by the learned subcategory classi-
fiers will be organized together, which reduces the number
of outliers in each subcategory and thus improves the over-
all learning performance.

We have showed in Section 4 the application of WTA-
McBoost in learning a multi-view face detector, and we
believe the same technique can be applied to other types
of objects. There are a number of directions for future
work. For instance, for a generic object class where there
is no clear boundary between subcategories, it remains un-
clear how one would determine the best number of subcat-
egories for training. Another interesting problem is how
to set early pruning thresholds for a classifier learned by
WTA-McBoost. There can be two principles in pruning

such a classifier: one can terminate a subcategory classi-
fier because a threshold score is not met, or because another
subcategory classifier has reported a much higher score.

Appendix A: Confidence-Rated Asymmetric Boosting

In this Appendix we extend the confidence-rated prediction al-
gorithm for AdaBoost [16] to asymmetric boosting. The result is
similar to the solution provided in [12] but more explicit to com-
pute. We also show that such a method can be used for learning
multiple classifiers simultaneously with shared weak classifiers.

Consider a set of training examples as S = {(xi, zi), i =
1, · · · , N}, where zi = 1 for positive examples and zi = 0
for negative examples. Let the score of example xi be yT

i =
HT (xi) =

∑T
t=1 λtht(xi), where T is the number of weak

classifiers. For now let us assume a single category classifier is
learned. The asymmetric loss function is:

LT =

N∑
i=1

[I(zi = 1) exp{−C1y
T
i }+ I(zi = 0) exp{C2y

T
i }].

(10)
Given t weak classifiers selected, a new feature f t+1 and its J par-
titions u1, u2, · · · , uJ , we first accumulate the weighted fraction
of examples in each partition:

W+j =
∑

i

I(f t+1(xi) ∈ uj)I(zi = 1) exp{−C1y
t
i}

W−j =
∑

i

I(f t+1(xi) ∈ uj)I(zi = 0) exp{C2y
t
i}. (11)

Let the vote in partition uj be cj . In confidence-rated predic-
tion, the score is computed as yt+1

i =
∑t+1

τ=1 hτ (xi). We have
ht+1(xi) = cj , iff t+1(xi) ∈ uj . The loss function of partion uj

at t + 1 is:

Lt+1
j = W+j exp{−C1cj)}+ W−j exp{C2cj}. (12)

It is easy to verify that when

cj =
1

C1 + C2
ln

(C1W+j

C2W−j

)
, (13)

Lt+1
j has its minimum value as

Lt+1
j = γW

C2
C1+C2
+j W

C1
C1+C2
−j ,

where γ =
(C2

C1

) C1
C1+C2 +

(C1

C2

) C2
C1+C2 (14)

In practice, we search through all possible features and parti-
tions to find the weak classifier that minimizes

Lt+1 =
∑

j

Lt+1
j = γ

∑
j

W
C2

C1+C2
+j W

C1
C1+C2
−j . (15)

Such feature selection and the vote computation in Eq. (13) can be
implemented much more efficiently than a line search.

Furthermore, we can extend the above method to multiple cat-
egory boosting with shared features. Given a feature, each sub-
category classifier can find its corresponding partition and votes in
order to minimize the joint loss of all K subcategory classifiers:

Lt+1 =

K∑

k=1

∑
j

Lt+1
kj , (16)



where Lt+1
kj is the loss for classifier k, partition j, computed by

Eq. (14). The partition of the feature can also be shared by all the
subcategory classifiers. The best feature is the one that minimizes
the joint loss of Eq. (16).
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