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1. INTRODUCTION

The on-demand access to computing resources offered
by cloud datacenters has prompted a lot of applications
to migrate to the cloud. These applications often involve
virtual machines (VMs) belonging to a tenant commu-
nicating across the datacenter’s internal network. The
multi-tenant nature of the cloud has also led to both
cloud providers and individual tenants offering services
to other tenants [1]. For instance, Amazon EC2 offers
services like SimpleDB, Simple Queue Service, EBS,
while mapreduce++ and CloudBuddy are services run
by tenants. The resulting tenant-provider and tenant-
tenant network traffic further diversifies datacenter net-
work communication.

This rise of intra-cloud network communication is at
odds with today’s cloud offerings. With infrastructure
as a service (IaaS), tenants get VMs with dedicated
CPU and memory but the underlying network is shared.
Consequently, the network performance for tenants can
vary significantly [2—4]. This, in turn, impacts the per-
formance for a wide variety of applications; from user-
facing web services [3,5] to data-parallel, HPC and sci-
entific applications [3,6-9]. Ultimately, variable network
performance impacts tenant cost, as tenants pay based
on the time they occupy their VMs which is influenced
by network performance. The shared nature of the net-
work and the lack of any traffic isolation mechanisms
also opens the door for DoS attacks aimed at disrupt-
ing specific services within the datacenter or increasing
the cost for other tenants [1,10,11]. All these issues are
often cited as key barriers to cloud adoption [12].

In view of these limitations, we identify three key
objectives that the datacenter network should satisfy.
First, the allocation of network bandwidth should en-
sure that the maximum network impact of a tenant is
bounded (bounded impact). This prevents malicious and
selfish behavior. Second, VMs should be coupled with
minimum network bandwidth guarantees which would
allow tenants to estimate worst-case bounds for appli-
cation performance and costs [13,14]. Third, the band-
width allocation should be work conserving. Cloud dat-
acenters rely on multiplexing of resources for cost effi-
ciency and the same should hold for the network.

While recent proposals target some of these objec-
tives, none satisfy them all. For example, proposals to
partition the datacenter network among tenants [15-
17] ensure that network bandwidth between a tenant’s
VMs is guaranteed. This, however, causes network frag-
mentation and is not work conserving. Alternatively,
weighted-sharing approaches allow for general commu-
nication patterns by assigning weights to tenants (or
individual VMs) and allocating network bandwidth in
a weighted fashion [10,13,18]. However, being agnostic
to VM placement, they offer no or very weak minimum
bandwidth guarantees. Further, tenants can gain an un-

bounded share of the network bandwidth by modifying
their traffic patterns to/from other tenants.

The primary contribution of this paper is the design
of network sharing mechanisms that satisfy the comple-
mentary goals of minimum VM bandwidth and bounded
impact. We illustrate how careful VM placement and
bandwidth allocation can be combined to satisfy all the
above objectives, and present Hadrian, a system that
implements the proposed mechanisms. With Hadrian,
VMs are coupled with a minimum amount of network
bandwidth. Tenants could specify the desired bandwidth
guaranty or select from a set of bandwidth classes. A
VM’s minimum bandwidth influences its price and net-
work flows are allocated bandwidth in a weighted fash-
ion. The desired bandwidth for a tenant’s VMs is used
to guide their placement across the datacenter and to
derive the weight for their network flows. These weights,
when combined with smart VM placement, ensure that
each VM achieves its guaranteed bandwidth. The weight
selection also ensures bounded impact.

Hadrian’s design includes three key features to im-
prove the cloud provider’s ability to support many con-
current tenants atop oversubscribed datacenter networks.
First, instead of targeting arbitrary communication pat-
terns, we rely on tenants expressing their communi-
cation dependencies, i.e., other tenants or peers they
communicate with. A VM is only guaranteed network
bandwidth for intra-tenant and peer communications.
While specifying peer tenants is an obvious overhead
for tenants, it offers benefits; it makes the datacenter
network “default-oftf”, thus protecting against malicious
tenants [19]. Second, the minimum rate for communi-
cation between any pair of VMs is determined by the
lower of the source and the destination guaranty. Fi-
nally, driven by typical application workloads where
inter-tenant communication is sparse, Hadrian also of-
fers hierarchical bandwidth guarantees (i.e., inter-tenant
vs. intra-tenant).

Beyond the network sharing mechanisms, other con-
tributions of the paper include—

e We present two abstractions, multi-hose and hier-
archical multi-hose. These abstractions capture per-
VM and per-tenant lower bounds for network band-
width and allow tenants to reason about worst-case
performance for their traffic.

e We present a novel formulation of the tenant band-
width requirements as a max-flow network which, in
turn, guides the placement of their VMs.

Our evaluation shows that minimum bandwidth guar-
antees yield better and predictable network performance
for tenants. These guarantees also improve the datacen-
ter throughput by preventing outliers with very poor
network performance. This implies that providers can
offer an improved service at a lower price, or choose to



retain today’s prices and increase their revenue instead.
Either way, there are benefits for both entities. Finally,
by bounding the maximum impact a tenant can have,
we help curb malicious behavior in shared settings.

In effect, we have co-opted the benefits of both groups
of past proposals by combining bandwidth-aware VM

discussion above, it follows that the network bandwidth
achieved by a VM depends on where it is located, the
network load imposed by neighboring VMs sharing net-
work paths, the transport protocols being used, etc.
Consequently, the network performance for a tenant can
vary significantly in today’s cloud [2—4,20] and produc-

placement [15,17] with weighted bandwidth allocation [10,13,18pn datacenters [9] with an order of magnitude varia-

On the flip side, our sharing mechanisms require changes
to network elements. While Hadrian’s design minimizes
these changes and our prototype shows their feasibil-
ity, they do present a barrier to adoption. We believe
that, at the very least, the proposed mechanisms will
inform a discussion of how a distributed resource like
the network can be efficiently and robustly shared in
multi-tenant settings.

2. NETWORK SHARING GOALS

Unlike other resources in the datacenter, the inter-

nal network is shared amongst tenants for both traf-
fic between a tenant’s VMs (intra-tenant), as well as
between VMs of different tenants (inter-tenant). As in
the Internet, bandwidth is allocated to network flows
through end host mechanisms such as TCP congestion
control which ensures per-flow fairness. While practical,
this model has a number of harmful implications that
guide design objectives for network sharing mechanisms
in datacenters. Specifically:
Unfair sharing. The lack of proper mechanisms to iso-
late tenant traffic allows selfish tenants to easily ob-
viate TCP’s per-flow fairness by using multiple TCP
flows [10] or simply UDP. Such abuse can occur across
two dimensions: i) unfair share to any other VM or a
set of VMs, whereby a selfish tenant can obtain higher
bandwidth to VMs of other tenants running services.
Taking this a step further, malicious tenants may even
launch DoS attacks on specific tenants by sourcing a lot
of traffic to their VMs. ii) unfair share on any network
link, whereby malicious tenants can attack the infras-
tructure simply by generating a lot of traffic to arbi-
trary destinations, thus degrading performance for any
tenants using common network links. Besides malicious-
ness, this can simply reflect application patterns. For ex-
ample, a tenant shuffling a lot of data between its VMs
or a tenant running a popular service can, by sending
and receiving a lot of traffic, degrade performance for
neighboring tenant VMs.

Objective 1: Bounded impact. The maximum im-
pact a VM can have on VMs it communicates with
and on VMs that share network links with it should
be bounded. Precisely, the maximum bandwidth for a
VM on any network link should be proportional to the
VM’s price and the traffic load on the link from other
VMs. Further, it should be independent of the VM’s
traffic pattern.

Unpredictable performance and cost. From the

tion not being uncommon [17]. This variation is a lead-
ing cause for unpredictable application performance in

the cloud [3], impacts a wide-variety of applications [3,5,6,21]

and hinders the ability of the cloud to support appli-
cations classes, like HPC and scientific computing, that
rely on predictable performance [7,8]. Such unpredictabil-
ity extends to actual cost as tenants are charged based
on the time they occupy their VMs and this time is
influenced by the network.

Objective 2: Minimum bandwidth guarantees. The
cloud’s internal network should be elevated to a first-
class resource by ensuring that tenant VMs are guaran-
teed a minimum network bandwidth. This allows ten-
ants to estimate worst-case performance and cost for
their applications.

To tackle the lack of network isolation across tenants,
recent proposals resort to enforcing hard guarantees by
virtually partitioning the network across tenants [15-
17]. While effective, such solutions result in network
fragmentation and underutilization, thus hurting effi-
ciency.

Objective 3: Work conserving. Cloud datacenters
multiplex physical resources across tenants to amortize
costs and the same should hold for the network. Hence,
bandwidth allocation mechanisms should be work con-
serving and any unused network bandwidth should be
available for VMs with network demand, irrespective of
their bandwidth guaranty.

3. BANDWIDTH LOWER BOUNDS

To satisfy the second network sharing objective, we
propose tenants be offered VMs with a lower bound
on their network bandwidth. In today’s multi-tenant
datacenters, tenants request VMs with varying amount
of CPU, memory and storage resources. By abstract-
ing away details of non-network resources, each tenant
request today can thus be summarized by < V>, the
number of VMs requested. We extend this interface by
providing minimum guarantees. A tenant P requesting
Vp VMs with a minimum bandwidth of B is char-
acterized by <Vp, B> In this section, we explicitly
describe the semantics of the guaranty offered to ten-
ants. The goal is to balance the competing needs of ten-
ants and providers; the guarantees should be reasonable
for tenants yet provider friendly. They should not limit
the provider’s flexibility in accepting tenant requests.

Our guaranty ensures that the worst-case network per-
formance achieved by any VM in the datacenter is the
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Figure 1: Multi-hose model for a datacenter with
three tenants. Tenant communication dependen-
cies are used to determine the inter-tenant com-
munication allowed.

performance it would achieve if it were connected by a
link, whose capacity equals the VM’s minimum band-
width, to a central switch. Figure 1 shows this repre-
sentation for a datacenter with 3 tenants. This extends
the hose model [22] for capturing tenant bandwidth de-
mands to a multi-tenant setting and is thus referred to
as the multi-hose model.

The multi-hose model implies that the minimum band-
width for a network flow in the datacenter is the same as
the bandwidth the flow would achieve on the multi-hose
topology. Here, a flow refers to all transport connections
between a pair of VMs. For example, consider two VMs
p and g belonging to tenants P and () respectively. As-
suming that these VMs have a single flow between them
and no flows to any other VMs, the bandwidth for the
flow on the multi-hose topology is min(BE*™", Bj™).
Since the multi-hose topology specifies worst-case per-
formance, the actual bandwidth for the flow in the dat-
acenter is no less than min(B%", B%"). Generalizing
this, say p and q communicate with N, and N; VMs
each, then the bandwidth for a flow between p and q
should be at least min(Bi:n, B]‘\?,q ). Note that the
actual rate for the flow can exceed this value. In
effect, ensuring the minimum bandwidth for VMs can
be used to determine lower bounds for the bandwidth
that individual flows receive, thus allowing tenants to
estimate worst-case flow completion time and possibly
even application performance.

However, given the oversubscribed nature of typical
datacenter topologies, offering any non-trivial minimum
bandwidth guarantees to tenants severely limits the pro-
vider’s ability to accommodate many concurrent ten-
ants on their infrastructure. To improve the provider’s
flexibility in terms of accepting many tenants, we mod-
ify the semantics of the bandwidth guarantees offered
to tenants by introducing i) tenant “peer” relationships,
and ii) hierarchical guarantees. We elaborate on these
below.

3.1 Communication dependencies

Allowing arbitrary VMs to communicate under guar-
anteed performance is impractical. Instead, our guar-
antees apply only for “expected” communication. To
achieve this, tenants expose their communication de-
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Figure 2: Hierarchical multi-hose model gives
per-VM bandwidth lower bound for intra-tenant
traffic and per-tenant bound for inter-tenant
traffic.

pendencies to the provider when requesting for virtual
machines.! A tenant’s communication dependency is a
list of other tenants or peers that the tenant expects to
communicate with. Examples of such dependencies are
listed below.

) P:AQ}, 2) Q:{P R},

The first dependency is declared by tenant P and im-
plies that VMs of P, apart from sending traffic to each
other, should be able to communicate with VMs of ten-
ant . The second dependency is for () and declares its
peering with tenants P and R. Since a tenant running
a service used by other tenants may not know its peers
apriori, we allow for wildcard dependencies. Thus, the
last dependency implies that tenant R is an open tenant
and can communicate with any tenant that explicitly
declares a peering with R (in this example, tenant ).
Note however that since tenant P has not declared a
peering with R, communication between VMs of P and
R is not allowed.

As shown in Figure 1, the provider can use the commu-
nication dependencies to determine the allowed inter-
tenant communication and as we show later, is thus bet-
ter positioned to offer bandwidth guarantees to tenants.
While expecting tenants to express their communica-
tion dependencies is an overhead for them, it also offers
benefits. It makes the datacenter network “default-off”
since traffic can only flow between a pair of tenants if
both have declared a peering with each other.

3) R: {x}

3.2 Hierarchical bandwidth lower bounds

The multi-hose model offers tenant VMs the same
minimum bandwidth guaranty for traffic to all VMs,
irrespective of whether the destination VMs belong to
the same tenant or to other tenants. As a contrast,
we envision typical cloud applications will involve more
communication between VMs of the same tenant than

We assume tenants know that the tenants they depend on
are running in the same datacenter. This is typically true
for services as tenants advertize where the service is run to
attract customers.



across tenants. Such structure already applies to com-
mon enterprise applications moving to the cloud [23].
For instance, consider a tenant serving web content to
end users and relying on an ad service run by another
tenant [1]. There would be more intra-tenant traffic be-
tween VMs running the web service than inter-tenant
traffic to VMs of the ad service.

To capitalize on the skewed traffic patterns of such ap-
plications, we allow for hierarchical guarantees. This is
the hierarchical multi-hose model and is shown in
Figure 2. Each VM for tenant P is guaranteed a band-
width no less than B for traffic between its VMs. Be-
yond this, the tenant also gets a minimum bandwidth
guaranty for its aggregate inter-tenant traffic, Bier.
The ratio of this inter-tenant bandwidth and the aggre-
gate per-VM bandwidth (Vp x BR'™) allows a tenant
to capture the relative sparseness of their inter-tenant
traffic as compared to intra-tenant traffic. Thus, with
the hierarchical multi-hose model, a tenant requesting
V VMs is characterized by the four tuple <V, B™",
Bter - dependencies>.?

The combination of the hierarchical multi-hose model
with tenant dependencies improves the provider’s abil-
ity to pack tenants on their infrastructure without lim-
iting tenant value.

4. Hadrian

To illustrate our network sharing mechanisms, we de-
sign Hadrian, a system for sharing network bandwidth
in multi-tenant datacenters. Hadrian relies on bandwidth-
aware VM placement and weighted bandwidth alloca-
tion to satisfy the three objectives identified in Section 2
with the guaranty semantics as described in the previ-
ous section. This is achieved through the following two
components.

e VM Placement. A logically centralized placement man-
ager, upon receiving a tenant request, performs ad-
mission control and maps the request to datacenter
machines. This allocation of VMs to physical ma-
chines accounts for the minimum bandwidth require-
ments of the VMs and for their communication de-
pendencies.

e Bandwidth Allocation. Flows are assigned network
bandwidth in a weighted fashion. The flow weights
are chosen such that the bounded impact and mini-
mum bandwidth requirements are assured.

4.1 VM Placement

The placement manager takes a tenant request and
places the tenant’s VMs at empty slots on datacenter
2When B = V«B™" the hierarchical multi-hose is the

same as the multi-hose and tenants simply get per-VM min-
imum guarantees for all traffic.
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Figure 3: Sets of flows that can traverse a net-
work link.

physical machines. VM placement problems are often
mapped to multi-dimensional packing with constraints
regarding various physical resources [24]. In our case,
each tenant requires slots on physical machines and
minimum network bandwidth on the links connecting
them. However, determining the bandwidth required on
any given link is not trivial. For all accepted tenants,
their VMs should be assured of the desired minimum
bandwidth for traffic to other VMs of the same ten-
ant and aggregate (per-tenant) minimum bandwidth for
traffic to other tenants.

We begin by quantifying the bandwidth required on
individual network links to support tenant bandwidth
guarantees. This, in turn, allows us to define what a
valid placement looks like and design a placement algo-
rithm. In doing so, we focus on tree-like physical net-
work topologies; examples include the multi-rooted tree
topologies used in today’s datacenters, and richer topolo-
gies like VL2 [25] and FatTree [26]. Such topologies are
hierarchical, recursively made up of sub-trees at each
level. For instance, in a three-level topology, physical
hosts are arranged in racks, racks make up pods and
pods make up the complete datacenter.

4.1.1 Characterizing bandwidth requirements

We use the three tenant scenario described earlier to
both provide intuition regarding the challenge of quan-
tifying the bandwidth required on network links to sup-
port tenant requirements and to explain our approach.
Let’s consider any network link in the datacenter. Say
the link has p VMs for tenant P to the left and p’ VMs
to the right such that p + p’ = Vp, where Vp is the
number of VMs belong to tenant P.3 Similarly, the link
has ¢ and r VMs for tenants ) and R on the left, and

3This assumes that the datacenter network has a simple tree
topology, so the link separates P’s VMs into two groups.
“Left” corresponds to the sub-tree under the link while
“Right” corresponds to the rest of the datacenter. We relax
this simple tree assumption in Section 4.3.



¢’ and " VMs on the right.

We first enumerate the sets of flows that can possibly
traverse the link. These are shown in Figure 3, labeled
(1) to (7). This includes intra-tenant flows between VMs
of P, @ and R (labeled (1), (2), (3) respectively), and
inter-tenant flows that conform to tenant dependencies,
i.e., between VMs of P& @ (labeled (4) and (5)) and
VMs of Q<R (labeled (6) and (7)).

The minimum bandwidth guaranty for VMs entails
that each of these sets of flows has a minimum rate asso-
ciated with it. Further, irrespective of the traffic pattern
across the physical link, it should be able to ensure that
the combined minimum rates for all flows across it are
met. The minimum rate for any given set of flows, when
running in isolation, is easy to determine. For example,
consider the flow set (1) between VMs of P on the left
and the right of the physical link. As explained earlier,
the minimum rate for these flows is the rate they would
achieve on the multi-hose topology in Figure 2. In the
topology, each of P’s VMs has a minimum bandwidth of
B, Hence, the combined bandwidth for the p VMs
on the left of the link is p* B and the combined band-
width for the p’ VMs on the right is p’*B%". Thus, the
total rate for this set of flows is min(pBR™, p’ BR™).
This is the minimum rate the set of flows should receive
across the physical link in question, assuming P has no
inter-tenant flows across it (i.e., if flow sets (4) and (5)
did not exist).

The same analysis can be extended to determine, in
isolation, the minimum rate for other sets of flows across
the link. The physical link should have enough capac-
ity to satisfy the combined minimum rate for all these
sets of flows. However, simply summing the minimum
rates for all sets of flows over-estimates the total band-
width needed. Instead, to combine these constraints, we
express them as a flow network. A flow network is a
directed graph where each edge has a capacity and can
carry a flow not exceeding the capacity of the edge.
Note that this flow is different from “real” flows across
the datacenter network.

Figure 4 shows the flow network corresponding to the
link being considered and is explained below. To avoid

confusion, “link” refers to physical network links while“edge”

corresponds to the flow network. All unlabeled edges
have an infinite capacity. Each VM to the left of the
physical link is represented by a node connected to the
source node, while each VM to the right of the link is
represented by a node connected to the destination. The
VM nodes for any given tenant are connected to “intra-
tenant” nodes (solid rectangles) by edges whose capacity
is equal to the minimum bandwidth for the VM. These
edges represent the per-VM bandwidth constraint. The
two intra-tenant nodes for each tenant are connected by
an edge of infinite capacity (long-dashed edge). These
intra-tenant nodes effectively represent the intra-tenant

Figure 4: Flow network to capture the band-
width needed on a link that connects p VMs
of tenant P on the left to p’ VMs on the right,
and so on for tenants () and R. Circles represent
VMs, solid rectangles are intra-tenant nodes and
shaded rectangles are inter-tenant nodes.

switch in the hierarchical multi-hose model. Further, the
two intra-tenant nodes for each tenant are connected to
“inter-tenant” nodes (shaded rectangles) by edges whose
capacity is equal to the tenant’s minimum inter-tenant
bandwidth. This represents the bandwidth constraint
for communication between tenants. Based on the ten-
ant communication dependencies, the appropriate inter-
tenant nodes are connected to each other (short-dashed
edges). For our example, tenant ) can communicate
with P and R, so inter-tenant nodes of () are connected
to those of P and R.

The max-flow for this flow network gives the maxi-
mum rate that the sets of real flows (1)—(7) can achieve
on the multi-hose topology. This, in turn, is the mini-
mum bandwidth required on the physical link to ensure
that the minimum bandwidth guarantees of VMs are
assured.

While the description above involves already exist-
ing tenants, the flow network formulation can also be
used to determine the bandwidth required when plac-
ing a new tenant request. Specifically, for each link, the
placement manager maintains an associated flow net-
work that includes VMs of existing tenants on either
side of the link. To determine whether the link will be
able to support the communication demands for newly
requested VMs, the flow network for the link is modified
by adding the appropriate nodes and edges. The max
flow for the resulting flow network is the bandwidth re-
quired on the link to accommodate the new VMs, and
should be less than the link’s capacity.

4.1.2  Characterizing Valid Placements

Given a tenant request, a valid placement of its VMs
should satisfy two constraints. First, VMs should only
be placed on empty slots on physical hosts. Second, af-
ter the placement, the bandwidth required across each
link in the datacenter should be less than or equal to
the link’s available capacity. Thus, the VM Placement



problem boils down to finding a valid placement for the
tenant’s VMs.

However, instead of trying to place VMs while satisfy-
ing constraints across two dimensions (slots and band-
width), we use the flow-network formulation to convert
the bandwidth requirements on each physical link to
constraints regarding the number of VMs that can be
placed inside the sub-tree under the link, i.e., in the
host, rack or pod under the link. Precisely, for any link
l, we can define a set for the number of VMs that can be
placed in its sub-tree while ensuring that the link has
sufficient bandwidth. We term this the VMs_Allowed set
for a link and is defined as

VMs_Allowed; = {i | maz_flow(l,i) < C;}

where, maz_flow(l,i) is the max-flow for link I’s flow
network after placing ¢ VMs of the new tenant in the
sub-tree rooted at the link (and the rest of the tenant’s
VMs outside the sub-tree) and Cj is the link capacity.
In effect, the VMs_Allowed set abstracts away the band-
width requirements and the communication dependen-
cies of tenants, expressing them as constraints regarding
the number of VMs that can be placed at any level of
the datacenter hierarchy.

Given this, we formally define a valid placement be-
low. Consider a tenant request <V,
and a datacenter whose topology is represented by tree
T(L,H), where L is the set of network links and H is
the set of physical hosts. For each link I, host; is the set
of physical hosts in the sub-tree under /. Further, for
each host h, slotsp is the number of empty VM slots
on it. A placement [ap] determines the number of VMs
allocated at each host. A placement is said to be valid
if it satisfies the following constraints—

> ap=V (1)

heH
ap < slotsy, Vhe H (2)
> a; € VMs_Allowed(1) VieL (3)
i€host;

The first constraint ensures that all V' requested VMs
are allocated while the second constraint ensures that
VMs are placed only on empty slots. The final con-
straint ensures that the number of VMs placed in the
sub-tree under any link should be part of the link’s
VMs_Allowed set, so that the minimum bandwidth gu-
rantees are satisfied.

Note that the VMs_ Allowed set does not have any
structure which makes it non-trivial to find a valid place-
ment. We illustrate this with a simple example. As shown
in Figure 5, consider a physical host with six VM slots,
two of which are occupied by a tenant ). Also, say a new
tenant P requests 5 VMs with a minimum bandwidth
of 1000 Mbps between its VMs and an aggregate band-
width of 1100 Mbps to @’s VMs. The VMs_Allowed set

Host uplink to rest of
datacenter

Q’s VMs Empty Slots

Requests
Q: <2 VMs, 1000 Mbps, 2000 Mbps, *>
QQ P: <5 VMs, 1000 Mbps, 1100 Mbps, Q>
AR

Figure 5: Placement of tenant P. The host’s up-
link has capacity 1000 Mbps and the number of
VMs allowed to be placed on the host is {1, 4}.

for this host is {1, 4} i.e., only 1 or 4 of P’s VMs can be
placed on the host. Placing zero VMs is not valid since
the capacity of the host uplink will be less than the
1100 Mbps needed to ensure the minimum rate for traf-
fic between VMs of P and (). Similarly, two (or three)
VMs cannot be placed as the uplink’s capacity will not
be sufficient for intra-tenant traffic between P’s VMs.
This illustrates that the number of VMs to be placed
in any sub-tree of the datacenter is not a simple range
set. Further, a minimum number of VMs may need to
be placed in the sub-tree (i.e., 0 is not always a member
of VMs_Allowed).

4.1.3 VM Placement Algorithm

The VM Placement problem requires placing a ten-

Bmin  pinter dependenciéas@’s VMs while satisfying constraints regarding the

number of VMs that can be placed at any level of the
datacenter hierarchy. We designed a greedy, first-fit place-
ment algorithm. This is shown in Figure 6. The ba-
sic idea behind the placement is simple— the number of
VMs placed on any physical host is determined by both
the VMs_Allowed set for the host and by constraints
for higher level sub-trees that include the host; for in-
stance, in a three-level topology, these higher-level sub-
trees reflect the rack and pod that include the host.
Given this, the placement algorithm uses the recursive
“Alloc” function to traverse the topology in a depth-first
fashion. Constraints for each level of the topology are
used to determine the maximum number of VMs that
can be placed at sub-trees below the level (line 9), and
so on till we determine the number of VMs that can be
placed on any given host. VMs are greedily placed on
the first available host (line 12). We then verify whether
constraints at higher levels of the topology are met (line
21).

The placement algorithm described above ensures that
if a placement is returned, it is a valid placement. Our
actual implementation includes several enhancements to
improve both the speed and scalability of the algorithm,
as well as the kind of placement. We briefly describe a
few of these—

Flow network decomposition. We use Edmonds-Karp
algorithm to calculate the max-flow for the flow net-
work associated with network links, which works par-
ticularly well for sparse graphs. For each link, instead
of maintaining a single flow network that includes all ex-



Require: Topology tree T(L) with root_link as root
Ensure: Placement for request <V, B™"  B'ter  dep>
1: for each I € L do
2: Calculate V M s_Allowed,

//Place V' VMs under the root_link
+ if Alloc(V, root_link) = V then

return True
else

return False

TR

//Allocate at most hi VMs in sub-tree under [
7: //Returns number of VMs allocated, -1 on error
8: function Alloc(hi, 1)
9: hi = min(hi, max(V Ms_Allowed(l)))
10: if [ is a host uplink then
11:  //Base case - h is the corresponding physical host
12:  total = min(slotsy, hi)
13: else
14:  //Iterate over sub-trees
15: for ¢ € children; do

16: allocated = Alloc(hi, i)

17: if allocated != -1 then

18: hi = hi— allocated; total = total + allocated
19: else

20: return -1

21: if total ¢ VMs_Allowed(l) then
22: return -1
23: return allocated

Figure 6: VM Placement algorithm.

isting tenants in the datacenter, we decompose the flow
network based on tenant communication dependencies.
This is based on the insight that an average tenant will
not communicate with all other tenants. With this de-
composition, two tenants are part of the same flow net-
work if they either depend on each other directly or have
a sequence of dependencies that connects them. Conse-
quently, when a new tenant request arrives, we only
need to modify the flow network(s) containing peers of
the tenant. These flow networks are much smaller than
the original flow network. This significantly improves
the speed of placement decisions. Further, we also use
the communication dependencies to prune the list of
network links that may be impacted by the incoming
tenant and whose VMs_Allowed set needs to be recal-
culated.

Minimum VM constraints. As explained earlier, there
may be constraints regarding the minimum number of
VMs that must be placed inside a datacenter sub-tree.
Consequently, the placement algorithm proceeds in two
stages. We first traverse the datacenter and place VMs
so as to satisfy minimum VM constraints. We then use
the algorithm described above to place any remaining
VMs.

Locality. Inspired by the fact that datacenter network
topologies are typically oversubscribed with less band-
width towards the root than at the leaves, the opti-
mization goal for our placement algorithm is to choose
placements that reduce the bandwidth needed at higher
levels of the datacenter hierarchy. To achieve this, we

aim for placement locality, which comprises two parts.
First, a tenant’s VMs are placed close to VMs of ex-
isting tenants that it has communication dependencies
with. Second, the VMs are placed in the smallest sub-
tree possible. This heuristic reduces the number and the
height of network links that may carry the tenant’s traf-
fic and hence, preserves network bandwidth for future
tenants.

4.2 Bandwidth Allocation

The VM Placement algorithm ensures that a tenant
request, if admitted, is placed such that the underlying
links have sufficient capacity to support the minimum
rates for the tenant’s flows. This is the rate a flow would
achieve on the hierarchical multi-hose topology. The al-
location of network bandwidth to flows should achieve
three goals: i) a flow’s actual rate is at least its mini-
mum rate, ii) the allocation should be work conserving,
and iii) tenant impact is bounded, i.e., tenants should
not be able to increase their allocation by modifying
application traffic patterns.

To achieve this, Hadrian allocates network bandwidth
to flows in proportion to their minimum rates through
weighted mazx-min fairness. Specifically, network band-
width is shared in a weighted fashion and the weight for
each flow is its minimum rate. This allows providers to
connect a tenant’s payment with the tenant’s resulting
bandwidth allocation: a VM’s price influences the VM’s
minimum bandwidth which dictates the minimum rate
its flows should achieve. The allocation scheme ensures
that the actual flow rate is proportional to (and no less
than) this minimum rate.

To explain Hadrian’s bandwidth allocation, we focus
on two tenants P and () whose VMs are guaranteed a
minimum bandwidth of Bgm and Bg‘m. This is the
multi-hose model, although the analysis generalizes to
the hierarchical model too. Consider a flow between two
VMs p and ¢ for these tenants. These VMs are commu-
nicating with a total of NV, and N, VMs respectively.
As explained earlier, the minimum rate for this flow

is min(ZE”, P€7) This is also going to be the flow’
is min( N ). This is also going to be the flow’s

weight wy, 4, and implies that the rate for the flow, as de-
termined by the bottleneck link along its path, is given
by

w
By, = z:Tq * C, (4)
where C is the capacity of the bottleneck link and wp
is the sum of the weights for all flows across the link.
Below we show that such weighted sharing ensures
that flows achieve their minimum rate and the band-
width allocation has a bounded impact.

4.2.1 Lower bound on flow rate

We use the bandwidth allocated by the bottleneck link
to the flow between VMs p and ¢ as an example to sketch



a proof showing that Hadrian ensures a minimum flow
rate.

To do this, let’s superpose all VM-to-VM “real flows”
across the link as a single “aggregate flow” on top of
the flow-network associated with the link. Say each real
flow contributes a volume equal to its weight to the ag-
gregate flow in the flow-network. The weights assigned
to the real flows are such that the volume across any
edge in the flow network will be less than the edge’s ca-
pacity. Hence, the aggregate flow is a valid flow for the
flow network. The aggregate weight w for all the real
flows represents the total volume of the single aggregate
flow, and cannot exceed the max-flow. This is true irre-
spective of the traffic pattern across the link. Further,
the placement algorithm ensures that the max-flow for
the flow network cannot exceed the link capacity. Thus,
wp < C. Using this in (4), we get

N, = N,

).

This shows that the combination of flow weights and
careful VM placement ensures that each flow is guar-
anteed the desired minimum rate. Since allocation is
based on weighted mazx-min fairness, any unused capac-
ity is available for flows with demand, and the actual
flow rates can exceed their minimum rate. Below we
show that our allocation scheme ensures fair and robust
sharing of any unused network capacity.

By g > wpq = min(

4.2.2  Upper bound on VM impact

For robust network sharing, tenant VMs should not
be able to benefit unfairly by modifying their traffic
pattern, either by using more transport connections or
by communicating with a lot of other VMs. A tenant
VM can “benefit” in two ways— (i). get an unfair fraction
of bandwidth to a specific set of VMs, and (ii). get an
unfair fraction of the bandwidth on any given link. We
focus on ther latter since (i) is simply a special case
of (ii); achieving an unfair bandwidth allocation to a
set of VMs entails achieving an unfair allocation on the
physical uplinks for those VMs.

With Hadrian, the bandwidth that a VM can achieve
on a link is capped and this upper bound depends only
on the desired minimum bandwidth for the VM (and
hence, the VM price) and the weights for other VMs
using the link. We prove this in the Appendix and show
that the maximum possible bandwidth (Bll,) a VM p
can achieve on link [ is

. _Bp"
B, < Bk * Cl,
where C is the link capacity and k is the sum of the
weights for other VMs. This upper bound has two key
properties. First, it is independent of the number of
flows for VM p, i.e., the number of other VMs it com-
municates with. Second, it is work conserving as p can

use the entire link capacity if no other VMs are using
it. We note that the first property does not hold for
the status quo or even recent weighted sharing propos-
als like per endpoint weights [13] where a VM can al-
ways grab more of a link’s bandwidth by communicat-
ing with more destinations. Even with Seawall’s source-
based weights [10], the impact of a VM running a popu-
lar service on a link increases as more VMs initiate flows
to it. We show this experimentally in § 5.3 by comparing
Hadrian with such proposals. More generally, allowing
a VM to gain an unbounded share of a link’s bandwidth
by modifying its traffic pattern opens the door for selfish
and malicious behavior in shared settings.

The key intuition behind Hadrian’s bounded impact
property is the following. Flow weights are designed
such that, irrespective of a VM’s traffic pattern, the ag-
gregate weight for its flows can never exceed the VM’s
desired minimum bandwidth. We explain this with an
example. Consider a VM in a setup where all VMs have
a 50 Mbps minimum bandwidth. When the VM has one
flow and assuming this is the only flow for the destina-
tion too, the flow weight is min(?, %) = 50. When the
VM communicates with two destinations, the sum of the
flow weights is min(%o, %) + min(%, 5—10) = 50. And so
on for more destination VMs. Thus, by bounding the
aggregate weight for a VM’s traffic, we ensure an upper
bound for the impact a VM can have on any network
link and hence, on the datacenter network.

4.2.3 Implementing Bandwidth Allocation

With the weighted bandwidth allocation described above,

the weight for a flow depends on both the desired mini-
mum bandwidth and the number of flows for the VMs at
its endpoints. Further, with the hierarchical multi-hose
model, the weight for a inter-tenant flow also depends
on the total number of inter-tenant flows for the source
and destination tenants who own the endpoints. Thus,
neither the source nor the destination VM has all the
information to compute a flow’s weight.

An obvious approach is to use a centralized controller
that monitors flow arrivals and departures to calcu-
late the weight and hence, the rate for individual flows.
These rates can then be enforced by the hypervisors
on physical machines. However, making such a solution
work conserving requires the controller to also monitor
the utilization of individual links and update the rates
of all flows periodically. This is necessary as sources
might not be able to match their given rates, ergo under-
utilizing the network. The bursty nature of datacenter
traffic and the resulting communication overhead with
this centralized approach renders it practically infeasi-
ble in realistic scenarios.

We adopt an alternative tact and distribute the rate
calculation logic amongst the network switches. The
overarching principle here is to minimize the amount



of network support required by moving functionality to
the trusted hypervisors. Our design is based on explicit
control protocols like RCP [27] and XCP [28] that share
bandwidth equally and convey flow rates to end hosts.
With Hadrian, we require weighted, instead of an equal,
allocation of bandwidth. We provide a design sketch of
our bandwidth allocation architecture below. Our im-
plementation is detailed in Section 5.4.

With [aaS, VMs can use any and all transport proto-
cols. We aim to retain this feature. Hence, VM network
traffic is tunneled inside hypervisor-to-hypervisor flows
such that all traffic between a pair of VMs count as one
flow. Traffic is only allowed to other VMs of the same
tenant and to VMs of peers. The hypervisor embeds the
VM-id and the tenant-id, a count of the total number
of flows, B™™" B and a count of the total num-
ber of inter-tenant flows for the VM sourcing the traffic
in the packet header. The destination hypervisor em-
beds the same information for the destination VM in
the packets in the reverse direction. Network switches
along the path only maintain a count of the number of
flows for each VM and the number of inter-tenant flows
for each tenant traversing it. Based on this information,
the switch can determine the weight for any flow.

Instead of using per-flow queuing to enforce these weights

at the switches, we push this functionality to the hy-
pervisors. Given a flow’s weight, the switch allocates a
weighted share of the outbound link’s capacity to the
flow. This rate allocation is conveyed to the destination
and is piggybacked to the source hypervisor where it
is enforced. As rate allocations depend on traffic pat-
terns, the rate allocation occurs periodically and the
source hypervisor adjusts its sending rate.

4.3 Design discussion

Hadrian’s reliance on careful VM placement implies
that we inherit the assumptions and concerns afflict-
ing bandwidth-aware VM placement proposals [15,17].
These include—

Placement assumptions. Our placement algorithm as-
sumes knowledge of an up-to-date network topology.
Further, it assumes that traffic between all VMs for ten-
ants belonging to the same flow-network is routed along
a tree. Note that our flow-network decomposition en-
sures that two tenants are part of the same flow-network
if they directly or indirectly depend on each other. This
assumption allows us to precisely identify the physical
links along which a given VM’s traffic will be routed
and account for the bandwidth required on only these
links, instead of all links. This assumption holds triv-
ially if the datacenter has a tree network topology. How-
ever, today’s datacenter typically use multi-rooted tree
topologies, while even richer fat-tree topologies have
been proposed [25,26]. Such topologies offer multiple
paths between any VM pair. This poses a challenge for

the placement since ensuring that each path has suf-
ficient bandwidth for the traffic across it which would
make it hard for the provider to accommodate many
concurrent tenants. Two approaches can be used to ad-
dress this.

The placement algorithm can treat multiple physical
links as a single aggregate link if traffic is distributed
across them evenly. Popular multi-pathing mechanisms
like ECMP and VLB achieve this by splitting traffic
across links using a hash function on a per-flow basis.
While variation in flow lengths and hash collisions can
cause traffic imbalances, a centralized controller can be
used to reassign flows and ensure even traffic distribu-
tion across multiple links [29].

Alternatively, the datacenter routing can be controlled
explicitly to satisfy our assumption atop a multi-path
topology. Specifically, instead of distributing traffic from
all VMs across all paths, traffic from a given VM can be
routed along one (or a few) paths such that we only need
to account for the VM’s guaranteed bandwidth on the
links along these paths. Proposals like SPAIN [30] and
SecondNet [15] offer backwards compatible techniques
to do just this.

Bandwidth allocation assumption. The bandwidth al-
location for flows assumes they traverse a single path
and routing is symmetric. Since multi-pathing mecha-
nisms like ECMP and VLB operate at the granularity
of flows, a flow is already routed along a specific path
today.

Network failures. Failures of physical links and switches
impact both the guarantees for existing tenants and
the placement of subsequent tenants. Hence, Hadrian’s
placement manager requires fast updates concerning net-
work failure events. We note that timely failure infor-
mation is necessary for network management and VM
placement even today, and production datacenters use
automated tools for this [31]. The placement manager
can use such failure information to determine the VMs
whose minimum bandwidth may not be assured and
migrate them appropriately.

Overall, while these are important practical issues, the
impetus of this paper is on the notion of sharing a dis-
tributed resource like the network and the benefits of
the properties offered.

S. EVALUATION

Our evaluation covers three main aspects. First, we
use large scale simulations to show that Hadrian achieves
the three network sharing objectives. Second, we high-
light that satisfying these objectives improves the over-
all datacenter performance. Finally, we benchmark our
implementation on a small testbed, and show that the
placement manager can deal with the scale and churn
posed by datacenters.



5.1 Simulation setup

To model the operation of Hadrian at scale, we devel-
oped a simulator that coarsely models a multi-tenant
datacenter. The simulated datacenter has a three-level
topology. Forty hosts with 1 Gbps links are assigned
to racks and a Top of Rack switch connects each rack
to an aggregation switch. The aggregation switches, in
turn, are connected to the core switch. The network
topology has no path diversity. Consequently, we vary
the oversubscription of the physical topology by vary-
ing the bandwidth of the links between the switches.
The results here are based on a datacenter with 16K
hosts and 4 VMs per host, resulting in 64K VMs. The
network has an oversubscription of 10:1.

Tenants. We model two kinds of tenants. First, open
tenants that offer services for other tenants and hence,
have wildcard (*) communication dependencies. Sec-
ond, client tenants that may use the services of zero
or more open tenants. Each client tenant runs a job
requiring some VMs. Given our focus on network per-
formance, each job involves network flows and the job
finishes when its flows finish. More precisely, a tenant
requiring V' VMs involves V flows of uniform length,
one for each VM. With Hadrian, tenants also ask for a
minimum bandwidth (B™™) for their VMs. Given this
bandwidth value and the length of a job’s flows, ten-
ants can estimate their worst case job completion time.
A job is said to be an outlier if it takes longer than the
worst-case completion time.

For each job, some of its flows are intra-tenant, i.e., to
other VMs for the same job, while others are to VMs
of open tenants the job depends upon. The fraction F
of a tenant’s flows that are inter-tenant allows us to de-
termine the minimum bandwidth required by the ten-
ant for inter-tenant communication. Overall, each ten-
ant request is characterized by <V, B™", V*Bmin*f
dependencies>.

This naive workload was deliberately chosen; by ab-
stracting away any non-network resources, we are able
to directly compare the impact of various network shar-
ing techniques. Our job model though is still broad and
realistic since, as discussed in § 2, network performance
does have a significant impact on the performance of a
large class of cloud applications.

Cloud Provider. To model the operation of cloud
datacenters, we simulate tenant requests arriving over
time. The provider uses a placement algorithm to allo-
cate the requested VMs and if the request cannot be
placed, it is rejected. The arrival of tenants is a Poisson
process. By varying the rate at which tenants arrive,
we control the target occupancy of the datacenter. This
is the fraction of datacenter VMs that, on average, are
expected to be occupied. Regarding bandwidth guaran-
tees, we consider a setup where tenants can choose from
three classes for their minimum bandwidth— 50, 150 and
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Placement — Greedy Dependency | Hadrian’s
B/w Allocation -aware placement
Per-flow Baseline Baseline+ Hadrian-P
Per-endpoint FairCloud [13] — —
Per-source Seawall [10] — —
Hadrian’s weights — — Hadrian

Table 1: Simulated approaches.

300 Mbps. By varying the fraction of tenant requests in
each class, we control the average minimum bandwidth
requested by the tenants.

5.1.1 Simulation breadth

Given our focus on VM placement and bandwidth al-
location, we consider various approaches for both.

VM Placement. We consider three placement ap-
proaches. (i) With Greedy placement, a tenant’s VMs
are greedily placed close to each other. This reflects the
most representative placement policy for today’s data-
centers. (ii) With Dependency-aware placement, a ten-
ant’s VMs are placed close to each other and to VMs
of existing tenants that the tenant has a dependency
on. (iii) Hadrian’s placement described in §4.1 which
is aware of communication dependencies and the mini-
mum bandwidth requirements of tenants.

Bandwidth allocation. We consider four bandwidth
allocation approaches. (i) With Per-flow sharing, flows
are assigned their max-min fair share. This results in
the per-flow fairness that TCP provides and is indica-
tive of today’s setup. (ii) With Per-endpoint sharing,
bandwidth is allocated to flows in a weighted fashion.
The weight for a flow between VMs p (tenant P) and ¢

(tenant Q) with N, and N, flows each is Bj\'}p + Bﬁq
(FairCloud [13]). (iii) With Per-source sharing, the com-
bined weight for the flows sourced by a VM p is B%n
(Seawall [10]). (iv) With Hadrian, bandwidth is allo-
cated as explained in §4.2.

Table 1 summarizes all the possible combinations we
simulated. For brevity, we focus on the six most rele-
vant approaches marked in the table. Note that allocat-
ing tenant VMs greedily combined with the max-min
sharing of the network reflects the operation of today’s
datacenters. Hence, we use it as the Baseline for com-
parison.

Evaluation metrics We use two primary metrics to
compare the aforementioned approaches.

(1). Outlier requests reflect tenants whose jobs take
longer to complete that the tenant’s worst-case esti-
mate.

(2). Rejected requests are the fraction of the requests
that cannot be admitted. This captures the providers
ability to accommodate tenants on their infrastructure.
Note that, compared to other approaches, Hadrian sat-

min

isfies additional constraints during admission. With Hadrian,

requests may be rejected if not enough VM slots or
network bandwidth remains, while the other placement
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Figure 7: Outlier requests with average mini-
mum bandwidth of 200 Mbps.

approaches reject requests only if enough slots are not
available.

Simulation parameters. To characterize the per-
formance of various approaches across the spectrum,
we present results while varying most parameters of in-
terest. This includes the target occupancy, the average
minimum bandwidth requested by tenants, etc. To be-
gin, we present results with the following setup— the
average simulated tenant requests 15 VMs, 10% of the
tenants are open tenants, 25% of requests have depen-
dencies on open tenants and 25% of the traffic for such
tenants is to VMs of open tenants.

5.2 Cloud performance with Hadrian

We simulated the arrival and execution of 25K tenant
jobs. As explained earlier, each tenant request asks for a
minimum bandwidth which, in turn, can be used to de-
rive an upper bound estimate for the completion time.
Figure 7 shows the percentage of outlier requests with
varying target occupancy. As the target occupancy in-
creases and requests start arriving faster, more of them
achieve poor network performance and become outliers.
As the occupancy exceeds 25%, 30-35% of requests are
outliers with Baseline. The results for FairCloud and
Seawall are similar and we omit them for figure clar-
ity. Making the VM placement dependency aware with
Baseline+ does not help much either. As a contrast,
with Hadrian-P, 10% of requests are outliers while only
1% of requests are outliers with Hadrian. This illustrates
the benefits resulting first from smart placement alone
(Hadrian-P), and second by combining smart placement
with weighted bandwidth allocation (Hadrian).

We note that, despite the minimum VM bandwidth
guaranty, Hadrian may have some outlier requests be-
cause the minimum rate for a flow is determined by
the lesser of the guarantees for its endpoints. Thus, a
flow for a VM with 150 Mbps minimum bandwidth may
achieve a lower rate when the destination VM’s mini-
mum bandwidth is the bottleneck. In our setup, this
can happen for tenants with a lot of flows to popular
open tenants. We verified that none of the tenants are
outliers because of insufficient network capacity.

Since operators like Amazon EC2 target an average
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Figure 8: Outlier requests with target occupancy
of 75%.
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Figure 9: Tenant requests finish faster with
Hadrian as compared to Baseline. (Average B™™"
= 200 Mbps, Occupancy = 75%)

occupancy of 70-80% [32], we now focus on outlier re-
quests with 75% target occupancy and vary the average
minimum bandwidth (i.e., varying fraction of tenants in
each bandwidth class). This is shown in Figure 8. As Av-
erage B™™ increases and tenants demand more band-
width, more of them receive poor network performance
and hence, the fraction of outliers increases. However,
with Hadrian, the percentage of outliers is very low
(<1%) throughout. With Baseline, not only are there a
lot of outliers, but also some of them receive extremely
poor network performance. This is shown in Figure 9
(left) which plots a CDF for the ratio of a job’s actual
completion time to the maximum expected time. With
Baseline, 17% of the requests last more than twice as
long as their maximum expected completion time. In-
stead, Hadrian offers significant reduction in the worst-
case completion time by satisfying objectives 2 and 3;
tenants are provided with minimum guarantees but are
free to use under-utilized resources due to Hadrian’s
work-conserving bandwidth sharing.
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Figure 10: Rejected requests with varying target
occupancy and average minimum bandwidth.



Pricing Tenant cost Provider
strategy | Average | 25t"%ile | Median | 75t"%ile | revenue
Today’s 0.64 0.71 1 1 0.83
pricing

Revenue 0.77 0.86 1.19 1.19 1
neutral

Table 2: Cost analysis for Hadrian- numbers are
relative to Baseline. Average B™" = 200 Mbps
and Occupancy = 75%

This improvement in tenant performance does not come
at the provider’s expense; actually, it is to the contrary.
Figure 10 shows the percentage of tenants requests that
are rejected. As expected, for all approaches, as tar-
get occupancy increases with tenant requests arriving
faster, or as average B™" increases and tenant jobs are
more network intensive, more requests are rejected. The
figures show that Hadrian rejects far fewer requests than
Baseline; for occupancy greater than 50%, it rejects 25-
30% fewer requests. The performance of Baseline+, rel-
ative to Hadrian, is poor too. Hadrian-P, not shown
in the figure for clarity, is able to accept just as many
requests as Hadrian. However, our earlier experiments
show that it results in more outliers.

Hadrian is able to accept more requests because it,
apart from reducing outliers, improves average tenant
performance too. To show this, we look at the CDF
for a tenant’s completion time with Hadrian relative to
Baseline (figure 9, right). While the median tenant per-
formance is the same, more requests finish faster with
Hadrian than with Baseline. The average request com-
pletion time with Hadrian is lower than Baseline by 7%.
Further, 25% of the requests are more than 29% faster.
This results in increased datacenter throughput which,
in turn, allows the provider to accept more requests.

Varying workloads. To examine Hadrian over a wide-
range of scenarios, we repeated the experiments above
while varying other simulation parameters: the physi-
cal network oversubscription, the fraction of open ten-
ants, the fraction of client tenants with dependencies
and the amount of their inter-tenant traffic. The results
follow similar trends and are summarized as follows.
With Hadrian, less than 1.5% requests are outliers com-
pared to 20-45% for Baseline. Further, Hadrian is able
to accept 22-30% more requests.

A particularly interesting scenario is when the data-
center network has no oversubscription. We found that
while Hadrian accepts the same number of requests as
Baseline, 22% of requests are outliers with Baseline.
Note that with 4 VM slots and 1 Gbps link capac-
ity per machine and no network oversubscription, each
VM’s fair share of the network is 250 Mbps (“hidden”
oversubscription due to VM-to-machine packing). With
Baseline, tenants demanding a minimum bandwidth of
300 Mbps do receive lower than expected performance
due to this hidden oversubscription.

Cost analysis. Today’s cloud providers charge ten-
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Figure 11: Malicious and selfish behavior involv-
ing two VMs co-located on the same host.

ants a fixed amount per hour for each VM; for instance,
Amazon EC2 charges $0.085/hr for small VMs. Hence,
the improved tenant performance with Hadrian has im-
plications for their cost too. As shown in Table 2, while
the median tenant cost with Hadrian is the same as with
Baseline, on average, tenants pay 36% less than today.
This is due to the reduction in outliers receiving very
poor network performance. The reduced tenant cost,
however, also reduces the provider’s revenue. This is
somewhat offset by the fact that the provider can now
accept more tenants. Overall, we find the provider’s rev-
enue with Hadrian is 83% of that with Baseline.

This provider loss in revenue can be overcome by new
pricing models that account for the added value Hadrian
offers. In the simplest case, since Hadrian provides ten-
ants with VMs that have minimum bandwidth, the pro-
vider can increase the VM price as compared to today.
We repeat the cost analysis to determine how much ten-
ants would have to pay so that the provider remains
revenue neutral. Table 2 shows that in the average case,
tenants would pay 23% less. The median cost increases
since there are no tenants with very poor performance
subsidizing other tenants.

Overall, the results above show that Hadrian provides
the desired minimum bandwidth for tenants and hence,
significantly reduces outliers while allowing the provider
to accept more tenants. Consequently, the provider can
offer network guarantees while reducing the average ten-
ant cost.

5.3 Objective 1: Bounded Impact

To evaluate the benefits of bounding tenant impact,
we focus on two simple scenarios that capture malicious
and selfish behavior in shared settings.

Scenario 1. We simulate two VMs for different ten-
ants co-located on the same physical machine (Figure 11,
top left). VM ¢ has one flow while VM p is trying to
degrade ¢’s performance by initiating flows to a lot of



destinations. All VMs, including destination VMs, have
a minimum bandwidth of 300 Mbps. Figure 11 (bot-
tom left) shows the average bandwidth for ¢’s flow for
this scenario.* With the Baseline and FairCloud, VM p
grabs an increasing fraction of the link’s bandwidth as
it communicates with more destinations. As a contrast,
its bandwidth allocation with Hadrian (and with Sea-
wall whose line overlaps with Hadrian) does not change.
This is because the aggregate weight for p’s flows with
Hadrian cannot exceed 300 which is also the weight for
VM ¢’s flow. Hence, the link is shared equally.
Scenario 2. The right part of figure 11 (top and bot-
tom) simulates the reverse scenario where VM p is run-
ning a popular service and receives a lot of flows while
VM ¢ has just one incoming flow. The figure shows
that Seawall, with its source-based weights, performs
the same as Baseline (the lines overlap in the figure)
and the bandwidth for ¢’s flow declines sharply. With
Hadrian, ¢’s bandwidth remains the same throughout.

Albeit very simple, these experiments show that all ex-
isting approaches allow tenants to abuse the network
at the expense of others. Bounding tenant impact ad-
dresses this and can curb malicious network behavior
in shared settings. Beyond this, Hadrian only allows
communication between tenants that have explicitly de-
clared dependencies to each other, an added counter-
measure against internal attacks.

5.4 Implementation and deployment

Our proof-of-concept Hadrian implementation com-
prises two components.

(1). A placement manager that implements the algo-
rithm in § 4.1 to make online placement decisions about
tenants.

(2). For bandwidth allocation, we implemented an ex-
tended version of RCP (RCP,) that distributes net-
work bandwidth in a weighted fashion, and is used for
the hypervisor-to-hypervisor flows (see § 4.2.3). This in-
volves an endhost component (to be run inside the hy-
pervisor) and a router component. Application packets
are tunneled inside RCP,, flows with a custom header.
The router component inspects this header, maintains
the relevant per-VM and per-tenant counters and en-
codes the rate allocated to the flow in the packet header.
The endhost component ensures that application traf-
fic is sent at the allocated rate. In our implementa-
tion, the rate allocation happens once every round trip
time (RTT). Every RTT, one of the packets sent by
the source contains information about its flows so that
switches can update their counters while one of the

4This experiment evaluates the efficacy of the bandwidth
allocation scheme used and is orthogonal to VM placement.
Since Baseline+ and Hadrian-P achieve per-flow fairness,
they perform the same as Baseline.
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packets received has the rate allocated to the flow for
the next RTT.

Both components run in user space. A kernel driver,
bound to the physical network interface, marshals pack-
ets between the NIC and these components. The aver-
age packet processing time at the router was less than
1ps and was indistinguishable from normal user-space
packet forwarding.

Scalability. To evaluate the scalability of the place-
ment mechanisms, we measure the time to allocate ten-
ants requests in a datacenter with 100K machines. Over
100K requests, the median allocation time is 4.13ms
with a 99" percentile of 2.72 seconds. Such placement
only needs to be run when a tenant is admitted.

Deployment. We deployed Hadrian across a small
testbed structured like the multi-tier tree topologies
used in today’s datacenters. The testbed includes twelve
endhosts arranged across four racks. Each rack has a
top-of-rack (ToR) switch, and the ToR switches are con-
nected through a root switch. All endhosts and switches
are Dell T3500 servers with a quad core Intel Xeon
2.27GHz processor, 4GB RAM and 1 Gbps interfaces,
running Windows Server 2008 R2.

To validate our simulation results, we repeat the ex-
periments from § 5.2 on the testbed. Given our focus
on network performance, the tenants are not actually
allocated VMs but simply run as a user process. With
4 process/VM slots per host, the testbed has a total of
48 slots. Given the small testbed size, we scaled down
the mean tenant size to 4 VMs, there is one open ten-
ant, and the average minimum bandwidth is 100 Mbps.
Each VM for a client tenant generates network traffic
that is tunneled inside a RCP,, flow by Hadrian’s end-
host component. We vary the weight for the flows to
model various approaches; for instance, flows get uni-
form weights for Baseline. Our experiments involve the
arrival and execution of 100 tenant requests. Figure 12
shows that roughly 10% of the requests are rejected for
all approaches. This is expected due to the size of the
testbed. The most important observation for this ex-
ercise is that results between the testbed and the sim-
ulator experiments were consistent, with the rejected
requests on the testbed and the simulator being within
3% for all scenarios. Further, the performance for re-
quests that are accepted is similar. This cross-validates
our simulator and gives us confidence regarding the cor-
rectness of our large-scale simulation results.

6. RELATED WORK

Network sharing proposals have been discussed through-
out the paper. To achieve the desired network sharing
objectives, we have borrowed and extended ideas from
many of these and we elaborate on this. Duffield et
al. introduced the hose model [22], and its use to cap-
ture minimum bandwidth guarantees has been proposed
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in [13,14]. We extend this by adding communication de-
pendencies and hierarchy. The latter implies per-tenant
minimum guarantees for inter-tenant traffic. In a simi-
lar vein, Oktopus [17] and NetShare [18] offer per-tenant
reservations and weights respectively.

FairCloud [13] describes a comprehensive set of prop-
erties for cloud network sharing. Of these, the “strategy
proofness” property requires that a VM communicating
with a set of VMs cannot increase its bandwidth allo-
cation by modifying its traffic pattern. However, given
this definition, a tenant can still strategize to gain an
unfair share of any network link by increasing the set of
VMs it communicates with. The examples in §5.3 show
that for network sharing to be truly strategy proof, it
should ensure bounded impact. FairCloud also proposes
an allocation mechanism (OSPES) that yields minimum
bandwidth guarantees. However, these guarantees de-
pend on the network bisection bandwidth and on all
other admitted VMs. Thus, without admission control,
the guaranty can be arbitrarily small and as today, does
not help tenants in estimating worst-case performance.
Instead, Hadrian provides explicit lower bound on net-
work performance.

There is a large body of work focusing on bandwidth
guarantees (e.g., IntServ, ATM) and differentiated ser-
vices (e.g., DiffServ) in the Internet. Key differences in-
clude the fact that the datacenter has a single oper-
ator who controls VM placement, controls the hyper-
visors and is offering minimum instead of hard guar-
antees. The problem of placing tenants, with its multi-
dimensional constraints, is similar to testbed mapping [33]
and virtual network embedding [34]. However, these ef-
forts focus on mapping arbitrary virtual networks onto
physical networks which restricts them to small physical
networks.

7. CONCLUDING REMARKS

This paper looks at the problem of sharing the net-
work in multi-tenant datacenters. We show that through
careful VM placement and weighted bandwidth alloca-
tion, the dual goals of minimum and bounded VM band-
width can be achieved. Apart from benefiting both ten-
ants and providers in terms of their performance, this
also ensures robust sharing of the network.

An alternative tact to tackle unfair sharing and mali-
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cious behavior is to change the pricing model to account
for the network. However, even such multi-resource pric-
ing requires VMs to be coupled with a lower-bound on
network performance to be fair [14], and Hadrian offers
this. It opens the door for differentiated pricing whereby
a provider can charge based on a VM’s minimum band-
width, just as they do today based on the VM’s pro-
cessing capacity. This would elevate the network to a
shared yet first-class datacenter resource.
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APPENDIX

LEMMA 1. The aggregate weight for a VM p’s flows
cannot exceed its desired minimum bandwidth (B)"™ ).

PROOF. We use the terminology defined in the paper.
Further, say dst(p) is the set of destination VMs for p’s
flows. The aggregate weight for p’s flows is

— — . p q
Waggregate = Z Wp.q = Z m'm(

)

qedst(p) qedst(p) No Na
Bmzn Bmln
< Z N _ % Np — Bmzn

O

THEOREM 1. The mazimum bandwidth for a VM p
on link [ is independent of the destination VMs p com-
municates with.

PROOF. Say VM p communicates with VMs in dst(p)
through link . Bé is aggregate bandwidth for all these
flows. Since some of these flows may be bottlenecked
elsewhere, leJ cannot exceed the sum of the bandwidth

the flows would achieve on the link (Z Bl q)- Hence,
S e X o,
g€dst(p) g€dst(p) wr
— Z Wp,q * Cl (5)
> Wy + wr

where wy is the sum of weights for all non-p flows.
From Lemma 1, - wy ¢ < BJ"". Combining this with (5)

min
Bl P
p — Bmzn + wrr
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