

Scalability Terminology:
Farms, Clones, Partitions, and Packs:

RACS and RAPS

Bill Devlin, Jim Gray, Bill Laing, George Spix

December 1999

Technical Report
MS-TR-99-85

Microsoft Research
Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

 1

Scalability Terminology:
Farms, Clones, Partitions, and Packs:

RACS and RAPS
Bill Devlin, Jim Gray and Bill Laing, George Spix

Microsoft
{BillDev, Gray, Blaing, GSpix}@Microsoft.com, http://research.microsoft.com/~gray

December 1999

Server systems must be able to start small and grow as demand increases. Internet-based
eCommerce has made system growth more rapid and dynamic. Application Service Providers
that consolidate application processing into large sites must also need dynamic growth. These
sites grow by scale up, replacing servers with larger servers, or they grow by scale out adding
extra servers. The scale out approach gives the slogans buying computing by the slice and
building systems from CyberBricks: the brick or slice is the fundamental building block.

The collection of all the servers, applications, and data at a particular site is called a farm. Farms
have many functionally specialized services, each with its own applications and data (e.g.
directory, security, http, mail, database, etc.,). The whole farm is administered as a unit, having
common staff, common management policies, facilities, and networking.

For disaster tolerance, a farm’s hardware, applications, and data are duplicated at one or more
geographically remote farms. Such a collection of farms is called a geoplex. If a farm fails, the
others continue offering service until the failed site
is repaired. Geoplexes may be active-active where
all farms carry some of the load, or active-passive
where one or more are hot-standbys.

Farms may grow in two ways: (1) cloning or (2)
partitioning. A service can be cloned on many
replica nodes each having the same software and
data. Requests are then routed to individual
members of the clone set. For example, if a single-
node service becomes overloaded, the administrator
can duplicate the node’s hardware, software, and
data on a second node, and then use a load-
balancing system to allocate the work between
those two nodes. Load balancing can be external to
the clones (e.g., an IP sprayer like Cisco
LocalDirector™), or internal to them (e.g., an IP
sieve like Network Load Balancing.)1
The collection of clones for a particular service is

1 We mix the terms node, process and server, implicitly assuming functionally specialized nodes. It is quite possible
for many partitions and clones to run many processes on a single physical server node. A huge SMP server may
support many partitions or clones. Using large servers as bricks makes management easier by reducing the number
of bricks.

SwitchedEthernet

SwitchedEthernet

www.microsoft.com
(3)

search.microsoft.com
(1)

premium.microsoft.com

(1)
European Data Center

FTPDownload Server
(1)

SQL SERVERS
(2)

Router

msid.msn.com
(1)

MOSWestAdmin LAN

SQLNetFeeder LAN

FDDI Ring(MIS4)

Router

www.microsoft.com
(5)

Building 11

Live SQL Server

Router

home.microsoft.com
(5)

FDDI Ring(MIS2)

www.microsoft.com
(4)

activex.microsoft.com
(2)

search.microsoft.com
(3)

register.microsoft.com
(2)

msid.msn.com
(1)

FDDI Ring
(MIS3)

www.microsoft.com
(3)

premium.microsoft.com
(1)

msid.msn.com
(1)

FDDI Ring(MIS1)

www.microsoft.com
(4)

premium.microsoft.com
(2)

register.microsoft.com
(2)

msid .msn.com
(1) PrimaryGigaswitch

SecondaryGigaswitch

Staging Servers(7)

search.microsoft.com
(3)

support.microsoft .com
(2)

register.msn.com
(2)

1997 Microsoft.Com Web site (4 farms).

MOSWest

DMZ Staging Servers

Live SQL Servers

SQL Consolidators

Japan Data Centerwww.microsoft.com
(3)premium.microsoft.com

(1)

HTTP
Download Servers(2) Router

search.microsoft.com
(2)

SQL SERVERS(2)

msid .msn.com
(1)

FTP
Download Server(1)Router

Router

Router
Router

Router

Router
Router

Router

Internal WWW

SQL Reporting

home.microsoft.com
(4)

home.microsoft.com
(3)

home.microsoft.com
(2)

register.microsoft.com
(1)

support.microsoft.com
(1)

Internet

1 3
DS3

(45 Mb/Sec Each)

2
OC3(45Mb/Sec Each)

2
Ethernet

(100 Mb/Sec Each)

cdm .microsoft.com
(1)

FTP Servers

DownloadReplication

FTP. microsoft .com
(3)

0

SwitchedEthernet

SwitchedEthernet

www.microsoft.com
(3)

SwitchedEthernet

SwitchedEthernet

www.microsoft.com
(3)

search.microsoft.com
(1)

premium.microsoft.com

(1)
European Data Center

FTPDownload Server
(1)

SQL SERVERS
(2)

Router

msid.msn.com
(1)

MOSWestAdmin LAN

SQLNetFeeder LAN

FDDI Ring(MIS4)

Router

www.microsoft.com
(5)

Building 11

Live SQL Server

Router

home.microsoft.com
(5)

FDDI Ring(MIS2)

www.microsoft.com
(4)

activex.microsoft.com
(2)

search.microsoft.com
(3)

register.microsoft.com
(2)

msid.msn.com
(1)

search.microsoft.com
(3)

register.microsoft.com
(2)

msid.msn.com
(1)

FDDI Ring
(MIS3)

www.microsoft.com
(3)

premium.microsoft.com
(1)

msid.msn.com
(1)

FDDI Ring(MIS1)

www.microsoft.com
(4)

premium.microsoft.com
(2)

FDDI Ring
(MIS3)

www.microsoft.com
(3)

premium.microsoft.com
(1)

msid.msn.com
(1)

FDDI Ring(MIS1)

www.microsoft.com
(4)

premium.microsoft.com
(2)

register.microsoft.com
(2)

msid .msn.com
(1) PrimaryGigaswitch

SecondaryGigaswitch

register.microsoft.com
(2)

msid .msn.com
(1) PrimaryGigaswitch

SecondaryGigaswitch

Staging Servers(7)

search.microsoft.com
(3)

support.microsoft .com
(2)

register.msn.com
(2)

1997 Microsoft.Com Web site (4 farms).

MOSWest

DMZ Staging Servers

Live SQL Servers

SQL Consolidators

Live SQL Servers

SQL Consolidators

Japan Data Centerwww.microsoft.com
(3)premium.microsoft.com

(1)

HTTP
Download Servers(2) Router

search.microsoft.com
(2)

SQL SERVERS(2)

msid .msn.com
(1)

premium.microsoft.com
(1)

HTTP
Download Servers(2) Router

search.microsoft.com
(2)

SQL SERVERS(2)

msid .msn.com
(1)

FTP
Download Server(1)Router

Router

Router
Router

Router

Router
Router

Router

FTP
Download Server(1)Router

Router

Router
Router

Router

Router
Router

Router

Internal WWW

SQL Reporting

Internal WWW

SQL Reporting

home.microsoft.com
(4)

home.microsoft.com
(3)

home.microsoft.com
(2)

register.microsoft.com
(1)

support.microsoft.com
(1)

home.microsoft.com
(4)

home.microsoft.com
(3)

home.microsoft.com
(2)

register.microsoft.com
(1)

support.microsoft.com
(1)

Internet

1 3
DS3

(45 Mb/Sec Each)

2
OC3(45Mb/Sec Each)

2
Ethernet

(100 Mb/Sec Each)

cdm .microsoft.com
(1)

FTP Servers

DownloadReplication

FTP. microsoft .com
(3)

0

Figure 1: the Microsoft web farms as of 1997. Four
farms containing about 150 nodes spread across four
sites (Japan, North American, and Europe. Each node
is functionally specialized. There are both clones
(RACS) and partitions (RAPS) in this farm, but no
explicit geoplex. Microsoft’s 1999 cluster had 250
nodes with ten IP sprayers that then cascaded to many
IP sieves based on Windows Load Balancing Service.

 2

called a RACS (Reliable Array of Cloned Services). Cloning and RACS have many advantages.
Cloning offers both scalability and availability. If one clone fails, the other nodes can continue
to offer service, perhaps with degraded performance because they may be overloaded. If the
node and application failure detection mechanisms are integrated with the load-balancing system
or with the client application, then clone failures can be completely masked. Since clones are
identical, it is easy to manage them: administrative operations on one service instance at one
node are replicated to all others2. As a rule of thumb, a single administrator can manage an
appropriately designed service running on hundreds of clones (a RACS of hundreds of nodes).

RACS and cloning are an excellent way to add processing
power, network bandwidth, and storage bandwidth to a farm.
But, shared-nothing RACS, in which each clone duplicates
all the storage locally, is not a good way to grow storage
capacity. Each clone has identical storage, and all updates
must be applied to each clone’s storage. So, cloning does not
improve storage capacity. Indeed, cloning is problematic for
write-intensive services since all clones must perform all
writes, so there is no improvement in throughput, and there
are substantial challenges in correctly performing the
concurrent updates. Clones are best for read-only
applications with modest storage requirements.

One way to ameliorate the cost and complexity of cloned storage is to let all the clones share a
common storage manager. This shared-disk RACS design, often called a cluster (VaxCluster,
Sysplex, or Storage Area Network), has stateless servers each accessing a common backend
storage server (see Figure 2). This design requires the storage server to be fault-tolerant for
availability, and still requires subtle algorithms to manage updates (cache invalidation, lock
managers, transaction logs, and the like). As the system scales up, the update traffic can become
a performance bottleneck. Despite these shortcomings, shared-disk RACS have many
advantages. They have been a popular design for 20 years.

Partitions grow a service by duplicating the hardware and software, and by dividing the data
among the nodes. In essence it is like the shared-nothing clone of Figure 2, but only the software
is cloned, the data is divided among the nodes. Partitioning
adds computation power, storage capacity, storage
bandwidth, and network bandwidth to the service each time
a node is added.

Ideally, when a partition is added, the data is automatically
repartitioned among the nodes to balance the storage and
computational load. Typically, the application middleware
partitions the data and workload by object. For example,
mail servers partition by mailboxes, while sales systems
might partition by customer accounts or by product lines.

2 In some designs all the clones have a common boot disk that stores all their software and state, this is called a
shared-disk clone. In general, clones have identical state except for their physical network names and addresses.

Shared Nothing Clones Shared Disk ClonesShared Nothing Clones Shared Disk Clones

Figure 2 Two clone design styles:
shared-nothing clones and shared-disk
clones. Shared-nothing is simpler to
implement and scales IO bandwidth as
the site grows. But for large or update-
intensive databases a shared-disk design
is more economical.

Partitions Packed PartitionsPartitions Packed Partitions

Figure 3: Partitions and Packs: Data
objects (mailboxes, database records,
business objects,..) are partitioned
among storage and server nodes. For
availablity, the storage elements may be
served by a pack of servers.

 3

The partitioning should automatically adapt as new data is added and as the load changes.

Partitioning is transparent to the application Requests sent to a partitioned service are routed to
the partition with the relevant data. If the request involves data from multiple partitions (e.g.
transfer funds from one account to another), then the application sees the multiple business
objects as though they were all local to that application.
Transparency and load balancing are difficult technical
tasks, but many systems implement them. Linear scaling is
possible if each request accesses only a few partitions.
Incremental growth re-partitions the data so that some
“buckets” of data move to the new node.

Partitioning does not improve availability because the data
is stored in only one place. If a disk fails or if the server
that manages that disk fails, then that part of the service is
unavailable-- that mailbox is not readable, that account
cannot be debited, or that patient-record cannot be found.
Unlike shared-nothing cloning, which adds redundant
storage; simple partitioning (and shared-disk cloning) has
just one copy of the data. A geoplex guards against this loss of storage, but it is fairly common
to locally duplex (raid1) or parity protect (raid5) the storage so that most failures are masked and
repaired.

Even if the storage media is fault-tolerant, a partition might fail due to hardware or software. To
give the illusion of instant repair, partitions are usually implemented as a pack of two or more
nodes that provide access to the storage. These can either be shared-disk pack or shared-
nothing packs. That is, either all members of the pack may access all the disks (a shared-disk
partition), or each member of the pack may serve just one partition of the disk pool during
normal conditions (a shared-nothing partition), but serve a failed partition if the partition’s
primary server fails. The shared-disk pack is virtually identical to a shard-disk clone, except that
the pack is serving just one part of the total database.

A shared-nothing pack offers two options: each member of the pack can have primary
responsibility for one or more partitions. All requests with an affinity to that partition will be
routed to that node, and each member of the pack is actively serving some partition. When a
node fails, the service of its partition migrates to
another node of the pack. This is called the
active-active pack design. If just one node of the
pack is actively serving the requests and the other
nodes are acting as hot-standbys, it is called an
active-passive pack.

By analogy with cloned servers and RACS, the
nodes that support a packed-partitioned service
are collectively called a Reliable Array of
Partitioned Services (RAPS). RAPS provide both

Farm

Clone

Shared
Nothing

Shared
Disk

Partition

Pack

Shared
Nothing

Active-
Active

Active-
Passive

Farm

Clone

Shared
Nothing

Shared
Disk

Partition

Pack

Shared
Nothing

Active-
Active

Active-
Passive

Figure 4: Taxonomy of scaleability designs.

Shared nothing: rack & stack ISP
web servers or RAS servers

C
lo

n
e Shared disk: Clusters: VaxCluster,

Sysplex, EMC
Shared disk: similar to clone
shared disk

F
arm

P
artition

P
ack

Shared nothing: mail and
database servers protected with
fail over: Tandem, Teradata,
Microsoft MSCS, …

 4

scalability and availability.

Multi-tier applications use both RACS and RAPS (See Figure 5). A hypothetical application
consists of a front tier that accepts requests and returns formatted responses, a middle-tier of
stateless business logic and a data-tier that manages all writeable state. RACS work well in the
front and middle tiers since all the processing is stateless. RAPS are required for the data tier.
RACS are easier to build, manage, and incrementally scale. So maximizing the use of RACS is a
design goal. Multi-tier application designs provide the functional separation that makes this
possible.

Load balancing and routing requirements are different at each tier. At the front tier, IP-level load
distribution schemes give reasonable balancing assuming there is a large set of potential clients
and requests have no affinity. The middle-tier understands the request semantics, and so can
make data and process specific load steering decisions. At the data tier the problem is routing
to the correct partition.

Software Requirements for GeoPlexs, Farms, RACS, and RAPS

The Microsoft website of Figure 1 is daunting: it represents about ten million dollars of
equipment, a huge monthly telecommunications bill, and several million dollars worth of
buildings. It has over 10 TB of storage, and 3 Gbps of bandwidth to the Internet. But that was
1997, in the last two years, the capacity has increased about three-fold, and the site has nearly
three hundred nodes. In addition, a sister farm, HotMail™ has more than two thousand nodes.
Both these sites add a few nodes per day. This story is repeated at many other sites around the
world: AOL, Yahoo, Amazon, Barnes&Noble, eSchwab, eBay, LLBean, and many others report
rapid growth and change in their web sites. Many of these sites are in fact hosted at facilities
built with the sole purpose of co-locating multiple large web sites close to redundant high
bandwidth Internet connectivity.

This following is more of a wish list than a reflection of current tools and capabilities, but the
requirements are fairly easy to state. The first requirement for such a huge site is that it must be
possible to manage everything from a single remote console treating RACS and RAPS as
entities. Each device and service should generate exception events that can be filtered by an
automated operator. The operations software deals with “normal” events, summarizes them, and
helps the operator manage exceptional events: tracking the repair process and managing farm
growth and evolution. The operations software recognizes the failures and orchestrates repair.
This is a challenge when request processing spans multiple functional tiers. Automated
operations simplify farm management but are even more important in guaranteeing site
availability. Automation reduces manual operations procedures and reduces the chance of
operator error. Both the software and hardware components must allow online maintenance and
replacement. Tools that support versioned software deployment and staging across a site are
needed to manage the upgrade process in a controlled manor. This applies to both the
application and system software. Some large Internet sites deploy application modifications
weekly or even daily. System software changes are much less frequent but the results of a
deployment mistake can be disastrous.

 5

Building a farm requires good tools to design user interfaces, services, and databases. It also
requires good tools to configure and then load balance the system as it evolves. There are
adequate tools today, and they are making enormous progress over time. It is now fairly easy to
build and operate small and medium-sized web sites, but large systems (more than 1M page
views per day) are still daunting. Multi-tier application design that enables both RACS and
RAPS to be used in combination is still an art and improved design tools could help
considerably.

Clones and RACS can be used for read-mostly applications with low consistency requirements,
and modest storage requirement (less than 100 GB or about $1,000 today). Web servers, file
servers, security servers, and directory servers are good examples of cloneable services. Cloned
services need automatic replication of software and data to new clones, automatic request routing
to load balance the work, route around failures, and recognize repaired and new nodes. Clones
also need simple tools to manage software and hardware changes, detect failures, and manage the
repair.

Clones and RACS are not appropriate for stateful applications with high update rates. Using a
shared-disk clone can ameliorate some of these problems, but at a certain point the storage server
becomes too large and needs to be partitioned. Update-intensive and large database applications
are better served by routing requests to servers dedicated to serving a partition of the data
(RAPS). This affinity routing gives better data locality and allows caching of the data in main
memory without paying high cache-invalidation costs. Email, instant messaging, ERP, and
record keeping are good examples of applications that benefit from partitioned data and affinity
routing. Each of these applications is nicely partitionable, and each benefits from partitioned
scale out. In addition, database systems can benefit from parallel searching, running one query
in parallel using many processors operating on many disks. For availability, partitioned systems
require some form of packing: so that if one node fails, the stateful service (and its state) can
quickly migrate to a second node of the pack.

Partitioned systems need the manageability
features of cloned systems, but in addition the
middleware must provide transparent
partitioning and load balancing. This is an
application-level service provided by the mail
system (automatically migrate mailboxes to new
servers), database systems (spilt and merge data
partitions), and other middleware. The
middleware software uses the operating system
fail-over mechanism (packs) to create a highly
available service. The services also expect to
program the request routing system to route
requests to the appropriate service partition.

Cloned
Packed

file
servers

Cloned
Packed

file
servers

Packed Partitions: Database TransparencyPacked Partitions: Database Transparency

SQL Temp StateWeb File StoreA

SQL Partition 3SQL Partition 3

The FARM: Clones and Packs of Partitions

Web
Clients

Web File StoreB
replication

Web File StoreBWeb File StoreB
replication

SQL DatabaseSQL DatabaseSQL Partition 2 SQL Partition1SQL Partition 2 SQL Partition1SQL Partition 2 SQL Partition1

Load BalanceLoad Balance

Figure 5: A scaled website: showing cloned front ends
doing web and firewall service, then shared-disk cloned
file servers and packed and partitioned SQL servers.

 6

Performance and Price/Performance Metrics

Figure 1 represents a huge system. One cannot buy a single 60 billion-instructions per second
processor, or a single 100 TB storage server. So some degree of cloning and partitioning is
required.

What is the right building block for a site? Will it be an IBM mainframe (OS390) or a Sun
UE1000, or will it be Intel-based servers, or will it be the rack-mounted pizza boxes?

This is a hotly debated topic. The mainframe vendors claim that their hardware and software
delivers 5-nines of availability (less than 5 minutes outage per year), and that their systems are
much easier to manage than cloned PCs. But mainframe prices are fairly high – 3x to 10x more
expensive based on TPC results and anecdotal evidence. There is similar controversy about
using commodity servers for database storage. We believe that commodity servers and storage
are a very good investment, but we know many others who do not.

No matter what, there is clear consensus that a homogenous site (all NT, all FreeBSD, all
OS390) is much easier to manage than a site with many hardware and software vendors. So,
once you pick your CyberBricks, you will likely stick with them for several generations.

More to the point, middleware like Netscape, IIS, DB2, Oracle, SQL Server, Notes, Exchange,
SAP, PeopleSoft, and Baan are where the administrators spend most of their time. Most tasks
are per-website, per-mailbox, per user, or per-customer, not per node. Since web and object
services are so CPU intensive, it is easy to see why most web sites use inexpensive clones for
that part of the service. In addition to this advantage, we believe commodity software is
considerably easier to manage than the traditional services that presume very skilled operators
and administrators.

Summary

The key scalability technique is to replicate a service at many nodes. The simplest form of
replication, copies both programs and data. These shared-nothing clones can be as easy to
manage as a single instance – yet they provide both scalability and availability (RACS).

Shared-nothing clones are not appropriate for large databases or update-intensive services. For
these applications, services can be mapped onto packed-partitions. Packs make partitions highly
available by automatically restarting a failed partition on another node with access to the failed
partition’s storage. Middleware is responsible for making the management of these partitions as
simple as the management of a single node (RAPS).

To guard against disaster, the entire farm is replicated at a remote site to build a geoplex.

 7

Glossary

Active-Active: A pack or geoplex architecture in which all members are actively processing

some work (in contrast to active-passive).
Active-Passive: A pack or geoplex architecture in which one member is actively processing

work and the other member(s) is passively waiting for fail-over (in contrast to active-
passive).

Availability: The fraction of the presented requests that a system services within the required
response time.

Clone : A replica of a server or service. The clones of a service are called a RACS. Requests are
distributed among the clones within a RACS.

CyberBrick: The unit of hardware growth in a farm, often it is a commodity system that is
added to a RACS or RAPS.

Fail-over: A partition may fail on one node and be restarted on a second node of a pack, and a
RACS or RAPS may fail on one farm of a geoplex and be restarted on a second farm of a
geoplex.

Farm: A site containing many servers and services, but managed as a single administrative
entity. A farm contains RACS and RAPS. A farm may be part of a geoplex.

Geoplex: A farm that is replicated at two or more sites, so that if one site has a catastrophic
failure, the second site can service the load and thereby provide continuous availability.

Load Balancing: The process of distributing requests among clones of a RACS and distributing
partitions among members of a pack in order to provide better response time.

Pack: A collection of servers that can each host a partition. When a partition’s current server
fails, the partition fails over to another member of its pack. Packs improve availability.

Partition: A part of a service that has been divided among a RAPS. Each partition services a
specific part of the overall service. Mail servers and database servers are often
partitioned in this way.

RACS (Reliable Arrays of Cloned Services): A collection of clones all performing some
service. Requests are directed to the RACS, and processed by one of the clones. The
RACS is managed as a single entity.

RAID (Reliable Array of Independent Disks): A group of disks that are aggregated to
improve availability, bandwidth, or management.

RAPS (Reliable Arrays of Partitioned Services): A collection of clones all performing some
service. Each request to the RAPS is directed to the appropriate partition and processed
by that partition. The RAPS is managed as a single entity.

Scalability: The ability to grow the power or capacity of a system by adding components.
Scale Up: Expanding a system by incrementally adding more devices to an existing node,

typically by adding cpus, disks, and NICs to a node.
Scale Out: Expanding a system by adding more nodes, complete with processors, storage, and

bandwidth.
Shared Disk: A pack, clone, or geoplex architecture in which disks and state are shared among

the services. In a packed partitioned architecture, the disks may fail-over when the
partition migrates to a new member of the pack.

Shared Nothing: A pack, clone, or geoplex architecture in which disks and state are not shared
among the services – rather the state is replicated at each clone or pack member. In a

 8

packed partitioned architecture, the disks do not fail-over when the partition migrates to
a new member of the pack, rather the partition uses the local replica of the state.

Transparency: In general hiding implementation details from the clients. In the context of
scalability, hiding the partitioning, cloning, and geoplexing from the clients. Client
requests are automatically routed to the correct partition or clone.

