Scalability Terminology:
Farms, Clones, Partitions, and Packs:
RACS and RAPS

Bill Devlin, Jm Gray, Bill Laing, George Spix

December 1999

Technica Report
MS-TR-99-85

Microsoft Research
Advanced Technology Divison
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Scalability Terminology:
Farms, Clones, Partitions, and Packs:
RACS and RAPS
Bill Devlin, Jm Gray and Bill Laing, George Spix

Microsoft
{BillDev, Gray, Blaing, GSpix} @M icrosoft.com http://research.microsoft.com/~gray
December 1999

Server systlems must be able to start smal and grow as demand increases. Internet-based
eCommerce has made system growth more rapid and dynamic. Application Service Providers
that consolidate application processng into large Stes must aso need dynamic growth. These
gtesgrow by scale up, replacing serverswith larger servers, or they grow by scale out adding
extraservers. The scale out gpproach gives the dogans buying computing by the slice and
building systems from CyberBricks: thebrick or diceisthe fundamenta building block.

The collection of dl the servers, applications, and data at a particular Steiscaled afarm. Farms
have many functionaly specidized services, each with its own gpplications and data (e.g.
directory, security, http, mail, database, etc.,). The whole farm is administered as a unit, having
common gaff, common management policies, facilities, and networking.

For disaster tolerance, afarm’s hardware, applications, and data are duplicated a one or more
geographicaly remote farms. Such a collection of farmsis cadled ageoplex. If afamfails, the

others continue offering service until the failed ste
isrepaired. Geoplexes may be active-active where ” ___ 1997 Microsoft.Com Web site (4 farms).
al farms carry some of the load, or active-passive ¥ 2
where one or more are hot-standbys.

Farms may grow in two ways. (1) cloning or (2)
partitioning. A service can be cloned on many
replica nodes each having the same software and
data. Reguests are then routed to individua
members of the clone s&t. For example, if asingle-
node service becomes overloaded, the administrator
can duplicate the node' s hardware, software, and

Figure 1: the Microsoft web farms as of 1997. Four

data on a second node, and then use aload- farms containing about 150 nodes spread across four
baancing system to allocate the work between _S“fes (Jt’c_‘paf;‘il'\‘orth éﬂmeef(ij Cag’ha“d Eurgpﬁ EIaCh node

. isfunction eciadized. There are both clones
those two nodes. Load balancing can be external to (RACS) and ;y:asr%tions (RAPS) in this farm, but no
the clones (e.g., an IP sprayer like Cisco explicit geoplex. Microsoft's 1999 cluster had 250
LocaDirector™), or internal to them (eg., an IP nodes with ten I P sprayers that then cascaded to many

sievelike Network Load Balancing)l IP sieves based on Windows L oad Balancing Service.

The collection of clonesfor aparticular sarviceis

1 We mix the terms node, process and server, implicitly assuming functionally specialized nodes. It is quite possible
for many partitions and clones to run many processes on a single physical server node. A huge SMP server may
support many partitions or clones. Using large servers as bricks makes management easier by reducing the number
of bricks.

cdled aRACS (Reliable Array of Cloned Services). Cloning and RACS have many advantages.
Cloning offers both scalability and availability. If one clone fails, the other nodes can continue

to offer service, perhaps with degraded performance because they may be overloaded. If the

node and application failure detection mechanisms are integrated with the load- baancing system

or with the client gpplication, then clone failures can be completely masked. Since clones are
identicdl, it is easy to manage them: adminigrative operations on one service ingance at one

node are replicated to dl others’. Asarule of thumb, asingle administrator can manage an
goppropriately designed service running on hundreds of clones (a RACS of hundreds of nodes).

RACS and cloning are an excdlent way to add processing
power, network bandwidth, and storage bandwidth to afarm.
But, shared-nothing RACS, in which each clone duplicates
al the storage locdly, is not a good way to grow storage
capacity. Each clone hasidentica storage, and dl updates
must be gpplied to each clone's storage. So, cloning does not
improve storage capacity. Indeed, cloning is problematic for
write-intensve services snce dl dones must perform dl
writes, 0 thereis no improvement in throughput, and there
are substantial challengesin correctly performing the
concurrent updates. Clones are best for read-only
gpplications with modest storage requirements.

Shared Nothing Clones Shared Disk Clones

|]
Figure 2 Two clone design styles:
shared-nothing clones and shared-disk
clones. Shared-nothing is simpler to
implement and scales |O bandwidth as
the site grows. But for large or update
intensive databases a shared-disk design
is more economicdl.

One way to ameliorate the cost and complexity of cloned storageisto let dl the clones share a
common storage manager. This shared-disk RACS design, often caled acluster (VaxCluster,
Sysplex, or Storage Area Network), has statel ess servers each ng a common backend
storage server (see Figure 2). This design requires the storage server to be fault-tolerant for
availability, and sill requires subtle agorithms to manage updates (cache invaidation, lock
managers, transaction logs, and the like). Asthe system scales up, the update traffic can become
a performance bottleneck. Despite these shortcomings, shared-disk RACS have many

advantages. They have been a popular design for 20 years.

Partitions grow aservice by duplicating the hardware and software, and by dividing the data
among the nodes. In essenceit islike the shared-nothing clone of Figure 2, but only the software

is cloned, the data is divided among the nodes. Partitioning
adds computation power, storage capacity, storage
bandwidth, and network bandwidth to the service each time
anode is added.

Idedlly, when a partition is added, the data is automaticaly
repartitioned among the nodes to baance the storage and
computationd load. Typicaly, the gpplication middieware
partitions the data and workload by object. For example,
mail servers partition by mailboxes, while saes sysems
might partition by customer accounts or by product lines.

Partitions

Figure3: Partitionsand Packs: Data
objects (mailboxes, database records,
business objects,..) are partitioned
among storage and server nodes. For
availablity, the storage elements may be
served by apack of servers.

2 In some designs al| the clones have acommon boot disk that stores all their software and state, thisis called a
shared-disk clone. In general, clones have identical state except for their physical network names and addresses.

The partitioning should autométicaly adapt as new data is added and as the load changes.

Partitioning istransparent to the application Requests sent to a partitioned service are routed to
the partition with the rdlevant data. If the request involves data from multiple partitions (e.g.
transfer funds from one account to another), then the application sees the multiple business

objects as though they were al local to that gpplication.
Trangparency and load baancing are difficult technica
tasks, but many systems implement them. Linear scding is
possible if each request accesses only afew partitions.
Incrementa growth re- partitions the data so that some
“buckets’ of data move to the new node.

Partitioning does not improve availability because the data
isstored in only one place. If adisk falsor if the server
that manages that disk fails, then that part of the sarviceis
unavalable-- that mailbox is not readable, that account
cannot be debited, or that patient-record cannot be found.
Unlike shared-nothing cloning, which adds redundant Figure 4: Taxonomy of scaleability designs.
dorage; ample partitioning (and shared-disk doning) has

just one copy of thedata. A geoplex guards againg thisloss of storage, but it isfairly common
tolocdly duplex (raidl) or parity protect (radS) the storage so that most failures are masked and
repaired.

Even if the gorage mediais fault-tolerant, a partition might fail due to hardware or software. To
givetheilluson of ingtant repair, partitions are usudly implemented as a pack of two or more
nodes that provide accessto the storage. These can either be shared-disk pack or shared-
nothing packs. That is, either dl members of the pack may access dl the disks (a shared-disk
partition), or each member of the pack may serve just one partition of the disk pool during
normal conditions (a shared- nothing partition), but serve afailed partition if the partition’s
primary server fails. The shared-disk pack is virtualy identica to a shard-disk clone, except that
the pack is serving just one part of the total database.

A shared-nothing pack offerstwo options: each member of the pack can have primary
respongbility for one or more partitions. All requests with an affinity to that partition will be
routed to that node, and each member of the pack is actively serving some partition. When a

node fails, the service of its partition migratesto

another node of the pack. Thisiscaled the
active-active pack desgn. If just one node of the

Shared nothing: rack & stack ISP
web servers or RAS servers

Shared disk: Clusters: VaxCluster,
Sysplex, EMC

|auo|D

pack is actively serving the requests and the other
nodes are acting as hot-standbys, it is cdled an

Shared disk: similar to clone

active-passive pack. _
shared disk

wre

: Shared nothing: mail and
By anaogy with cloned servers and RACS, the database servers protected with

nodes that support a packed-partitioned service fail over: Tandem, Teradata,
are collectively cdled aReliable Array of Microsoft MSCS, ...

uonli.ed
Noed

Partitioned Services (RAPS). RAPS provide both

scalability and avalability.

Multi-tier gpplications use both RACS and RAPS (See Figure 5). A hypothetical application
consgs of afront tier that accepts requests and returns formatted responses, amiddle-tier of
dateless business logic and adata-tier that manages dl writeable sate. RACS work wdll inthe
front and middle tiers Snce dl the processing is saeless. RAPS are required for the datatier.
RACS are easier to build, manage, and incrementaly scae. So maximizing the use of RACSisa
desgngod. Multi-tier gpplication designs provide the functiona separation that makes this

possible.

Load baancing and routing requirements are different at each tier. At the front tier, IP-levd load
distribution schemes give reasonable balancing assuming thereis alarge set of potentid clients
and requests have no afinity. The middle-tier understands the request semantics, and so can
make data and process specific load steering decisons. At the datatier the problem isrouting
to the correct partition.

Software Requirements for GeoPlexs, Farms, RACS, and RAPS

The Microsoft webdte of Figure 1 is daunting: it represents about ten million dollars of

equipment, a huge monthly telecommunications bill, and saveral million dollars worth of

buildings. It has over 10 TB of storage, and 3 Gbps of bandwidth to the Internet. But that was
1997, in the last two years, the capacity has increased about three-fold, and the Site has nearly
three hundred nodes. In addition, asister farm, HotMail™ has more than two thousand nodes.
Both these sites add a few nodes per day. This story is repeated a many other Sites around the
world: AOL, Y ahoo, Amazon, Barnes& Noble, eSchwab, eBay, LL Bean, and many others report
rgpid growth and change in their web sites. Many of these Stes arein fact hosted at facilities

built with the sole purpose of co-locating multiple large web Sites close to redundant high
bandwidth Internet connectivity.

Thisfollowing is more of awish list than areflection of current tools and capabilities, but the
requirements are fairly easy to state. Thefird requirement for such ahuge siteisthat it must be
possible to manage everything from a single remote console treating RACS and RAPS as
entities. Each device and service should generate exception events that can be filtered by an
automated operator. The operations software deals with “norma” events, summarizes them, and
helps the operator manage exceptiond events: tracking the repair process and managing farm
growth and evolution. The operations software recognizes the failures and orchestrates repair.
Thisis a chalenge when request processing spans multiple functiond tiers. Automated

operations smplify farm management but are even more important in guaranteeing Site
availability. Automation reduces manual operations procedures and reduces the chance of
operator error. Both the software and hardware components must alow online maintenance and
replacement. Tools that support versioned software deployment and staging across a Ste are
needed to manage the upgrade process in a controlled manor. This gppliesto both the
gpplication and system software. Some large Internet Sites deploy application modifications
weekly or even daily. System software changes are much less frequent but the results of a
deployment mistake can be disastrous.

Building afarm requires good tools to design user interfaces, services, and databases. It dso
requires good tools to configure and then load balance the system asit evolves. There are
adequate tools today, and they are making enormous progress over time. It isnow fairly easy to
build and operate smdl and medium-sized web sites, but large systems (more than 1M page
views per day) are ftill daunting. Multi-tier gpplication design that enables both RACS and
RAPS to be used in combination is ill an art and improved design tools could help
consderably.

Clones and RACS can be used for read-mosily gpplications with low consistency requirements,
and modest storage requirement (less than 100 GB or about $1,000 today). Web servers, file
servers, security servers, and directory servers are good examples of cloneable services. Cloned
services need automatic replication of software and data to new clones, automatic request routing
to load baance the work, route around failures, and recognize repaired and new nodes. Clones
aso need smple tools to manage software and hardware changes, detect failures, and manage the

repair.

Clones and RACS are not appropriate for sateful applications with high updaterates. Using a
shared-disk clone can amdiorate some of these problems, but at a certain point the storage server
becomes too large and needs to be partitioned. Update-intensive and large database gpplications

are better served by routing requests to servers dedicated to serving a partition of the data
(RAPS). Thisaffinity routing gives better datalocality and dlows caching of the datain main
memory without paying high cache-invdidation costs. Emall, instant messaging, ERP, and
record keeping are good examples of gpplications that benefit from partitioned data and affinity
routing. Each of these applicationsis nicely partitionable, and each benefits from partitioned
scae out. In addition, database systems can benefit from paralld searching, running one query
in parale usng many processors operating on many disks. For avalability, partitioned systems
require some form of packing: <o thet if one nodefails, the sateful service (and its state) can

quickly migrate to a second node of the pack.

Partitioned systems need the manageshility
features of cloned systems, but in addition the
middleware must provide transparent
partitioning and load balancing. Thisisan
gpplicationlevel service provided by the mail
gystem (automatically migrate mailboxes to new
servers), database systems (spilt and merge data
partitions), and other middleware. The
middleware software uses the operating system
fall-over mechanism (packs) to create a highly
available service. The sarvices also expect to
program the request routing system to route
requests to the appropriate service partition.

The FARM: Clones and Packs of Partition
_Packed Partitions: Database Transparency

SQL Temp State

Packe: = i & - =
fite Il = H al ! . - H
ser'veer§~ ii“ i: irl = i

i L] i

Web i
Clients

L gad Belance

Figure5: A scaled website: showing cloned front ends
doing web and firewall service, then shared-disk cloned
file servers and packed and partitioned SQL servers.

Performance and Price/Performance Metrics

Figure 1 represents a huge system. One cannot buy a single 60 billion+instructions per second
processor, or asingle 100 TB storage server. So some degree of cloning and partitioning is
required.

What is the right building block for agite? Will it be an IBM mainframe (OS390) or a Sun
UE1000, or will it be Intel-based servers, or will it be the rack-mounted pizza boxes?

Thisisahotly debated topic. The mainframe vendors claim that their hardware and software
delivers 5-nines of availability (lessthan 5 minutes outage per year), and that their systems are
much easier to manage than cloned PCs. But mainframe prices are fairly high — 3x to 10x more
expensve based on TPC results and anecdotal evidence. ThereisSmilar controversy about
using commodity servers for database storage. We believe that commodity servers and storage
are avery good investment, but we know many others who do not.

No matter what, there is clear consensus that a homogenous site (all NT, al FreeBSD, dll
0S390) is much easier to manage than a ste with many hardware and software vendors. So,
once you pick your CyberBricks, you will likely stick with them for severa generations.

More to the point, middieware like Netscape, |1S, DB2, Oracle, SQL Server, Notes, Exchange,
SAP, PeopleSoft, and Baan are where the administrators spend most of their time. Mot tasks
are per-website, per-mailbox, per user, or per-customer, not per node. Since web and object
sarvices are S0 CPU intendve, it is easy to see why most web Stes use inexpensive clones for
that part of the service. In addition to this advantage, we believe commodity softwareis
consderably easer to manage than the traditional services that presume very skilled operators
and adminigtrators.

Summary

The key scdability technique isto replicate a service a many nodes. The smplest form of
replication, copies both programs and data. These shared-nothing clones can be as easy to
manage as a Sngle indance — yet they provide both scalability and availability (RACS).

Shared-nothing clones are not gppropriate for large databases or update-intensive services. For
these applications, services can be mapped onto packed-partitions. Packs make partitions highly
available by automatically restarting afailed partition on another node with accessto the failed
partition’s torage. Middleware isresponsible for making the management of these partitions as
ample as the management of a single node (RAPS).

To guard againg disaster, the entire farm is replicated a aremote Ste to build a geoplex.

Glossary

Active-Active: A pack or geoplex architecture in which al members are actively processing
some work (in contrast to active-passive).

Active-Passive: A pack or geoplex architecturein which one member is actively processng
work and the other member(s) is passively waiting for fail-over (in contrast to active-
passive).

Availability: The fraction of the presented requests that a system services within the required
response time.

Clone: A replica of aserver or service. The clones of asarvice are cdled aRACS. Requests are
digtributed among the clones within a RACS.

CyberBrick: The unit of hardware growth in afarm, often it isacommodity system that is
added to aRACS or RAPS.

Fail-over: A partition may fail on one node and be restarted on a second node of a pack, and a
RACS or RAPS may fail on onefarm of a geoplex and be restarted on a second farm of a
geoplex.

Farm: A dte containing many servers and services, but managed as a Sngle adminidrative
entity. A farm contains RACS and RAPS. A farm may be part of a geoplex.

Geoplex: A fam that is replicated a two or more Sites, so that if one Site has a catastrophic
failure, the second site can service the load and thereby provide continuous availability.

L oad Balancing: The process of digtributing requests among clones of a RACS and distributing
partitions among members of apack in order to provide better reponse time.

Pack: A collection of serversthat can each host apartition. When a partition’s current server
fails, the partition fails over to another member of its pack. Packsimprove availability.

Partition: A part of a service that has been divided among a RAPS. Each partition services a
gpecific part of the overdl service. Mall servers and database servers are often
partitioned in this way.

RACS (Reliable Arrays of Cloned Services): A collection of donesdl performing some
sarvice. Requests are directed to the RACS, and processed by one of the clones. The
RACS is managed as asingle entity.

RAID (Reliable Array of Independent Disks): A group of disksthat are aggregated to
improve avalability, bandwidth, or management.

RAPS (Reliable Arrays of Partitioned Services): A collection of clones dl performing some
sarvice. Each request to the RAPS is directed to the appropriate partition and processed
by that partition. The RAPS is managed as a single entity.

Scalability: The ahility to grow the power or capacity of a system by adding components.

Scale Up: Expanding asystem by incrementaly adding more devices to an exigting node,
typically by adding cpus, disks, and NICsto a node.

Scale Out: Expanding a system by adding more nodes, complete with processors, storage, and
bandwidth.

Shared Disk: A pack, clone, or geoplex architecture in which disks and state are shared among
the services. In apacked partitioned architecture, the disks may fail-over when the
partition migrates to a new member of the pack.

Shared Nothing: A pack, clone, or geoplex architecture in which disks and state are not shared
among the services — rather the state is replicated at each clone or pack member. Ina

packed partitioned architecture, the disks do not fail-over when the partition migratesto

anew member of the pack, rather the partition uses the loca replica of the state.
Trangparency: In generd hiding implementation details from the clients. In the context of

scdability, hiding the partitioning, coning, and geoplexing from the dients. Client

requests are automatically routed to the correct partition or clone.

