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Abstract. We consider a model of self-avoiding walks on the lattice Zd with differ-
ent weights for steps in each of the 2d lattice directions. We find that the direction-
dependent mass for the two-point function of this model has three phases: mass
positive in all directions; mass identically −∞; and masses of different signs in differ-
ent directions. The final possibility can only occur if the weights are asymmetric, i.e.
in at least one coordinate the weight in the positive direction differs from the weight
in the negative direction. The boundaries of these phases are determined exactly.
We also prove that if the weights are asymmetric then a typical N -step self-avoiding
walk has order N distance between its endpoints.

1. Introduction

The self-avoiding walk has long been a standard model of a long linear polymer
molecule in a good solvent (de Gennes, 1979; Madras and Slade, 1993; Vanderzande,
1998). The polymer is represented by a sequence of steps in a lattice; in the usual
isotropic model, steps in each lattice direction receive the same weight. However,
there are situations in which the isotropic model is not appropriate. One basic
example occurs when a polymer chain contains a dipole on each repeat unit, and
the polymer is subject to an external electric field. If each dipole is rigidly attached
to the polymer backbone and parallel to it, then the individual dipole units add
vectorially to create a single large end-to-end dipole. Then it is easy for an external
field to stretch and orient the polymer, when dissolved in a good solvent of low
molecular weight (see Section 3.5 of Blythe, 1979). The ability to orient polymers in
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solution by applying an electric field can greatly improve the information obtained
by light scattering experiments (Jennings, 1972; Lipson and Stockmayer, 1989).

Anisotropic self-avoiding walks have also been used as models of flux lines in
Borgs et al. (1999). This application will be described in more detail later in this
section. But first we shall make precise definitions of our general model and some
key quantities.

An N -step self-avoiding walk (SAW) on the d-dimensional hypercubic lattice
Zd is a sequence ω = (ω(0), ω(1), . . . , ω(N)) of N + 1 distinct sites of Zd, such
that ω(i) and ω(i − 1) are nearest neighbours for each i = 1, . . . , N . The vector
ω(i)−ω(i− 1) is called the ith step of ω. We write |ω| = N to denote the length of
the SAW ω = (ω(0), . . . , ω(N)).

In the standard isotropic SAW model, all SAWs of a given length are weighted
equally. In this paper, we consider the case where steps in different directions
can have different weights. We first specify a vector of 2d nonnegative weights
z = (z1+, z1,−, . . . , zd−). Then we define the weight of the N -step SAW ω to be

zω :=
d∏

i=1

z
Ni+(ω)
i+ z

Ni−(ω)
i− , (1.1)

where Ni+(ω) and Ni−(ω) denote the number of steps that the walk ω takes in the
positive and negative i-direction, respectively.

Our approach will focus on certain fundamental generating functions. For u and
v in Zd, let Gz(u, v) be the generating function of all SAW’s of all lengths that
start at u and end at v:

Gz(u, v) =
∑

ω:u→v

zω (1.2)

(where ω : u → v means ω(0) = u and ω(|ω|) = v). We call Gz the two-point
function.

For N ≥ 0, we define χN (z) to be the generating function of all N -step SAW’s
starting at the origin 
0 ∈ Zd:

χN (z) =
∑

ω:ω(0)=�0
|ω|=N

zω . (1.3)

The susceptibility is defined as

χ(z) =
∞∑

N=0

χN (z) =
∑
v∈Zd

Gz(
0, v). (1.4)

In Proposition 2.2 we shall show that the limit

λ(z) := lim
N→∞

χN (z)1/N (1.5)
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exists, and that χ(z) < ∞ if and only if λ(z) < 1.
The mass of the model is the exponential rate of decay of the two-point function.

Because of the anisotropy of the z vector, we define the mass to be explicitly
dependent upon direction. Let || · || be a norm on Rd. Let {v(n)} be a sequence of
vectors in Zd with norms tending to infinity. Assume that v(n)/||v(n)|| converges
to a vector α ∈ Rd. Then the mass in the direction α should be defined as

m[α; z] = lim
n→∞

− logGz(
0, v(n))
||v(n)|| . (1.6)

For technical reasons, we shall usually work with the following simpler definition.
Let v be a non-zero vector in Zd; then we define

m[v; z] = lim
L→∞

− logGz(
0, Lv)
L

. (1.7)

The existence of this limit will be proven in Theorem 3.4, and the equivalence of
(1.6) and (1.7) is the subject of Corollary 3.6.

At this point let us review what is known for the isotropic case (see Sections
1.2, 1.3 and 3.1 of Madras and Slade (1993) for more details). Suppose that all 2d
components of z are identical, i.e. zi+ = zi− = z0 for every i for some positive real
number z0. Then the weight (1.1) of a SAW ω is simply z

|ω|
0 . We shall write χ(z0),

Gz0(
0, v), etc. when discussing this case; this notation conforms to that of Madras
and Slade (1993). Then χN (z0) = cNzN0 , where cN is the number of N -step SAW’s
that start at the origin. Since c

1/N
N converges to a constant µ as N → ∞, we see

that λ(z0) = µz0. Therefore λ(z0) = 1 if and only if z0 = µ−1; this value µ−1 is
the “critical point” of the isotropic SAW model, often written zc. The case z0 < zc
(corresponding to λ(z0) < 1) is the “subcritical” case; here χ(z0) converges, and
the two-point function Gz0(
0, v) decays exponentially in v in all directions (i.e.,
the mass m[v; z0] is strictly positive for z0 < zc). Furthermore, the mass decreases
to 0 as z0 increases to zc. In the “supercritical” case z0 > zc (corresponding to
λ(z0) > 1), the susceptibility is infinite and all masses are −∞ (corresponding to
two-point functions that do not converge; see Chayes and Chayes (1986)).

We now return to the anisotropic model. If all components of z are small, then
χN (z) decays exponentially in N ; in this case, long SAW’s are rare in the ensemble
of all SAW’s, and the masses are all positive. At the opposite extreme, if the
components of z are sufficiently large, then the two-point functions are infinite,
and the mass is −∞. In the case of asymmetric weights, it turns out that there
is an intermediate third possibility: the masses are finite, but they are negative
in some directions. This indicates exponential growth of the two-point function
with distance (at least in some directions). We shall derive a precise description
of the boundaries of these three phases. To describe them, we need to introduce
symmetrized weights. Suppose all 2d components of z are strictly positive. Then
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we define z̄, the symmetrized weight vector, to be the vector (z̄1+, z̄1−, . . . , z̄d−)
whose components are given by

z̄i+ = z̄i− =
√
zi+zi− .

The definition becomes a bit complicated if some of the components of z are zero
(see Lemma 2.6), but that is a special case that need not be considered yet.

It is not hard to show that λ(z̄) ≤ λ(z) (see Lemma 2.6). It turns out that the
λ function describes the phase boundaries as follows.

Theorem 1.1. (i) If λ(z) < 1, then m[v; z] is positive and finite for every nonzero
v in Zd.
(ii) If λ(z) > 1 and λ(z̄) < 1, then m[v; z] is finite for every v in Zd, but m[v; z] is
positive for some vectors v and negative for others.
(iii) Finally, if λ(z̄) > 1, then m[v; z] is −∞ for every nonzero v.

Note that case (ii) cannot occur if zi+ = zi− for every i (in particular, in the
isotropic case). Theorem 1.1 will follow immediately from Theorem 2.3 and Corol-
lary 3.5 below.

Anisotropic self-avoiding walks were considered in Borgs et al. (1999) as models
of flux lines. In that paper, collections of mutually avoiding SAWs that begin and
end on the boundary of a large region modelled the penetration of flux lines through
the region. In the model of primary interest there, the anisotropy in the weights
modelled the influence of an external magnetic field. It turns out that the flux
lines model also has three phases. One phase boundary was the equation λ(z) = 1;
the region λ(z) < 1 was shown to be a “Meissner phase” in which flux lines were
unlikely to be long enough to penetrate the interior of the region. However, we
could find no nonanalytic behaviour of the flux line model on the surface λ(z̄) = 1,
which is a phase boundary for the single SAW in the present paper. Rather, when
λ(z) > 1 in the flux line model, we found many SAWs crossing the region in a
direction in which the mass was negative; the second phase boundary described a
transition to a maximally packed configuration of straight parallel lines.

In the present paper we also address the question of what a typical SAW looks
like when the weights are not symmetric, i.e. when zi+ �= zi− for at least one i. By
comparison with ordinary random walks, one expects linear drift; i.e., the end-to-
end distance of a typical N -step SAW (with weights given by z) is of the order N .
We prove the following version of this result in Section 4.

Theorem 1.2. Fix a weight vector z with all weights nonzero. Assume that z is
not symmetric (i.e. z �= z̄). For each N , let v∗

N be the most likely endpoint of an
N -step SAW. (That is, v∗

N is the vector v ∈ Zd for which the generating function
of all N -step SAWs from 
0 to v is maximized.) Then (for any norm || · ||)

lim inf
N→∞

||v∗
N ||
N

> 0.
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In the context of a linear polymer with repeated attached dipoles parallel to its
backbone, Theorem 1.2 says that even a small external electric field is enough to
stretch and orient the polymer so that its end-to-end distance is proportional to
its molecular weight N , instead of obeying the usual isotropic scaling behaviour
(which is ≈ N0.6 in three dimensions). This result was predicted by Manna and
Chakrabarti (1984) on the basis of exact enumeration data as well as a real space
renormalization group analysis. We remark that symmetric models (satisfying
zi+ = zi− for every i) should be in the same universality class as the isotropic
model.

The paper is organized as follows. Section 2 begins with some elementary results
about anisotropic SAWs, and then explores properties of a slightly different mass
function, M [v; z]. This mass function is for SAWs that start at the origin and end
at Lv, with the additional condition that they always stay between two parallel
hyperplanes that pass through the origin and Lv respectively. We use the term
“slab” to denote the region between two such hyperplanes. Such SAWs in slabs
are easier to work with then unrestricted SAWs, primarily because two such SAWs
can always be concatenated. SAWs in slabs play a role analogous to bridges in
Madras and Slade (1993, especially Section 4.1) and in Chayes and Chayes (1986)
(the latter reference uses the term “cylinder walks” for bridges). The main results
about the mass function M are stated in Theorem 2.3. The rest of Section 2 is
devoted to the proof of the various parts of this theorem. Section 3 proves that
the masses M and m are equal in general, except perhaps on the critical surface
λ(z̄) = 1. Thus most of the results of Theorem 2.3 immediately extend to the
mass m, and in particular this verifies the description of the three phases described
in Theorem 1.1. The anisotropic “bubble diagram” plays an important role here.
Finally, Section 4 uses the results of Sections 2 and 3 to prove Theorem 1.2.

2. Basic results and masses of walks in slabs

In this section we state and prove some basic results that generalize the well
known properties of isotropic self-avoiding walks (SAWs) to anisotropic SAWs.
Then we consider SAWs in slabs (which generalizes the concept of “bridges” or
“cylinder walks” that have been used elsewhere; see Madras and Slade (1993) or
Chayes and Chayes (1986), as well as the proof of Lemma 2.8 below), and prove
some important properties of their masses.

Notation: For a vector v = (v1, . . . , vd) in Rd, we write ||v||1 = |v1| + · · · + |vd|
to denote the L1 norm of v. If ω = (ω(0), . . . , ω(N)) is a SAW, then −ω =
(−ω(0), . . . ,−ω(N)). We write ωi(j) to denote the ith coordinate of the jth site
ω(j). If ψ = (ψ(0), . . . , ψ(M)) is another SAW, then the concatenation ω ◦ ψ is
defined to be the (N +M)-step SAW

(ω(0), . . . , ω(N), ω(N) + ψ(1) − ψ(0), . . . , ω(N) + ψ(M) − ψ(0)).

Let zmax (respectively, zmin) denote the maximum (respectively, minimum) of
the 2d weights {z1+, z1−, . . . , zd−}. We then write log z to denote the vector
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(log z1+, log z1−, . . . , log zd−). To avoid some trivial remarks, we shall generally
assume that zi+ + zi− > 0 for every i = 1, . . . , d.

Lemma 2.1. Let U be a fixed set of vectors in Rd. For each u ∈ U , let au be a
nonnegative real number. Then the function

log
(∑
u∈U

aue
u·β

)

is a convex function of β ∈ Rd.

Proof: This is a well-known consequence of Hölder’s inequality. For β′, β′′ ∈ Rd

and 0 < λ < 1, we have

∑
u∈U

aue
u·[λβ′+(1−λ)β′′] ≤

(∑
u∈U

aue
u·β′

)λ(∑
u∈U

aue
u·β′′

)1−λ

.

The lemma follows upon taking log of both sides. �
Proposition 2.2. Let 0 ≤ zmin ≤ zmax < ∞. Then
(i) The limit

λ(z) := lim
N→∞

χN (z)1/N (2.1)

exists in [0,∞), and
λ(z) = inf

N≥1
χN (z)1/N . (2.2)

(ii) λ(z) is a log-convex function of log z. Hence λ(z) is continuous on (0,∞)2d.
(iii) χ(z) < ∞ if and only if λ(z) < 1.
(iv) χ(z) ↑ ∞ as λ(z) ↑ 1.
(v) For any t > 0, λ(tz) = tλ(z).

Proof: (i): Any (M + N)-step SAW can be expressed as the concatenation of an
M -step and an N -step self-avoiding walk. Therefore

χM+N (z) ≤ χM (z)χN (z) for all M,N ≥ 1. (2.3)

Part (i) now follows from the usual subadditivity (submultiplicativity) property
(see Section 1.2 of Madras and Slade 1993), together with the observation that

zmax ≤ λ(z) ≤ 2dzmax, (2.4)

which follows from zNmax ≤ χN (z) ≤ (2dzmax)N . In particular, we note that λ(z) is
nonzero unless z is identically 0.
(ii): The convexity of logχN (z), and hence of log λ(z), follows from Lemma 2.1.
Convexity implies continuity on the interior of the set where the function is finite.
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(iii): If λ(z) < 1, then clearly χ(z) =
∑

N χN (z) converges. And if λ(z) ≥ 1, then
χN (z) ≥ 1 for every N by (2.2).
(iv): If λ(z) < 1, then by (2.2) we have

χ(z) =
∞∑

N=0

χN (z) ≥
∞∑

N=0

λ(z)N =
1

1 − λ(z)
. (2.5)

Part (iv) follows.
(v): This follows from χN (tz) = tNχN (z). �
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Figure 1: A self-avoiding walk in Z2 from �0 to v that lies in SlabT (v|θ).
The boundary of Slab(v|θ) is indicated by the two angled solid lines, which
are perpendicular to the vector θ. The dotted lines denote the boundary of
TubeT (v); they are parallel to the line segment from �0 to v (not shown).

We now need to introduce a direction-dependent mass for a restricted set of
SAWs. Consider a weight vector z and a (nonzero) lattice point v ∈ Zd. Also, let
θ be a vector in Rd such that θ · v > 0. Let Slab(v|θ) be the set of lattice points
between the two hyperplanes through 
0 and v that are normal to θ; that is,

Slab(v|θ) = {u ∈ Zd : 0 < u · θ ≤ v · θ} .

See Figure 1. Let Bz(
0, v|θ) be the generating functions of all SAWs that start at

0, end at v, and lie entirely in 
0∪ Slab(v|θ). Then for all integers j, k ≥ 1, we have

Bz(
0, jv|θ)Bz(
0, kv|θ) ≤ Bz(
0, (j + k)v|θ). (2.6)
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Again, we can use subadditivity to define the mass M [v; z] (actually, M [v; z|θ], but
we shall show in Lemma 2.4 that M is independent of θ) via

M [v; z] ≡ M [v; z|θ] = lim
L→∞

− logBz(
0, Lv|θ)
L

= inf
L≥1

− logBz(
0, Lv|θ)
L

(2.7)

(analogously to Proposition 4.1.8 of Madras and Slade 1993). In particular, for
every L ≥ 1 we have

Bz(
0, Lv|θ) ≤ e−LM [v;z]. (2.8)

If zmin = 0, then we often have to restrict our choices of v and θ. Let

W (z) = {w ∈ Rd \ {
0} : wi ≤ 0 if zi+ = 0, and wi ≥ 0 if zi− = 0}.

Thus a nonzero vector v ∈ Zd is inW (z) if and only if there exists a SAW ω from
0 to
v such that zω > 0. It is easy to see that for v ∈ Zd \{
0}, the mass M [v; z|v] equals
+∞ if and only if v is not in W (z) (Lemma 2.4(i)). To avoid some trivialities in
the statements of some theorems, we shall often require v ∈ W (z)∩Zd, in addition
to the condition that θ · v > 0. Of course, if zmin > 0, then W (z) = Rd \ {
0}, so
there is no such restriction.

Before we state Theorem 2.3, which includes the main results of this section, we
require two more definitions. Using the fact that these masses do not depend on θ,
we define

M0(z) := inf
v∈Zd\{0}

M [v; z]
||v||1 . (2.9)

If z satisfies 0 < zmin ≤ zmax < ∞, then we define z̄ to be the “symmetrized”
weight vector, whose components are

z̄i+ = z̄i− =
√
zi+zi− .

(See Lemma 2.6 for the definition of z̄ when zmin = 0.)

Theorem 2.3. (i) M0 is a concave function of log z, finite on

{z : 0 < λ(z̄) ≤ 1}

(which contains {z : 0 < λ(z) ≤ 1}, since λ(z̄) ≤ λ(z));
(ii) M0 is identically −∞ on {z : zmin > 0, λ(z̄) > 1}. In fact, for every z in this
set, M [v; z] = −∞ for every nonzero v;
(iii) M0(z) > 0 if λ(z) < 1;
(iv) M0(z) < 0 if λ(z) > 1;
(v) M0(z) = 0 = limt↑1 M0(tz) if λ(z) = 1.

This theorem will follow from several intermediate results, which will be collected
in the proof that appears at the end of this section.
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We remark that (ii) above is false in some cases if we omit the condition zmin > 0.
For example, suppose zi+ = 1 and zi− = 0 for every i. Then, by the definition of z̄
in Lemma 2.6, z̄ = z so that λ(z̄) = λ(z) = d > 1, but Bz(
0, v|v) ≤ d||v||1 for every
v, so M0(z) ≥ − log d > −∞.

We now define “truncated” masses. For each nonzero v ∈ Zd, let 
0v be the
(infinite) line that passes through the points 
0 and v. For each positive integer
T > 0, let TubeT (v) be the set of points in Rd whose (Euclidean) distance from

0v is at most T . Next, for each θ ∈ Rd such that v · θ > 0, let SlabT (v|θ) =
Slab(v|θ) ∩ TubeT (v). Let BT

z (
0, v|θ) be the generating function of all SAWs that
start at 
0, end at v, and lie entirely in 
0 ∪ SlabT (v|θ). As above, we can use
subadditivity to define the truncated mass

MT [v; z] ≡ MT [v; z|θ] = lim
L→∞

− logBT
z (
0, Lv|θ)
L

= inf
L≥1

− logBT
z (
0, Lv|θ)
L

.

(2.10)
Observe that MT [v; z] is decreasing in T and is bounded below by M [v; z].

The following lemma describes some basic properties of these masses. After
proving this lemma we shall generally suppress the θ in the notation for the masses
M .

Lemma 2.4. (i) For each T , v and θ such that θ · v > 0, MT [v; z|θ] is a finite
concave (and hence continuous) function of log z, for z ∈ (0,∞)2d. If we fix some
components of z to be 0, then MT [v; z|θ] is a finite concave function of the loga-
rithms of the nonzero components of z (provided that v is in the appropriate W (z)).
Hence M [v; z|θ] < +∞ under these conditions.
(ii) For every T > ||v||1, MT [v; z|θ] does not depend on θ, subject to the constraint
θ · v > 0.
(iii) M [v; z|θ] = limT→∞ MT [v; z|θ]. Hence, M [v; z|θ] does not depend on θ.
(If zmin = 0 in parts (ii) and (iii), then we add the condition that v is in W (z).)

Corollary 2.5. M0(z) < +∞ for every nonzero z. For z ∈ (0,∞)2d, M0(z) is a
concave function of log z. If we fix some components of z to be 0, then M0(z) is a
concave function of the logarithms of the nonzero components of z.

Proof of Lemma 2.4: Concavity is again the result of Lemma 2.1. The proof of
finiteness in (i) and the proof of (iii) are straightforward adaptations of the proof
of Lemma 4.1.11 in Madras and Slade (1993); see also the proof of Lemma 4.2 in
Borgs et al. (1999).

For part (ii): Fix v and θ such that θ · v > 0, and fix T > ||v||1. (If zmin = 0,
then v must be in W (z).) We shall prove that MT [v; z|θ] = MT [v; z|v].

First, choose a positive integer K such that the translated slab Kv+SlabT (v|v)
lies completely in the half-space {w ∈ Rd : θ · w > 0}. Then we see that

kv + SlabT (jv|v) ⊂ SlabT
(
(2k + j)v|θ)

for every j = 1, 2, . . . and k = K,K + 1, . . .
(2.11)
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Let v∗ be the site in Zd whose coordinates are

v∗
i =

{
vi if θivi > 0
0 if θivi ≤ 0

(i = 1, . . . , d). (2.12)

Let ψ be a ||v||1-step self-avoiding walk that starts at 
0, ends at v, and passes
through the site v∗ (necessarily at the ||v∗||th1 step). Let ψ̂ be the SAW from 
0
to v obtained by taking the steps of ψ in the reverse order: i.e. the SAW whose
sites are ψ̂(j) = v − ψ(||v||1 − j), j = 0, . . . , ||v||1. Also, for s = 1, 2, . . . , let ψ(s)

(respectively, ψ̂(s)) denote the concatenation of s copies of ψ (respectively, ψ̂).
First observe that v ·ψ(j) is strictly increasing in j for 0 ≤ j ≤ ||v||1, so ψ and ψ̂

are both SAWs from 
0 to v that lie entirely in 
0∪ SlabT (v|v). In particular, we see
that ψ(k) and ψ̂(k) are both SAWs. Next, the definition of v∗ shows that θ ·ψ(j) is
strictly increasing in j for 0 ≤ j ≤ ||v∗||1, and nonincreasing for ||v∗||1 ≤ j ≤ ||v||1.
Since θ ·ψ(0) = 0, θ ·ψ(||v∗||1) = θ ·v∗ > 0, and θ ·ψ(||v||1) = θ ·v > 0, we conclude
that

θ · v∗ ≥ θ · ψ(j) > 0 for every j = 1, · · · , ||v||1 (2.13)

and hence

θ · v − θ · v∗ ≤ θ · ψ̂(j) < θ · v for every j = 0, · · · , ||v||1 − 1. (2.14)

Suppose that I is an integer greater than (θ · v∗)/(θ · v). Then ψ (respectively,
(I − 1)v + ψ̂) is a SAW from 
0 to v (respectively, from (I − 1)v to Iv) which lies
entirely in 
0∪ SlabT (Iv|θ). Furthermore, for any integer s ≥ 1, ψ(s) lies entirely in

0 ∪ SlabT

(
(I − 1 + s)v|θ), as does (I − 1)v + ψ̂(s). Now fix an integer I which is

greater than K and (θ · v∗)/(θ · v). Let ζ = ψ(I−1) ◦ ψ̂(I−1), and let I ′ = 2(I − 1).
Then we see that ζ is a SAW from 
0 to I ′v which lies entirely in 
0 ∪ SlabT (I ′v|θ).
Also, ζ lies in 
0 ∪ SlabT (I ′v|v).

Now let j be any positive integer, and consider any SAW ω from 
0 to jv that
lies entirely in 
0 ∪ SlabT (jv|v). Then ζ ◦ ω ◦ ζ is a SAW from 
0 to (2I ′ + j)v that
lies entirely in 
0 ∪ SlabT

(
(2I ′ + j)v|θ) [using (2.11) with k = I ′]. Therefore

BT
z

(
(2I ′ + j)v|θ) ≥ (

zζ
)2
BT
z (jv|v) . (2.15)

Since (2.15) holds for every j ≥ 1, we conclude that MT [v; z|θ] ≤ MT [v; z|v].
We now need to show MT [v; z|θ] ≥ MT [v; z|v]. This is based on the following

claim: If ρ is a SAW from 
0 to jv that lies in 
0 ∪ SlabT (jv|θ), then ζ ◦ ρ ◦ ζ is a
SAW from 
0 to (2I ′+ j)v that lies entirely in 
0∪SlabT

(
(2I ′+ j)v|v). The analogue

of (2.15) and the rest of the proof follow from this claim. To prove the claim, it
suffices to show that if w ∈ SlabT (jv|θ), then I ′v+w ∈ SlabT

(
(2I ′+j)v|v). Choose

w ∈ SlabT (jv|θ); we need to show

0 < (I ′v + w) · v ≤ (2I ′ + j)v · v. (2.16)
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The point (2I ′ + j)v+w is in TubeT (v) but not in SlabT
(
(2I ′ + j)v|θ), so it follows

from (2.11) that (2I ′ + j)v + w is not in I ′v + SlabT (jv|v); in fact, we must have(
(2I ′+j)v+w

) ·v > (I ′v+jv) ·v, from which we obtain the left inequality of (2.16).
Similarly, w − jv is not in SlabT

(
(2I ′ + j)v|θ), so it is not in I ′v+SlabT (jv|v); we

deduce that (w − jv) · v ≤ I ′v · v. This gives the right inequality of (2.16). This
completes the proof of the lemma. �
Lemma 2.6. For a given weight vector z, let

I(z) =
{
i ∈ {1, . . . , d} : min{zi+, zi−} > 0

}
.

Let z̄ be the symmetrized weight vector with components

z̄i+ = z̄i− =
√
zi+zi− if i ∈ I(z), and z̄i+ = zi+ and z̄i− = zi− if i �∈ I(z) .

Then
(i) λ(z̄) ≤ λ(z).
(ii) Suppose ω is an N -step self-avoiding walk, and let ω(N) − ω(0) = v. Then

zω = z̄ω
∏

i∈I(z)

(
zi+
zi−

)vi/2

.

(iii) Fix v ∈ Zd. Then for any θ, with θ · v > 0,

Bz(
0, v|θ) = Bz̄(
0, v|θ)
∏

i∈I(z)

(
zi+
zi−

)vi/2

.

The same equation holds if we replace B·(
0, v|θ) by BT· (
0, v|θ) or by G·(
0, v). Also,

M [v; z̄] = M [v; z] +
1
2

∑
i∈I(z)

vi log(zi+/zi−) .

In particular, M [v; z] is finite if and only if M [v; z̄] is finite.

Proof: (i): Fix z. For a point u ∈ Rd, let r[u] be the point whose ith coordinate is
−ui if i ∈ I(z) and is ui if i �∈ I(z). For an N -step SAW ω, let r[ω] be the SAW
(r[ω(0)], . . . , r[ω(N)]). Observe that

zωzr[ω] =
d∏

i=1

z
Ni+(ω)+Ni+(r[ω])
i+ z

Ni−(ω)+Ni−(r[ω])
i−

=
∏

i∈I(z)
(zi+zi−)Ni+(ω)+Ni−(ω)

∏
i �∈I(z)

z
2Ni+(ω)
i+ z

2Ni−(ω)
i−

= (z̄ω)2.

(2.17)
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Therefore, using the arithmetic-geometric mean inequality,

χN (z) =
∑

ω:|ω|=N,ω(0)=�0

zω

=
∑

ω:|ω|=N,ω(0)=�0

(
zω + zr[ω]

2

)

≥
∑

ω:|ω|=N,ω(0)=�0

√
zωzr[ω]

=
∑

ω:|ω|=N,ω(0)=�0

z̄ω = χN (z̄).

(2.18)

Part (i) follows from Equation (2.18).
(ii): Let ω be an N -step SAW such that ω(0) − ω(N) = v. Notice that Ni+(ω) −
Ni−(ω) = vi for each i. Therefore

zω =
d∏

i=1

z
Ni+(ω)
i+ z

Ni−(ω)
i−

=
∏

i∈I(z)
(zi+zi−)[Ni+(ω)+Ni−(ω)]/2z

[Ni+(ω)−Ni−(ω)]/2
i+ z

[Ni−(ω)−Ni+(ω)]/2
i−

×
∏

i �∈I(z)
z
Ni+(ω)
i+ z

Ni−(ω)
i−

=
d∏

i=1

z̄
Ni+(ω)
i+ z̄

Ni−(ω)
i−

∏
i∈I(z)

(
zi+
zi−

)vi/2

,

and part (ii) follows.
(iii): This follows immediately from (ii). �
Lemma 2.7. If λ(z) < 1, then M [v; z] ≥ −||v||1 log λ(z) > 0 for every non-zero v.
That is, M0(z) ≥ − log λ(z).

Proof: Fix a nonzero v and a vector θ such that θ · v > 0. Choose D such that
λ(z) < D < 1, and choose A > 0 such that χn(z) ≤ ADn for every n ≥ 1. Then,
for any integer L ≥ 1,

Bz(
0, Lv|θ) ≤
∞∑

n=L||v||1
χn(z)

≤ ADL||v||1

1 − D
.

Take − log, divide by L and let L → ∞ to obtain M [v; z] ≥ −||v||1 logD. Since
this holds for every D such that λ(z) < D < 1, the result follows. �
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A weaker version of the following result (namely, that M0(z) < 0 if λ(z) > 1)
can be deduced from the proof of Lemma 4.2 of Borgs et al. (1999). The extension
to the case λ(z) = 1 does not follow simply from continuity, since M0(z) can equal
−∞ for some z’s such that λ(z) > 1.

Lemma 2.8. If λ(z) ≥ 1, then M0(z) ≤ 0.

Proof: Assume without loss of generality that z1+ ≥ z1− and z1+ > 0. We begin
with some notation, following Madras and Slade (1993). Let ω be an N -step SAW
(N ≥ 0). We say that ω is a half-space walk if ω(0) = 0 and 0 < ω1(j) for every
j = 1, . . . , N . We say that ω is a bridge if ω(0) = 0 and 0 < ω1(j) ≤ ω1(N) for
every j = 1, . . . , N . If ω is a bridge, then ω1(N) is the span of ω.

Let ω be an N -step half-space walk. The Hammersley-Welsh argument (see
Hammersley and Welsh 1962, or Section 3.1 of Madras and Slade, 1993) constructs
a finite sequence of bridges ω(1), . . . , ω(k), having spans A1, . . . , Ak, such that

A1 > A2 > · · · > Ak and

ω = ω(1) ◦ (−ω(2)) ◦ ω(3) ◦ (−ω(4)) ◦ · · · ◦ ((−1)k+1ω(k)) .

Since z1+ ≥ z1−, we have that zω
(i) ≥ z−ω(i)

for each bridge ω(i), and hence

zω =
k∏

i=1

z(−1)i+1ω(i) ≤
k∏

i=1

zω
(i)

for the half-space walk ω. (2.19)

Let Bz,A be the generating function of all bridges of span A; let Bz and Hz

be the generating functions for all bridges and half-space walks, respectively. (So
Bz =

∑∞
A=0 Bz,A). Then, by (2.19),

Hz ≤
∞∏

A=1

(
1 +Bz,A

) ≤
∞∏

A=1

exp(Bz,A) = eBz−1.

Let ξ be the one-step SAW from 
0 to (1, 0, . . . , 0). For any N -step SAW ψ, there is
an n in {0, 1, . . . , N} such that

(
ψ(n), . . . , ψ(N)

) − ψ(n) and ξ ◦ (
ψ(n), . . . , ψ(0)

)
are both half-space walks. Therefore

χ(z)z1+ ≤ (Hz)2 ≤ e2Bz−2.

So if λ(z) ≥ 1, then χ(z) diverges, and hence Bz diverges.
Next we have

Bz = 1 +
∑

y:y1>0

Bz(
0, y|(1, 0, . . . , 0))

≤ 1 +
∑

y:y1>0

e−M [y;z]

≤ 1 +
∑

y:y1>0

e−||y||1M0(z),
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which is finite whenever M0(z) > 0. So if λ(z) ≥ 1, then the conclusion of the
preceding paragraph shows that M0(z) ≤ 0. �

To state the next lemma, we introduce, for every z with 0 < λ(z) < ∞, its dual
z∗ = z/λ(z)2. Note that z∗ is defined in such a way that

λ(z∗)λ(z) = 1, (2.20)

see Lemma 2.2(v).

Lemma 2.9. If λ(z) > 1, then

M0(z) ≤ −M0(z∗), (2.21)

implying in particular that M0(z) ≤ − log λ(z) < 0.

Proof: The concavity property of M0 (Corollary 2.5) shows that for every nonzero
z′ and every t > 0, we have

M0(z′) ≥ 1
2
M0(tz′) +

1
2
M0

(1
t
z′

)
.

Assume λ(z) > 1. Let t = λ(z)−1 and z′ = tz. Then λ(z′) = 1 by Proposition
2.2(v), so M0(z′) ≤ 0 by Lemma 2.8. Therefore

M0(z) = M0

(1
t
z′

)
≤ 2M0(z′) − M0(tz′) ≤ −M0(z∗),

where we have used that tz′ = t2z = z∗ in the last step. Also, λ(z∗) = 1/λ(z) < 1
by (2.20), so

M0(z) ≤ −M0(z∗) ≤ log
(
λ(z∗)

)
= − log

(
λ(z)

)
by (2.21) and Lemma 2.7. �
Lemma 2.10. Assume z satisfies zi+ = zi− > 0 for every i. If M [v; z] < 0 for
some nonzero v, then M [u; z] = −∞ for every nonzero u.

Proof: Assume M [v; z] < 0 for some nonzero v, and choose i such that vi �= 0. By
the symmetry assumption on z, we know M [v; z] = M [−v; z], so we can assume
without loss of generality that vi > 0.

For each i = 1, . . . , d, let e(i) be the unit vector in the positive ith coordinate
direction. Let v′ be the vector whose coordinates agree with those of −v except
that v′

i = vi. Then v + v′ = 2vie(i), and for all k = 1, 2, . . .

Bz(
0, kv|e(i))Bz(
0, kv′|e(i)) ≤ Bz(
0, 2kvie(i)|e(i)) . (2.22)

Therefore M [v; z] + M [v′; z] ≥ 2viM [e(i); z]. The symmetry of z implies that
M [v′; z] = M [v; z], and so M [e(i); z] < 0.
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Our main step is to show the following assertion:

If M [e(k); z] ∈ [−∞, 0) for some k, then M [e(j); z] = −∞ for all j �= k. (2.23)

After (2.23) has been proven, then we deduce from the preceding paragraph that
M [e(j); z] = −∞ for all j �= i; another application of (2.23) shows that M [e(i); z] =
−∞ also. Then, for any nonzero vector u =

∑
i uie

(i), we have

Bz(
0, Lu|u) ≥
∏

k:uk �=0

Bz(
0, Luke(k)|u),

which implies
M [u; z] ≤

∑
k:uk �=0

|ui|M [e(i); z] = −∞.

So we see that the Lemma follows once (2.23) has been proven.
To prove (2.23), assume M [e(k); z] < 0, and fix j �= k. By Lemma 2.4(iii), there

exists a T such that MT [e(k); z|e(k)] < 0; and by Equation (2.10), there exists an
L such that

BT
z (
0, Le

(k); z|e(k)) > 2 .

For each integer r ≥ 1, consider the collection of all SAWS that go:
from 
0 to 2Te(j) in 2T steps, and then
from 2Te(j) to 2Te(j) + rLe(k) inside 2Te(j) + SlabT (rLe(k)|e(k)), and then
to 2Te(j) + (rL+ 1)e(k) in 1 step, and then
to 5Te(j) + (rL+ 1)e(k) in 3T steps, and then
to 5Te(j) + e(k) inside 5Te(j) + (rL+ 1)e(k) + SlabT (−rLe(k)| − e(k)), and then
to 5Te(j) in 1 step, and then
to 7Te(j) in 2T steps.

The generating function of all such SAWs is less than Bz(
0, 7Te(j)|e(j)) and greater
than

z7T
j+z2

k+BT
z (
0, rLe

(k)|e(k))BT
z (
0,−rLe(k)| − e(k)) ≥ z7T

j+z2
k+BT

z (
0, Le
(k)|e(k))2r

> z7T
j+z2

k+2
2r .

Therefore Bz(
0, 7Te(j)|e(j)) > z7T
j+z2

k+2
2r for every r ≥ 1, which implies that

Bz(
0, 7Te(j)|e(j)) = +∞, and hence M [e(j); z] = −∞. This proves (2.23) and
the Lemma. �

The following result follows immediately from Lemmas 2.9 and 2.10.

Corollary 2.11. Assume z satisfies zi+ = zi− > 0 for every i and λ(z) > 1. Then
M [v; z] = −∞ for every nonzero v.

We are finally ready to put the pieces together to complete the proof of the main
theorem of this section.
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Proof of Theorem 2.3: (i) Corollary 2.5 gives concavity and the fact that M0(z) <
+∞ for every nonzero z. If λ(z̄) < 1, then Lemma 2.7 shows that M [v; z̄] ≥
−||v||1 log λ(z̄) for every nonzero v; then Lemma 2.6(iii) tells us that

M0(z) ≥ − log λ(z̄) − 1
2
max
i∈I(z)

{∣∣log(zi+/zi−)
∣∣}. (2.24)

Therefore M0 is finite on {z : λ(z̄) < 1}. It remains to show that M0(z) > −∞
when λ(z̄) = 1; this will follow from (v) below and Lemma 2.6(iii).
(ii): This follows from Corollary 2.11 and Lemma 2.6(iii).
(iii): This is Lemma 2.7.
(iv): This follows from Lemma 2.9.
(v): Fix z such that λ(z) = 1. For every t > 0, define

F (t) := M0(tz) = inf
v,T

MT [v; tz]
||v||1 .

For each T and v (with v ∈ W (z) if zmin = 0), MT [v; tz] is decreasing in t, and by
Lemma 2.4(i), it is continuous in t; therefore F is left-continuous. Since F (t) > 0
whenever 0 < t < 1 (by part (iii) above), we conclude that M0(z) ≥ 0. Finally,
M0(z) ≤ 0 by Lemma 2.8. �

3. The mass of the full two-point function

In this section we shall prove that the mass m[v; z] of the full two-point function,
as defined in Equation (1.7), is well-defined, and that it equals the slab mass M [v; z]
except perhaps when λ(z̄) = 1. The analogue of this for isotropic walks was proved
in Chayes and Chayes (1986).

A key quantity in our analysis is the bubble diagram B(z), which is defined as
follows:

B(z) =
∑
v∈Zd

Gz(
0, v)Gz(v,
0) .

This is an extension of the isotropic definition, which is usually written B(z0) =∑
v Gz0(
0, v)

2. See Section 1.5 of Madras and Slade (1993) for a discussion of the
role of the bubble diagram, particularly in high dimensions.

Proposition 3.1. (i) B(z) = B(z̄) for every z.
(ii) If λ(z̄) < 1, then B(z) is finite.
(iii) If λ(z̄) > 1 and zmin > 0, then B(z) is infinite.

Proof: (i): For any v ∈ Zd, we have

Gz(
0, v)Gz(v,
0) = Gz(
0, v)Gz(
0,−v)

= Gz̄(
0, v)Gz̄(
0,−v) (by Lemma 2.6(iii))

= Gz̄(
0, v)Gz̄(v,
0),
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and part (i) follows.
(ii): If λ(z̄) < 1, then χ(z̄) < ∞ (by Proposition 2.2(iii)). Moreover, using (i), we
have

B(z) =
∑
v∈Zd

Gz̄(
0, v)2 ≤ χ(z̄)2 < ∞.

(iii): This follows from Theorem 2.3(ii), which tells us that Gz(
0, v) does not tend
to 0 as v tends to infinity. �

The proof of the following lemma is identical to the proof of its isotropic analogue,
which is Lemma 4.1.4 of Madras and Slade (1993).

Lemma 3.2. For any x, y ∈ Zd, and any z,

Gz(
0, x)Gz(x, y) ≤ B(z)Gz(
0, y) .

Lemma 3.3. For every v, w ∈ Zd (and in W (z) if zmin = 0),

M [v + w; z] ≤ M [v; z] +M [w; z].

Proof: The result is obvious if v or w is the zero vector, so assume both are
nonzero. If v = tw for some positive rational number t, then in fact v and w
are both integer multiples of some vector u ∈ Zd, and the result follows easily since
M [ku; z] = kM [u; z] for every positive integer k. If v = −tw for some positive
rational number t, then the previous sentence proves the result for z̄ in place of z;
to derive the result for nonsymmetric z, simply use the formula of Lemma 2.6(iii).

Now assume that v and w are linearly independent. Let θ be the vector v/||v||2+
w/||w||2 (where || · ||2 denotes Euclidean norm). Therefore θ · v > 0 and θ · w > 0,
and so a concatenation argument shows that

Bz(
0, Lv|θ)Bz(
0, Lw|θ) ≤ Bz(
0, Lv + Lw|θ).

The lemma now follows from the definition of the mass M and the fact that M
does not depend upon θ (Lemma 2.4(iii)). �
Theorem 3.4. Assume that λ(z̄) < 1, or that zmin = 0. Then for every nonzero
v ∈ Zd, the limit m[v; z] (of Equation (1.7)) exists and equals M [v; z]. Moreover,
if B(z) < ∞ (as is always the case when λ(z̄) < 1), then

Gz(
0, v) ≤ B(z)e−m[v;z]. (3.1)

Proof: We shall first dispense with the case zmin = 0. Assume without loss of
generality that z1+ > z1− = 0. Then every SAW from 
0 to v must stay between
the hyperplanes x1 = 0 and x1 = v1. Therefore Bz(−e(1), v|e(1)) = z1+Gz(
0, v), so
the existence of the limit M [v; z] implies that of m[v; z], as well as their equality.
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Now assume B(z) < ∞ (whether or not zmin is 0). The existence of the limit
(1.7) and the inequality (3.1) follow from Lemma 3.2 and subadditivity, exactly as
in the proof of Theorem 4.1.18 of Madras and Slade (1993).

It remains to prove the equality of the masses when λ(z̄) < 1 and zmin > 0.
Since Bz(
0, Lv|v) ≤ Gz(
0, Lv), we obviously have M [v; z] ≥ m[v; z]. Therefore we
only need to prove m[v; z] ≥ M [v; z].

By Lemma 2.6(iii), it suffices to consider the case z = z̄, i.e. zi+ = zi− > 0 for
every i. Observe that M [v; z̄] > 0 for every nonzero v ∈ Zd (Lemma 2.7), and that

M [kv; z̄] = |k|M [v; z̄] for every integer k. (3.2)

We can use this equation to extend the definition of M [v; z̄] to all vectors v in Qd

(the set of vectors in Rd with rational coordinates). Then for every u,w ∈ Qd,

|M [u; z̄] − M [w; z̄]| ≤ M [u − w; z̄] ≤ −||u − w||1 log zmin (3.3)

(the first inequality comes from Lemma 3.3, and the second from the fact that
z

||v||1
min ≤ Bz̄(
0, v|θ) ≤ exp(−M [v; z̄])). Thus M [·; z̄] is uniformly continuous on Qd,
and so it extends to a continuous function on all of Rd, which we shall also write
M [·; z̄]. This function is a norm on Rd (by (3.2) and Lemma 3.3).

Fix a nonzero v ∈ Zd and let

S[v] = {w ∈ Rd : M [w; z̄] ≤ M [v; z̄]}.
This is a convex set with v on its boundary, so there exists a “supporting hyper-
plane” of S[v] at v; that is, there exists a θ ∈ Rd such that θ · v > 0 and S[v] is
contained in the half-space H = {w ∈ Rd : θ ·w ≤ θ ·v}. Now consider any SAW ω

from 
0 to Lv (where L is a positive integer). We can break ω into three subwalks, as
follows. Let i0 be the largest i at which min{θ · ω(i) : 0 ≤ i ≤ |ω|} is attained, and
let j0 be the largest j at which max{θ · ω(j) : i0 ≤ j ≤ |ω|} is attained. (Observe
that θ · ω(i0) ≤ 0 < θ · (Lv) ≤ θ · ω(j0), and that θ · ω(i0) < θ · ω(k) ≤ θ · ω(j0)
for every k between i0 and j0.) Let the first subwalk be the part of ω from 
0 to
ω(i0), the second from ω(i0) to ω(j0), and the third from ω(j0) to ω(|ω|). This
decomposition implies the following inequality:

Gz̄(
0, Lv) ≤
∑

u:θ·u≤0

∑
y:θ·y≥θ·(Lv)

Gz̄(
0, u)Bz̄(u, y|θ)Gz̄(y, Lv). (3.4)

In the above sum, we know that θ · (y − u) ≥ θ · (Lv), so the vector (y − u)/L is
not in the in the interior of the half-space H. Therefore (y − u)/L is not in in the
interior of S[v], which implies that M [(y−u)/L; z̄] ≥ M [v; z]. From this we deduce

e−LM [v;z̄] ≥ e−M [y−u;z̄] ≥ Bz̄(u, y|θ)
(where the last inequality follows from Equation (2.8)). Next we use this bound
on Bz̄(u, y|θ) in (3.4), and then bound the double sum in (3.4) by including all u’s
and y’s in Zd, obtaining

Gz̄(
0, Lv) ≤ χ(z̄)2e−LM [v;z̄].

This implies that m[v; z̄] ≥ M [v; z̄], and so the proof is complete. �
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Corollary 3.5. For every v ∈ Zd, we have m[v; z] = M [v; z], except perhaps when
λ(z̄) = 1 and zmin > 0.

Proof: By Theorem 3.4, the only case not yet proven is λ(z̄) > 1 and zmin > 0. But
in this case, Theorem 2.3(ii) tells us that M [v; z] = −∞, so the corollary follows
because m[v; z] ≤ M [v; z]. �
Corollary 3.6. Assume λ(z̄) < 1 and zmin > 0. Let {v(n)} be a sequence of vectors
in Zd and let {tn} be a sequence of positive numbers tending to infinity, such that
v(n)/tn converges to a vector α in Rd. Then

lim
n→∞

− logGz(
0, v(n))
tn

= m[α; z],

where m[·; z] is the extension of the mass function to all of Rd, as described in the
proof of Theorem 3.4.

In particular, taking tn = ||v(n)|| gives Equation (1.6), and shows that the definition
(1.6) does not really depend on the choice of norm.
Proof: The proof is similar to that of Theorem 4.1.18 in Madras and Slade (1993),
which is the isotropic analogue of this result. By (3.1), we know

− logGz(
0, v(n)) ≥ − logB(z) +m[v(n); z],

and therefore

lim inf
n→∞

− logGz(
0, v(n))
tn

≥ m[α; z] (3.5)

by the continuity of m[·; z]. So it suffices to prove the reverse inequality for the lim
sup.

Fix ε > 0. Choose a vector v ∈ Zd and a positive integer J such that ||α −
J−1v||1 ≤ ε. Now choose a sequence of positive integers kn such that kn/tn con-
verges to J−1. By Lemma 3.2 we have

Gz(
0, knv)Gz(knv, v(n)) ≤ B(z)Gz(
0, v(n)). (3.6)

Then we have

lim
n→∞

− logGz(
0, knv)
tn

= J−1m[v; z]

= m[J−1v; z]

≤ m[α; z] − ε log zmin (by (3.3)).

(3.7)

Next, using the trivial bound Gz(u,w) ≥ z
||w−u||1
min , we obtain

lim sup
n→∞

− logGz(knv, v(n))
tn

≤ −||α − J−1v||1 log zmin ≤ −ε log zmin . (3.8)
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Finally, we combine (3.6), (3.7), and (3.8) to obtain

lim sup
n→∞

− logGz(
0, v(n))
tn

≤ m[α; z] − 2ε log zmin .

Since ε > 0 is arbitrary, this shows that lim supn − logGz(
0, v(n))/tn ≤ m[α; z].
Together with (3.5), this completes the proof. �

4. Linear extension of SAW’s with drift

In this section we shall assume zmin > 0.
A natural question is the following: Suppose that z1+ > z1− > 0. This gives a di-

rectional preference among steps parallel to the x1-axis. Consider all N -step SAW’s
starting at 
0 weighted according to z. Does the distance between the endpoints of
a typical N -step SAW grow linearly with N?

There are several ways to formulate this question, and we shall discuss one
way here. For nonnegative integers N and vectors v ∈ Zd, let G

(N)
z (
0, v) be the

generating function of all N -step SAWs from 
0 to v. Let v∗
N be the v for which

G
(N)
z (
0, v) is maximized. (We suppress the dependence of v∗

N on z.) We would like
to know whether

lim inf
N→∞

||v∗
N ||1
N

> 0. (4.1)

Theorem 1.2 says that (4.1) holds provided that zmin > 0 and z is not symmetric
(i.e. z �= z̄). This will be a direct consequence of Propositions 4.1 and 4.2 below.

Proposition 4.1. Assume λ(z) > λ(z̄). Then (4.1) holds.

Proof: Observe that the definition of v∗
N does not change if we multiply the vector

z by a positive scalar t. Also, (tz) = tz̄ for any scalar t > 0, so by Proposition
2.2(v) we can and shall assume that λ(z̄) < 1 < λ(z).

There at most (2N + 1)d vectors v for which G
(N)
z (
0, v) is non-zero, so we have

G
(N)
z (
0, v∗

N ) ≤ χN (z) ≤ (2N + 1)dG(N)
z (
0, v∗

N ). Therefore

lim
N→∞

G(N)
z (
0, v∗

N )
1/N = λ(z). (4.2)

We also know

G(N)
z (
0, v∗

N ) ≤ Gz(
0, v∗
N )

≤ B(z) exp(−M [v∗
N ; z]) (by Theorem 3.4)

≤ B(z) exp(−||v∗
N ||1M0(z)).

(4.3)

We know that B(z) < ∞ (Proposition 3.1(ii)) and −∞ < M0(z) < 0 (Theorem
2.3(i, iv). Taking N th roots in (4.3) and using (4.2) as well as λ(z) > 1, we get

lim inf
N→∞

||v∗
N ||1
N

≥ log λ(z)
|M0(z)| > 0. �
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Proposition 4.2. Assume zmin > 0 and zi+ �= zi− for some i. Then λ(z) > λ(z̄).

Proof: Without loss of generality, assume z1+ > z1− > 0. Also, scaling z as in the
proof of Proposition 4.1, assume that λ(z̄) = 1. Our goal is to prove that λ(z) > 1.
To do this, it suffices to prove that M0(z) < 0 (by Theorem 2.3(iii, v)).

We claim that M [e(1); z̄] = 0 (where e(1) is the unit vector in the +x1 direction).
From this claim, Lemma 2.6(iii) shows that M [e(1); z] = − log(z1+/z1−) < 0; this
immediately implies M0(z) < 0.

So to prove the proposition, it suffices to prove the claim of the previous para-
graph. Since λ(z̄) = 1, Theorem 2.3(v) tells us that M0(z̄) = 0; hence M [e(1); z̄] ≥
0. We must show that M [e(1); z̄] cannot be strictly positive.

Consider the proof of Lemma 2.8, using our z̄ instead of the z there. Everything
in that proof applies because λ(z̄) ≥ 1, z̄1+ ≥ z̄1−, and z̄1+ > 0 (in fact, the first
two hold with equality). In particular, the generating function Bz̄ of all bridges
diverges at z̄. We shall use this fact and a new version of the final paragraph of
that proof to complete the present proof.

We define the mass
M̃1(z̄) = lim

L→∞
− logBz̄,L

L

where Bz̄,L is the generating function of bridges of span L, as defined in the proof
of Lemma 2.8. By subadditivity, this limit exists and satisfies

Bz̄,L ≤ e−LM̃1(z̄) for every L ≥ 1,

exactly as in the anisotropic case; see Proposition 4.1.8 of Madras and Slade (1993).
This mass satisfies M̃1(z̄) = M [e(1); z̄]; the proof of this relation is identical to the
proof of the isotropic case, which is Lemma 4.1.12 of Madras and Slade (1993). We
remark that one property required for the proof to carry over is that Bz̄(
0, v|e(1)) =
Bz̄(
0,−v|e(1)), which follows from the fact that z̄i+ = z̄i− for every i.

Finally, we have

Bz̄ = 1 +
∞∑
L=1

Bz̄,L ≤ 1 +
∞∑
L=1

e−LM̃1(z̄)

= 1 +
∞∑
L=1

e−LM [e(1);z̄].

Since Bz̄ diverges, we conclude that M [e(1); z̄] cannot be strictly positive. This
concludes the proof. �
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