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1. Introduction

In this paper, we study the ferromagnetic q-state Potts model with each value of the spin
coupled to a distinct external field. The formal Hamiltonian of the model is

H(σ) = −J
∑
〈x,y〉

δσx,σy −
q∑

m=1

∑
x

hmδσx,m. (1.1)

Here σx ∈ {1, · · · , q} are the spin variables, J is a positive coupling constant, δσx,σy is the
Kronecker delta, (hm)

q
m=1 are real numbers representing the external fields, and 〈x , y〉 denotes

a nearest-neighbor pair on Z
d. The model (1.1) appears in many different contexts. For

example, it arises in image processing, where σx represents the color of the pixel labeled by x,
and the fields hm lead to different a priori probabilities for different colors. Another example
is a lattice gas of q species, with hm corresponding to the fugacity of the species m.

During the past fifteen years, there has been a great deal of work on graphical representations
of the Potts model in the absence of external fields (i.e., with hm ≡ 0). In particular, the
Fortuin-Kasteleyn [10] or random cluster (RC) representation has been used to prove various
non-perturbative results about the Potts model using percolation-type methods (e.g., [2], [5]).
In order to use the representation effectively, it was first necessary to establish certain basic
features of the resulting measure, including FKG monotonicity, existence of thermodynamic
limits, and properties of the Gibbs states ([2], [5], [16], [21], see also [17] and [12] for reviews).

Here we consider graphical representations of the Potts model in the presence of arbitrary
external fields. This turns out to be significantly more complicated than the analysis in the
absence of external fields for a number of reasons. First, when hm ≡ 0, it is easy to verify
that the RC representation has the FKG property, which is more difficult to establish here.
Indeed, the FKG property does not even hold for certain boundary conditions. Second, for
hm ≡ 0, symmetry breaking in the spin representation is equivalent to percolation in the
RC representation. Here the relationship between the phase structure of the spin model and
percolation in the RC representation is less direct; in some cases the percolation threshold
corresponds to no phase transition at all in the spin model [3]. Third, absence of symmetry
raises the question of the color(s) of the infinite cluster(s), a question which turns out to be
quite intricate, and does not need to be addressed for hm ≡ 0.

Our work was motivated by an attempt to understand the phase diagram of the model (1.1),
using both cluster expansion and percolation techniques; our results on the phase diagram are
presented in a separate paper [3]. In this paper we generalize known results on the properties
of Gibbs states of the RC models to systems with external fields. In particular, for the RC
model in an arbitrary homogeneous magnetic field, we prove FKG properties, existence of
infinite volume measures, and that these measures are Gibbs states. See also [3] and [4] for
other graphical representations of Potts models in an external field.

In addition, we develop the theory of Gibbs states for the so-called Edwards-Sokal (ES)
measure, a measure on both spin and bond variables which was originally introduced in order
to explain the Swendsen-Wang algorithm for sampling from the Potts model [8]. In a finite
volume, the marginals of the ES measure are just the spin and the RC measures. Here we
consider infinite volume ES measures as interesting and important probabilistic objects in their
own right. In particular, we introduce the notion of ES Gibbs measures, and analyze whether
(or under what conditions) the marginals of such Gibbs measures are Gibbs measures of the
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corresponding spin and random cluster models. We clarify this relationship, and in the process
derive properties of the spaces of Gibbs states for all three representations.

We believe that the rigorous analysis of properties of the Potts model in terms of the ES
representation will prove to be quite fruitful in future work. Indeed, while the ES representation
shares many of the more useful properties of the random cluster representation, it does not
share all of its difficulties. In particular, the ES representation is quasilocal,1 while the RC
representation is not. Much of the standard theory of Gibbs states (as well as its physical
interpretation) requires quasilocality ([15], [20], [22]). Absence of this property has been a
major technical impediment in the analysis of Gibbs states for the RC representation.

Finally, we consider the question of RC models in a field with non-integer values of q.
Although the spin representation of the Potts model (and therefore also the Edwards-Sokal
representation) only admits an integer number of spin states, it has been realized for some time
that the standard RC measure in the absence of a field is perfectly well-defined for non-integer
values of q. Provided that q ≥ 1, the resulting finite volume measures with free and wired
boundary conditions are FKG, which allows one to prove the existence of the corresponding
infinite volume measures. However, the most straightforward version of the RC model in a
field reduces to a model with integer q when we take hm ≡ 0. Explicitly, the RC model in a
field defined on bond configurations η = {η〈x,y〉}, η〈x,y〉 ∈ {0, 1}, has weights of the form∏

〈x,y〉:η〈x,y〉=1

(eβJ − 1)δσx,σy

∏
C

Θ(C), (1.2)

where the second product is over all connected components of sites, and the weights of the
components are given by

Θ(C) =
q∑

m=1

ehm|V(C)|. (1.3)

Here |V(C)| denotes the volume of the cluster C. Notice that when hm ≡ 0, the weights (1.2)
reduce to the more familiar weights2

(eβJ − 1)n(η)qc(η), (1.4)

where n(η) is the number of bonds 〈x, y〉 with η〈x,y〉 = 1 in configuration η, and c(η) is the
number of connected components of sites in η.

Thus we also propose a generalized random cluster (GRC) model with the weight Θ(c) in
(1.2) replaced by

Θ̃(C) =
q∑

m=1

qme
hm|V(C)|, (1.5)

1Recall that quasilocality is the property of continuity (in the product topology) of finite volume Gibbs states
with respect to boundary conditions.

2Even the weights (1.4) may not be entirely familiar to readers who know the RC weights as (1 −
e−βJ)n(η)(e−βJ)v(η)qc(η), where v(η) is the number of bonds 〈x, y〉 with η〈x,y〉 = 0 in configuration η. The
only difference between the latter weights and (1.4) is an overall normalization factor, which makes no differ-
ence in the resulting measure.
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where the qm are non-integer parameters. Provided that the qm are positive and satisfy the
condition ∑

m:hm=hmax

qm ≥ 1, (1.6)

where hmax is the maximum value of the component fields hm, we will be able to prove that
resulting finite volume measures with certain boundary conditions are FKG, and hence that
the corresponding infinite volume measures exist. We expect that many of our other results
for the RC model in a field hold also for this generalized model, but we have not explicitly
verified this.

Notice the following two special cases of the generalized model with the weights (1.5). If we
take qm = 1, m = 1, · · · , q, then we get (1.3), i.e., the random cluster representation of the
Potts model in an external field. On the other hand, if we take hm = 0 for all m, we get the
weights (1.4) with q replaced by

∑
m qm, which is in general non-integer. Thus the GRC model

generalizes both the non-vanishing external field case and the standard non-integer q model.
It turns out that the set of “colors” m ∈ {1, · · · , q} with hm = hmax will play an important

role in the analysis of both of the above described random cluster models in a field. In the
standard model (with hm ≡ 0), it is well-known that the extremal measures are obtained by
applying free and “wired” boundary conditions. The latter are the marginals of measures in
which all spins on the boundary are set to a fixed color m ∈ {1, · · · , q}, and thus identified as
one component in the RC representation. In this work, we will find that the extremal measures
are obtained by applying free and what we call “maxwired” boundary conditions. Measures
with maxwired boundary conditions are the marginals of measures in which all spins on the
boundary are set a color m for which hm = hmax. The other RC wired measures, i.e. those
with boundary conditions set to a color m for which hm < hmax, are hard to analyze because
they do not even obey the FKG inequality.
We end this section with a summary of our results:

In Section 2, we state our theorems on mappings between the sets of ES Gibbs states and
spin and RC Gibbs states, respectively. In particular, Theorem 2.1 implies that the relevant
marginals of the infinite volume ES Gibbs states are spin Gibbs states. The same is not true
for the RC states unless we restrict to states with no more than one infinite cluster, as we
do in Theorem 2.2. We also formulate results (Theorems 2.3 and 2.4) on the existence of
infinite volume measures for the RC and ES representations with free and maxwired boundary
conditions. Finally, we state a result (Theorem 2.5) relating uniqueness or non-uniqueness of
Gibbs states to the absence or presence of infinite clusters. In two dimensions, we are able
to prove more—namely that, away from the transition temperature, the RC Gibbs state is
unique, and similarly for the ES state, provided there is only one color m with hm = hmax
(Theorem 2.6).

In Section 3, we introduce the generalized random cluster (GRC) model and formulate its
FKG monotonicity properties. In particular, Theorem 3.1 states that the free and maxwired
GRC states are strong FKG, and hence that the corresponding infinite volume limits exists.
This theorem also asserts that, in the FKG order, every GRC Gibbs state lies between these
two infinite volume states. Finally, this theorem compares GRC states at different couplings
and different sets of external fields (with an appropriately defined partial order). As a corol-
lary, we prove various properties of the relevant percolation probabilities, which are the order
parameters for the transition. Theorem 3.2 deals with RC marginals of ES Gibbs states. In par-
ticular, it states that the infinite volume RC maxwired measure dominates all such marginals,
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while the free RC measure is dominated by the marginals of all ES Gibbs states with at most
one infinite cluster. Our final results establish uniqueness of the infinite cluster for translation
invariant GRC Gibbs and limit states (Theorem 3.3), and give a stronger version of the DLR
equation for any GRC Gibbs state with a unique infinite cluster. (Theorem 3.4).

Our results are proved in Sections 4–10. In Sections 4–6 we prove the theorems stated in
Section 3 (in the order of their appearance). The theorems of Section 2 are proven in the
remaining Sections 7–10 (in the order 2.4, 2.5, 2.6, 2.1 and 2.2). Theorem 2.3, which is an easy
corollary of the results of Section 3, is proved at the end of Section 6.

2. Gibbs States in the Edwards-Sokal, Spin and Random Cluster
Representations

In this section we define Gibbs measures for joint probability spaces of spin and bond
variables, i.e., the Edwards-Sokal Gibbs measures. We then relate the set of Edwards-Sokal
Gibbs measures to the more standard sets of spin and random cluster Gibbs measures.

We begin with some notation. For any subset Λ ⊂ Z
d, we introduce B0(Λ) as the set of

all bonds b = 〈x, y〉 of nearest neighbors with both endpoints in Λ and B(Λ) as the set of all
bonds with at least one endpoint in Λ. For any B ⊂ B0(Zd), we define V(B) as the set of sites
which belong to at least one bond in B.

To motivate our definitions, we first derive the Edward-Sokal representation for a finite box
Λ ⊂ Z

d with free boundary conditions. For free boundary conditions, the Gibbs factor of the
q-state Potts model in a general field is given by

e−βH(σΛ) =
∏

〈x,y〉∈B0(Λ)

eβJδσx,σy

∏
x∈Λ

eβh(σx), (2.1)

where (hm)
q
m=1 ∈ R

q is a collection of arbitrary fields and h(σx) stands for

h(σx) =
q∑

m=1

hmδσx,m. (2.2)

In order to derive the Edwards-Sokal (ES) and random cluster (RC) representation, we rewrite
the Gibbs factor by expanding each term eβJδσx,σy as 1 + (eβJ − 1)δσx,σy . Introducing bond
configurations ηB0(Λ) = {ηb}b∈B0(Λ) with ηb ∈ {0, 1}, we can write the Gibbs factor (2.1) as the
sum

e−βH(σΛ) =
∑

ηB0(Λ)

∏
b=〈x,y〉∈B0(Λ)
η〈x,y〉=1

(eβJ − 1)δσx,σy

∏
x∈Λ

eβh(σx). (2.3)

The key point of this reformulation is that η can now be treated in the same way as σ; one
just peels off the first sum in (2.3) and interprets the remainder as a joint weight of σ and η.
In this manner one obtains the finite volume Gibbs measure of the Potts model as the spin
marginal of a measure on both spin and bond configurations—the Edwards-Sokal measure.
The bond configuration marginal is then the random cluster measure.

So far we have considered only free boundary conditions. Instead of modifying the preceding
argument for other boundary conditions, we directly introduce the notion of infinite volume
Gibbs measures on the joint space of spin and bond variables. To define the Gibbs ES states,
let us introduce for any pair of (not necessarily related) finite sets Λ ⊂ Z

d, B ⊂ B0(Zd), and
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any fixed configurations σΛc , ηBc outside of them, the measure µESΛ,B( · |σΛc ,ηBc) by

µESΛ,B(σΛ,ηB|σΛc ,ηBc) =
W (σΛ,ηB |σΛc ,ηBc)∑

σ̄Λ,η̄B

W (σ̄Λ, η̄B |σΛc ,ηBc)
, (2.4)

where the convention3 µESΛ,B(σΛ,ηB|σΛc ,ηBc) = 0 is assumed for the case that the sum in the
denominator vanishes, and where

W (σΛ,ηB |σΛc ,ηBc) =
∏

〈x,y〉∈B∪B(Λ)
η〈x,y〉=1

(eβJ − 1)δσx,σy

∏
x∈Λ

eβh(σx). (2.5)

The dependence on parameters J and {hm} will be explicitly marked only when a reference to
them is needed.

Our first theorem concerns the relation between the ES and spin Gibbs measures. Let GES
be the set of all infinite volume Gibbs ES states defined by imposing the DLR equations with
specification (2.4). Namely, ν ∈ GES iff

ν(f) =
∫

ν(dσ,dη)µESΛ,B(f |σΛc ,ηBc) (2.6)

for all pairs of finite sets Λ and B and any cylinder function f depending only on σΛ and ηB.
Note that the fact that the underlying “set of sites” contains both the set Z

d and the set B0(Zd)
does not prevent the abstract theory of Gibbs states—in the version that allows for “hard-core
interactions” (c.f., [22], [20], [15])—from being applied. The important property, quasilocality
of the specification {µESΛ,B}, is clearly satisfied, implying, in particular, that the set of Gibbs
states GES is not empty. Note also that quasilocality and consistency of the specifications
imply that the DLR condition (2.6) is equivalent to the (apparently stronger) statement that
the conditional expectations of ν are given by (2.4), i.e.

ν(f |σΛc ,ηBc) = µESΛ,B(f |σΛc ,ηBc) ν-a.s. (2.7)

for all pairs of finite sets Λ and B and any cylinder function f depending only on σΛ and ηB.
Let Gspin denote the set of all spin Gibbs states, defined by means of the DLR condition and

the Hamiltonian (1.1), appropriately modified to incorporate the boundary condition. Let ΠS
denote the mapping that assigns the spin marginal to any infinite volume ES measure. It is
not a priori obvious that the spin marginal of any infinite volume Gibbs ES state is an infinite
volume Gibbs spin state. However, it turns out that even a little more is true.

Theorem 2.1 The mapping ΠS is a linear isomorphism between the Choquet simplices4 GES
and Gspin. When restricted to translation invariant measures, ΠS is an isomorphism between the
simplex of all translation invariant Gibbs ES states and the simplex of all translation invariant
Gibbs spin states. In particular, |GES| = 1 if and only if |Gspin| = 1.

Remark. The last statement is false for the correspondence between ES Gibbs states and their
RC marginals. For instance, for d = 2 it is known that there are exactly two extremal Ising
Gibbs states below the critical temperature ([11], [1], [18]) and, therefore, two extremal ES
Gibbs states, while the corresponding RC marginals are identical.

3Here we use the theory of Gibbs states as presented by Ruelle [22], who explicitly considers models with
configuration spaces determined by local restriction rules (hard cores). See Sections 1.1 and 1.5 of [22].

4See, e.g., [22], [15] and [20] for the definition of Choquet simplices.
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As alluded to in the introduction, RC Gibbs measures have finite volume specifications that
are not quasilocal, which prevents the straightforward application of the general theory of
Gibbs states. It therefore is often more convenient to consider ES Gibbs measures, whose
finite volume specifications are local, and study RC measures only as their marginals. The
relation of these marginals to RC Gibbs measures as introduced in [9], [16], [21], and [5] for
Potts models without magnetic fields is the content of our next theorem.

First, however, we generalize the notion of RC Gibbs states to Potts models with magnetic
fields. To this end we introduce, for any configuration η on B0(Zd), the set of occupied bonds
Bocc(η) = {b ∈ B0(Zd) : ηb = 1} and the corresponding graph (Zd,Bocc(η)) with the vertex set
Z
d and the edge set Bocc(η). For any connected component C(η) of this graph (possibly a

single site), we use V(C(η)) to denote the corresponding vertex set. We now define, for any
finite set of bonds B and any configuration ηBc , the measure

µRCB (ηB|ηBc) =
WRC

B
(ηB|ηBc)∑

η̄B

WRC
B

(η̄B|ηBc)
(2.8)

with

WRC
B (ηB|ηBc) = (eβJ − 1)|Bocc(η)∩B| ∏

C(η):V(C(η))∩V(B) 
=∅

q∑
m=1

e−β(hmax−hm)|V(C(η))|, (2.9)

where the product runs over all connected components C(η) such that the vertex set V(C(η))
intersects the set V(B), and hmax is used to denote

hmax = max
m∈{1,...,q}

hm. (2.10)

Interpreting e−∞ = 0, any infinite cluster C(η) intersecting V(B) contributes just the factor
q0 = |Qmax(h)|, the size of the set

Qmax(h) = {m ∈ {1, . . . , q}|hm = hmax}. (2.11)

For future reference, we also define N∞ = N∞(η) as the random variable denoting the number
of infinite clusters of Bocc(η), and use C∞ = C∞(η) to denote the unique infinite cluster
whenever N∞ = 1.

As usual, one introduces the set of Gibbs states GRC as the set of measures µ on {0, 1}B0(Zd)

that satisfy the DLR equation

µ(f) =
∫

µ(dη)µRCB (f |ηBc) (2.12)

for any finite B and any cylinder function f with support in B. Note that, in contrast to
equations (2.6) and (2.7), here the DLR condition (2.12) does not imply that the conditional
expectations of an RC Gibbs state µ are given by the finite volume expectations (2.8) due to
the lack of quasilocality. However, it turns out that uniqueness of the infinite cluster is enough
to ensure that the DLR condition implies a statement of the form (2.7) (see Theorem 3.4).

As already observed in [5], the above notion of RC Gibbs states does not accommodate all
“naturally arising” limiting states. When reformulated in terms of the ES measures, not every
RC marginal of an ES Gibbs measure is an RC Gibbs state. An example is the ES Gibbs state
corresponding to the standard Dobrushin state with a stable interface between two ordered
states.

However, when restricted to the set of ES measures with at most one infinite cluster, the
situation changes. As it turns out, not only is the marginal of every such ES Gibbs measure an
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RC Gibbs measure, but also each RC Gibbs measure with at most one infinite cluster can be
obtained as a marginal of a suitable ES Gibbs measure. In addition, a natural refinement holds:
up to a choice of the “color” of the infinite cluster, the surjective correspondence between ES
and RC measures is actually one-to-one.

To state the next theorem, we use GES≤1 = {ν ∈ GES|ν(N∞ ≤ 1) = 1} to denote the set of ES
Gibbs measures such that with probability one there is at most one infinite cluster of occupied
bonds. Similarly, let GRC≤1 = {µ ∈ GRC|µ(N∞ ≤ 1) = 1}, GESk = {ν ∈ GES|ν(N∞ = k) = 1} and
GRCk = {µ ∈ GRC|µ(N∞ = k) = 1}, k = 0, 1. Also let GES1,m = {ν ∈ GES|ν(A∞1,m) = 1}, where
A∞1,m is the event A∞1,m = {N∞ = 1 and σx = m for all x ∈ V(C∞)}. Finally, let ΠRC be the
mapping that assigns RC marginals to ES Gibbs measures.

Theorem 2.2 (i) The restriction of the map ΠRC to GES≤1 is surjective onto GRC≤1 .
(ii) Every ν ∈ GES≤1 has a unique decomposition

ν = λ0ν0 +
∑

m∈Qmax

λmνm (2.13)

with ν0 ∈ GES0 , νm ∈ GES1,m, λ0, λm ≥ 0, and λ0 +
∑
m∈Qmax

λm = 1.
(iii) The restriction of the map ΠRC to GES0 is one-to-one from GES0 to GRC0 . If m ∈ Qmax(h),
then the restriction of ΠRC to GES1,m is one-to-one from GES1,m to GRC1 .
(iv) If |Qmax(h)| = 1, then the mapping ΠRC is a bijection ΠRC : GES≤1 → GRC≤1 .

Remarks. (i) As we will see in the next section, the set GES≤1 is non-empty. By the above
theorem, this implies that also GRC≤1 is non-empty.

(ii) Since {N∞ = 0} is a tail event, it follows from the standard theory of Gibbs states
and the fact that the specifications (2.4) of the Edwards-Sokal measure are quasilocal, that
the conditional measure ν(·|N∞ = k), k = 0, 1, is a Gibbs state for any ν ∈ GES≤1 with 0 <

ν(N∞ = 0) < 1. Although the corresponding statement is not known a priori for a RC
Gibbs state µ ∈ GRC≤1 (due to lack of quasilocality), it is a consequence of statement (i) and the
commutativity of the following diagram,

ν
ΠRC−→ µ

↓ ↓
ν(·|N∞ = k) ΠRC−→ µ(·|N∞ = k)

(2.14)

which, in turn, is a consequence of Theorem 2.2(ii).

Next, we state our results on the existence of thermodynamic limits for the extremal ES
and RC Gibbs measures with free and wired boundary conditions. We begin by introducing
the relevant finite volume ES measures. Observing that, for a finite volume Λ, the state
µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) does not depend on ηB(Λ)c , we define the measure

µESΛ,m( · ) = µESΛ,B(Λ)( · |σmΛc ,ηB(Λ)c), (2.15)

where σm is the constant configuration, σmx = m for all x ∈ Z
d, with m ∈ {1, . . . , q}. In a

similar way, the measure µESΛ,B0(Λ)
( · |σΛc ,ηB0(Λ)c) does not depend on σΛc , provided that the

η-boundary condition is chosen as ηB0(Λ)c = η0
B0(Λ)c

, where η0 denotes the configuration with
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η0b = 0 for all b ∈ B(Zd). In this case we introduce the measure

µESΛ,free( · ) = µESΛ,B0(Λ)( · |σΛc ,η0
B0(Λ)c). (2.16)

The η-marginals of the measures µESΛ,free( · ) and µESΛ,m are the RC measures µRCΛ,free( · ) and µRCΛ,m
with free and m-wired boundary conditions, respectively. A particular role will be played by
the RC measures with m-wired boundary conditions such that m ∈ Qmax(h), i.e., hm = hmax.
Note that the measures µRCΛ,m are identical for all values m ∈ Qmax(h); we will use µRCΛ,maxwir to
denote any of them.

Theorem 2.3 Let β ≥ 0, J ≥ 0, and hm ∈ R, m = 1, . . . , q.
(i) Let f be a quasilocal function on {0, 1}B0(Zd). Then the limits

µRCmaxwir(f) = lim
Λ↗Zd

µRCΛ,maxwir(f) (2.17)

and

µRCfree(f) = lim
Λ↗Zd

µRCΛ,free(f) (2.18)

exist and are translation invariant.
(ii) The measures µRCmaxwir and µRCfree are RC Gibbs states with at most one infinite cluster.

Remarks. (i) The limit Λ ↗ Z
d above (and hereafter) is taken in the sense of the limit along

the net {Λ ⊂ Z
d finite} with the net ordering given by the set inclusion. However, when we

talk about a general RC limit state, we will have a weaker notion in mind. Namely, we say that
a measure µ on {0, 1}B0(Zd) is an RC limit state if there is a sequence of finite sets Bn ⊂ B0(Zd)
and a sequence of configurations η(n) such that µ(f) = limn→∞ µRC

Bn
(f |η(n)

Bn
).

(ii) We will prove the existence of the limit (2.17) by first establishing that the µRCΛ,m is strong
FKG if hm = hmax, see Theorem 3.1. The requirement hm = hmax is crucial for our proof of
Theorem 3.1, since the proof relies on the FKG property of the finite volume measures µRCΛ,m.
In fact, for β large enough, a contour argument indicates that µRCΛ,m with hm < hmax is not
even FKG.

(iii) The statements of Theorem 2.3 are special cases of those of Theorem 3.1 (ii), Theo-
rem 3.3 and its corollary, which hold for the GRC models discussed in the introduction.

By using the general theorem on the uniqueness of the infinite cluster [6], the conclusion
about the existence of the limiting RC measures can be strengthened to their ES preimages:

Theorem 2.4 Let β ≥ 0 and hm ∈ R, m = 1, . . . , q. If m ∈ Qmax(h), then the weak limits

µESm = lim
Λ↗Zd

µESΛ,m (2.19)

and

µESfree = lim
Λ↗Zd

µESΛ,free (2.20)

exist and are translation invariant ES Gibbs states with at most one infinite cluster.

Remark. In contrast to Theorem 2.3, the statement here that the limiting measures are Gibbs
states is a trivial consequence of the general theory of Gibbs states for systems with quasilocal
interactions.
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Next, we state a theorem relating the uniqueness or non-uniqueness of Gibbs states to the
existence of an infinite cluster. To this end, we define the percolation probability

P∞(β, J, h) = sup
µ∈G̃RC

µ(|C0| = ∞) (2.21)

and the auxiliary percolation probability

P̃∞(β, J, h) = inf
µ∈G̃RC

µ(|C0| = ∞). (2.22)

where C0 = C0(η) is the cluster that contains the origin 0 ∈ Z
d, and where we have restricted

ourselves to the set G̃RC of all translation invariant RC Gibbs measures. As we will see in
the next section (corollary to Theorem 3.1), the density P∞(β, J, h) is just the probability of
percolation in the measure µRCmaxwir, and is a nondecreasing, right continuous function of J .
Similarly, P̃∞(β, J, h) is the probability of percolation in the measure µRCfree. We also define the
critical coupling,

Jc(β, h) = inf{J ≥ 0: P∞(β, J, h) > 0}. (2.23)

It turns out that if P∞(β, J, h) is replaced by P̃∞(β, J, h) in the definition above, the value of
Jc(β, h) is unchanged, again by the corollary to Theorem 3.1.

Remark. For d ≥ 2 and q sufficiently large, P∞(β, J, 0) jumps from zero below Jc to a strictly
positive number at Jc. This corresponds to the so-called temperature driven first order phase
transition in the Potts model, whose existence was first proved in [19].

Theorem 2.5 Let β ≥ 0 and hm ∈ R, m = 1, . . . , q.
(i) For all J ≥ 0, there is at most one ES Gibbs measure with no infinite cluster.
(ii) If P∞(β, J, h) = 0, then

∣∣GES∣∣ = ∣∣GRC∣∣ = 1. In particular,
∣∣GES∣∣ = ∣∣GRC∣∣ = 1 if J < Jc.

(iii) If P∞(β, J, h) > 0, then the states µESm , m ∈ Qmax(h), are extremal translation invariant
ES Gibbs states with µESm (A∞1,m) = 1. In particular, there are at least q0 = |Qmax(h)| different
extremal translation invariant ES Gibbs states.

As mentioned above, the percolation probability P∞(β, J, h) is nondecreasing in J . The
last statement of the theorem therefore implies that there are at least q0 extremal translation
invariant ES Gibbs states when J > Jc. This raises the question of whether for |Qmax(h)| = 1
the ES Gibbs state is unique above Jc. As the next theorem shows, this is indeed the case, at
least if d = 2.

Theorem 2.6 Let β ≥ 0, and hm ∈ R, m = 1, . . . , q, and d = 2.
(i) If J �= Jc, then

∣∣GRC∣∣ = 1 and P∞(β, J, h) = P̃∞(β, J, h).
(ii) If J �= Jc and, in addition, |Qmax(h)| = 1, then

∣∣GES∣∣ = 1.

Remarks. (i) For the Ising model, the condition |Qmax(h)| = 1 means that h �= 0. Together
with FKG, the Lee-Yang theorem then implies that the claim (ii) is valid for d ≥ 2 and all
J ≥ 0, including J = Jc. Even though one might conjecture that this statement holds for
arbitrary q, since only one spin direction is preferred if |Qmax(h)| = 1, this is in fact not
true. Indeed, we show in [3] that the q-state Potts model has two coexisting phases at Jc for
sufficiently small fields preferring one of the q values m ∈ {1, . . . , q} over all others, provided q
is sufficiently large. However, we believe that for J �= Jc, |Qmax(h)| = 1 does imply uniqueness
for all q, even when d > 2.
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(ii) Theorem 2.6(i) and part of the statement in Theorems 2.5(ii) refer to the RC model
itself, and not the relationship between the ES and the RC model. As we will see in the proofs
of Theorems 2.5 and 2.6 in Sections 8 and 9, these statements remain true in the more general
context of the GRC model introduced in Section 1.

3. Monotonicity and Uniqueness of the Infinite Cluster

In this section, we define the generalized random cluster (GRC) model, and formulate several
results concerning the FKG properties and uniqueness of the infinite cluster in this model. The
GRC measure µGRCΛ,free is obtained by normalizing the weights

WGRC
Λ,free(η) = (eβJ − 1)|η|

∏
C(η)

Θfree
(
C(η)

)
, (3.1)

for any η ∈ {0, 1}B0(Λ). Here |η| is the number of bonds in the set {b ∈ B0(Λ): ηb = 1}, the
product runs over all connected components C(η) of the graph5 (Λ,Bocc(η) ∩ B0(Λ)), and

Θfree(C) =
q∑

m=1

qme
βhm|V(C)|, (3.2)

for any connected component C. The factors qm, m = 1, . . . , q, are assumed to be positive real
numbers such that ∑

m∈Qmax

qm ≥ 1. (3.3)

Similarly, the measure µGRCΛ,m is obtained by normalizing the weights WGRC
Λ,m defined for any

η ∈ {0, 1}B(Λ) by the formula

WGRC
Λ,m (η) = (eβJ − 1)|η|

∏
C(η)

ΘΛ,m
(
C(η)

)
, (3.4)

where |η| now stands for the number of bonds in the set {b ∈ B(Λ): ηb = 1}, the product
runs over all connected components C(η) of the graph (Λ̄,Bocc(η) ∩ B(Λ)), Λ̄ = Λ ∪ ∂Λ, and
ΘΛ,m(C) is defined as

ΘΛ,m(C) =

{
Θfree(C) V(C) ∩ Λc = ∅
eβhm|V(C)| otherwise.

(3.5)

As already pointed out for RC measures, the measures µGRCΛ,m are identical for all values m ∈
Qmax(h); we will use µGRCΛ,maxwir to denote any of them. Note also that the definitions (3.4) and
(3.5) reduce to the standard definition of wired measures for non-integer q when hm ≡ 0.

Finally, one can directly extend the definition (2.9) to get the weights WGRC
B

(ηB|ηBc),

WGRC
B (ηB|ηBc) = (eβJ − 1)|Bocc(ηB)∩B| ∏

C(η):V(C(η))∩V(B) 
=∅

q∑
m=1

qme
−β(hmax−hm)|V(C(η))|, (3.6)

yielding the measures µGRC
B

(ηB|ηBc) that define GRC Gibbs states with the help of DLR
equations of the type (2.12). GRC limit states are defined analogously to RC limit states, see
Remark (i) following Theorem 2.3.

5We recall that Bocc(η) denotes the set of bonds b with ηb = 1.
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Remarks. (i) It is easy to see that if we take qm = 1, m = 1, . . . , q, then the measures µGRCΛ,free
and µGRCΛ,m are just the RC marginals µRCΛ,free and µRCΛ,m, respectively.

(ii) It is instructive to consider the effects of particular boundary conditions on the measure
with weights (3.6). If we take B = B0(Λ) and ηBc ≡ 0, then we get the free measure µGRCΛ,free. If,
on the other hand, we take B = B(Λ) and ηBc ≡ 1, then we get the wired measure µGRCΛ,maxwir,
provided Λc is connected. If Λc is not connected, i.e., if Λ contains “holes,” then the boundaries
of these holes will be not be wired to each other. In this case, it will often be convenient to
introduce additional “ghost” bonds linking all of the components of the boundary. If, in
addition to the bonds in B(Λ)c, the ghost bonds are occupied, we get the maxwired state also
in this case.

(iii) Recall that in the standard RC model without magnetic fields it is possible to view the
wired state as a free state on a modified graph in which all of the boundary sites in ∂Λ have
been identified. However, in the case of general external fields, the two prescriptions produce
different states, i.e., setting all the sites at the boundary to a particular value produces a
different state from the free state on a graph in which all boundary sites have been identified.
In the former case, the collection {Ci} of all components of (Λ∪∂Λ,Bocc(η)∩B(Λ)) that touch
the boundary acquires the weight eβhmax

∑
i|V(Ci)|, while in the latter case, it acquires the weight∑

m eβhm(1+
∑

i|V(Ci)\Λc|).
Note that it is the former prescription that we use to define the m-wired GRC measure.

This measure is natural for two reasons: it is the marginal of the corresponding ES measure
if all qm’s are one, and, for m ∈ Qmax(h), this measure is maximal in the FKG order, whereas
the alternative one is not, at least in a finite volume.

To state our results on FKG properties, we introduce the standard partial order ≺ on
{0, 1}B(Zd) by setting η ≺ η′ whenever ηb ≤ η′b for every b ∈ B(Zd). Since we shall also study
monotonicity properties in dependence on (hm) we need to introduce a partial order on the
external fields. Given two sets of fields (hm) and (h′m), we define

(hm) � (h′m) iff hk − hl ≤ h′k − h′l for all k, l = 1, . . . , q with hk − hl > 0. (3.7)

Note that � is indeed a partial order on q-tuples of real numbers, in particular, (hm) � (h′m)
and (h′m) � (h′′m) imply (hm) � (h′′m).

Recall the following definition:

Definition. Let Ω be a measurable space endowed with the partial order ≺. Then a measure µ
on Ω is said to be FKG if µ(FG) ≥ µ(F )µ(G) for all measurable functions F,G : Ω → R that
are increasing with respect to ≺. Moreover, if Ω is of the form Ω = ×b∈BΩb, then µ is said to
be strong FKG if µ( · |A) is FKG for all cylinder events of the form A = {η : ηb = αb ∀b ∈ B̃},
where B̃ ⊂ B is finite and αb ∈ Ωb for all b ∈ B̃.

Theorem 3.1 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the
parameters qm obey the condition (3.3). Then:
(i) For each finite Λ ⊂ Z

d, the measures µGRCΛ,free and µGRCΛ,maxwir are strong FKG.
(ii) For each quasilocal function f , the limits

µGRCmaxwir(f) = lim
Λ↗Zd

µGRCΛ,maxwir(f) (3.8)
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and

µGRCfree (f) = lim
Λ↗Zd

µGRCΛ,free(f) (3.9)

exist and are translation invariant.
(iii) Let µ be a GRC limit state or a GRC Gibbs state. Then

µGRCfree ≤
FKG

µ ≤
FKG

µGRCmaxwir. (3.10)

(iv) Suppose J1 < J2. Let let µ
GRC,J1
maxwir denote the wired state at J = J1 and let µ

GRC,J2
free denote

the free state at J = J2. Then

µGRC,J1maxwir ( · ) ≤
FKG

µGRC,J2free ( · ). (3.11)

(v) Let (hm) � (h′m) be two sets of external fields. Then

µ
GRC,(hm)
free ( · ) ≤

FKG
µ
GRC,(h′

m)
free ( · ) (3.12)

µ
GRC,(hm)
maxwir ( · ) ≤

FKG
µ
GRC,(h′

m)
maxwir ( · ). (3.13)

Remark. Note that (3.11) can be extended via (3.10) to any pair of GRC Gibbs measures at
J = J1, resp. J = J2.

The following corollary is an immediate consequence of the above theorem. Before stating
it, we recall the definitions (2.21), (2.23) and (2.22) of P∞(β, J, h), Jc, and P̃∞(β, J, h), respec-
tively. For the GRC measures considered here, the definitions (2.21) and (2.22) are obviously
modified by replacing the space G̃RC of translation invariant RC Gibbs states by the space
G̃GRC of translation invariant GRC Gibbs states.

Corollary. Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the
parameters qm obey the condition (3.3). Then:
(i) P∞(β, J, h) = µGRCmaxwir(|C0| = ∞).
(ii) P̃∞(β, J, h) = µGRCfree (|C0| = ∞).
(iii) J �→ P∞(β, J, h) is a nondecreasing, right continuous function.
(iv) J �→ P̃∞(β, J, h) is a nondecreasing function, which is continuous and equal to P∞(β, J, h)
whenever J �→ P∞(β, J, h) is continuous.
(v) P∞(β, J, h) = P̃∞(β, J, h) = 0 if J < Jc, while both P∞(β, J, h) > 0 and P̃∞(β, J, h) > 0 if
J > Jc.

The next theorem is the only statement in this section that cannot be generalized to the
GRC models.

Theorem 3.2 Let β ≥ 0, J ≥ 0, and hm ∈ R, m = 1, . . . , q. Let ν ∈ GES be arbitrary and
let µ denote its η-marginal. Then

µ( · ) ≤
FKG

µRCmaxwir( · ). (3.14)

If, in addition, either |Qmax(h)| = 1 or µ(N∞ ≤ 1) = 1, then

µ( · ) ≥
FKG

µRCfree( · ). (3.15)
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The following theorem states our results on the uniqueness of the infinite cluster.

Theorem 3.3 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the
parameters qm obey the condition (3.3). Then all translation invariant GRC Gibbs states and
all translation invariant GRC limit states have at most one infinite cluster with probability
one.

Remark. We will prove the above theorem by first establishing the so-called finite energy condi-
tion for µ, and then using the results of [6]. Unfortunately, we were unable to use this strategy
to prove uniqueness of the infinite cluster for random cluster marginals of translation invariant
ES Gibbs measures. In fact, it is not hard to see that there are ES Gibbs states whose random
cluster marginals do not satisfy the finite energy condition. While these counterexamples stem
from non-translation invariant ES Gibbs states obtained by so-called Dobrushin boundary con-
ditions, we do not see how to use the additional assumption of translation invariance to get a
proof of the finite energy condition.

In Section 7 we will use the uniqueness of the infinite cluster to prove that the finite volume
specifications of µGRCfree and µGRCmaxwir, and more generally of any translation invariant GRC limit
state, are “almost surely quasilocal” in the terminology of [21] and [16]. As a corollary of this
statement, we will prove the following result.

Corollary. Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the
parameters qm obey the condition (3.3). Then all translation invariant GRC limit states are
GRC Gibbs states.

The last theorem in this section addresses the question under which conditions the condi-
tional expectations of a GRC Gibbs state µ are given by the measures µGRC

B
(·|ηBc).

Theorem 3.4 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the
parameters qm obey the condition (3.3). Let µ be a GRC Gibbs state with µ(N∞ ≤ 1) = 1,
let B be a finite subset of B0(Zd), and let f be a cylinder functions depending only on the
configuration ηB. Then

µ(f |ηBc) = µGRCB (f |ηBc) µ-a.s. (3.16)

4. FKG Properties of Generalized Random Cluster Measures

In this section we prove Theorem 3.1. In the process we formulate and prove a lemma
concerning monotonicity of GRC states in the volume (Lemma 4.1). We will also formulate
and prove a second result (Lemma 4.2) concerning domination of states with general boundary
conditions, which will be used in the proof of Theorem 3.2 in the next section.
Proof of Theorem 3.1(i). We consider Λ to be fixed and omit it temporarily from the notation.
In order to prove the strong FKG property of µGRCΛ,free and µGRCΛ,m , let us recall a necessary and
sufficient condition [10], the so-called lattice condition

WGRC
free
(
η(1) ∨ η(2)

)
WGRC
free
(
η(1) ∧ η(2)

) ≥ WGRC
free
(
η(1)
)
WGRC
free
(
η(2)
)

(4.1)

for any pair of configurations η(1) and η(2), and similarly for WGRC
m . Here η(1) ∨ η(2) denotes

the maximum and η(1) ∧ η(2) the minimum of η(1) and η(2).
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It turns out that to verify (4.1), it suffices to consider η(1) and η(2) that differ just at two
bonds. Indeed (see e.g., [7]), let

R(ζ,η) =
WGRC
free (ζ ∨ η)
WGRC
free (ζ)

(4.2)

and note that (4.1) can be rewritten as R(η(1),η(2)) ≥ R(η(1) ∧ η(2),η(2)
)
. Hence, the lattice

condition (4.1) is true once we verify that R(ζ,η) is increasing in ζ, for any fixed η. Let us
introduce, for any bond b, the configuration η(b) by setting η(b)b = 1 and η

(b)
b′ = 0 for any b′ �= b.

Ordering the set Bocc(η) into a sequence (b1, . . . , b|Bocc(η)|), we have

R(ζ,η) =
|Bocc(η)|∏
k=1

R(ζ ∨ η(b1) ∨ · · · ∨ η(bk−1),η(bk)
)
. (4.3)

Hence, it suffices to prove monotonicity of R(ζ,η) for any η that is zero except possibly at one
bond. Moreover, it suffices to prove the growth when flipping ζ at a single bond from 0 to 1, i.e.,
ζ with ζb = 0 to ζb = ζ ∨η(b). The verification of the needed bound, R(ζb,η(b

′)) ≥ R(ζ,η(b
′)),

for any pair of bonds b and b′, now boils down to the special case of (4.1) with η(1) = ζb and
η(2) = ζ ∨ η(b

′) that differ only at bonds b and b′. Since η(1) = η(2) if b = b′, we may further
assume without loss of generality that b �= b′.

Let thus η(1) and η(2) be such that

η
(1)
b = η

(2)
b b �= b1, b2

η
(1)
b1

= η
(2)
b2

= 0 η
(1)
b2

= η
(2)
b1

= 1.
(4.4)

Since the number of 1-bonds is equal on both sides of (4.1), the nontrivial issue is therefore to
check (4.1) for the product over the connected components. Let us suppose, without loss of
generality, that there exist disjoint connected components A1 and A2 of η(1) ∧ η(2) (possibly
isolated sites) that become connected when b1 is flipped from 0 to 1, and, similarly, B1, B2 for
the components connected by flipping b2. (The only other possibility is that both endpoints
of b1, or alternatively b2, lie in a single component of η(1) ∧ η(2), in which case the two sides
of (4.1) are equal.) With this proviso, there are only three generic situations:

(a) V(A1) ∪ V(A2) is disjoint from V(B1) ∪ V(B2),
(b) V(A1) = V(B1) but V(A2) ∩ V(B2) = ∅,
(c) V(A1) = V(B1) and V(A2) = V(B2).

We will prove (4.1) separately for (a), (b), and (c). For notational brevity, we use Θ(C) for
both Θfree(C) and Θm(C).

In the case (a) both sides of (4.1) reduce to the same term

Θ(A1 ∪A2)Θ(B1 ∪B2)Θ(A1)Θ(A2)Θ(B1)Θ(B2). (4.5)

Hence, (4.1) is fulfilled with the equality sign.
Next, consider (b). We denote by C the common component (i.e., C = A1 = B1) and use

A and B to denote the other components. Then (4.1) boils down to the inequality

Θ(C)Θ(C ∪A ∪B) ≥ Θ(C ∪A)Θ(C ∪B). (4.6)
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Let us first consider the free boundary conditions. Using, for any m ∈ {1, . . . , q}, the notation

am = eβhm|V(A)|,

bm = eβhm|V(B)|,

cm = eβhm|V(C)|,

(4.7)

the condition (4.6) is equivalent to(
q∑

m=1

qmcm

)(
q∑

m′=1

qm′am′bm′cm′

)
≥
(

q∑
m=1

qmamcm

)(
q∑

m′=1

qm′bm′cm′

)
. (4.8)

Let us assume that the fields are ordered in an increasing order, h1 ≤ h2 ≤ · · · ≤ hq. As a
consequence, a1 ≤ a2 ≤ · · · ≤ aq and b1 ≤ b2 ≤ · · · ≤ bq. By writing the expression (4.8) as an
inequality for a bilinear form in qmcmqm′cm′ , the sufficient requirement that all the independent
coefficients of this form be non-negative reduces to

(am − am′)(bm − bm′) ≥ 0 ∀m,m′, (4.9)

which is immediate by our preceding assumptions.
Turning to m̄-wired boundary conditions, m̄ ∈ Qmax(h), we will distinguish several cases. If

V(A) ∩ Λc = ∅, V(B) ∩ Λc = ∅, as well as V(C) ∩ Λc = ∅, we have exactly the same situation
as for free boundary conditions. If V(C)∩Λc �= ∅, both sides of (4.6) are equal to cm̄am̄bm̄cm̄.
If V(A) ∩ Λc = ∅, V(C) ∩ Λc = ∅, and V(B) ∩ Λc �= ∅, we need to show that(

q∑
m=1

qmcm

)
am̄bm̄cm̄ ≥

(
q∑

m=1

qmamcm

)
bm̄cm̄. (4.10)

This follows once we realize that hm̄ = hmax implies am ≤ am̄ for any m. Similarly with the
role of A and B interchanged. Finally, if V(C)∩Λc = ∅, but V(A)∩Λc �= ∅ and V(B)∩Λc �= ∅,
we have to verify that (

q∑
m=1

qmcm

)
am̄bm̄cm̄ ≥ am̄cm̄bm̄cm̄. (4.11)

This is clearly true if we use the assumption that
∑
m∈Qmax(h) qm ≥ 1 and the fact that cm = cm̄

whenever m ∈ Qmax(h).
It remains to establish (4.1) under (c). In this case, there are only two components in the

game: A and B. Inequality (4.1) is then implied by Θ(A ∪ B) ≤ Θ(A)Θ(B). Let us use
the definitions (4.7) of am and bm. We consider three cases. First, in the case of either free
boundary conditions, or wired boundary conditions with the additional conditions V(A)∩Λc =
∅ and V(B) ∩ Λc = ∅, the relation we want boils down to the inequality

q∑
m=1

qmambm ≤
(

q∑
m=1

qmam

)(
q∑

m′=1

qm′bm′

)
, (4.12)

which is obviously satisfied since bm ≤∑m′∈Qmax(h) qm′bm̄. Second, for wired boundary condi-
tions under the additional conditions V(A)∩Λc = ∅ and V(B)∩Λc �= ∅, we get the manifestly
correct inequality

am̄bm̄ ≤
(

q∑
m=1

qmam

)
bm̄. (4.13)
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Finally, for wired boundary conditions with the additional conditions V(A) ∩ Λc �= ∅ and
V(B) ∩ Λc �= ∅, we get the identity am̄bm̄ = am̄bm̄.

Remark. The necessity of hm = hmax, for the strong FKG property of µGRCΛ,m to hold, arises from
(4.6). Namely, suppose that B connects to the boundary (i.e., V(B)∩Λc �= ∅), whereas A and
C do not. Then (4.6) reduces to (4.10). It is not difficult to convince oneself that choosing
C sufficiently large one can make (4.10) be satisfied for all A only when am̄ = maxm am.
Consequently, hm̄ must be equal to hmax for the lattice condition (4.1) or, equivalently, the
strong FKG condition to hold.

Lemma 4.1 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the
parameters qm obey the condition (3.3). Further, let Λ ⊂ ∆ ⊂ Z

d be two finite sets. Then

µGRCΛ,free( · ) ≤
FKG

µGRC∆,free( · ) (4.14)

and

µGRCΛ,maxwir( · ) ≥
FKG

µGRC∆,maxwir( · ). (4.15)

Proof. Using Theorem 3.1(i), the inequality (4.14) follows immediately from the fact that

µGRCΛ,free( · ) = µGRC∆,free( · | DΛ), (4.16)

where DΛ is the FKG decreasing event

DΛ =
{
η : ηb = 0∀b ∈ B0(Λ)c

}
. (4.17)

For maxwired boundary conditions, the proof is more complicated, since conditioning on
the FKG increasing event

OΛ =
{
η : ηb = 1∀b ∈ B(Λ)c

}
(4.18)

leads to the state µGRCΛ,maxwir only if Λ is a volume without “holes”, i.e. if Λc has only one
(infinite) component. If Λc has finite components H1, . . . , Hk, we use the following trick: for
each “hole” Hi, we introduce an additional bond bi with one endpoint in Hi and the other
in ∆c. Setting

B
∗(∆) = B(∆) ∪ {b1, . . . , bk}, (4.19)

we then define µ̄GRC∆,maxwir as the maxwired GRC measure on the graph (∆̄,B∗(∆)), where as
before ∆̄ = ∆ ∪ ∂∆. With this definition we get

µGRC∆,maxwir( · ) = µ̄GRC∆,maxwir
( · | ηb = 0 ∀b ∈ B

∗(∆) \ B(∆)
)

≤
FKG

µ̄GRC∆,maxwir
( · | ηb = 1 ∀b ∈ B

∗(∆) \ B(∆)
)

≤
FKG

µ̄GRC∆,maxwir
( · | ηb = 1 ∀b ∈ (B∗(∆) \ B(∆)

) ∪ B(Λ)c
)

= µGRCΛ,maxwir( · ),

(4.20)

proving the desired inequality (4.15). Here the first inequality uses that the strong FKG
measures, conditioned on taking a fixed configuration ηA in a set A, are FKG increasing in
ηA, while the second inequality follows by the FKG property of µ̄GRC∆,maxwir.
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Proof of Theorem 3.1(ii). As a consequence of (4.14) and (4.15), the net (µGRCΛ,free) (resp.
(µGRCΛ,maxwir)) increases (resp. decreases) as Λ increases (in the order defined by the set inclu-
sion), yielding the existence of the desired limits as well as their translation invariance for all
monotone quasilocal functions. Since the latter generate all quasilocal functions, the claim is
established.
Proof of Theorem 3.1(iii). We first prove that for any finite set of bonds B, the measure
µGRC

B
(ηB|ηBc) is strong FKG. To this end, we express µGRC

B
(ηB|ηBc) as a limit of finite volume

measures which can be expressed as conditionals of the finite volume measures µGRC∆,free. Using
that µGRC∆,free is strong FKG we then will conclude that µGRC

B
(ηB|ηBc) is strong FKG.

Let ∆ be a finite subset of Z
d, let η ∈ {0, 1}B0(Zd) and let

η
(∆)
b =

{
ηb b ∈ B0(∆)
0 otherwise.

(4.21)

Then we have WGRC
B0(∆)

(
η
(∆)
B0(∆)

|η(∆)
B0(∆)c

)
= e−βhmax|∆|WGRC

∆,free

(
η(∆)

)
. Consequently,

µGRC
B0(∆)

( · |η(∆)
B0(∆)c

)
= µGRC∆,free

( · |η(∆)
B0(∆)c

)
. (4.22)

Since the latter measure is strong FKG and since (µGRC
B

) form a consistent family of specifi-
cations, µGRC

B
( · |η(∆)

Bc ) is strong FKG as well for any B ⊂ B(∆) (use that conditioned strong
FKG measures are still strong FKG). The strong FKG property of the measure µGRC

B
(ηB|ηBc)

now follows from the fact that µGRC
B

( · |η(∆)
Bc ) → µGRC

B
( · |ηBc) as ∆ ↗ Z

d, which in turn is
a consequence of the observation that for each η there is a finite ∆ such that the number of
components of the graph (∆,Bocc(η(∆))) that reach from V(B) to the boundary of ∆ is equal
to the number of infinite components of (Zd,B0(η)) that touch V(B). (Here we used that there
are only finitely many infinite clusters connected to B.)

Hence µGRC
B

( · |ηBc) is strong FKG for all η and all finite sets of bonds B. In particular,
µGRC

B
( · |ηBc) is increasing in the boundary condition (the specifications are consistent), and

µGRCB ( · |η(0)
Bc ) ≤

FKG
µGRCB ( · |ηBc) ≤

FKG
µGRCB ( · |η(1)

Bc ), (4.23)

where η(i) is the configuration with η(i) = i for all b ∈ B0(Zd). Choosing B = B(Λ) and
continuing by further conditioning as in the proof of (4.14) and (4.20), we get

µGRCΛ,free( · ) ≤
FKG

µGRC
B(Λ)( · |ηB(Λ)c) ≤

FKG
µGRCΛ,maxwir( · ). (4.24)

If µ is a Gibbs measure, the bound (4.24) and the DLR equation (2.12) imply that

µGRCΛ,free( · ) ≤
FKG

µGRC( · ) ≤
FKG

µGRCΛ,maxwir( · ). (4.25)

Taking the limit Λ ↗ Z
d, we get statement (iii) for an arbitrary GRC Gibbs state µ.

In order to prove statement (iii) for a GRC limit state, we use that for any sequence of
finite sets Bn with Bn ↗ B0(Zd), we can find a sequence Λn of finite subsets in Z

d such that
Λn ↗ Z

d and B(Λn) ⊂ Bn. Given such a sequence and a sequence of boundary condition η(n),
we then proceed as above to bound

µGRCΛn,free( · ) ≤
FKG

µGRCBn
( · |η(n)

Bn(Λ)c
) ≤
FKG

µGRCΛn,maxwir( · ). (4.26)
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Taking the limit n → ∞, this proves statement (iii) for an arbitrary RC limit state.
Proof of Theorem 3.1(iv). Let g be a monotone increasing function, depending only on bonds
B0(∆) for some finite ∆. For each finite Λ ⊂ Z

d define

gΛ =
∑

x : τx(∆)⊂Λ
g ◦ τx, (4.27)

where τ is the shift operator. Let µGRC,J1,αΛ,free and µGRC,J1,αΛ,maxwir be the GRC measures with free and
maxwired boundary condition and coupling J = J1, however, with the weights in (3.1) and
(3.4) multiplied by the function eαgΛ . We then consider the generating function

Z
(α)
Λ,free =

∑
η∈B0(Zd)

eαgΛ(η)(eβJ − 1)|η|
∏
C(η)

Θfree(C(η)), (4.28)

where, as in formula (3.1), the product runs over all connected components C(η) of the graph
(Λ,Bocc(η)∩B0(Λ)). Similarly, we introduce the generating function Z

(α)
Λ,maxwir for the moments

of gΛ with respect to µGRCΛ,maxwir. Consider now a volume Λ that is a disjoint union of two volumes
Λ1 and Λ2. Then we have the following submultiplicative bound

Z
(α)
Λ,free ≥ Z

(α)
Λ1,free Z

(α)
Λ2,free e

O(α|B(Λ1)∩B(Λ2)|), (4.29)

which can be easily obtained by restricting the sum in (4.28) to those η which are zero on the
bonds in B(Λ1) ∩ B(Λ2), and observing that

gΛ = gΛ1 + gΛ2 +
∑

x : τx(∆)⊂Λ,
τx(∆)∩Λ1 	=∅,
τx(∆)∩Λ2 	=∅

g ◦ τx. (4.30)

By standard subadditivity arguments, it follows from (4.29) that the “free energy”

f(α) = lim
Λ↗Zd

1
|Λ| logZ

(α)
Λ,free (4.31)

exists and is convex in α. In (4.31), we assume that the limit is taken over cubes of the form
Λn = {−n, . . . , n}d.

The same limit is obtained if Z(α)Λ,free is replaced by Z(α)Λ,maxwir. Indeed, observing that Z(α)Λ,maxwir
can be bounded from below by restricting the sum over configurations to those for which η is
0 on B(Λ) \ B0(Λ), we get

Z
(α)
Λ,maxwir ≥ eO(α|∂Λ|)Z(α)Λ,free

∏
x∈∂Λ

ΘΛ,m({x}), (4.32)

provided m ∈ Qmax. To get an upper bound on Z
(α)
Λ,maxwir, observe that ΘΛ,m ≤ Θfree by our

assumption (3.3). As a consequence,

Z
(α)
Λ,maxwir ≤ eO(α|∂Λ|)Z(α)Λ̄,free, (4.33)

where, as before, Λ̄ = Λ ∪ ∂Λ. While Λ̄ is not of the form {−n, . . . , n}d required for the
existence of the limit (4.31), it can easily bounded by a term of this form times a boundary
term with the help of (4.29). We therefore have shown that Z(α)Λ,maxwir and Z

(α)
Λ,free give rise to

the same free energy f(α).
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Moreover, by differentiating, we find that

lim sup
Λ↗Zd

µGRC,J1Λ,maxwir

( gΛ
|Λ|
)
≤ df

dα+
(α1) ≤ df

dα−
(α2) ≤ lim inf

Λ↗Zd
µGRC,J1,αΛ,free

( gΛ
|Λ|
)
, (4.34)

where 0 < α1 < α2 < α are arbitrary.
Since gΛ is increasing, we have from (4.15) and the translation invariance of µGRC,J1maxwir that the

left hand side of (4.34) equals µGRC,J1maxwir (g). Thus we just need to show that if α is small enough
then µGRC,J1,αΛ,free is FKG dominated by µGRC,J2Λ,free . To this end recall that the second measure
can be directly generated by the weights W J2

Λ,free defined in (3.1), while the first one can be
generated by the weights eαgΛW J1

Λ,free. As a consequence, we have

µGRC,J1,αΛ,free ( · ) = µGRC,J2Λ,free ( ·GΛ)
µGRC,J2Λ,free (GΛ)

, (4.35)

where

GΛ(η) = eαgΛ(η)
W J1
Λ,free(η)

W J2
Λ,free(η)

. (4.36)

Hence it suffices to ensure that the function η �→ GΛ(η) is monotone decreasing in η. Let us
define the variance of g by the formula

var(g) = sup
b̄

sup
η,η′ : ηb=η′

b

∀b
=b̄

∣∣ g(η)− g(η′)
∣∣. (4.37)

Note that var(g) is the maximum amount that g can change by flipping a single bond. Since

W J1
Λ,free

W J2
Λ,free

(η) =
[
eβJ1 − 1
eβJ2 − 1

]|η|
, (4.38)

the monotonicity of GΛ is guaranteed for instance by eαvar(g)|B0(∆)|(eβJ1 − 1) ≤ (eβJ2 − 1). For
J1 < J2, this in turn is achieved by taking α small enough. Thus, for α sufficiently small and
positive, we have

µGRC,J1maxwir (g) ≤ lim inf
Λ↗Zd

µGRC,J1,αΛ,free

( gΛ
|Λ|
)
≤ lim inf

Λ↗Zd
µGRC,J2Λ,free

( gΛ
|Λ|
)
≤ µGRC,J2free (g), (4.39)

where the last inequality follows from µGRC,J2Λ,free
≤
FKG µGRC,J2free and the translation invariance of

µGRC,J2free . Since g was arbitrary, (3.11) is established.

Before proving item (v) of Theorem 3.1, let us present an elementary argument showing why
our definition of partial order on the external fields is the only correct one, at least provided
we stipulate that it be independent of the volume, β > 0, and the values of (qm) (however,
such that the strong FKG condition is still satisfied).

Let Λ = {x, y}, where x and y are nearest neighbors, and consider the event {ηb = 1} that
the bond b = 〈x, y〉 is occupied. Then

µ
GRC,(hm)
{x,y},free (ηb = 1) = f

(‖a‖2
‖a‖1
)
, (4.40)
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where f(x) = x2/(1 + x2) and where ‖ · ‖1 and ‖ · ‖2 are the .1 and .2 norms of the vector
a = (eβh1 , . . . , eβhq) in the metric with weights (qm), i.e.,

‖a‖1 =
q∑

m=1

qme
βhm and ‖a‖22 =

q∑
m=1

qme
2βhm . (4.41)

Since x �→ f(x) is strictly increasing, µGRC,(hm)
{x,y},free increases with (hm) if and only if ‖a‖2‖a‖1 does. If

this is to hold independently of the qm’s, then also

lim
αqk=ql→∞

qk
‖a‖22
‖a‖21

=
1 + αe−2β(hk−hl)

[1 + αe−β(hk−hl)]2
(4.42)

must be increasing for all α > 0. (In the above limit, we fix all qm’s with m �= k, l.)
We want to show that the condition

h′k − h′l ≥ hk − hl whenever hk − hl > 0 (4.43)

is necessary for the claim (3.12). To this end, we first show that the condition

h′k − h′l ≥ 0 whenever hk − hl > 0 (4.44)

is necessary for (3.12) to hold. To see this, assume hk > hl and h′k − h′l < 0. Then for large
enough β, the r.h.s. of (4.42) is close to 1 for (hm) and close to α−1 for (h′m). Taking α > 1, we
see that the desired monotonicity of µGRC,(hm)

{x,y},free (ηb = 1) is violated. Hence the condition (4.44)
is necessary.

Now take α = 1 in (4.42). This leads to the function x �→ 1
2 cosh(x)[cosh(x/2)]

−1, which is
even and strictly increasing for x > 0. Hence (4.42) increases under the replacement (hm) →
(h′m) if and only if |h′k−h′l| ≥ |hk−hl|, which together with (4.44) gives the necessity of (4.43).

The following argument shows that the condition (4.43) it is also sufficient.
Proof of Theorem 3.1(v). Let (hm) and (h′m) be two sets of fields such that (hm) � (h′m). In
order to prove (3.12) and (3.13), we need to establish that the functions

η �→ W
GRC,(h′

m)
Λ,free (η)

W
GRC,(hm)
Λ,free (η)

= Ξfree(η), η �→ W
GRC,(h′

m)
Λ,m (η)

W
GRC,(hm)
Λ,m (η)

= Ξm(η) (4.45)

are monotone increasing with η (the rest follows by (3.8), (3.9) and an inequality of (4.35)-
type). It suffices to study the single-bond flips. Let b = 〈x, y〉 be a nearest-neighbor bond
such that ηb = 0 and let ηb be the configuration obtained by flipping ηb to 1. There are two
scenarios: (1) x ↔ y in η, (2) x � y in η.

In the case (1), Ξfree(η) = Ξfree(ηb), as follows by the inspection of (3.2), and similarly
for the maxwired boundary condition. In the case (2), there are two components A and B
in η, each at one end of the bond b. By flipping ηb to 1, A and B become connected in one
component that we denote by C. Note that |V(C)| = |V(A)| + |V(B)|. Since the remaining
components are not affected by this flip, it is easily seen that

Ξfree(ηb)
Ξfree(η)

=
Θ
GRC,(hm)
free (A)ΘGRC,(hm)

free (B)

Θ
GRC,(h′

m)
free (A)ΘGRC,(h

′
m)

free (B)

Θ
GRC,(h′

m)
free (C)

Θ
GRC,(hm)
free (C)

, (4.46)

and similarly for the maxwired boundary condition. We are thus reduced to showing that the
r.h.s. of (4.46) is no less than 1, and again similarly for maxwired.
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We begin with the free boundary condition. Let am, bm, cm have literally the same meaning
as in (4.7) and let a′m, b′m, c′m denote the corresponding quantities for (hm) replaced by (h′m).
Note that cm = ambm and c′m = a′mb′m. Then the condition that the r.h.s. of (4.46) be no less
than 1 reads q∑

j=1

qja
′
j

( q∑
k=1

qkb
′
k

)(
q∑
l=1

qlalbl

)
≤
 q∑
j=1

qjaj

( q∑
k=1

qkbk

)(
q∑
l=1

qla
′
lb
′
l

)
. (4.47)

We will prove this in two steps; first we “move” the prime from aj ’s in the first bracket on
the l.h.s. to the ones in the last bracket and then do the same with the prime over bk in the
second bracket on the left. Consider the identity

a′jalbl + a′lajbj =
1
2(a
′
jal + aja

′
l)(bl + bj) + 1

2(a
′
jal − aja

′
l)(bl − bj). (4.48)

Observing that (hm) � (h′m) implies

(a′jal − aja
′
l)(bl − bj) ≤ 0 ≤ (a′jal − aja

′
l)(bj − bl), (4.49)

we can bound the r.h.s. of (4.48) by interchanging bl and bj . This allows us to conclude that

l.h.s. of (4.47) ≤
 q∑
j=1

qjaj

( q∑
k=1

qkb
′
k

)(
q∑
l=1

qla
′
lbl

)
. (4.50)

In order to perform the same trick on b′k, which will lead to the desired formula (4.47), we will
need that h′k − h′l > 0 implies h′k − h′l ≥ hk − hl. After a moment’s thought, the latter is a
trivial consequence of our assumption (3.7).

In the case of maxwired boundary condition, let both measures be defined using the same
boundary “value” m with hm = hmax and h′m = h′max (such a choice always exists, due to
(hm) � (h′m)). We need to distinguish whether any of the components A, B connects to the
boundary or not. If V(A) ∩ ∂Λ = ∅ and V(B) ∩ ∂Λ = ∅, we are in the same situation as for
the free boundary condition. If V(A) ∩ ∂Λ �= ∅ but V(B) ∩ ∂Λ = ∅, then we have to check the
inequality

a′mambm

(
q∑
k=1

qkb
′
k

)
≤ a′mamb

′
m

(
q∑
k=1

qkbk

)
. (4.51)

This is implied by the inequality bmb
′
k ≤ b′mbk, which in turn follows from the assumption

(hm) � (h′m) and the fact that hm = hmax and h′m = h′max. In the case when V(A) ∩ ∂Λ �= ∅
and V(B)∩ ∂Λ �= ∅, (4.47) (modified for the m-wired boundary condition) is fulfilled with the
equality sign.
Proof of Corollary to Theorem 3.1. Items (i) and (ii) are direct consequences of (3.10). Since
µGRCΛ,maxwir(0 ↔ Λc) ↓ µGRCmaxwir(0 ↔ ∞) by Lemma 4.1, the claim (iii) follows from the fact that
a monotone decreasing sequence of monotone increasing continuous functions (of parameter
J in our case) has a right continuous limit. To prove claims (iv) and (v), we note that the
map J �→ P̃ (β, J, h) is non-decreasing. By (3.10) and (3.11), one has P̃ (β, J, h) ≤ P (β, J, h)
for all J and P̃ (β, J2, h) ≥ P (β, J1, h) for all J1 < J2, which implies the remaining part of (iv).
Combining the monotonicity of P (β, J, h) and P̃ (β, J, h) with the above two inequalities, we
get (v).

We close this section with an FKG domination lemma which will be used to prove Theo-
rem 3.2 in the next section. We need some notation. First, for a finite set Λ and any subset



22 M. BISKUP, C. BORGS, J.T. CHAYES, R. KOTECKÝ

D ⊂ ∂Λ, where, as before, ∂Λ = {x ∈ Z
d|dist(x,Λ) = 1}, we define the D-maxwired measure

in the volume Λ as the measure

µGRCΛ,D,maxwir(·) = µGRCΛ,maxwir
( · | ηb = 0 ∀b ∈ B(Λ) \ B0(Λ ∪D)

)
. (4.52)

Note that µGRCΛ,D,maxwir(·) is identical to the free measure µGRCΛ,free(·) if D = ∅ and identical to the
maxwired measure µGRCΛ,maxwir(·) if D = ∂Λ.

We also generalize the m-wired measure µGRCΛ,m . To this end we introduce, for any finite
volume Λ ⊂ Z

d and any configuration σ : ∂Λ → {1, 2, . . . , q}, a measure µGRCΛ,σ that is obtained
by normalizing the weight

WGRC
Λ,σ (η) = (eβJ − 1)|η|

∏
i<j

1l{∂iΛ�∂jΛ}(η)
∏
C(η)

ΘΛ,σ
(
C(η)

)
. (4.53)

Here ∂iΛ is the set of all x ∈ ∂Λ such that σx = i, ∂iΛ � ∂jΛ is the event that the sets ∂iΛ
and ∂jΛ are not connected by a path of occupied bonds, and

ΘΛ,σ(C) =

{
Θfree(C) V(C) ∩ Λc = ∅
eβhm|V(C)| V(C) ∩ ∂mΛ �= ∅. (4.54)

It is not hard to see that for the standard RC model (with qm = 1 for all m = 1, 2, . . . , q)
µRCΛ,σ is in fact the RC marginal of µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c), while µRCΛ,D,maxwir is the RC marginal
of µESΛ,B( · |σΛc ,ηBc), provided B = B0(Λ) ∪ (B(Λ) ∩ B(D)), ηB(Λ)\B = 0 and σx = m for some
(x-independent) m ∈ Qmax and all x ∈ D.

The measures µGRCΛ,σ and µGRCΛ,D,maxwir satisfy the following FKG bounds:

Lemma 4.2 Let Λ be a finite set. Then for any σ on Λc, we have

µGRCΛ,σ ( · ) ≤
FKG

µGRCΛ,maxwir( · ). (4.55)

Moreover, let D ⊂ ∂Λ. Then

µGRCΛ,free( · ) ≤
FKG

µGRCΛ,D,maxwir( · ) ≤
FKG

µGRCΛ,maxwir( · ). (4.56)

Proof. Using the representation (4.53), it is easy to see that the measure µGRCΛ,σ can be recast
as

µGRCΛ,σ ( · ) = µGRCΛ,maxwir( · g)

µGRCΛ,maxwir( g)
, (4.57)

where

g(η) =
∏
i<j

1l{∂iΛ�∂jΛ}(η)
∏
m

∏
C :

V(C)∩∂mΛ
=∅

e−(hmax−hm)|V(C)| (4.58)

for any η ∈ {0, 1}B(Λ). It turns out that the function g is FKG decreasing. Indeed, each
indicator 1l{∂iΛ�∂jΛ}(η) is clearly decreasing. The same is true for the remaining factor as is
seen by noting that ∑

C :
V(C)∩∂mΛ
=∅

|V(C)|, (4.59)
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being equal to the number of sites connected to ∂Λm, is an increasing function of η. Since
hmax ≥ hm and since the product of non-negative decreasing functions is decreasing, the
monotonicity of g is established. Since µGRCΛ,maxwir is FKG, (4.55) is proved.

To prove (4.56), it is enough to observe that the right hand side of (4.52) is FKG increasing
in D, since µGRCΛ,D,maxwir is FKG and the event {η : ηb = 0 ∀b ∈ B(Λ) \ B0(Λ ∪ D)} is FKG
decreasing.

5. The color(s) of the infinite cluster(s)

In this section we prove Theorem 3.2. Since this result uses ES measures in its very for-
mulation, we return to the standard RC measures (with qm = 1, m = 1, . . . , q, in (3.2)) and
prove the results only for them. In addition to Lemma 4.2, the second part of Theorem 3.2
requires some control of the possible values of the spins that can be assumed on the infinite
clusters. To state the theorem precisely, we introduce the notation S(σ,η) for the set of
possible spin values assumed on the infinite clusters in a configuration (σ,η). (Observe that
since ν

({(σ,η) : σx �= σy, η〈x,y〉 = 1}) = 0 for each ν ∈ GES, each connected component has a
constant spin value almost surely.)

Theorem 5.1 Let ν ∈ GES. Then S ⊆ Qmax(h) ν-almost surely.

Remark. We believe, but have not yet been able to prove, that |S| ≤ 1 ν-almost surely for all
translation invariant ν ∈ GES.

Before we prove the above theorem, let us formulate a technical lemma.

Lemma 5.2 Let (ak)k≥1 be a sequence of numbers such that 1 ≤ ak ≤ Ckn for some constant
C < ∞ and an integer n ≥ 0. Then for each ε > 0 and any k̄ ≥ C(n+ 1)nε−(n+1)

ak ≤ ε
∑
k′≤k

ak′ (5.1)

holds for at least one k ∈ {k̄, . . . , (n+ 1)k̄}.

Proof. If n = 0, the statement follows from the observation that 1 ≤ ak ≤ C and k̄ ≥ Cε−1
implies ak̄ ≤ C ≤ εk̄ ≤ ε

∑
k′≤k̄ ak′ , which gives (5.1) for k = k̄. If n ≥ 1, suppose that

ak > ε
∑
k′≤k ak′ for all k ∈ {k̄, . . . , (n + 1)k̄}. Since ak′ ≥ 1, this implies ak > εk̄ for all k ∈

{k̄, . . . , 2k̄} and, using induction, ak > ε"k̄" for all k ∈ {.k̄, . . . , (. + 1)k̄}, with . ∈ {1, . . . , n}.
In particular, a(n+1)k̄ > εn+1k̄n+1. However, this is in contradiction with the assumption
a(n+1)k̄ ≤ C(n+ 1)nk̄n whenever k̄ ≥ C(n+ 1)nε−(n+1).

Proof of Theorem 5.1. Let m ∈ {1, . . . , q} with hm < hmax and suppose that there is ν ∈ GES
with ν(m ∈ S) > 0. Since GES as well as the event m ∈ S are invariant w.r.t. spatial shifts,
we can suppose without loss of generality that the event

Ω0m =
{
(σ,η) : ∃C(η),

∣∣C(η)
∣∣ = ∞, V

(
C(η)

) & 0, σ0 = m
}

(5.2)

has positive probability under ν, i.e., ν(Ω0m) > 0. Let Λk be the box of side length 2k + 1
centered at the origin and, for each (σ,η) ∈ Ω0m and each k ≥ 1, let Vk(η) be the set of sites
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in Λk that are connected to the origin within B0(Λk), and let

ak = ak(η) =
∣∣∣Vk(η) ∩ ∂Λk−1

∣∣∣. (5.3)

Note that
∣∣Vk(η)∣∣ ≥∑k′≤k ak′ and that 1 ≤ ak ≤ |∂Λk−1| ≤ 2d(2k + 1)d−1 ≤ 3ddkd−1, where

we have used that k ≥ 1 in the final bound. Hence, by Lemma 5.2, we know that for each
ε > 0 and each k̄ ≥ (3d/ε)d there is at least one k, with k̄ ≤ k ≤ dk̄, such that∣∣Vk(η) ∩ ∂Λk−1

∣∣ ≤ ε
∣∣Vk(η)∣∣. (5.4)

By (5.4) and the subadditivity of the measure, we have for k̄ ≥ (3d/ε)d that

ν(Ω0m) ≤ µ(∪k̄≤k≤dk̄Ω0m,k) ≤
∑

k̄≤k≤dk̄
ν(Ω0m,k), (5.5)

with Ω0m,k denoting the event

Ω0m,k =

(σ,η) :
σ0 = m, 0 ↔ ∂Λk−1,∣∣{x ∈ ∂Λk−1 : x ←→

B0(Λk)
0}∣∣ ≤ ε

∣∣{x ∈ Λk : x ←→
B0(Λk)

0}∣∣
 .

Here x ←→
B0(Λk)

0 indicates that the connection occurs within B0(Λk). As a result, for each ε > 0

there is a deterministic set Nε ⊂ N, |Nε| = ∞, such that for any k ∈ Nε one has

ν(Ω0m,k) ≥
1
dk

ν(Ω0m), (5.6)

by the pigeon hole principle as applied to (5.5).
On the other hand, since Ω0m,k is a

(
Λk,B0(Λk)

)
-cylinder event, we can estimate ν(Ω0m,k)

using the DLR equations (2.6). Recall that µESΛk,σ
is the specification (2.4) with the special

choice Λ = Λk and B = B(Λk) and the spin boundary condition σ (the η boundary condition
is irrelevant in this case). Then (2.6) reads

ν(Ω0m,k) =
∫

ν(dσ,dη)µESΛk,σ
(Ω0m,k). (5.7)

Fix ε > 0 such that dJε+hm < hmax and pick m̃ with hm̃ = hmax. Then we claim that for any
σ

µESΛk,σ
(Ω0m,k) ≤ µESΛk,σ

(
1lΩ0

m,k

∏
〈x,y〉 : x∈Λc

k
y∈Vk

eβJ1l{η〈x,y〉=0}

)

= µESΛk,σ

(
1lΩ0

m̃,k
e−β(hmax−hm)|Vk|

∏
〈x,y〉 : x∈Λc

k
y∈Vk

eβJ1l{η〈x,y〉=0}

)

≤ µESΛk,σ

(
1lΩ0

m̃,k
e−β(hmax−hm−dJε)|Vk|

)
≤ e−β(hmax−hm−dJε)k.

(5.8)

Here, in the first step we inserted the factor eβJ in order to convert an arbitrary configuration
at the boundary bonds of the set Vk to the vacant bond state. More explicitly, we used the
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following estimate∑
η〈x,y〉=0,1

(
1l{η〈x,y〉=0} + (eβJ − 1)δσx,σy1l{η〈x,y〉=1}

)
= (eβJ − 1)δσx,σy + 1 ≤ eβJ =

∑
η〈x,y〉=0,1

eβJ1l{η〈x,y〉=0}

=
∑

η〈x,y〉=0,1
eβJ1l{η〈x,y〉=0}

(
1l{η〈x,y〉=0} + (eβJ − 1)δσx,σy1l{η〈x,y〉=1}

) (5.9)

at every boundary bond. Note that there is an unconstrained summation over the bond
configuration because Ω0m̃,k does not depend on these boundary bonds. The conversion of an
arbitrary configuration at the boundary bonds of the set Vk to the vacant bond state then
allows us to flip σx at each x ∈ Vk from m to m̃, resulting in the exponential factor in the
second line of (5.8). The proof of the claim (5.8) is finished by noting that, on Ω0m̃,k, the
number of flipped bonds does not exceed d|Vk ∩ ∂Λk−1| ≤ dε|Vk| and that |Vk| ≥ k.

By putting (5.6), (5.7) and (5.8) together, we get that
1
dkν(Ω

0
m) ≤ ν(Ω0m,k) ≤ e−β(hmax−hm−dJε)k ∀k ∈ Nε. (5.10)

However, since |Nε| = ∞ and k can be arbitrarily large, this leads to a contradiction whenever
ν(Ω0m) > 0. Hence, no such m with hm < hmax can exist and S ⊆ {m : hm = hmax} ν-almost
surely.
Proof of Theorem 3.2. Let us consider an ES Gibbs measure ν and use µ to denote its η
marginal. Applying the DLR equations (2.6) for ν, we get

µ(f) = ν(f) =
∫

ν(dσ,dη)µESΛ,B(Λ)(f |σΛc ,ηB(Λ)c) =
∫

ν(dσ,dη)µRCΛ,σ(f)

≤
∫

ν(dσ,dη)µRCΛ,maxwir(f) = µRCΛ,maxwir(f) (5.11)

for any increasing cylinder function f(η) supported on B̃ ⊂ B(Λ). Here, the inequality follows
by (4.55). Applying now (2.17), we get (3.14).

In order to prove (3.15), we have to work a bit harder. Let (∆n)n≥1 be an increasing sequence
of boxes centered at the origin and let

Λn(η) = {x ∈ ∆n : x � ∆cn} ∪ {x ∈ ∆n : x ↔ ∞}, (5.12)

Dn(η) = ∂Λn(η) ∩ {x ↔ ∞}, (5.13)

and

Dextn (η) = ∂Λn(η) ∩ {x ←→
B(∆n)c

∞}. (5.14)

Observe that Dn(η) ⊂ ∂∆n.
Given Λ̄n ⊂ ∆n, D̄n ⊂ ∂Λ̄n ∩ ∂∆n and D̄extn ⊂ D̄n, we will want condition on the event

En = {Λn(η) = Λ̄n} ∩ {Dn(η) = D̄n} ∩ {Dextn (η) = D̄extn }, (5.15)

using the DLR condition (2.7) in (Λ̄n, B̄n), where

B̄n = B0(Λ̄n) ∪
(
B(Λ̄n) ∩ B(D̄n)

)
. (5.16)
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To this end, we write the event En as the intersection of four events: the event

E intn = {x ←→
B̄n

D̄extn ∀x ∈ D̄n \ D̄extn }, (5.17)

which depends only on the configuration in B̄n, and the events

E(1)n =
{
D̄extn = {x ∈ ∂Λ̄n : x ←→

B̄(∆n)c
∞}}, (5.18)

E(2)n = {η〈x,y〉 = 0 ∀〈x, y〉 ∈ B(Λ̄n) \ B̄n}, (5.19)

and

E(3)n = {x ↔ Λ̄cn ∀x ∈ ∆n \ Λ̄n} ∩ {x � D̄n and x �
B̄c

n

∞ ∀x ∈ ∆n \ Λ̄n}, (5.20)

which depend only on the bonds in B
c
n. To see that En is actually the intersection of these

events, we first observe that En = {Λn(η) = Λ̄n} ∩ E(1)n ∩ E intn . Also, if E(1)n ∩ E intn holds, then
{Λn(η) = Λ̄n} clearly implies E(2)n ∩ E(3)n . So we have to show that E(2)n ∩ E(3)n together with
E(1)n ∩ E intn implies {Λn(η) ⊇ Λ̄n} and {Λn(η) ⊆ Λ̄n}. The former is obvious, since the event
E(2)n ensures that all points in Λ̄n that are connected to ∆cn are actually connected to D̄n, and
hence to infinity. The latter follows by observing that E(3)n implies that all x ∈ ∆n \ Λ̄n are
connected to the complement of ∆n, but are not connected to infinity.

Let f be a non-negative FKG increasing B0(∆)-cylinder function, where ∆ is a finite set.
By the assumption on µ, either q0 = 1 or there is at most one infinite cluster. In both cases,
the spin on the infinite component(s) is uniquely defined: σx = m with hm = hmax for all x
in D̄n. Since the indicator function of the event E intn depends only on the configuration η

B̄n
,

while the indicator function of the event

Eextn = E(1)n ∩ E(2)n ∩ E(3)n (5.21)

depends only on the configuration η
B̄c

n
, we may now use the fact the conditional expectations

of the ES Gibbs measure ν are given by (2.4) to write

µ(f) = ν(f) ≥ ν
(
f1l{Λn( · )⊇∆}

)
=

∑
Λ̄n⊇∆

D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

∑
m∈Qmax

ν
(
f1l{Λn( · )=Λ̄n}1l{Dn( · )=D̄n}1l{Dext

n ( · )=D̄ext
n }1l{σD̄n

≡m}
)

=
∑
Λ̄n⊇∆

D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

∑
m∈Qmax

∫
ν(dσ,dη) 1lEext

n
1l{σD̄n

≡m} µESΛ̄n,B̄n
(f1lE int

n
|σΛ̄c

n
,η

B̄c
n
).

(5.22)

Under the condition that σD̄n
≡ m, the RC marginal of µESΛ̄n,B̄n

(·|σΛ̄c
n
,η

B̄c
n
) in the above

equation is just the measure µRCΛ̄n,D̄n,maxwir
introduced in the last section. Since the event E intn

is an increasing event and since µRCΛ̄n,D̄n,maxwir
is strong FKG (being given by conditioning from
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a strong FKG measure), we conclude that

µESΛ̄n,B̄n
(f1lE int

n
|σΛ̄c

n
,η

B̄c
n
) = µRCΛ̄n,D̄n,maxwir(f1lE int

n
)

≥ µRCΛ̄n,D̄n,maxwir(f)µ
RC
Λ̄n,D̄n,maxwir(1lE int

n
)

= µRCΛ̄n,D̄n,maxwir(f)µ
ES
Λ̄n,B̄n

(1lE int
n
|σΛ̄c

n
,η

B̄c
n
), (5.23)

provided σD̄n
≡ m and η

B̄c
n
∈ Eextn . Observing finally that

µRCΛ̄n,D̄n,maxwir(f) ≥ µRCΛ̄n,free(f) ≥ µRC∆,free(f) (5.24)

by (4.56) and (4.14), we get that

µ(f) ≥ µRC∆,free(f)
∑
Λ̄n⊇∆

D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

∑
m∈Qmax

∫
ν(dσ,dη) 1lEext

n
1l{σD̄n

≡m} µESΛ̄n,B̄n
(1lE int

n
|σΛ̄c

n
,η

B̄c
n
)

= µRC∆,free(f)
∑
Λ̄n⊇∆

D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

ν(1lEext
n

1lE int
n
) = µRC∆,free(f) ν

({Λn( · ) ⊇ ∆}). (5.25)

Here in the first step we used the bounds (5.22)–(5.24), in the second we used Gibbsianness of
ν, and in the third we used the fact that 1lEext

n
1lE int

n
is the indicator function of the event (5.15)

to resum over Λ̄n, D̄n and D̄extn .
Since ν

({Λn( · ) ⊇ ∆}) tends to 1 as n → ∞ by the monotone convergence theorem, the
proof is finished for f ≥ 0 by taking that limit followed by ∆ ↗ Z

d. Arbitrary cylinder f ’s are
handled by noting that f −min f ≥ 0.

6. Uniqueness of the infinite cluster

In this section we prove that GRC Gibbs measures and weak limits of finite volume GRC
measures have at most one infinite cluster almost surely (Theorem 3.3). This is a direct
consequence of Theorem 1 from [13], once we show that the limiting measure satisfies the
positive finite energy condition. Using a slightly stronger form of the condition than that in
[13], we say that a GRC measure µ has positive finite energy if for all bonds b ∈ B(Zd), we
have

µ(ηb = 1|BB(Zd)\{b}) > 0 µ-almost everywhere. (6.1)

Here BB(Zd)\{b} is the σ-algebra generated by all cylinder functions on {0, 1}B(Zd)\{b}.
We start with a lemma concerning GRC measures that are either Gibbs states or weak limit

points of finite volume GRC measures.

Lemma 6.1 Let µ be a translation invariant GRC measure that is either a Gibbs state or
it is a weak limit of the form limn→∞ µGRC

Bn
( · |ηn). Then the measure µ satisfies the positive

finite energy condition, provided βJ > 0.

Proof. Consider a finite set of bonds B and the characteristic function 1l{η̄B} of the event
{η|ηB = η̄B}. The claim (6.1) will be proved once we verify that there exists a constant c > 0
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such that for every B ⊂ B(Zd) \ {b} and every η̄B, one has∫
µ(dη)1l{η̄B}(η)µ

(
ηb = 1|BB(Zd)\{b}

)
(η) ≥ c

∫
µ(dη)1l{η̄B}(η)µ

(
ηb = 0|BB(Zd)\{b}

)
(η). (6.2)

Indeed, (6.2) implies that

µ(ηb = 1|BB(Zd)\{b})(η) ≥ cµ(ηb = 0|BB(Zd)\{b})(η) (6.3)

almost surely, which in turn yields

µ(ηb = 1|BB(Zd)\{b})(η) ≥
c

1 + c
(6.4)

almost surely and thus (6.1). Now, since 1l{η̄B} is BB(Zd)\{b}-measurable, the inequality (6.2) is
equivalent to

µ(1l{η̄B}1l{ηb=1}) ≥ cµ(1l{η̄B}1l{ηb=0}). (6.5)

If µ ∈ G̃GRC, the inequality (6.5) is implied by

µGRCD (1l{η̄B}1l{ηb=1}|ηDc) ≥ cµGRCD (1l{η̄B}1l{ηb=0}|ηDc). (6.6)

for at least one D ⊃ B∪{b}. Indeed, it suffices to integrate (6.6) by µ using the DLR equation
(2.12).

If, on the other hand, µ is obtained as a weak limit of finite volume GRC measures, µ =
limn→∞ µGRC

Bn
(·|ηn), then the inequality (6.5) follows from (6.6) as well, provided (6.6) holds

for all sufficiently large D = Bn ⊃ B ∪ {b} and boundary conditions ηBc
n
= ηn. Indeed, for all

ε > 0 and all sufficiently large n we have∣∣µGRCBn
(1l{η̄B}1l{ηb=1}|ηn)− µ(1l{η̄B}1l{ηb=1})

∣∣ ≤ ε, (6.7)

and ∣∣µGRCBn
(1l{η̄B}1l{ηb=0}|ηn)− µ(1l{η̄B}1l{ηb=0})

∣∣ ≤ ε. (6.8)

Combined with (6.6), we get

µ(1l{η̄B}1l{ηb=1}) ≥ cµ(1l{η̄B}1l{ηb=0})− ε(1 + c). (6.9)

Since ε can be made arbitrary small by choosing n large enough, we again obtain (6.5).
To get (6.6), we evaluate the infimum of the ratio

µGRC
D

(ηb = 1,ηD\{b}|ηDc)

µGRC
D

(ηb = 0,ηD\{b}|ηDc)
(6.10)

over all ηD\{b}. Let us consider, for any η with ηb = 0, the components Cx(η) and Cy(η)
attached to the endpoints x and y of the bond b = 〈x, y〉. If Cx(η) = Cy(η), using (3.6) we
immediately see that the ratio (6.10) equals eβJ − 1. On the other hand, if Cx(η) and Cy(η)
are different components of the graph (Zd,Bocc(η)), then

µGRC
D

(ηb = 1,ηD\{b}|ηDc)

µGRC
D

(ηb = 0,ηD\{b}|ηDc)
≥ (eβJ − 1)

∑
m∈Qmax(h) qm

(
∑q
m=1 qm)2

(6.11)

since ∑q
m=1 qme

−β(hm−hmax)(|V(Cx(η))|+|V(Cy(η))|)(∑q
m=1 qme

−β(hm−hmax)|V(Cx(η))|)(∑q
m=1 qme

−β(hm−hmax)|V(Cy(η))|) ≥
∑

m∈Qmax(h)
qm

(
∑q
m=1 qm)2

(6.12)
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by the obvious fact that 0 ≤ e−β(hm−hmax) ≤ 1.
Proof of Theorem 3.3. Since the positive finite energy condition has been established in both
relevant cases, the result follows immediately from Theorem 1 in [13].

In order to prove the corollary to Theorem 3.3, we will prove a lemma that states that the
specifications µGRC

B
are “almost surely quasilocal” in the language of [16, 21]. For finite sets

Λ,∆ with Λ ⊂ ∆ ⊂ Z
d, let M∆,Λ be the event

M∆,Λ =
{
η : ∀x, y ∈ Λ x ↔ ∆c and y ↔ ∆c implies x ←→

B0(∆)
y
}
, (6.13)

where x ←→
B0(∆)

y is the event that there is a path of occupied bonds in B0(∆) connecting x and
y.

Lemma 6.2 (i) Let B ⊂ B0(Zd) be a finite set, and let f be a cylinder function depending
only on the bonds in B. Then the function

η �→ 1lM∆,Λ(η)µ
GRC
B (f |ηBc) (6.14)

is quasilocal for any pair of finite sets ∆, Λ with ∆ ⊃ Λ ⊃ V(B).
(ii) Let µ is a GRC limit state or a GRC Gibbs state with at most one infinite cluster and
Λ ⊂ Z

d is finite, then

µ(M∆,Λ) ↑ 1 as ∆ ↑ Z
d. (6.15)

Proof. Recalling the definition of µGRC
B

(·|ηBc) in terms of (3.6), we note that it is enough to
prove that the function η �→ 1lM∆,Λ(η)W

GRC
B

(η̄B|ηBc) is quasilocal for all η̄B ∈ {0, 1}B. Let
∆̃ ⊃ ∆, and let η and ηb be two configurations differing at a single bond b ∈ B(∆̃)c, ηb =
0, ηbb = 1. Suppose that η ∈ M∆,Λ is such that and that there is a cluster C connecting Λ with
B(∆̃)c. By the definition (6.13) of M∆,Λ, the configuration ηb also satisfies these conditions,
and the component C of (Zd,Bocc(η)) connecting Λ with B(∆̃)c is unique. Moreover, the value
of WGRC

B
(η̄B|ηBc) is clearly not affected by changing from η to ηb unless V({b}) ∩ V(C) �= ∅.

Suppose that the latter occurs and denote by Cb the corresponding component under ηb. Then∣∣WGRC
B (η̄B|ηbBc)−WGRC

B (η̄B|ηBc)
∣∣ ≤ (eβJ − 1)|Bocc(η̄B)∩B|

×
q∑

m=1

qm

∣∣∣eβ(hm−hmax)|V(Cb)| − eβ(hm−hmax)|V(C)|
∣∣∣. (6.16)

It turns out that the r.h.s. of (6.16) is exponentially small in dist(b,Λ). Indeed, for the
terms with hm < hmax, both terms between the absolute value signs go to zero exponentially
fast, while for hm = hmax both terms tend exponentially fast to one as dist(b,Λ) → ∞.
Thus, the r.h.s. of (6.16) is summable over the positions of b. By the standard telescoping
trick, this proves quasilocality (i.e., continuity in the product topology) of the function η �→
1lM∆,Λ(η)W

GRC
B

(η̄B|ηBc), as required by (i).
(ii) Since M∆,Λ ↑ MΛ, where MΛ is the set of configurations featuring at most one infinite

component incident with Λ, we have that µ(M∆,Λ) ↑ µ(MΛ) = 1, by the assumption that µ
has at most one infinite cluster.
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Proof of Corollary to Theorem 3.3. Let µ = limn→∞ µGRC
Bn

(· |ηn) be a translation invariant GRC
limit state. It is not hard to verify that µn = µGRC

Bn
(· |ηn) satisfies the DLR condition

µn(f) =
∫

µn(dη)µGRCB (f |ηBc), (6.17)

for any B-cylinder function f and any B ⊂ Bn. Since the specifications µGRC
B

(f |·) are not
quasilocal, this does not imply, however, that the limiting measure µ satisfies the DLR equation.
To circumvent this problem, we follow the strategy of [21] and [16] involving the “almost sure
quasilocality” of µGRC

B
(f |·).

Let B be a finite set of bonds, and let f be a bounded B-cylinder function. Since both f
and 1lM∆,V(B)( · )µGRC

B
(f | · ) are quasilocal for all ∆ ⊃ V(B), we have

µ
(
1lM∆,V(B)( · )µGRCB (f | · )) = lim

n→∞µn
(
1lM∆,V(B)( · )µGRCB (f | · )) (6.18)

and

µ(f) = lim
n→∞µn(f) = lim

n→∞µn
(
µGRCB (f | · )), (6.19)

where we have used (6.17) in the last step.
Let ε > 0. By Theorem 3.3, µ has a unique infinite cluster, which allows us to use (6.15).

Combined with the boundedness of µGRC
B

(f | · ), we can therefore choose ∆1, ∆2 and n0 such
that ∣∣∣µ(µGRCB (f | · ))− µ

(
1lM∆,V(B)( · )µGRCB (f | · ))∣∣∣ ≤ ε

2
(6.20)

and ∣∣∣µn(µGRCB (f | · ))− µn
(
1lM∆,V(B)( · )µGRCB (f | · ))∣∣∣ ≤ ε

2
(6.21)

provided ∆1 ⊂ ∆ ⊂ ∆2 and n ≥ n0. Combining (6.18) – (6.21), we get∣∣µ(f)− µ(µGRCB (f | · ))∣∣ ≤ ε. (6.22)

Since ε was arbitrary, we get that µ(f) = µ(µGRC
B

(f | · )), i.e., µ ∈ GGRC.
Proof of Theorem 3.4. To prove Theorem 3.4, we will prove that for all finite sets of bonds B1
and B2 with B1 ∩ B2 = ∅, and for all bounded cylinder functions f and g depending only on
the bonds in B1 and B2, respectively, we have

µ(gf) = µ(gµGRCB1
(f | ·)), (6.23)

provided µ has at most one infinite cluster with probability one.
In a first step, we use the DLR equation (2.11) and the consistency of the specifications

{µGRC
B

} to conclude that for B ⊃ B1 ∪ B2 we have

µ(gf) =
∫

µ(dη)µGRCB (gf |ηBc)

=
∫

µ(dη)µGRCB

(
gµGRCB1

(f |·)|ηBc

)
. (6.24)

Next let ∆ ⊃ V(B1), and let M∆,V(B1) be the event introduced in (6.13). Since both g and
1lM∆,V(B1)( · )µGRC

B1
(f | · ) are quasilocal, we have

lim
B↗B0(Zd)

∫
µ(dη)µGRCB

(
g1lM∆,V(B1)µ

GRC
B1

(f |·)|ηBc

)
= µ
(
g1lM∆,V(B1)µ

GRC
B1

(f |·)). (6.25)
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Here, we have used the fact that as a quasilocal function, the function g1lM∆,V(B1)µ
GRC
B1

(f |·) can
be approximated arbitrarily well by local functions, and then we have applied the DLR equation
(2.11) for local functions. To complete the proof, we use that µ(M∆,V(B1)) ↑ µ(N∞ ≤ 1) = 1
as ∆ ↑ Z

d by Lemma 6.2. Since f and g are bounded, we conclude that for all ε > 0 we can
choose ∆ in such a way that∣∣∣∣∫ µ(dη)µGRCB

(
gµGRCB1

(f |·)|ηBc

)− ∫ µ(dη)µGRCB

(
g1lM∆,V(B1)µ

GRC
B1

(f |·)|ηBc

)∣∣∣∣ ≤ ε

2
(6.26)

and ∣∣∣µ(g1lM∆,V(B1)µ
GRC
B1

(f |·))− µ
(
gµGRCB1

(f |·))∣∣∣ ≤ ε

2
, (6.27)

provided B ⊃ B(∆). Combined with (6.24) and (6.25) this proves that∣∣µ(gf)− µ
(
gµGRCB1

(f |·))∣∣ ≤ ε. (6.28)

Since ε was arbitrary, this completes the proof of (6.23) and hence the proof of Theorem 3.4.

Proof of Theorem 2.3. As pointed out in the remark after Theorem 2.3, the statements of the
theorem are special cases of those in Theorem 3.1(ii), Theorem 3.3 and its corollary.

7. Weak Limits of the ES Gibbs Measures

Since by Theorem 2.3(i) the limits (2.17) and (2.18) exist for every quasilocal f depending
only on the bond configurations η, to prove Theorem 2.4 we just need to extend this to functions
of both σ and η. In this regard, it will turn out to be useful to swap the σ-dependence and
η-dependence under the expectation w.r.t. the ES Gibbs measures. Before we formulate this
precisely, let us give some definitions.

For any collection {Fi}qi=1 of pairwise disjoint finite sets Fi ⊂ Z
d, let us define

F free{Fi}(η) =
∏
i<j

1l{Fi�Fj}(η)
q∏

m=1

∏
C :

V(C)∩Fm 
=∅

eβhm|V(C)|

Θfree(C)
. (7.1)

Here, 1l{Fi�Fj}(η) is the indicator of the event that, under η, no point in Fi is connected to
any point in Fj by a path of occupied bonds, the product over C runs over all components of
the set Bocc(η) with V(C) ∩ Fm �= ∅, and Θfree(C) is as in (3.2) (with qm = 1).

Similarly, given a finite set Λ with F = ∪qi=1Fi ⊂ Λ, let us define

F m̄Λ,{Fi}(η) =
∏
i<j

1l{Fi�Fj}(η)
q∏

m=1

∏
C :

V(C)∩Fm 
=∅

eβhm|V(C)|

ΘΛ,m(C)
χΛ,m̄(C,m) (7.2)

for each m̄ ∈ {1, . . . , q}, where we recall the definitions (3.5) and use χΛ,m̄(C,m) to denote

χΛ,m̄(C,m) =

{
1 V(C) ∩ Λc = ∅ or m = m̄

0 otherwise.
(7.3)

Remark. In the following, it will be important to remember explicitly from which value of the
boundary spin the measure µRCΛ,maxwir originated. Therefore we shall temporarily write µRCΛ,m
instead of µRCΛ,maxwir.
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Lemma 7.1 Let A ⊂ Z
d be a finite set and let f be a cylinder function in (A,B(A)). Then

there are numbers (a{Fi}) such that

µESΛ,free(f) =
∑
{Fi}

a{Fi} µ
RC
Λ,free

(
F free{Fi}

)
(7.4)

µESΛ,m̄(f) =
∑
{Fi}

a{Fi} µ
RC
Λ,m̄
(
F m̄Λ,{Fi}

)
(7.5)

for each m̄ ∈ {1, . . . , q} and all Λ ⊃ A with B0(Λ) ⊃ B(A). Moreover, a{Fi} = 0 whenever
there is an x ∈ F = ∪qi=1Fi with dist(x,A) > 1. In particular, both sums above are finite.

Proof. Let Λ be such that Λ ⊃ A and B0(Λ) ⊃ B(A). Then by using that µESΛ,free and µESΛ,m̄ are
Gibbs measures we have

µESΛ,free(f) = µESΛ,free
(
µESA,B(A)(f |σAc ,ηB(A)c)

)
, (7.6)

and similarly for µESΛ,m̄(f). The finite volume specification µESA,B(A)(f |σAc ,ηB(A)c) depends only
on spin variables at the exterior boundary ∂A of A, and not on ηB(A)c . It therefore suffices to
prove the claim for functions of the spin variables that are supported in Ā = A ∪ ∂A.

Each such function f can be uniquely recast as
∑
{Fi} a{Fi}f{Fi}, where a{Fi} are real num-

bers such that a{Fi} = 0 whenever F �⊂ Ā, and

f{Fi}(σ) =
q∏

m=1

∏
x∈Fm

δσx,m. (7.7)

It is now a matter of a direct computation to show that, for all m̄ ∈ {1, . . . , q},
µESΛ,free(f{Fi}|η) = F free{Fi}(η)

µESΛ,m̄(f{Fi}|η) = F m̄Λ,{Fi}(η).
(7.8)

Namely, the components C of Bocc(η) such that V(C) ∩ Fm �= ∅ necessarily satisfy that
V(C) ∩ Fi = ∅ for all i �= m. This gives rise to the indicators 1l{Fi�Fj}. For η such
that

∏
i<j 1l{Fi�Fj}(η) = 1, the spin configuration can be integrated out, yielding the ra-

tios eβhm|V(C)|/Θfree(C) resp. eβhm|V(C)|/ΘΛ,m̄(C). However, one gets the latter only when
V(C) ∩ Λc = ∅ or m = m̄. The claim is finished by taking the expectation w.r.t. η.

It was shown in Lemma 7.1 that σ-dependent cylinder functions can be interchanged under
the expectation for η-dependent functions F free{Fi} and FmΛ,{Fi}. Unfortunately, the weak limits
(2.17) and (2.18) cannot yet be invoked to conclude the existence of (2.19) and (2.20), the
reason being that the F{Fi}’s are, in general, not quasilocal. (Moreover, FmΛ,{Fi} even depends
explicitly on the expanding volume.) However, both functions F free{Fi} and FmΛ,{Fi} turn out to
be “almost surely” quasilocal, in the terminology of [21] and [16], which is still sufficient for
the limits (2.17) and (2.18) to exist.

For finite sets F ,∆ with F ⊂ ∆, let M∆,F be the event define in (6.13). Let further

Mm
∆,{Fi} =

{
η ∈ M∆,F : x ∈ F with x ↔ ∆c implies x ∈ Fm

}
, (7.9)
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and recall q0 = #{m : hm = hmax}. For each ∆, m ∈ {1, . . . , q}, and {Fi} define also a random
variable Qm∆,{Fi} by putting

Qm∆,{Fi} =

{
q0 Fm ↔ ∆c

1 otherwise.
(7.10)

The remainder of the proof is based on an approximation of F{Fi}’s by quasilocal functions and
showing that the error incurred thereby upon the expectations of F{Fi}’s is negligible. These
claims are formulated in Lemma 7.2 and Lemma 7.3 below.

Lemma 7.2 For all finite ∆ ⊂ Z
d and any {Fi} with F = ∪iFi

(i) F free{Fi} 1lMm
∆,{Fi} is quasilocal for all m ∈ {1, . . . , q}.

(ii) F free{Fi} 1lM∆,F is quasilocal.

Proof. (i) Let m be fixed and let Λ ⊃ ∆. Observe that 1lMm
∆,{Fi}

∏
i<j 1l{Fi�Fj} is a cylinder

function in B(Λ). Hence, only the contributions from the product over the connected com-
ponents in (7.1) can be altered by flipping a bond b �∈ B(Λ). Let us estimate precisely the
incurred change.

Let η and ηb be two configurations differing at a single bond b ∈ B(Λ)c, ηb = 0, ηbb = 1.
Suppose that η ∈ Mm

∆,{Fi} is such that
∏
i<j 1l{Fi�Fj}(η) = 1 and that there is a C connecting

Fm with B(Λ)c. By the definition (7.9) of Mm
∆,{Fi}, the configuration ηb also satisfies these

three conditions, and by the definition (6.13) of M∆,{F}, the component C of (Zd,Bocc(η))
connecting Fm and B(Λ)c is unique. Moreover, the value of F free{Fi} is not affected by changing
from η to ηb unless V({b} ∩ V(C) �= ∅. Suppose that the latter occurs and denote by Cb the
corresponding component under ηb. Then∣∣F free{Fi}(η

b)− F free{Fi}(η)
∣∣ ≤ ∣∣∣∣eβhm|V(Cb)|

Θfree(Cb)
− eβhm|V(C)|

Θfree(C)

∣∣∣∣, (7.11)

where we have estimated all ratios by 1, except for the one affected by flipping b. As in the
proof of Lemma 6.2, the r.h.s. of (7.11) is exponentially small in dist(b,F). This proves (i).

To prove (ii), it clearly suffices to note that

F free{Fi}
[
1lM∆,F −

q∑
m=1

1lMm
∆,{Fi}

]
(7.12)

is a cylinder event in B(∆). Namely, the function in the brackets is zero unless there is no
component incident with F that reaches up to ∆c. In that case, F free{Fi} depends only on bonds
from B(∆), i.e, it is effectively a local function.

The next lemma has two parts, both of which will be needed in the proof of Theorem 2.4.
It turns out that the first part can be proved for the more general GRC model.

Lemma 7.3 Let {Fi}, F and m be such that F = ∪qi=1Fi and hm = hmax.
(i) Then

lim
∆↗Zd

lim
Λ↗Zd

µGRCΛ,free(M∆,F ) = 1 (7.13)

lim
∆↗Zd

lim
Λ↗Zd

µGRCΛ,m (M∆,F ) = 1. (7.14)



34 M. BISKUP, C. BORGS, J.T. CHAYES, R. KOTECKÝ

(ii) In addition, let G{Fi}
Λ,∆,m = FmΛ,{Fi}1lM∆,F −Qm∆,{Fi}1lMm

∆,{Fi}F
free
{Fi}. Then

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m
(
G
{Fi}
Λ,∆,m

)
= 0. (7.15)

Proof. (i) The inner limits on the l.h.s. exist because M∆,F is a cylinder event, and the GRC
measures have a weak limit by Theorem 3.1(ii). The outer limit is then a consequence of the
fact that M∆,F ↑ MF , where MF is the set of configurations featuring at most one infinite
component incident with F . The limits are thus equal to µGRCfree (MF ) and µGRCm (MF ), respec-
tively. Now, since µGRCfree and µGRCm are translation invariant (as already proved Theorem 3.1)
and are obtained as weak limits of finite volume GRC measures, we can apply Theorem 3.3 to
assert that both these measures have almost surely at most one infinite cluster. This means
µGRCfree (MF ) = 1 = µGRCm (MF ). By putting these observations together, (7.13) and (7.14) are
proven.

To prove (ii), take {Fi} and ∆ ⊂ Λ with ∆ ⊃ F . Then the following three possibilities can
occur for configurations η ∈ {0, 1}B(Λ):

(A) F � ∆c

(B) F ↔ ∆c but F � Λc

(C) F ↔ Λc.

Clearly, under (A), the absence of components connecting F with the outside of ∆ implies

1lMm
∆,{Fi} = 1lM∆,F , Qm∆,{Fi} = 1, and FmΛ,{Fi} = F free{Fi}, (7.16)

by the inspection of (7.1) and (7.2). Consequently, all terms in the definition of G{Fi}
Λ,∆,m cancel

and G
{Fi}
Λ,∆,m = 0.

If (C) occurs then both terms contributing to G
{Fi}
Λ,∆,m are zero unless there is a unique

component connecting F to ∂Λ, and this component connects Fm to ∂Λ. If we have such a
component Cm,Λ, we get

1lMm
∆,{Fi} = 1lM∆,F , Qm∆,{Fi} = q0, and FmΛ,{Fi} = F free{Fi}

Θfree(Cm,Λ)
eβhm|V(Cm,Λ)| . (7.17)

Since Θfree(Cm,Λ)/eβhm|V(Cm,Λ)| is equal to q0 plus an error term that is exponentially small in
the distance between Fm and ∂Λ, this implies that G{Fi}

Λ,∆,m tends to zero as Λ ↗ Z
d.

The proof of (7.15) therefore boils down to the analysis of (B). Let PFΛ,∆ denote the event (B),

i.e., PFΛ,∆ = {η : F ↔ ∆c but F � Λc}. Then, by the preceding reasoning, |G{Fi}
Λ,∆,m| ≤ q01lPF

Λ,∆

plus an error exponentially small error term that tends to zero as Λ ↗ Z
d. Thus, it suffices to

prove that

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m(PFΛ,∆) = 0. (7.18)

We will establish this by proving that the events (A) or (C) get the full mass under these
limits. First we recall the well known characterization

µRCm (F ↔ ∞) = lim
Λ↗Zd

µRCΛ,m(F ↔ Λc). (7.19)
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This follows from the fact that for Λ ⊂ Λ̃ we have the inequalities µRC
Λ̃,m

(F ↔ Λ̃c) ≤ µRC
Λ̃,m

(F ↔
Λc) ≤ µRCΛ,m(F ↔ Λc), where the first one is due to monotonicity of {F ↔ Λc} in Λ and the
second one is due to (4.15).

Since {F � ∆c} ↑ {F � ∞} as ∆ ↗ Z
d, we easily get that

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m
({F � ∆c} ∪ {F ↔ Λc}) = 1, (7.20)

proving the desired claim.
With Lemma 7.2 and 7.3 in the hand, the proof of Theorem 2.4 can be concluded.

Proof of Theorem 2.4. By Lemma 7.1, the existence of the limits (2.19) and (2.20) has been
reduced the existence of the limits limΛ↗Zd µRCΛ,free(F

free
{Fi}) and limΛ↗Zd µRCΛ,m(F

m
Λ,{Fi}). To prove

the existence of the latter, let ε > 0. Then there are finite sets Λ̄, ∆̄1, ∆̄2 ⊂ Z
d such that

µRCΛ,free(M∆,F ) ≥ 1− ε/2 (7.21)

µRCΛ,m(M∆,F ) ≥ 1− ε/4 (7.22)

−ε/4 ≤ µRCΛ,m
(
FmΛ,{Fi}1lM∆,F −Qm∆,{Fi}1lMm

∆,{Fi}F
free
{Fi}
) ≤ ε/4 (7.23)

for any Λ ⊃ Λ̄ and ∆̄1 ⊃ ∆ ⊃ ∆̄2, and any m such that hm = hmax. Since both Fm{Fi},Λ and
F free{Fi} are bounded by one, this yields∣∣∣µRCΛ,free(F free{Fi})− µRCΛ,free

(
F free{Fi}1lM∆,F

)∣∣∣ ≤ ε/2 (7.24)∣∣∣µRCΛ,m(FmΛ,{Fi})− µRCΛ,m
(
Qm∆,{Fi}1lMm

∆,{Fi}F
free
{Fi}
)∣∣∣ ≤ ε/2. (7.25)

Now the functions F free{Fi}1lM∆,F and Qm∆,{Fi}1lMm
∆,{Fi}F

free
{Fi} are quasilocal by Lemma 7.2 and

becauseQm∆,{Fi} is of finite support. Hence, by Theorem 2.3, the limit Λ ↗ Z
d can be performed

on the expectations of these functions. Consequently∣∣ lim sup
Λ↗Zd

µRCΛ,free(F
free
{Fi})− lim inf

Λ↗Zd
µRCΛ,free(F

free
{Fi})

∣∣ ≤ ε (7.26)∣∣ lim sup
Λ↗Zd

µRCΛ,m(F
m
Λ,{Fi})− lim inf

Λ↗Zd
µRCΛ,m(F

m
Λ,{Fi})

∣∣ ≤ ε. (7.27)

The arbitrariness of ε finishes the claim.

8. Gibbs Uniqueness and Absence of Percolation

Before proving Theorem 2.5, we shall first establish three useful claims.

Lemma 8.1 Let ν ∈ GES be a measure with ν(|S| ≤ 1) = 1, and let µ be its RC marginal.
Then µ ∈ GRC.

Proof. It suffices to show that for all finite sets of bonds B and all B-cylinder function f ,
we have µ(f |ηBc) = µRC

B
(f |ηBc). Since µ is the η-marginal of ν, it is enough to show that

ν(f |ηBc) = µRC
B

(f |ηBc). By the definition of conditional probabilities, we have that ν-almost
surely

ν(f |ηBc) =
∫

ν(dσ,dηB|ηBc)ν(f |σ∆c ,ηBc), (8.1)
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for all finite ∆ with V(B) ⊂ ∆ ⊂ Z
d. Given ηBc , we now take ∆ large enough such that there is

no finite cluster C(ηBc) connecting V(B) to ∆c. With this choice, however, one easily computes
that ν(f |σ∆c ,ηBc) = µRC

B
(f |ηBc) for any B-cylinder function f , because by the assumption of

the lemma, all infinite clusters have almost surely the same color. Since B is arbitrary, this
implies µ ∈ GRC and, in fact, it implies the stronger statement (3.16).

Lemma 8.2 The measures µGRCmaxwir and µGRCfree are strongly mixing and, in particular, ergodic
w.r.t. translations in any of the lattice principal directions.

Proof. Let τ denote the translation in one of the lattice principal directions. We shall first show
that µGRCmaxwir(f g ◦ τn) → µGRCmaxwir(f)µ

GRC
maxwir(g) for all L2-functions f and g. As is well known,

it actually suffices to verify this for cylinder functions (which are dense in L2) and, since we
have a space with a natural ordering, we can even restrict ourselves to f , g monotone.

Let ∆ ⊂ Z
d be a finite set with connected complement ∆c, and let f, g be non-negative

monotone increasing cylinder functions supported in B(∆). Let further gn = g ◦ τn and
∆n = τn(∆). Then fgn is also monotone increasing and hence for any integer n such that
B(∆) ∩ B(∆n) = ∅ and any Λ ⊃ ∆ ∪∆n, we have

µGRCΛ,maxwir(fgn) ≤ µGRCΛ,maxwir
(
fgn|{ηB(Λ)\(B(∆)∪B(∆n)) = 1}) =
= µGRC∆,maxwir(f)µ

GRC
∆n,maxwir(gn) = µGRC∆,maxwir(f)µ

GRC
∆,maxwir(g). (8.2)

Taking the limit Λ ↗ Z
d followed by n → ∞ and ∆ ↗ Z

d, we get

lim sup
n→∞

µGRCmaxwir(f g ◦ τn) ≤ µGRCmaxwir(f)µ
GRC
maxwir(g). (8.3)

Since the complementary inequality follows from FKG, the strong mixing property of µGRCmaxwir
is established.

The case of the free measure is completely analogous; one just needs to take f and g positive
decreasing.

To formulate the next lemma, we need some notation. For a finite connected cluster C of
configuration η we define a measure πC on spin configurations on V(C) by

πC(σV(C)) =
∑
m

1
Θfree(C)

e−βhm|V(C)| ∏
x∈V(C)

δσx,m. (8.4)

For each m ∈ Qmax(h) we also define an infinite volume coloring measure

νm(σ|η) =
∏

C(η) : |V(C(η))|<∞
πC(η)(σV(C(η)))

∏
x↔∞

δσx,m. (8.5)

Lemma 8.3 Let m ∈ Qmax(h), and let ν ∈ GES with ν(S ⊆ {m}) = 1. Let µ be the RC
marginal of ν. Then for each cylinder function f of σ and η

ν(f) =
∫

µ(dη)νm(f |η). (8.6)

In particular, if ν1, ν2 ∈ GES1,m are two measures with the same RC marginal, then ν1 = ν2.

Proof. Let f by a (Λ,B(Λ)) cylinder function. Invoking the argument after (8.1) with B = ∅,
for ν-almost all η (those whose infinite cluster(s) have color m), we can find ∆ ⊃ Λ large
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enough but finite such that ν(f |σ∆c ,η) does not depend on σ∆c , in which case one easily
verifies that

ν(f |σ∆c ,η) = νm(f |η). (8.7)

The latter expectation depends only on η, hence (8.1) implies the desired representation of
ν(f) in terms of νm(f |η) and the RC marginal of ν.
Proof of Theorem 2.5(i). We shall prove that any ν ∈ GES not exhibiting percolation is equal to
the limiting measure µESfree whose existence was established previously. The proof of this claim
goes along the lines of the argument in (5.12)–(5.25), however, it is much simpler in this case
due to the absence of infinite clusters.

Let the sequences (∆n) and (Λn(η)) be defined as in (5.12). Since there are no infinite
components ν-a.s, we have Λn(η) = {x ∈ ∆n : x � ∆cn} and Bn(η) = ∅ for all n ≥ 1 and
ν-almost all η. Assume f is a cylinder function and given ε > 0, take ∆ large enough so that
f is supported in (∆,B0(∆)) and ∣∣µESV,free(f)− µESfree(f)

∣∣ ≤ ε (8.8)

for all V ⊃ ∆. Since the indicator function of the event {Λn( · ) = Λ̄n} does not depend on the
configuration in (∆,B0(∆)), we have that

ν(f) = ν(f1l{Λn( · ) 
⊃∆}) +
∑
Λ̄n⊃∆

ν
(
µESΛ̄n,free(f)1l{Λn( · )=Λ̄n}

)
(8.9)

by (2.7). Combined with (8.8), this gives the estimate

ν(f1l{Λn( · ) 
⊃∆}) +
[
µESfree(f)− ε

]
ν(1l{Λn( · )⊃∆}) ≤ ν(f)

≤ ν(f1l{Λn( · ) 
⊃∆}) +
[
µESfree(f) + ε

]
ν(1l{Λn( · )⊃∆}).

(8.10)

Since f is bounded and Λn ↗ Z
d ν-a.s., the bounded convergence theorem yields∣∣ν(f)− µESfree(f)| ≤ ε. (8.11)

The arbitrariness of ε finishes the claim.
Proof of Theorem 2.5(ii). If P∞(β, J, h) = 0, then µESmaxwir(N∞ > 0) = µRCmaxwir(N∞ > 0) = 0
and (3.14) implies the same is true for any ν ∈ GES. Thus GES = GES0 = {µESfree}. On the other
hand, µRCmaxwir(N∞ > 0) = 0 implies that the same is true for all µ ∈ GRC by (3.10). Repeating
the argument in the proof of Theorem 2.5(i) for the RC measure µ (and using Theorem 3.4 to
guarantee the analogue of (2.7)), we get that µ = µRCfree for all RC Gibbs measures µ, implying
GRC = {µRCfree}.
Remark. Given Theorem 3.4, which is stated for the more general GRC model, the second part
of the above proof remains valid for the GRC model. As a consequence, all GRC Gibbs states
are equal to the measure µGRCfree if P∞(β, J, h) = 0, implying that GGRC = {µGRCfree } whenever
P∞(β, J, h) = 0.

Proof of Theorem 2.5(iii). We first show that

µESm (σx = m̃|x ↔ ∞) = δm,m̃ (8.12)

provided P∞(β, J, h) > 0 and m ∈ Qmax. Since µESm (N∞ = 1) = 1 if P∞(β, J, h) > 0, equation
(8.12) implies that µESm (A∞1,m) = 1.
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To prove (8.12), we recall the well known fact that

µRCmaxwir(0 ↔ ∞) = lim
Λ↗Zd

µRCΛ,maxwir(0 ↔ Λc), (8.13)

see equation (7.19) above. As a consequence, we get that for all m ∈ Qmax,

µESm (x ↔ ∞) = lim
Λ↗Zd

µESΛ,m(0 ↔ Λc). (8.14)

Combined with the fact that µESΛ,m(0 ↔ Λc, σx = m̃) = µESΛ,m(0 ↔ Λc)δm,m̃, this implies (8.12).
It remains to show that the state µESm is extremal whenever m ∈ Qmax. To this end, let us
assume that

µESm = λν1 + (1− λ)ν2 (8.15)

with νi(A∞1,m) = 1 and 0 < λ < 1. By Lemma 8.1, the RC marginals µi of νi are RC Gibbs
states, which implies that (8.15) induces a similar decomposition for µRCmaxwir. However, µ

RC
maxwir

is extremal by Lemma 8.2, which implies that µ1 = µ2 = µRCmaxwir. Using Lemma 8.3, this
implies ν1 = ν2, and hence extremality of µESm .

9. Random Cluster Gibbs Measures for d = 2

Proof of Theorem 2.6(i). The proof of Theorem 2.6(i) remains again valid for the more general
GRC model. For J < Jc, the statement has already been proven in the last section. Let us
therefore suppose that J > Jc and d = 2. Then the first condition (and item (iii) of Corollary of
Theorem 3.1) implies that there is percolation under µGRC,Jmaxwir. Moreover, since µGRC,Jmaxwir satisfies
the following claims
(1) µGRC,Jmaxwir is separately ergodic in all lattice directions

(2) µGRC,Jmaxwir is invariant under lattice reflections and rotations

(3) µGRC,Jmaxwir is FKG,
as has been proved previously, the powerful result of [14] asserts that the infinite cluster is
unique under µGRC,Jmaxwir. Moreover, by a corollary to this result, the cluster contains an infinite
series of nested circuits that (eventually) encircle any point of the lattice.

Now, according to Theorem 3.1(iii), any µ ∈ GGRC at the coupling constant J is FKG
dominating the measure µGRC,Jfree . Let J > J1 > Jc. Then

µ( · ) ≥
FKG

µGRC,Jfree ( · ) ≥
FKG

µGRC,J1maxwir ( · ), (9.1)

where the second inequality is Theorem 3.1(iv). Thus, all GRC Gibbs measures at J exhibit
an infinite cluster as well as the above circuits about the origin, because the latter is an FKG
increasing event.

The proof is concluded in a manner similar to the argument (8.8)–(8.11). Let thus f be a
cylinder function with support in B(∆), where ∆ is supposed to be sufficiently large so that∣∣µGRCV,maxwir(f)− µGRCmaxwir(f)

∣∣ ≤ ε (9.2)

for any V ⊃ ∆. Let {∆n} be an increasing sequence of boxes centered at the origin, and
let Ωn be the set of all configurations η for which there exists a closed circuit Γ of occupied
bonds surrounding ∆ and connected to the infinite cluster, such that it is entirely contained
in B0(∆n). Let us use Γn(η) to denote the outermost such circuit contained in B0(∆n) and
VΓn(η) the set of its interior sites. Let 1lΩn be the characteristic function of Ωn and, for a
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given circuit Γ, let 1l{Γn=Γ} denote the characteristic function of the set of all configurations
such that the corresponding outermost circuit Γn equals Γ.

Using the fact that the function 1l{Γn=Γ} does not depend on the values of the GRC config-
uration on B(VΓ), we now apply Theorem 3.4 with B = B(VΓ) to get

µ(f1lΩn) =
∑
Γ

µ(f1l{Γn=Γ}) =
∑
Γ

µ
(
µB(VΓ)(f |ηB(VΓ)c)1l{Γn=Γ}

)
=
∑
Γ

µ
(
µVΓ,maxwir(f)1l{Γn=Γ}

)
, (9.3)

where the sum is over all closed circuits Γ of occupied bonds surrounding ∆ and contained
wholly in B0(∆n). Since f is bounded and µ(Ωn) → 1 as n → ∞, we have that |µ(f1lΩn) −
µ(f)| ≤ ε for n sufficiently large. Using (9.2) for V = VΓ, we conclude that∣∣µ(f)− µGRCmaxwir(f)

∣∣ ≤ 3ε. (9.4)

Since ε is arbitrary, we get the desired statement that each GRC Gibbs state necessarily equals
the measure µGRCmaxwir.
Proof of Theorem 2.6(ii). We again only need to prove the statement of J > Jc. Using
Theorem 3.2, equation (3.15) instead of Theorem 3.1(iii), we obtain the bound (9.1) for the
RC marginal µ of any ν ∈ GES with |Qmax| = 1. Let ν be such a measure. Applying the steps
leading to (9.3) to the measure ν and a cylinder function f with support in (∆,B(∆)), we will
have to calculate the conditional expectation ν(f |σV c

Γ
,ηB(VΓ)c) = µESVΓ,B(VΓ)

(f |σV c
Γ
,ηB(VΓ)c).

By Theorem 5.1 the value of σx on the sites x ∈ ∂VΓ is constrained to be one of the colors in
Qmax. Since we assumed that |Qmax| = 1, we obtain that ν(f |σV c

Γ
,ηB(VΓ)c) = µESVΓ,m

(f), where
m is the unique spin for which hm = hmax. Continuing as in the proof of (i), we obtain that
ν = µESm .

10. Maps between ES, Spin and RC Gibbs Measures

Proof of Theorem 2.1. Let µspin
Λ ( · |σΛc) denote the Gibbs measure on spins in Λ with boundary

condition σΛc . The proof is based on the crucial observations that, for the special choice
B = B(Λ),

(A) µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) does not depend on ηB(Λ)c .
(B) The spin marginal of µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) is precisely µspin

Λ ( · |σΛc).

Let now ν ∈ GES, Λ ⊂ Z
d be finite, and let f be a function depending only on the spin

configuration in Λ. Then, by (2.6), (A), (B), and the definition of marginals, we have

(ΠSν)(f) = ν(f) =
∫

ν(dσ,dη)µESΛ,B(Λ)(f |σΛc ,ηB(Λ)c) =

=
∫

ν(dσ,dη)µspin
Λ (f |σΛc) =

∫
(ΠSν)(dσ)µspin

Λ (f |σΛc), (10.1)

proving that ΠSν ∈ Gspin. Hence, indeed, ΠS is a map from GES to Gspin.
To prove that ΠS is an isomorphism, let us first establish its surjectivity. We begin by

noting that the set {(Λ,B(Λ))} is cofinal in the set of all pairs {(Λ,B)}, ordered by inclusion.
(Namely, for any (Λ,B) there exist Λ̄ such that Λ ⊂ Λ̄ and B ⊂ B(Λ̄).) Then it is easy to
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see that the validity of (2.6) for the pairs (Λ,B(Λ)) implies its validity for general (Λ,B) (see
Remark 1.24 of [15]). Let now µ ∈ Gspin and consider the following ES measure

νΛ( · ) =
∫

µ(dσ)µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) (10.2)

on the set of on configurations in
(
Λ,B(Λ)

)
. Here the configuration ηB(Λ)c is added only for the

formal completeness since by (A) its value does not matter for νΛ. By taking into account the
consistency of the finite volume ES measures {µESΛ,B}, the measures νΛ( · ) satisfy the restricted
DLR equations

νΛ(f) =
∫

νΛ(dσ,dη)µES
Λ̃,B̃

(f |σΛ̃c ,η B̃c) (10.3)

for any Λ̃ ⊂ Λ, B̃ ⊂ B(Λ), and any Λ̃, B̃-cylinder function f . Moreover, let Λ1 ⊃ Λ2 ⊃ Λ̃ be
two sets. Then for any such function f (as before) we have

νΛ1(f) =
∫

µ(dσ)µESΛ1,B(Λ1)(f |σΛc
1
,ηB(Λ1)c)

=
∫

µ(dσ)µESΛ1,B(Λ1)
(
µESΛ2,B(Λ2)(f | · )

∣∣σΛc
1
,ηB(Λ1)c

)
=
∫

µ(dσ)µspin
Λ1

(
µESΛ2,B(Λ2)(f | · )

∣∣σΛc
1

)
=
∫

µ(dσ)µESΛ2,B(Λ2)(f |σΛc
2
,ηB(Λ2)c) = νΛ2(f).

(10.4)

Here the first equality is due to (10.2), the second one follows from the fact that µESΛ1,B(Λ1)
is

a finite volume Gibbs measure, the third one is established by applying (A) to the measure
µESΛ2,B(Λ2)

(f | · ) and subsequently (B) to the expectation w.r.t. µESΛ1,B(Λ1)
, and, finally, the fourth

equality follows from the fact that µ ∈ Gspin. Consequently, as Λ ↗ Z
d, νΛ(f) is eventually a

constant for any cylinder function f . In particular, the weak limit ν = limΛ↗Zd νΛ exists and,
by (10.3), it satisfies (2.6), i.e., ν ∈ GES. Finally, ΠSν = µ, since for any Λ-cylinder function f
of spins

(ΠSν)(f) = ν(f) =
∫

µ(dσ)µESΛ,B(Λ)(f |σΛc ,ηB(Λ)c) =
∫

µ(dσ)µspin
Λ (f |σΛc) = µ(f), (10.5)

proving that ΠS is surjective.
In order to see that ΠS is also injective, we notice that if ν̃ ∈ GES is such that ΠS ν̃ = µ,

then

ν̃(f) = ν̃
(
µESΛ,B(Λ)(f | · )

)
= (ΠS ν̃)

(
µESΛ,B(Λ)(f | · )

)
= µ
(
µESΛ,B(Λ)(f | · )

)
(10.6)

for any (Λ,B(Λ))-cylinder function f . Here the first equation is the DLR equation for ν̃, the
second equation follows from (A), and the third equation is the assumption ΠS ν̃ = µ. Now,
the right hand sides of (10.6) and (10.2) coincide, so ν̃ = ν, with ν defined by taking the limit
Λ ↗ Z

d of νΛ in (10.2). In particular, all measures ν̃ satisfying ΠS ν̃ = µ are equal, yielding
thus injectivity of ΠS .

The part of the claim concerning translation invariant measures is proved in the same way,
because both constructions (10.1) and (10.2) preserve translation invariance.
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Proof of Theorem 2.2(i). We first note that the marginal of any ES Gibbs state with at most
one infinite cluster is an RC Gibbs state by Lemma 8.1. This proves that ΠRC maps GES≤1 into
GRC.

Next we show that the map is surjective on GRC≤1 . Let µ ∈ GRC≤1 . Recall the definition of F free{Fi}
in (7.1). It turns out that F free{Fi} satisfies the following identity:

q∑
m=1

F free{F1,...,Fm−1,Fm∪{x},Fm+1,...,Fq}(η) = F free{Fi}(η) (10.7)

for each {Fi}, any x �∈ F = ∪iFi and any η. Namely, let Fi � Fj for i �= j in η and suppose
x ↔ Fm for some m. Then the sum on the l.h.s. of (10.7) degenerates to the m-th entry, which
is easily identified with the r.h.s. On the other hand, if x � Fm for all m, then the sum in
(10.7) can be propagated through the products in (7.1) up to the last term, where the desired
identity then follows by taking also (3.2) into account.

The relation (10.7) enables us to define a joint measure on σ and η. Let µ ∈ GRC and let
A{Fi} denote the event

A{Fi} =
{
σ : σx = m ∀x ∈ Fm

}
. (10.8)

Note that A{Fi} is a cylinder event in F . Consider the set function ν, for the sets on the
product space of configurations (σ,η), defined as

ν
(A{Fi} × B) = µ

(
F free{Fi}1lB

)
, (10.9)

where B stands for any cylinder event on configurations η. Due to the fact that µ is a measure
on η and due to (10.7), the set function defined in (10.9) satisfies the consistency condition for
all finite volume projections and, by the Kolmogorov theorem, it thus gives rise to a measure
on (σ,η).

Using (10.7), the η-marginal of ν is µ, so it remains to show that ν ∈ GES. Due to the
consistency of the ES specifications (2.4), it is enough to show that ν-almost surely

ν(σ∆,ηB(∆)|σ∆c ,ηB(∆)c) = µES∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c) (10.10)

for all finite ∆ ⊂ Z
d. For that, it actually suffices to establish that

lim
Λ↗Zd

ν(σ∆,ηB(∆)|σΛ�∆,ηB(∆)c) = µES∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c). (10.11)

To calculate the l.h.s., we shall evaluate ν(σΛ,ηB(∆)|ηB(∆)c). In order to keep the expressions
short, we assume without loss of generality that hmax = 0. Using (10.9) and the strong form
of the DLR equation (3.16), we write

ν(σΛ,ηB(∆)|ηB(∆)c) = µ
(
F{Λi}1l{ηB(∆)}|ηB(∆)c

)
= F{Λi}(η)µ

RC
B(∆)(ηB(∆)|ηB(∆)c), (10.12)

where (Λi) is the partition of Λ defined by Λi = {x ∈ Λ|σx = i}.
In order to evaluate the r.h.s., we use (7.1) and (3.6) to get

F free{Λi}(η)µ
RC
B(∆)(ηB(∆)|ηB(∆)c) =

∏
i<j

1l{Λi�Λj}(η)
q∏

m=1

∏
V(C(η))∩Λm 
=∅

eβhm|V(C(η))|

Θfree
(
C(η)

)
× (eβJ − 1)|Bocc(η)∩B(∆)|

ZB(∆)(ηB(∆)c)

∏
V(C(η))∩V(B(∆)) 
=∅

Θfree
(
C(η)

)
, (10.13)
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where ZB(∆)(ηB(∆)c) is the normalization factor for µRC
B(∆)( · |ηB(∆)c). Rewriting

q∏
m=1

∏
V(C(η))∩Λm 
=∅

eβhm|V(C(η))|

Θfree
(
C(η)

) ×
∏

V(C(η))∩V(B(∆)) 
=∅
Θfree

(
C(η)

)
=

q∏
m=1

∏
V(C(η))∩Λm 	=∅
V(C(η))∩∆̄=∅

eβhm|V(C(η))|

Θfree
(
C(η)

) ×
q∏

m=1

∏
V(C(η))∩V(B(∆)) 	=∅

V(C(η))∩∆̄m 	=∅

eβhm|V(C(η))|, (10.14)

where we introduced ∆̄ = ∆ ∪ ∂∆ and ∆̄m = Λm ∩ ∆̄, and inserting the identity

eβhm|V(C(η))| = eβhm|V(C(η))∩∆|eβhm|V(C(η))∩∆c|, (10.15)

we can now extract all terms that depend on σ∆ and ηB(∆) from the r.h.s. of (10.13) to obtain
the Gibbs factor W (σ∆,ηB(∆)|σ∂∆,ηB(∆)c) times a term depending only on σΛ�∆ and ηB(∆)c .
This yields the representation

ν(σΛ,ηB(∆)|ηB(∆)c) = N(σΛ�∆,ηB(∆)c)µ
ES
∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c), (10.16)

which in turn leads to the identity

ν(σ∆,ηB(∆)|σΛ�∆,ηB(∆)c) = µES∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c), (10.17)

provided that σΛ�∆ is consistent with ηB(∆)c . Equation (10.17) immediately gives the desired
claim (10.11) and hence (10.10).
Proof of Theorem 2.2(ii–iv). Let ν ∈ GES≤1. Since {N∞ = 0} is a tail event, there is a unique
decomposition of ν into λ0ν0 + λ>0ν>0, where ν0 ∈ GES0 and ν>0 ∈ GES1 . The decomposition
(2.13) then follows by further conditioning upon the color of the spin on the infinite cluster
of ν>0. This proves (ii). To prove (iii), we just invoke Theorem 2.5(i), Lemma 8.3 and
Theorem 2.2(i). To prove (iv), we need to realize that if |Qmax(h)| = 1, then the decomposition
is completed already by conditioning on the presence/absence of the infinite cluster, which
works the same on both GES≤1 and GRC≤1 .
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