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1. INTRODUCTION

In this paper, we study the ferromagnetic g-state Potts model with each value of the spin
coupled to a distinct external field. The formal Hamiltonian of the model is

m=1 z

q
H(o)=-JY 60,0y = > > hmbo,m. (1.1)
(z.y)

Here o, € {1,---,q} are the spin variables, J is a positive coupling constant, é,, s, is the
Kronecker delta, (hy,)I | are real numbers representing the external fields, and (z,y) denotes
a nearest-neighbor pair on Z?. The model (1.1) appears in many different contexts. For
example, it arises in image processing, where o, represents the color of the pixel labeled by =z,
and the fields h,, lead to different a priori probabilities for different colors. Another example
is a lattice gas of ¢ species, with h,, corresponding to the fugacity of the species m.

During the past fifteen years, there has been a great deal of work on graphical representations
of the Potts model in the absence of external fields (i.e., with h,, = 0). In particular, the
Fortuin-Kasteleyn [10] or random cluster (RC) representation has been used to prove various
non-perturbative results about the Potts model using percolation-type methods (e.g., [2], [5]).
In order to use the representation effectively, it was first necessary to establish certain basic
features of the resulting measure, including FKG monotonicity, existence of thermodynamic
limits, and properties of the Gibbs states ([2], [5], [16], [21], see also [17] and [12] for reviews).

Here we consider graphical representations of the Potts model in the presence of arbitrary
external fields. This turns out to be significantly more complicated than the analysis in the
absence of external fields for a number of reasons. First, when h,, = 0, it is easy to verify
that the RC representation has the FKG property, which is more difficult to establish here.
Indeed, the FKG property does not even hold for certain boundary conditions. Second, for
hy,, = 0, symmetry breaking in the spin representation is equivalent to percolation in the
RC representation. Here the relationship between the phase structure of the spin model and
percolation in the RC representation is less direct; in some cases the percolation threshold
corresponds to no phase transition at all in the spin model [3]. Third, absence of symmetry
raises the question of the color(s) of the infinite cluster(s), a question which turns out to be
quite intricate, and does not need to be addressed for h,, = 0.

Our work was motivated by an attempt to understand the phase diagram of the model (1.1),
using both cluster expansion and percolation techniques; our results on the phase diagram are
presented in a separate paper [3]. In this paper we generalize known results on the properties
of Gibbs states of the RC models to systems with external fields. In particular, for the RC
model in an arbitrary homogeneous magnetic field, we prove FKG properties, existence of
infinite volume measures, and that these measures are Gibbs states. See also [3] and [4] for
other graphical representations of Potts models in an external field.

In addition, we develop the theory of Gibbs states for the so-called Edwards-Sokal (ES)
measure, a measure on both spin and bond variables which was originally introduced in order
to explain the Swendsen-Wang algorithm for sampling from the Potts model [8]. In a finite
volume, the marginals of the ES measure are just the spin and the RC measures. Here we
consider infinite volume ES measures as interesting and important probabilistic objects in their
own right. In particular, we introduce the notion of ES Gibbs measures, and analyze whether
(or under what conditions) the marginals of such Gibbs measures are Gibbs measures of the
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corresponding spin and random cluster models. We clarify this relationship, and in the process
derive properties of the spaces of Gibbs states for all three representations.

We believe that the rigorous analysis of properties of the Potts model in terms of the ES
representation will prove to be quite fruitful in future work. Indeed, while the ES representation
shares many of the more useful properties of the random cluster representation, it does not
share all of its difficulties. In particular, the ES representation is quasilocal,’ while the RC
representation is not. Much of the standard theory of Gibbs states (as well as its physical
interpretation) requires quasilocality ([15], [20], [22]). Absence of this property has been a
major technical impediment in the analysis of Gibbs states for the RC representation.

Finally, we consider the question of RC models in a field with non-integer values of q.
Although the spin representation of the Potts model (and therefore also the Edwards-Sokal
representation) only admits an integer number of spin states, it has been realized for some time
that the standard RC measure in the absence of a field is perfectly well-defined for non-integer
values of ¢q. Provided that ¢ > 1, the resulting finite volume measures with free and wired
boundary conditions are FKG, which allows one to prove the existence of the corresponding
infinite volume measures. However, the most straightforward version of the RC model in a
field reduces to a model with integer ¢ when we take h,, = 0. Explicitly, the RC model in a
field defined on bond configurations 7 = {1, )}, Mz, € 10,1}, has weights of the form

IT =10 [[O©), (1.2)
C

<m7y>:77(:c,y):1

where the second product is over all connected components of sites, and the weights of the
components are given by

O(C) = 3 VO, (13)

m=1

Here |V(C)| denotes the volume of the cluster C'. Notice that when h,, = 0, the weights (1.2)
reduce to the more familiar weights?

(e — 1)nmgetm) (1.4)

where n(n) is the number of bonds (z,y) with 1, = 1 in configuration 7, and c(n) is the
number of connected components of sites in 7.

Thus we also propose a generalized random cluster (GRC) model with the weight ©(c) in
(1.2) replaced by

q
O(C) = gme" IV, (1.5)
m=1

'Recall that quasilocality is the property of continuity (in the product topology) of finite volume Gibbs states
with respect to boundary conditions.

2Even the weights (1.4) may not be entirely familiar to readers who know the RC weights as (1 —
e BTy (=BT yv(m) ge(m) - where v(n) is the number of bonds (x,y) with Ma,y) = 0 in configuration n. The
only difference between the latter weights and (1.4) is an overall normalization factor, which makes no differ-
ence in the resulting measure.
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where the g, are non-integer parameters. Provided that the ¢, are positive and satisfy the
condition

Y gm =1, (1.6)

m: hy=hmax

where hpmax is the maximum value of the component fields h,,, we will be able to prove that
resulting finite volume measures with certain boundary conditions are FKG, and hence that
the corresponding infinite volume measures exist. We expect that many of our other results
for the RC model in a field hold also for this generalized model, but we have not explicitly
verified this.

Notice the following two special cases of the generalized model with the weights (1.5). If we
take ¢, = 1, m = 1,--- , ¢, then we get (1.3), i.e., the random cluster representation of the
Potts model in an external field. On the other hand, if we take h,, = 0 for all m, we get the
weights (1.4) with ¢ replaced by >, ¢m, which is in general non-integer. Thus the GRC model
generalizes both the non-vanishing external field case and the standard non-integer g model.

It turns out that the set of “colors” m € {1,---,q} with hy,, = hpax will play an important
role in the analysis of both of the above described random cluster models in a field. In the
standard model (with h,, = 0), it is well-known that the extremal measures are obtained by
applying free and “wired” boundary conditions. The latter are the marginals of measures in
which all spins on the boundary are set to a fixed color m € {1,--- , ¢}, and thus identified as
one component in the RC representation. In this work, we will find that the extremal measures
are obtained by applying free and what we call “maxwired” boundary conditions. Measures
with maxwired boundary conditions are the marginals of measures in which all spins on the
boundary are set a color m for which h,; = hpax. The other RC wired measures, i.e. those
with boundary conditions set to a color m for which h,, < hmnax, are hard to analyze because
they do not even obey the FKG inequality.

We end this section with a summary of our results:

In Section 2, we state our theorems on mappings between the sets of ES Gibbs states and
spin and RC Gibbs states, respectively. In particular, Theorem 2.1 implies that the relevant
marginals of the infinite volume ES Gibbs states are spin Gibbs states. The same is not true
for the RC states unless we restrict to states with no more than one infinite cluster, as we
do in Theorem 2.2. We also formulate results (Theorems 2.3 and 2.4) on the existence of
infinite volume measures for the RC and ES representations with free and maxwired boundary
conditions. Finally, we state a result (Theorem 2.5) relating uniqueness or non-uniqueness of
Gibbs states to the absence or presence of infinite clusters. In two dimensions, we are able
to prove more—mnamely that, away from the transition temperature, the RC Gibbs state is
unique, and similarly for the ES state, provided there is only one color m with h,, = hmax
(Theorem 2.6).

In Section 3, we introduce the generalized random cluster (GRC) model and formulate its
FKG monotonicity properties. In particular, Theorem 3.1 states that the free and maxwired
GRC states are strong FKG, and hence that the corresponding infinite volume limits exists.
This theorem also asserts that, in the FKG order, every GRC Gibbs state lies between these
two infinite volume states. Finally, this theorem compares GRC states at different couplings
and different sets of external fields (with an appropriately defined partial order). As a corol-
lary, we prove various properties of the relevant percolation probabilities, which are the order
parameters for the transition. Theorem 3.2 deals with RC marginals of ES Gibbs states. In par-
ticular, it states that the infinite volume RC maxwired measure dominates all such marginals,
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while the free RC measure is dominated by the marginals of all ES Gibbs states with at most
one infinite cluster. Our final results establish uniqueness of the infinite cluster for translation
invariant GRC Gibbs and limit states (Theorem 3.3), and give a stronger version of the DLR
equation for any GRC Gibbs state with a unique infinite cluster. (Theorem 3.4).

Our results are proved in Sections 4-10. In Sections 4-6 we prove the theorems stated in
Section 3 (in the order of their appearance). The theorems of Section 2 are proven in the
remaining Sections 7-10 (in the order 2.4, 2.5, 2.6, 2.1 and 2.2). Theorem 2.3, which is an easy
corollary of the results of Section 3, is proved at the end of Section 6.

2. GIBBS STATES IN THE EDWARDS-SOKAL, SPIN AND RANDOM CLUSTER
REPRESENTATIONS

In this section we define Gibbs measures for joint probability spaces of spin and bond
variables, i.e., the Edwards-Sokal Gibbs measures. We then relate the set of Edwards-Sokal
Gibbs measures to the more standard sets of spin and random cluster Gibbs measures.

We begin with some notation. For any subset A C Z¢, we introduce Bo(A) as the set of
all bonds b = (x,y) of nearest neighbors with both endpoints in A and B(A) as the set of all
bonds with at least one endpoint in A. For any B C Bo(Z%), we define V(B) as the set of sites
which belong to at least one bond in B.

To motivate our definitions, we first derive the Edward-Sokal representation for a finite box
A C Z¢ with free boundary conditions. For free boundary conditions, the Gibbs factor of the
g-state Potts model in a general field is given by

e M) = [ e [T ), (2.1)
(z,y)€Bo (A) zeA

where (hy,)! _; € R7 is a collection of arbitrary fields and h(o,) stands for

h(oy) = Zq: - (2.2)

=1

In order to derive the Edwards-Sokal (ES) and random cluster (RC) representation, we rewrite
the Gibbs factor by expanding each term e57/%=ou as 1 + (ef/ — 1)ds,,0,- Introducing bond
configurations ng, )y = {7 }pepo(a) With m € {0, 1}, we can write the Gibbs factor (2.1) as the
sum

e PH(@A) = Z H (€ = 1)05, 0, H efMae), (2.3)
Mo (A) b=(z,y)EBo(A) zEA
Ma,y) =1

The key point of this reformulation is that 1 can now be treated in the same way as o; one
just peels off the first sum in (2.3) and interprets the remainder as a joint weight of o and 7).
In this manner one obtains the finite volume Gibbs measure of the Potts model as the spin
marginal of a measure on both spin and bond configurations—the Edwards-Sokal measure.
The bond configuration marginal is then the random cluster measure.

So far we have considered only free boundary conditions. Instead of modifying the preceding
argument for other boundary conditions, we directly introduce the notion of infinite volume
Gibbs measures on the joint space of spin and bond variables. To define the Gibbs ES states,
let us introduce for any pair of (not necessarily related) finite sets A C Z%, B C Bo(Z%), and
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any fixed configurations o ac, N outside of them, the measure ,u%’SB( - |oAc, Mge) by

W(O-Aa B | O Ac, 771530)
A TB W(on N |oAc, Mpe)’

/’LII%,SB(O.A7 7715%| O A<, nIBC) = Z (24)

where the convention® /LE:SB(O' A, M| TAc, Mpe) = 0 is assumed for the case that the sum in the
denominator vanishes, and where

Woanglonemg) = [ (% = Dioe, J] ™. (2.5)
(z,y)EBUB(A) rEA
MNa,y) =1

The dependence on parameters J and {h,,} will be explicitly marked only when a reference to
them is needed.

Our first theorem concerns the relation between the ES and spin Gibbs measures. Let GES
be the set of all infinite volume Gibbs ES states defined by imposing the DLR equations with
specification (2.4). Namely, v € G5 iff

v(f) = / v(dor, dm)uES, (] 0 pe, mge) (2.6)

for all pairs of finite sets A and B and any cylinder function f depending only on o j and ng.
Note that the fact that the underlying “set of sites” contains both the set Z? and the set By(Z9)
does not prevent the abstract theory of Gibbs states—in the version that allows for “hard-core
interactions” (c.f., [22], [20], [15])—from being applied. The important property, quasilocality
of the specification {/‘E:,SB}v is clearly satisfied, implying, in particular, that the set of Gibbs

states G5 is not empty. Note also that quasilocality and consistency of the specifications
imply that the DLR condition (2.6) is equivalent to the (apparently stronger) statement that
the conditional expectations of v are given by (2.4), i.e.

v(flose,mge) = pxp(floas,nge) v-as. (2.7)

for all pairs of finite sets A and B and any cylinder function f depending only on o and 7.

Let G%™ denote the set of all spin Gibbs states, defined by means of the DLR condition and
the Hamiltonian (1.1), appropriately modified to incorporate the boundary condition. Let Ilg
denote the mapping that assigns the spin marginal to any infinite volume ES measure. It is
not a priori obvious that the spin marginal of any infinite volume Gibbs ES state is an infinite
volume Gibbs spin state. However, it turns out that even a little more is true.

Theorem 2.1 The mapping Ilg is a linear isomorphism between the Choquet simplices* GFS
and G&N. When restricted to translation invariant measures, Ilg is an isomorphism between the
simplex of all translation invariant Gibbs ES states and the simplex of all translation invariant
Gibbs spin states. In particular, |G*S| = 1 if and only if |G*™| = 1.

Remark. The last statement is false for the correspondence between ES Gibbs states and their
RC marginals. For instance, for d = 2 it is known that there are exactly two extremal Ising
Gibbs states below the critical temperature ([11], [1], [18]) and, therefore, two extremal ES
Gibbs states, while the corresponding RC marginals are identical.

3Here we use the theory of Gibbs states as presented by Ruelle [22], who explicitly considers models with
configuration spaces determined by local restriction rules (hard cores). See Sections 1.1 and 1.5 of [22].
“See, e.g., [22], [15] and [20] for the definition of Choquet simplices.
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As alluded to in the introduction, RC Gibbs measures have finite volume specifications that
are not quasilocal, which prevents the straightforward application of the general theory of
Gibbs states. It therefore is often more convenient to consider ES Gibbs measures, whose
finite volume specifications are local, and study RC measures only as their marginals. The
relation of these marginals to RC Gibbs measures as introduced in [9], [16], [21], and [5] for
Potts models without magnetic fields is the content of our next theorem.

First, however, we generalize the notion of RC Gibbs states to Potts models with magnetic
fields. To this end we introduce, for any configuration n on By(Z%), the set of occupied bonds
Boce(n) = {b € Bo(Z9): n, = 1} and the corresponding graph (Z%, Bo..(n)) with the vertex set
7% and the edge set Bow.(n). For any connected component C(n) of this graph (possibly a
single site), we use V(C'(n)) to denote the corresponding vertex set. We now define, for any
finite set of bonds B and any configuration ng., the measure

_ Wﬁ‘c(nmlnﬁc)
>y W (M5|15)

pE- (5] 75e) (2.8)
with
q
ngc(anBC) — (eﬁJ _ 1)\Bocc(n)rml H Z ¢~ B(hmax—hm)[V(C(m)] (2.9)
C(m):V(C(m)NV(B)#AD m=1

where the product runs over all connected components C(n) such that the vertex set V(C(n))
intersects the set V(B), and hpax is used to denote
Bmax = max  hyy,. (2.10)
me{l,...q}

[e.9]

Interpreting e~ = 0, any infinite cluster C'(n) intersecting V(B) contributes just the factor
4o = |@Qmax(h)|, the size of the set

Quax(h) = {m € {1,...,¢}hm = Pmax }- (2.11)

For future reference, we also define Noo = Noo(m) as the random variable denoting the number
of infinite clusters of Boc(n), and use Cy = Coo(m) to denote the unique infinite cluster
whenever Ny, = 1.

As usual, one introduces the set of Gibbs states GRC as the set of measures p on {0, 1}Bo(
that satisfy the DLR equation

74)

u(f) = / () fEE(f  mge) (2.12)

for any finite B and any cylinder function f with support in B. Note that, in contrast to
equations (2.6) and (2.7), here the DLR condition (2.12) does not imply that the conditional
expectations of an RC Gibbs state p are given by the finite volume expectations (2.8) due to
the lack of quasilocality. However, it turns out that uniqueness of the infinite cluster is enough
to ensure that the DLR condition implies a statement of the form (2.7) (see Theorem 3.4).

As already observed in [5], the above notion of RC Gibbs states does not accommodate all
“naturally arising” limiting states. When reformulated in terms of the ES measures, not every
RC marginal of an ES Gibbs measure is an RC Gibbs state. An example is the ES Gibbs state
corresponding to the standard Dobrushin state with a stable interface between two ordered
states.

However, when restricted to the set of ES measures with at most one infinite cluster, the
situation changes. As it turns out, not only is the marginal of every such ES Gibbs measure an



GIBBS STATES OF GRAPHICAL REPRESENTATIONS IN THE POTTS MODEL 7

RC Gibbs measure, but also each RC Gibbs measure with at most one infinite cluster can be
obtained as a marginal of a suitable ES Gibbs measure. In addition, a natural refinement holds:
up to a choice of the “color” of the infinite cluster, the surjective correspondence between ES
and RC measures is actually one-to-one.

To state the next theorem, we use Q<1 = {v € GFS|y(N, < 1) = 1} to denote the set of ES
Gibbs measures such that with probability one there is at most one infinite cluster of occupied
bonds Similarly, let G5 = {1 € GR|u(Nyo < 1) =1}, QE ={v € G¥|y(Ny = k) = 1} and

= {1 € GF°u(Nw = k) = 1}, k = 0,1. Also let g = {v e G¥5|y( Ton) = 1}, where

i’f’m is the event AT, = = {No = 1 and 0, = m for all z E V(Cx)}. Finally, let IIgxc be the

mapping that assigns RC marginals to ES Gibbs measures.

Theorem 2.2 (i) The restriction of the map Trc to GEY is surjective onto GX§
(ii) Every v € gg? has a unique decomposition

v =\ + Z AmVm (2.13)
MEQmax
: ES ES _
with vy € G5, Vi € Gi'ms Aoy Am > 0, and Ao + ZmeQmax Am = 1.

(i4i) The restriction of the map Trc to GE° is one-to-one from GES to GFC. If m € Qumax(h),
then the restriction of IIgc to QE s one-to-one from Gy %l to gl
(1) If |Qmax(h)| = 1, then the mapping llgc is a bijection Igc : g — g<1

Remarks. (i) As we will see in the next section, the set gE§ is non-empty. By the above
theorem, this implies that also QE(E is non-empty.

(ii) Since {No = 0} is a tail event, it follows from the standard theory of Gibbs states
and the fact that the specifications (2.4) of the Edwards-Sokal measure are quasilocal, that
the conditional measure v(-|No = k), k = 0,1, is a Gibbs state for any v € G} with 0 <
V(N = 0) < 1. Although the corresponding statement is not known a priori for a RC
Gibbs state p € GEY (due to lack of quasilocality), it is a consequence of statement (i) and the
commutativity of the following diagram,

y Trg "
! ! (2.14)
V(|Now = k) 28 ([N = k)

which, in turn, is a consequence of Theorem 2.2(ii).

Next, we state our results on the existence of thermodynamic limits for the extremal ES
and RC Gibbs measures with free and wired boundary conditions. We begin by introducing
the relevant finite volume ES measures. Observing that, for a finite volume A, the state
NE%(A)( | o pe, nB(A)c) does not depend on 7gs)c, we define the measure

pixn(+) = pixma) (| oRe, mp(a)e), (2.15)

where o™ is the constant conﬁguration o™ =m for all z € Z%, with m € {1,...,¢}. In a

similar way, the measure pf A ]Bo A)( | o Ac, MBo(A ) ) does not depend on o ¢, provided that the

n-boundary condition is chosen as ng(p)ec 771530 (A)e? where n° denotes the configuration with
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nY =0 for all b € B(Z?). In this case we introduce the measure

Pitee(*) = 1o (+ 1A, MG (a)e)- (2.16)

The n-marginals of the measures ,u%sfree( -) and ,u%sm are the RC measures ,u%%ee( -) and ui(fn
with free and m-wired boundary coﬁditions7 respectively. A particular role will be played by
the RC measures with m-wired boundary conditions such that m € Qmax(h), i.e., Ay, = hmax.
Note that the measures uﬁcm are identical for all values m € Qmax(h); we will use uﬁcmaxwir to
denote any of them. 7 ’

Theorem 2.3 Let >0, J >0, and hy, €R, m=1,...,q.
(i) Let f be a quasilocal function on {0,1}EE)  Then, the limits

RC : RC
) = lim . 2.17
:U'maxww(f) Al/‘Zd MA,maan"(f) ( )
and
RC : RC
— 1 2.18
iufree(f) AI/I‘%d iuA,free(f) ( )

exist and are translation invariant.
(i) The measures pRS . and pkS

i e are RC Gibbs states with at most one infinite cluster.

Remarks. (i) The limit A  Z? above (and hereafter) is taken in the sense of the limit along
the net {A C Z¢ finite} with the net ordering given by the set inclusion. However, when we
talk about a general RC limit state, we will have a weaker notion in mind. Namely, we say that
a measure 4 on {0, 1}B0(Zd) is an RC limit state if there is a sequence of finite sets B,, C Bo(Z9)
and a sequence of configurations (™ such that p(f) = lim, e uﬁf( f ]ng?).

(ii) We will prove the existence of the limit (2.17) by first establishing that the NE,Cm is strong

FKG if h,;, = hmax, see Theorem 3.1. The requirement h,, = hmay is crucial for our proof of
Theorem 3.1, since the proof relies on the FKG property of the finite volume measures ,uﬁcm.

In fact, for 8 large enough, a contour argument indicates that ,uicm with h,, < hpax iS not
even FKG.

(iii) The statements of Theorem 2.3 are special cases of those of Theorem 3.1 (ii), Theo-
rem 3.3 and its corollary, which hold for the GRC models discussed in the introduction.

By using the general theorem on the uniqueness of the infinite cluster [6], the conclusion
about the existence of the limiting RC measures can be strengthened to their ES preimages:

Theorem 2.4 Let >0 and hy, € R, m=1,...,q. If m € Qmax(h), then the weak limits

ES _ 1. ES
fmy, = Ah/nzld HAom (2.19)
and
S : S
Mgee = Ah/‘HZld M%,free (2'20)

exist and are translation invariant ES Gibbs states with at most one infinite cluster.

Remark. In contrast to Theorem 2.3, the statement here that the limiting measures are Gibbs
states is a trivial consequence of the general theory of Gibbs states for systems with quasilocal
interactions.
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Next, we state a theorem relating the uniqueness or non-uniqueness of Gibbs states to the
existence of an infinite cluster. To this end, we define the percolation probability

/Lech

and the auxiliary percolation probability

Poc(B, 7,1) = inf_p(|Col = o0). (2.22)

Heg

where Cy = Cy(n) is the cluster that contains the origin 0 € Z¢, and where we have restricted
ourselves to the set GRC of all translation invariant RC Gibbs measures. As we will see in
the next section (corollary to Theorem 3.1), the density P (3, J, h) is just the probability of
percolation in the measure ui&mir, and is a nondecreasing, right continuous function of J.
Similarly, Py (8, J, h) is the probability of percolation in the measure uggc. We also define the
critical coupling,

Jo(B,h) = inf{J > 0: Ps(B,J,h) > 0}. (2.23)

It turns out that if P (3, J, h) is replaced by Py (8,J,h) in the definition above, the value of
Je(B, h) is unchanged, again by the corollary to Theorem 3.1.

Remark. For d > 2 and q sufficiently large, P (f, J,0) jumps from zero below J. to a strictly
positive number at J.. This corresponds to the so-called temperature driven first order phase
transition in the Potts model, whose existence was first proved in [19].

Theorem 2.5 Let >0 and hp, e R, m=1,...,q.

(i) For all J > 0, there is at most one ES Gibbs measure with no infinite cluster.

(ii) If Ps(B3,J,h) =0, then ‘QES‘ = ]gRC\ = 1. In particular, |QES‘ = ]gRC\ =14 J < J..
(i4) If Pso(B3,J,h) > 0, then the states pES, m € Quax(h), are extremal translation invariant

m

ES Gibbs states with pZ° (A ) = 1. In particular, there are at least o = |Qmax(h)| different

1,m
extremal translation invariant ES Gibbs states.

As mentioned above, the percolation probability P (f3,.J,h) is nondecreasing in J. The
last statement of the theorem therefore implies that there are at least ¢y extremal translation
invariant ES Gibbs states when J > J.. This raises the question of whether for |Qmax(h)| =1
the ES Gibbs state is unique above .J.. As the next theorem shows, this is indeed the case, at
least if d = 2.

Theorem 2.6 Let § >0, and hyy €R, m=1,...,q, and d = 2.
(i) If J # Jo, then |GRC| =1 and P (B, J, h) = P (B, J, h).
(ii) If J # J. and, in addition, |Qmax(h)| =1, then }QES’ =1.

Remarks. (i) For the Ising model, the condition |Qmax(h)| = 1 means that h # 0. Together
with FKG, the Lee-Yang theorem then implies that the claim (ii) is valid for d > 2 and all
J > 0, including J = J.. Even though one might conjecture that this statement holds for
arbitrary ¢, since only one spin direction is preferred if |Qumax(h)] = 1, this is in fact not
true. Indeed, we show in [3] that the g-state Potts model has two coexisting phases at J. for
sufficiently small fields preferring one of the ¢ values m € {1,..., ¢} over all others, provided ¢
is sufficiently large. However, we believe that for J # J., |@Qmax(h)| = 1 does imply uniqueness
for all ¢, even when d > 2.
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(ii) Theorem 2.6(i) and part of the statement in Theorems 2.5(ii) refer to the RC model
itself, and not the relationship between the ES and the RC model. As we will see in the proofs
of Theorems 2.5 and 2.6 in Sections 8 and 9, these statements remain true in the more general
context of the GRC model introduced in Section 1.

3. MONOTONICITY AND UNIQUENESS OF THE INFINITE CLUSTER

In this section, we define the generalized random cluster (GRC) model, and formulate several
results concerning the FKG properties and uniqueness of the infinite cluster in this model. The
GRC measure u%}ge is obtained by normalizing the weights

Wikeem) = (" = D) T Ogee(C(n)), (3.1)
C(n)

for any 1 € {0,1}B(Y), Here || is the number of bonds in the set {b € Bo(A): n, = 1}, the
product runs over all connected components C(n) of the graph® (A, Boee(1) NBo(A)), and

q
Ofree(C) = Z gme?tm VO (3.2)

m=1
for any connected component C'. The factors g,,, m = 1,...,q, are assumed to be positive real

numbers such that

Z gm > 1. (3.3)

mGQmax

Similarly, the measure ,u%{g is obtained by normalizing the weights W/(\;anc defined for any

n € {0,1}BM) by the formula
WS () = (7 = )1 T Oam(Cm)), (3.4)
C(m)

where |n| now stands for the number of bonds in the set {b € B(A): n, = 1}, the product
runs over all connected components C(n) of the graph (A, Boe(n) NB(A)), A = AU IJA, and
Opm(C) is defined as

eree(c) V(C) n AC - @
Oram(C) = {eﬁhmIV(C)|
GRC

As already pointed out for RC measures, the measures py" > are identical for all values m €
Qumax(h); we will use u§C . to denote any of them. Note also that the definitions (3.4) and

A, maxwir
(3.5) reduce to the standard definition of wired measures for non-integer ¢ when h,, = 0.
Finally, one can directly extend the definition (2.9) to get the weights WSRC (ng|ng.),

(3.5)

otherwise.

q
WERC (ng|nge) = (77 — 1)Bocc ()Nl 11 S el V@) (3.6)
C(n):V(C(m))NV(B)#AH m=1

yielding the measures uSRC(ng|nge) that define GRC Gibbs states with the help of DLR
equations of the type (2.12). GRC limit states are defined analogously to RC limit states, see
Remark (i) following Theorem 2.3.

5We recall that Boce(n) denotes the set of bonds b with 7, = 1.
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Remarks. (i) It is easy to see that if we take ¢,, =1, m = 1,...,¢, then the measures u%%rcee

and MX’ES are just the RC marginals uﬁgree and ,uﬁfjm, respectively.

(ii) It is instructive to consider the effects of particular boundary conditions on the measure
with weights (3.6). If we take B = By(A) and ng. = 0, then we get the free measure ,uﬁpf‘ge. If

on the other hand, we take B = B(A) and ng. = 1, then we get the wired measure u%ffgaxwir,

provided A€ is connected. If A€ is not connected, i.e., if A contains “holes,” then the boundaries
of these holes will be not be wired to each other. In this case, it will often be convenient to
introduce additional “ghost” bonds linking all of the components of the boundary. If, in
addition to the bonds in B(A)¢, the ghost bonds are occupied, we get the maxwired state also
in this case.

(iii) Recall that in the standard RC model without magnetic fields it is possible to view the
wired state as a free state on a modified graph in which all of the boundary sites in JA have
been identified. However, in the case of general external fields, the two prescriptions produce
different states, i.e., setting all the sites at the boundary to a particular value produces a
different state from the free state on a graph in which all boundary sites have been identified.
In the former case, the collection {C;} of all components of (AUIJA, Boee(n) NB(A)) that touch
the boundary acquires the weight e®max 2:[V(C)l while in the latter case, it acquires the weight
Zm eﬁhm(1+ZiIV(Ci)\AC\)_

Note that it is the former prescription that we use to define the m-wired GRC measure.
This measure is natural for two reasons: it is the marginal of the corresponding ES measure
if all ¢,,’s are one, and, for m € Quax(h), this measure is maximal in the FKG order, whereas
the alternative one is not, at least in a finite volume.

)

To state our results on FKG properties, we introduce the standard partial order < on
{0, 1}B(Z by setting < 1’ whenever n;, < n, for every b € B(Z?). Since we shall also study
monotonicity properties in dependence on (h,,) we need to introduce a partial order on the
external fields. Given two sets of fields (h,,) and (h],), we define

(hm) < (BL,) iff hg —hy < hj —hj for all k,l=1,...,q with hy —h; > 0. (3.7)

Note that < is indeed a partial order on g-tuples of real numbers, in particular, (h,,) < (hl,)
and (hy,) < (h,) imply (hm) < (hip)-
Recall the following definition:

Definition. Let ) be a measurable space endowed with the partial order <. Then a measure
on 2 is said to be FKG if W/(FG) > p(F)u(G) for all measurable functions F,G : Q@ — R that
are increasing with respect to <. Moreover, if § is of the form € = Xpep$, then p is said to
be strong FKG if u(-|A) is FKG for all cylinder events of the form A = {n: n, = ap Vb € ]E},
where B C B is finite and oy € Qp for all b € B.

Theorem 3.1 Let 3>0,J >0, hy, € R and g, >0, m = 1,...,q, and suppose that the
parameters ¢, obey the condition (3.3). Then:

(i) For each finite A C Z¢, the measures u%ﬁge and u%}%n%mr are strong FKG.

(ii) For each quasilocal function f, the limits

GRC . GRC
3 - l 1 3'8
Mmaxvvlr(] ) l/(nld HA,maxwu"(f) ( )
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and
GRC . GRC
= lim 3.9
Hfree (f) AI/‘Zd :uA,free(f) ( )

exist and are translation invariant.
(iii) Let v be a GRC limit state or a GRC Gibbs state. Then

GRC GRC

Hfree < 1% < Hmaxwir (3 10)
FKG FKG

GRC,J1

maxwir

R

(iv) Suppose Jy < Ja. Let let p denote the wired state at J = J; and let ,ugeec"]? denote

the free state at J = Js. Then
GRC,J GRC, J
/”Lmaxwirl(') < Htree 2(')’ (311)
FKG
(v) Let (hy) < (h,) be two sets of external fields. Then

FKG
GRC,(hm)  y  GRC(h) 3.13
ot (1) < Hptt™ (2) (3.13)

Remark. Note that (3.11) can be extended via (3.10) to any pair of GRC Gibbs measures at
J = Ji, resp. J = Js.

The following corollary is an immediate consequence of the above theorem. Before stating
it, we recall the definitions (2.21), (2.23) and (2.22) of P (8, J, h), J., and ﬁoo(ﬁ, J, h), respec-
tively. For the GRC measures considered here, the definitions (2.21) and (2.22) are obviously
modified by replacing the space GRC of translation invariant RC Gibbs states by the space
C:GRC of translation invariant GRC Gibbs states.

Corollary. Let 3 >0, J >0, hy, € R and ¢, > 0, m = 1,...,q, and suppose that the
parameters ¢, obey the condition (3.3). Then:

(i) Poo(B, 1, 1) = Higignis (ICol = 00).

(i) Poo(B, J, 1) = i (1Col = 00).

(i) J — Poo(B,J, h) is a nondecreasing, right continuous function.

(iv) J — Pso(B,J, h) is a nondecreasing function, which is continuous and equal to Px (3, J,h)
whenever J — Py (83, J,h) is continuous.

(v) Pso(B3,J,h) = Pso(B3,J,h) = 0 if J < J., while both Pso(8,J,h) >0 and Ps(3,J,h) >0 if
J > J.

The next theorem is the only statement in this section that cannot be generalized to the
GRC models.

Theorem 3.2 Let 5 >0, J >0, and hy, € R, m =1,...,q. Let v € G¥S be arbitrary and
let u denote its n-marginal. Then

u(+) < e (+)- (3.14)
If, in addition, either |Qmax(h)| =1 or p(Neo < 1) =1, then
al+) 2> piiee(+)- (3.15)
FKG
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The following theorem states our results on the uniqueness of the infinite cluster.

Theorem 3.3 Let 3 >0, J >0, hy, € R and g, >0, m =1,...,q, and suppose that the
parameters qmy, obey the condition (3.3). Then all translation invariant GRC Gibbs states and
all translation invariant GRC limit states have at most one infinite cluster with probability
one.

Remark. We will prove the above theorem by first establishing the so-called finite energy condi-
tion for p, and then using the results of [6]. Unfortunately, we were unable to use this strategy
to prove uniqueness of the infinite cluster for random cluster marginals of translation invariant
ES Gibbs measures. In fact, it is not hard to see that there are ES Gibbs states whose random
cluster marginals do not satisfy the finite energy condition. While these counterexamples stem
from non-translation invariant ES Gibbs states obtained by so-called Dobrushin boundary con-
ditions, we do not see how to use the additional assumption of translation invariance to get a
proof of the finite energy condition.

In Section 7 we will use the uniqueness of the infinite cluster to prove that the finite volume
specifications of u%ﬁc and uggfwir, and more generally of any translation invariant GRC limit
state, are “almost surely quasilocal” in the terminology of [21] and [16]. As a corollary of this

statement, we will prove the following result.

Corollary. Let 3 >0, J >0, hy, € R and ¢, > 0, m = 1,...,q, and suppose that the
parameters q,, obey the condition (3.3). Then all translation invariant GRC limit states are

GRC Gibbs states.

The last theorem in this section addresses the question under which conditions the condi-
tional expectations of a GRC Gibbs state u are given by the measures uGtC(+| nge).

Theorem 3.4 Let 3 >0, J >0, hy, € R and g, >0, m = 1,...,q, and suppose that the
parameters g, obey the condition (3.3). Let u be a GRC Gibbs state with (Noo < 1) =1,
let B be a finite subset of Bo(Z?), and let f be a cylinder functions depending only on the
configuration ng. Then

p(flmge) = pgC(fInge)  p-a.s. (3.16)

4. FKG PROPERTIES OF GENERALIZED RANDOM CLUSTER MEASURES

In this section we prove Theorem 3.1. In the process we formulate and prove a lemma
concerning monotonicity of GRC states in the volume (Lemma 4.1). We will also formulate
and prove a second result (Lemma 4.2) concerning domination of states with general boundary
conditions, which will be used in the proof of Theorem 3.2 in the next section.

Proof of Theorem 3.1(i). We consider A to be fixed and omit it temporarily from the notation.
In order to prove the strong FKG property of M?}?ee and uﬁRng , let us recall a necessary and

sufficient condition [10], the so-called lattice condition

free free free ree

WGRC (,rl(l) vV n(Z))WGRC (,’7(1) A ,'7(2)) > WGRC (’I’](l))WfGRC (,’7(2)) (4.1)

for any pair of configurations n*) and n®, and similarly for WTERC Here nW v 2 denotes
the maximum and ™" A 9®) the minimum of ) and 5®).
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It turns out that to verify (4.1), it suffices to consider 7 and n® that differ just at two
bonds. Indeed (see e.g., [7]), let

WGRC
R(Gon) = i

free

(4.2)

and note that (4.1) can be rewritten as R(n(l),n@)) > R(n(l) A n(2),77(2)). Hence, the lattice
condition (4.1) is true once we verify that R({,n) is increasing in ¢, for any fixed . Let us

introduce, for any bond b, the configuration n®) by setting ngb) =1 and néf)) = 0 for any b’ # b.
Ordering the set Bocc(n) into a sequence (b1, ..., bg,.(n)|); We have
‘Bocc
H C V ,,7 (1) /... v n(bk71)7n(bk)). (4.3)

Hence, it suffices to prove monotonicity of R({,n) for any n that is zero except possibly at one
bond. Moreover, it suffices to prove the growth when flipping ¢ at a single bond from Otol,i.e.,
¢ with ¢, = 0 to ¢® = ¢ vn®). The verification of the needed bound, R(¢?, n®")) > R(C n®)),
for any pair of bonds b and b/, now boils down to the special case of (4.1) Wlth nW = ¢b and
n® =¢vn () that differ only at bonds b and ¥'. Since V) = @ if b = ¥/, we may further
assume without loss of generality that b # b'.

Let thus 7V and n(® be such that

W= vnn »
1 2 1 2 :
T )

Since the number of 1-bonds is equal on both sides of (4.1), the nontrivial issue is therefore to
check (4.1) for the product over the connected components. Let us suppose, without loss of
generality, that there exist disjoint connected components A; and Ay of (M) A n(2) (possibly
isolated sites) that become connected when b; is flipped from 0 to 1, and, similarly, By, By for
the components connected by flipping bs. (The only other possibility is that both endpoints
of by, or alternatively by, lie in a single component of nV) A n(? | in which case the two sides
of (4.1) are equal.) With this proviso, there are only three generic situations:

(a) V(A1) UV(Ay) is disjoint from V(B;) U V(B3),
(b) V(A;) = V(By) but V(A42) NV(By) =0,
(c) V(A1) =V(By) and V(Ay) = V(By).
We will prove (4.1) separately for (a), (b), and (c¢). For notational brevity, we use @(C') for

both Ofee(C) and O,,(C).
In the case (a) both sides of (4.1) reduce to the same term

O(A1 U A2)0(B1 U B;)O(A1)0(A2)0(B1)6(Ba). (4.5)

Hence, (4.1) is fulfilled with the equality sign.
Next, consider (b). We denote by C the common component (i.e., C = A; = Bj) and use
A and B to denote the other components. Then (4.1) boils down to the inequality

6(C)O(CUAUB) > 6(CUA)O(C U B). (4.6)
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Let us first consider the free boundary conditions. Using, for any m € {1,...,q}, the notation
Uy = e,@hmIV(A)l’
by = eﬁhle(B)\7 (4.7)
e = eﬁhle(C)l,

the condition (4.6) is equivalent to

q q q q
(Z %’n@n) ( Z Qm’am’bm’cm’> > (Z Qmamcm> < Z Qm’bm’cm’> . (48)
m=1 m=1 m/=1

m/=1
Let us assume that the fields are ordered in an increasing order, hy < hy < --- < hy. As a
consequence, a; < ag < --- < aq and by < by < --- < b,. By writing the expression (4.8) as an
inequality for a bilinear form in gy, ¢, G ¢y, the sufficient requirement that all the independent
coefficients of this form be non-negative reduces to

(@m — Gy ) (b, — b)) >0 Vm, m’, (4.9)

which is immediate by our preceding assumptions.

Turning to m-wired boundary conditions, m € Qmax(h), we will distinguish several cases. If
V(A)NA® =0, V(B)NA® =0, as well as V(C) N A® = (), we have exactly the same situation
as for free boundary conditions. If V(C) N A° # ), both sides of (4.6) are equal to ¢;7,a.7bimCrm -
IFV(A)NA®S =0, V(C)NA® =0, and V(B) N A # (), we need to show that

<Z chm> ambmcm > (Z Qmamcm> 7, Crm - (4.10)
m=1

This follows once we realize that hs; = hmax implies a,, < a5 for any m. Similarly with the
role of A and B interchanged. Finally, if V(C)NA® = 0, but V(A)NA® # () and V(B)NA® # 0,
we have to verify that

q
(Z qm0m> amme»fn Z amCmmem. (411)
m=1

This is clearly true if we use the assumption that >
whenever m € Qmax(h).

It remains to establish (4.1) under (c). In this case, there are only two components in the
game: A and B. Inequality (4.1) is then implied by ©(A U B) < O(A)O(B). Let us use
the definitions (4.7) of a,,, and b,,. We consider three cases. First, in the case of either free
boundary conditions, or wired boundary conditions with the additional conditions V(A)NA® =
() and V(B) N A° = (), the relation we want boils down to the inequality

q q q
Z Qmambm < <Z Qmam> <Z Qm’bm’> ) (412)
m=1 m=1 m/'=1

which is obviously satisfied since b, <3, cQmax(h) Q' bi. Second, for wired boundary condi-

tions under the additional conditions V(A) NA® = () and V(B) N A® # (), we get the manifestly
correct inequality

MEQmax () Im = 1 and the fact that ¢, = ¢,

q

m=1
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Finally, for wired boundary conditions with the additional conditions V(A4) N A® # () and
V(B) N A® # 0, we get the identity ambm = ambm,. O

Remark. The necessity of hy, = hmax, for the strong FKG property of ,ufRng to hold, arises from

(4.6). Namely, suppose that B connects to the boundary (i.e., V(B) N A° # ()), whereas A and
C do not. Then (4.6) reduces to (4.10). It is not difficult to convince oneself that choosing
C sufficiently large one can make (4.10) be satisfied for all A only when az = maxy,, am,.
Consequently, h; must be equal to hpax for the lattice condition (4.1) or, equivalently, the
strong FKG condition to hold.

Lemma 4.1 Let >0, J >0, hy, € R and g, > 0, m = 1,...,q, and suppose that the
parameters g, obey the condition (3.3). Further, let A C A C Z¢ be two finite sets. Then

GRC GRC
:U'Af}ree( : ) < IU'A,free( : ) (414)
FKG
and
FKG

Proof. Using Theorem 3.1(i), the inequality (4.14) follows immediately from the fact that

Hitree (+) = H&lfee(+ [ Da), (4.16)
where Dy is the FKG decreasing event
Dy = {n: my=0Vb e By(A)}. (4.17)

For maxwired boundary conditions, the proof is more complicated, since conditioning on
the FKG increasing event

Op = {n: n, =1Vb e B(A)} (4.18)
GRC

A, maxwir
(infinite) component. If A° has finite components Hy, ..., Hy, we use the following trick: for
each “hole” H;, we introduce an additional bond b; with one endpoint in H; and the other

in A°. Setting

leads to the state p only if A is a volume without “holes”, i.e. if A® has only one

B*(A) = B(A) U {bi, ..., b}, (4.19)

we then define ﬂgf{rgaxwir as the maxwired GRC measure on the graph (A,B*(A)), where as

before A = A UAA. With this definition we get
e (+) = B (75 = 0 Vb € B*(A) \ B(A))

KA maxwir = MA maxwir

< SR (-Im = 1 Vb € BY(A)\ B(A))

> HMA maxwir
FKG

< AR (+ | =1 Vb € (B*(A) \ B(A)) UB(A))
FKG

(4.20)

GRC
= MA,maxwir( * )a

proving the desired inequality (4.15). Here the first inequality uses that the strong FKG

measures, conditioned on taking a fixed configuration 14 in a set A, are FKG increasing in

1.4, while the second inequality follows by the FKG property of a&R¢ O

MA,maxwir'
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Proof of Theorem 3.1(ii). As a consequence of (4.14) and (4.15), the net (u%}ge) (resp.

(uﬁ%w)) increases (resp. decreases) as A increases (in the order defined by the set inclu-

SIOH) yielding the existence of the desired limits as well as their translation invariance for all

monotone quasilocal functions. Since the latter generate all quasilocal functions, the claim is
established. O
Proof of Theorem 3.1(iii). We first prove that for any finite set of bonds B, the measure
pSRC (mg| npe ) is strong FKG. To this end, we express pugc (| nge) as a limit of finite volume

measures Wthh can be expressed as conditionals of the finite volume measures unggee. Using

GRC (

that u% A “free 18 strong FKG we then will conclude that s M| Nge) is strong FKG.

Let A be a finite subset of Z4, let 5 € {0, 1}Bof (Z) and let

(A) UL be Bo(A)
= 4.21
K { 0 otherwise. ( )
Then we have WIB%P&)( BO(A ‘77 ) —e /maax|A|WA free( (A ))' Consequently,
A
Mo () (- Vm(ao()mc) = 1S (- InS5 A ye)- (4.22)

Since the latter measure is strong FKG and since (u$RC) form a consistent family of specifi-
cations, u§RC(- |771(B%)) is strong FKG as well for any B C B(A) (use that conditioned strong
FKG measures are still strong FKG) The strong FKG property of the measure u$5¢(ng| np.)
now follows from the fact that puGRC(- \T/BC ) = u§EC(+|nge) as A 2 Z4, which in turn is
a consequence of the observation that for each 1 there is a finite A such that the number of
components of the graph (A, Boe (7)) that reach from V(B) to the boundary of A is equal
to the number of infinite components of (Z%, By(n)) that touch V(B). (Here we used that there
are only finitely many infinite clusters connected to B.)

Hence pu§RC(-|npe) is strong FKG for all  and all finite sets of bonds B. In particular,
pSRC(+ | mpe) is increasing in the boundary condition (the specifications are consistent), and

§C Imse) < w0 Imd), (4.23)

where ) is the configuration with n() = i for all b € By(Z%). Choosing B = B(A) and
continuing by further conditioning as in the proof of (4.14) and (4.20), we get

/‘/C\%}See( * ) < MI%?/{E)( * ’ nIB%(A)C) < u%%gaxwm( : ) (424)
FKG FKG
If 1 is a Gibbs measure, the bound (4.24) and the DLR equation (2.12) imply that

:Ufgl;}rcee( ) < NGRC() < /L[C\i‘rfr{r(ljaxwm(')' (425)
FKG FKG

uSRCC i) <
FRG

Taking the limit A * Z¢, we get statement (iii) for an arbitrary GRC Gibbs state .

In order to prove statement (iii) for a GRC limit state, we use that for any sequence of
finite sets B,, with B,,  Bo(Z?), we can find a sequence A,, of finite subsets in Z? such that
Ay /7% and B(A,,) C B,. Given such a sequence and a sequence of boundary condition 1™,
we then proceed as above to bound

M/C\&:,Cfree( ) < MGRC( ’an ) < :uglj,cnmxwu() (426)
FKG FKG
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Taking the limit n — oo, this proves statement (iii) for an arbitrary RC limit state. O

Proof of Theorem 3.1(iv). Let g be a monotone increasing function, depending only on bonds
Bo(A) for some finite A. For each finite A C Z¢ define

ga = Z goT®, (4.27)

z: T(A)CA

where 7 is the shift operator. Let u%ﬁg}“a and ,ufRC Jlf be the GRC measures with free and

maxwired boundary condition and coupling J = J;, however, with the weights in (3.1) and
(3.4) multiplied by the function e*92. We then consider the generating function

2= Y e (e i H (e (4.28)
nEBo(24)

where, as in formula (3.1), the product runs over all connected components C(n) of the graph

)

(A, Boce(m) NBo(A)). Similarly, we introduce the generating function Z/(\a for the moments

,Naxwir
of gp with respect to ,uGRC mscwie- Consider now a volume A that is a disjoint union of two volumes

A7 and As. Then we have the following submultiplicative bound

ZI(Xaf)ree = Z/(\CI)free Z/(\ag?free €O(Q‘B(Al)mB(A2)D’ (429)

which can be easily obtained by restricting the sum in (4.28) to those n which are zero on the
bonds in B(A;) NB(Az), and observing that

A = ga, T ga, + Z gorT®. (4.30)
z: TY(A)CA,
TT(A)NAT£D,
TT(A)NNg 0

By standard subadditivity arguments, it follows from (4.29) that the “free energy”

fla) = Ah/n%d ]A| log Z/(\ f)ree (4.31)

exists and is convex in . In (4.31), we assume that the limit is taken over cubes of the form
Ap={-n,...,n}%
The same limit is obtained if Z/(\agre . is replaced by Z/(\alllaxw Indeed, observing that Z/(\al)naxw

can be bounded from below by restricting the sum over configurations to those for which 7 is
0 on B(A) \ Bo(A), we get

Zla) > 0(aloA) 7 Afree H Oam{z}), (4.32)

A, maxwir
€O

provided m € Qmnax. To get an upper bound on Z[(xa) . observe that @y ;, < Ofee by our
assumption (3.3). As a consequence,

Zﬂm < (a‘aA‘)Zi ) (4.33)

where, as before, A = A UJA. While A is not of the form {—n,...,n}¢ required for the
existence of the limit (4.31), it can easily bounded by a term of this form times a boundary

term with the help of (4.29). We therefore have shown that Z ()

( A, . and Z/(\o‘f)ree give rise to
the same free energy f(a).
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Moreover, by differentiating, we find that

GRC,1 (A df < df < Tming o CRCJna (A
A,mir(‘ A|) < () £ 2 (a2) < liminf i (| A‘),

4.34
b iy (4.34)

limsup p
A7d
where 0 < a1 < ag < « are arbitrary.
Since gy is increasing, we have from (4.15) and the translation invariance of -/ that the
left hand side of (4.34) equals pS"571 (¢). Thus we just need to show that if « is small enough

maxwir

then uflircegh’a is FKG dominated by ui}lﬁ;‘b. To this end recall that the second measure
can be directly generated by the weights WAIeree defined in (3.1), while the first one can be

generated by the weights e®94 VV/‘\hf o s a consequence, we have

GRC,JQ( e )
GRc,Jl,a( )= HA free A (4.35)
lu’A,free - GRC, J2 G ’ .
MA,free ( )

where

J1
Ga(n) = 9 (n) WA,free(ﬂ)

— 7 -
WA 7eree (77)

Hence it suffices to ensure that the function  — G (n) is monotone decreasing in 1. Let us
define the variance of g by the formula

(4.36)

var(g) =sup sup | g(n) —g(n')|. (4.37)
b mn':s ne=mn,
Vb£b

Note that var(g) is the maximum amount that g can change by flipping a single bond. Since

W/\],lfree ePl -1 Fl
5o =g (4.38)
WA,free

the monotonicity of G is guaranteed for instance by e®@Bo(A)(B1 _ 1) < (ef72 —1). For
J1 < Jo, this in turn is achieved by taking a small enough. Thus, for « sufficiently small and
positive, we have

GRC,J P GRC,J1,a (A P GRC,J2 ( A GRC, J
Iu‘rrla:><\rvi1“1 (9) < li\n}lzr}if HA free ' (m) < li\n}lzr}if HA free ’ (W> < Hpree “(9), (4.39)
where the last inequality follows from u%ﬁg}? FEG ugf‘ec’b and the translation invariance of
ugic’h. Since g was arbitrary, (3.11) is established. O

Before proving item (v) of Theorem 3.1, let us present an elementary argument showing why
our definition of partial order on the external fields is the only correct one, at least provided
we stipulate that it be independent of the volume, 5 > 0, and the values of (g,,) (however,
such that the strong FKG condition is still satisfied).

Let A = {x,y}, where z and y are nearest neighbors, and consider the event {n, = 1} that
the bond b = (x,y) is occupied. Then

GRC,(hm, a
M{x,y}ffree) (77b = 1) = f(H H2)7 (440)
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where f(z) = 22/(1 + 2%) and where ||-|; and ||-||2 are the ¢! and ¢? norms of the vector
a = (M, ... ePha) in the metric with weights (g,), i.e.,
q q
llall1 = Z g€’ and  |a|3 = Z gme2Bhm. (4.41)
m=1 m=1
GRC,(hm)

Since z — f(x) is strictly increasing, p (.5} frec inCTEASES With (hp,) if and only if lal2 qoes. I

llallx
this is to hold independently of the g,,’s, then also
1 —2B(hi—hi)
g lels _ +ae (4.42)
llall? [1 + ae—ﬂ(hk—hl)]z

must be increasing for all & > 0. (In the above limit, we fix all g,,,’s with m # k,1[.)
We want to show that the condition

hj.—h) > hy —h; whenever hy—h; >0 4.43
k !

Qqp=q;—>00

is necessary for the claim (3.12). To this end, we first show that the condition
hj, —h; >0 whenever hy —h; >0 (4.44)

is necessary for (3.12) to hold. To see this, assume hj > h; and hj, — h; < 0. Then for large
enough 3, the r.h.s. of (4.42) is close to 1 for (h,;,) and close to o~ for (h/,,). Taking a > 1, we

GRC,(hm) () — 1) is violated. Hence the condition (4.44)

see that the desired monotonicity of u (9} free

is necessary.

Now take v = 1 in (4.42). This leads to the function z — 1 cosh(z)[cosh(z/2)] 7!, which is
even and strictly increasing for x > 0. Hence (4.42) increases under the replacement (h,,) —
(hl,) if and only if |h} — hj| > |hj — k|, which together with (4.44) gives the necessity of (4.43).

The following argument shows that the condition (4.43) it is also sufficient.

Proof of Theorem 3.1(v). Let (hy,) and (h],) be two sets of fields such that (hy,) < (h],). In
order to prove (3.12) and (3.13), we need to establish that the functions

GRC,(h!,, GRC, (hsy,
o Wanee ) W
GRC, (hm — —freelll) GRC,(hm o '
WA,free( )(77) WA7m ( )(77)

are monotone increasing with n (the rest follows by (3.8), (3.9) and an inequality of (4.35)-
type). It suffices to study the single-bond flips. Let b = (x,y) be a nearest-neighbor bond
such that 7, = 0 and let n° be the configuration obtained by flipping 7, to 1. There are two
scenarios: (1) x <>y inn, (2) z «» yin n.

In the case (1), Zfee(n) = Zgee(n®), as follows by the inspection of (3.2), and similarly
for the maxwired boundary condition. In the case (2), there are two components A and B
in m, each at one end of the bond b. By flipping 7, to 1, A and B become connected in one
component that we denote by C. Note that [V(C)| = |[V(A)| + |[V(B)|. Since the remaining
components are not affected by this flip, it is easily seen that

Ztce(m") _ Ofpee (4O " (B) O " (C)

free free

Efree(n) - @GRCv(h/m)(A>9GRC,(h;n)(B) QGRC’(hm)(C)’ (4.46)

free free free

and similarly for the maxwired boundary condition. We are thus reduced to showing that the
r.h.s. of (4.46) is no less than 1, and again similarly for maxwired.



GIBBS STATES OF GRAPHICAL REPRESENTATIONS IN THE POTTS MODEL 21

We begin with the free boundary condition. Let a,, by, ¢, have literally the same meaning
as in (4.7) and let a},, b, c) m denote the corresponding quantities for (h,,) replaced by (hl,).

Note that ¢, = amby, and ¢, = al,b],. Then the condition that the r.h.s. of (4.46) be no less
than 1 reads

q q q q q q
> 4jd] (Z %%) (Z Qzazbl) <[> aja (Z kak> <Z qw%) - (447)
=1 p =1 =1 p =1

We will prove this in two steps; first we “move” the prime from a;’s in the first bracket on
the L.h.s. to the ones in the last bracket and then do the same with the prime over b in the
second bracket on the left. Consider the identity

ajaby + ajazb; = 3 (ahar + ajap) (b + by) + 3 (afa; — aja)(by — by). (4.48)
Observing that (h,,) < (h],) implies
(afa; — ajay) (b — bj) <0 < (afa; — ajay)(bj — by), (4.49)

we can bound the r.h.s. of (4.48) by interchanging b; and b;. This allows us to conclude that

q q
Lh.s. of (4.47) Zq]aj (Z qkb;> (Z qla;bl> . (4.50)
k=1 =1

In order to perform the same trick on blC7 which will lead to the desired formula (4.47), we will
need that hj — h; > 0 implies h) — h; > hy — hy. After a moment’s thought, the latter is a
trivial consequence of our assumption (3.7).

In the case of maxwired boundary condition, let both measures be defined using the same
boundary “value” m with h,, = hmax and A, = hl .. (such a choice always exists, due to
(hm) < (hl,)). We need to distinguish whether any of the components A, B connects to the
boundary or not. If V(A) NOA = () and V(B) N 9dA = 0, we are in the same situation as for
the free boundary condition. If V(A) N JA # 0 but V(B) N OA = (), then we have to check the
inequality

q q
QG bm, (Z qkb§€> <al,ambl, (Z qkbk> . (4.51)
k=1 k=1

This is implied by the inequality by,b), < b], by, which in turn follows from the assumption
(hm) =< (hl,) and the fact that h,, = hmax and hl, = k! ... In the case when V(A) N OA # ()
and V(B) NOA # (), (4.47) (modified for the m-wired boundary condition) is fulfilled with the
equality sign. O
Proof of Corollary to Theorem 3.1. Ttems (i) and (ii) are direct consequences of (3.10). Since
R maXW]r(O < A°) | pSRC . (0 <+ 00) by Lemma 4.1, the claim (iii) follows from the fact that
a monotone decreasing sequence of monotone increasing continuous functions (of parameter
J in our case) has a right continuous limit. To prove claims (iv) and (v), we note that the
map J — P(f3,.J,h) is non-decreasing. By (3.10) and (3.11), one has P(8,J,h) < P(83,J,h)
for all J and P(ﬁ, Ja,h) > P(B, Ji1, h) for all J; < Jo, which implies the remaining part of (iv).
Combining the monotonicity of P(3,.J,h) and P(8,J, k) with the above two inequalities, we
get (v). O

We close this section with an FKG domination lemma which will be used to prove Theo-
rem 3.2 in the next section. We need some notation. First, for a finite set A and any subset
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D C OA, where, as before, A = {x € Z¢| dist(x, A) = 1}, we define the D-maxwired measure
in the volume A as the measure

Note that /’L/C\},D,maxvvir<') is identical to the free measure fme(-) if D = () and identical to the

maxwired measure p%%lr(-) if D = 0A.

We also generalize the m-wired measure p ARC. To this end we introduce, for any finite

volume A C Z¢ and any configuration o : 9A — {1,2,..., ¢}, a measure ,uglic that is obtained
by normalizing the weight
WSO (n) = (7 — 1)l H Lo,an0,0 (M H Ore(C (4.53)
1<J

Here 0;A is the set of all x € A such that o, = i, O;A +» 8]-./\ is the event that the sets 0;A
and 0;A are not connected by a path of occupied bonds, and

One(C)  V(C)NA =0
Ono(C) = {eghmw(ml V(C) N OmA # 0.

It is not hard to see that for the standard RC model (with ¢, = 1 for all m = 1,2,...,q)
Hi% is in fact the RC marginal of MES]B( A)( *[o A, MB(A)e), While uﬁ%,mir is the RC marginal
of uiSB( “|oAc, e ), provided B = Bo(A) U (B(A) NB(D)), ngayne = 0 and o, = m for some
(z-independent) m 6 Qmax and all z € D.

The measures u§ A Cand u§ A, D ‘masewir Satisfy the following FKG bounds:

(4.54)

Lemma 4.2 Let A be a finite set. Then for any o on A°, we have
e () < mimein(+): (4.55)
FK

IU'A maxwir
Moreover, let D C OA. Then

itree (") S HR Bomair(*) S AR (+)- (4.56)
FKG FKG

Proof. Using the representation (4.53), it is easy to see that the measure ug};c can be recast
as

GRC
GRC HA maxwir(' g)
pSRC () = Dhmaainy 457
A, ( ) M%RC ]r(g) ( )
where
H ]l{a Asrds A} H H e*(hmax*hmﬂv(cﬂ (458)
" V(O) A0

for any n € {0,1}B™). It turns out that the function g is FKG decreasing. Indeed, each
indicator Ly, p..0;1} (m) is clearly decreasing. The same is true for the remaining factor as is
seen by noting that

> (), (4.59)
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being equal to the number of sites connected to JA,,, is an increasing function of n. Since
hmax = hmy and since the product of non-negative decreasing functions is decreasing, the
monotonicity of g is established. Since u§RC . is FKG, (4.55) is proved.

A, maxwir
To prove (4.56), it is enough to observe that the right hand side of (4.52) is FKG increasing
in D, since uf%{mwir is FKG and the event {n : m, = 0 Vb € B(A) \ Bo(A U D)} is FKG
decreasing. O

5. THE COLOR(S) OF THE INFINITE CLUSTER(S)

In this section we prove Theorem 3.2. Since this result uses ES measures in its very for-
mulation, we return to the standard RC measures (with ¢, =1, m = 1,...,¢, in (3.2)) and
prove the results only for them. In addition to Lemma 4.2, the second part of Theorem 3.2
requires some control of the possible values of the spins that can be assumed on the infinite
clusters. To state the theorem precisely, we introduce the notation S(o,n) for the set of
possible spin values assumed on the infinite clusters in a configuration (o, 7). (Observe that
since V({(a', N): Ou F Oys Nay) = 1}) = 0 for each v € GFS, each connected component has a
constant spin value almost surely.)

Theorem 5.1 Let v € GPS. Then S C Quax(h) v-almost surely.

Remark. We believe, but have not yet been able to prove, that |S| < 1 v-almost surely for all
translation invariant v € GES.

Before we prove the above theorem, let us formulate a technical lemma.

Lemma 5.2 Let (ay)r>1 be a sequence of numbers such that 1 < a, < Ck™ for some constant
C < oo and an integer n > 0. Then for each € > 0 and any k > C(n + 1)"e(+1)

Qg S € Z (07°% (5.1)

k' <k
holds for at least one k € {k,...,(n+ 1)k}.

Proof. 1f n = 0, the statement follows from the observation that 1 < a; < C and k> Ce!
implies a; < C < €k < €) ,of ap, which gives (5.1) for K = k. If n > 1, suppose that
ap > €y o ap for all k € {]_6,7 .,(n+ 1)k}. Since ap > 1, this implies a > ek for all k €
{k,...,2k} and, using induction, a; > €‘k¢ for all k € {¢k,..., (¢ + 1)k}, with £ € {1,...,n}.
In particular, a(,,;; > ¢"*'k"*!. However, this is in contradiction with the assumption
Aninyp < Cn+ 1)"k™ whenever k > C(n + 1)"e~ (+1), O
Proof of Theorem 5.1. Let m € {1,...,q} with h,, < hma and suppose that there is v € G55

with v(m € S) > 0. Since GF5 as well as the event m € S are invariant w.r.t. spatial shifts,
we can suppose without loss of generality that the event

), = {(0,77): 3C(n),

C(n)| =00, V(C(n)) 20, 09 = m} (5.2)

has positive probability under v, i.e., v(Q0) > 0. Let Aj be the box of side length 2k + 1
centered at the origin and, for each (o,m) € Q0 and each k > 1, let Vi(n) be the set of sites
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in Ay that are connected to the origin within Bg(Ag), and let
ar = ag(n) = [Vi(m) N 9. (5.3)

Note that [Vi(n)| > >4 <, aw and that 1 < aj, < |0A,_1| < 2d(2k + 1)41 < 39dk?~!, where
we have used that k > 1 in the final bound. Hence, by Lemma 5.2, we know that for each
¢ > 0 and each k > (3d/e)? there is at least one k, with k < k < dk, such that

|Vk(’l7) N aAk_l} <e ‘Vk(’n)‘ (5.4)

By (5.4) and the subadditivity of the measure, we have for k& > (3d/¢)? that

V(an) < M(Ufggkgdk@?n,k) < Z V(an,k)a (5.5)
k<k<dk

with Q%k denoting the event

oo =m, 0« OAg_1,

0
Qm,k -

(o,m): x € OA tx +— 0} < r €N, x+—0
i T B H<elt ** Bo(ar) }

Here xBT) 0 indicates that the connection occurs within Bg(Ag). As a result, for each € > 0
(VAR
there is a deterministic set N, C N, |N¢| = oo, such that for any k € N, one has

1
v(Q, 1) > %V(an% (5.6)

by the pigeon hole principle as applied to (5.5).
On the other hand, since QY , is a (Ag,Bo(Ax))-cylinder event, we can estimate V(Q?n’k)
using the DLR equations (2.6). Recall that ,u/E\fﬂ is the specification (2.4) with the special

choice A = Ay and B = B(Aj) and the spin boundary condition o (the n boundary condition
is irrelevant in this case). Then (2.6) reads

V(90 ) = / v(dor, dm)ES (0, ). (5.7)

Fix € > 0 such that dJe + hy, < hmax and pick m with hz = hmax. Then we claim that for any
o

ES 0 ES J

(z,y): ®EAS
yeVy
ES —B(hmax—hm) |V J .
S (ﬂﬁ%,ke B( UC | ]1{77<z,y>—0}) (5.8)
(w,y): wEAY
yeVE

< M%i,o‘ (HQ%L;C efﬁ(hmfhmfd‘]e)wk\) < ¢ Plhmax—hm—dJe)k

Here, in the first step we inserted the factor 7 in order to convert an arbitrary configuration
at the boundary bonds of the set Vi to the vacant bond state. More explicitly, we used the
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following estimate

Z (]I{T](ﬂ”wy):()} + (eﬁJ - 1)6027‘79 ]l{n<w,y>:1})

n(x,y):071
_ (B 8 = o
= (¥ —1bpoyt1 <= N g, g (5.9)
77<z,y):071
_ B o
= Z € Il{mm,y):ﬁ}(ﬂ{??(x,y):O}+(€ _1)5%7%11{77(@@/):1})
"7(1,y>:0’1

at every boundary bond. Note that there is an unconstrained summation over the bond
configuration because Q~ does not depend on these boundary bonds. The conversion of an
arbitrary configuration at the boundary bonds of the set Vi to the vacant bond state then
allows us to flip o, at each x € Vi from m to m, resulting in the exponential factor in the
second line of (5.8). The proof of the claim (5.8) is finished by noting that, on QQm,k’ the
number of flipped bonds does not exceed d|Vy NOAk_1| < de|Vy| and that [Vi| > k.

By putting (5.6), (5.7) and (5.8) together, we get that

10(Q2) < (0, ) < e Alhma—hm=dIOk gl ¢ N, (5.10)

However, since |N¢| = oo and k can be arbitrarily large, this leads to a contradiction whenever
v(Q%) > 0. Hence, no such m with hy, < hmay can exist and S C {m: hy, = hmax} v-almost
surely. O

Proof of Theorem 3.2. Let us consider an ES Gibbs measure v and use p to denote its n
marginal. Applying the DLR equations (2.6) for v, we get

u(f) = (f) = / v(der, dn) 155, 0, (] 0 hes Mp(a)e) = / v(dor,dn) 1255, (1)

< [ vldor dm) i () = WS () (510

for any increasing cylinder function f(n) supported on B C B(A). Here, the inequality follows
by (4.55). Applying now (2.17), we get (3.14).

In order to prove (3.15), we have to work a bit harder. Let (A;),>1 be an increasing sequence
of boxes centered at the origin and let

Apn)={z € Ap: z» AL} U{x € Ayt > 0}, (5.12)
Dy(n) = 0An(n) N {z < oo}, (5.13)
and

D*(n) = 0A, : 14
) = O () 01 o o) (514)

Observe that Dy, (n) C 0A,,.

Given A, C A, D, C A, N OA,, and D' C D,,, we will want condition on the event

En = {An(n) = Au} N {Dn(n) = Dp} N{DF*(n) = D'}, (5.15)

using the DLR condition (2.7) in (A,,B,), where
I@n = BO(An) U (B(l_\n) N B(Dn)) : (5'16)
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To this end, we write the event &£, as the intersection of four events: the event

Ent — {3« D™ vz € D, \ D™}, (5.17)
B

which depends only on the configuration in B,,, and the events

8(1) _ Dext — c 8An . s , 518
( { e {x T e oo}} ( )
EP) = (M) = 0¥ y) € B(An) \ B}, (5.19)
and
EY = {z & A, Vo € A\ A} N {z » Dy and @« 0o Vo € A, \ Ay}, (5:20)
B,

which depend only on the bonds in Bf. To see that &, is actually the intersection of these
events, we first observe that &, = {A,(n) = A,} N &M n Ent - Also, if el n Ent holds, then
{An(n) = A} clearly implies 57(12) N 87(13). So we have to show that 5,(12) N 8723) together with
el n Ent implies {A,(n) 2 A,} and {A,(n) € A,}. The former is obvious, since the event
&(@2) ensures that all points in A,, that are connected to AS are actually connected to D,,, and

hence to infinity. The latter follows by observing that &sg) implies that all z € A, \ A,, are
connected to the complement of A,, but are not connected to infinity.

Let f be a non-negative FKG increasing By(A)-cylinder function, where A is a finite set.
By the assumption on u, either gy = 1 or there is at most one infinite cluster. In both cases,
the spin on the infinite component(s) is uniquely defined: o, = m with hy,, = hpyax for all z
in D,,. Since the indicator function of the event £ depends only on the configuration 18,
while the indicator function of the event

g;alxt _ gél) N0 S’r(b2) N 5723) (5.21)

depends only on the configuration 7)Fe , We may Now use the fact the conditional expectations
of the ES Gibbs measure v are given by (2.4) to write

w(f) =v(f) = v(fIa,.ony)

= > > Y= Mo =D Mpg (- =Dy Uory, =m))
f\nQA MEQmax
DnCOARNOA,
SO0 (5.22)
= Z Z /I/(dO', d’?) ]182“ ]I{UDn =m} :U’%i’@n (f]l&i{‘t ’ O e 77@;)‘
/_XnQA meQmax
Dn_gaf\nm_aAn
D%Xt gDn

Under the condition that op = m, the RC marginal of M%i,@n(" O M) in the above
RC _ _introduced in the last section. Since the event &
A, Dy, ;maxwir n
is an increasing event and since uﬁc b

equation is just the measure p

. is strong FKG (being given by conditioning from

,maxwir
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a strong FKG measure), we conclude that
ES RC
px, 5, (fleine| 0 xe s Mae ) = HR,) B, mavewwie (f Dgint)

C C
Z M%7L7D7L,Mwir(f)u%n7Dn7mﬁ(llgyilnt)
RC ES
- MAn,Dn,maxwir(f)uﬂn7]En(]18}{“ | OAcs "71@%)7 (5.23)

provided op = m and ng. € EXT. Observing finally that

M%S,Dn,maxwir(f) > N’%S,free(f) > Mi(?free(f) (524)

by (4.56) and (4.14), we get that

RC ES
:u(f) > NA,free(f) E E / V(dO', dn) 1152’“ ll{aDn =m} H/’\M]En(]lé‘}[ﬂ ORe> ”7@%)
[\nQA meQmax
DpCOARNIA,
DX CDn

= Ao (£) Y v(lgalgn) = pR e (f) v({An(+) 2 A}). (5.25)
ApDA
DnCOA,NOA,
D%xthn

Here in the first step we used the bounds (5.22)—(5.24), in the second we used Gibbsianness of
v, and in the third we used the fact that lgexi Igine is the indicator function of the event (5.15)

to resum over A,, D, and D
Since I/({An( -) 2 A}) tends to 1 as n — oo by the monotone convergence theorem, the
proof is finished for f > 0 by taking that limit followed by A * Z%. Arbitrary cylinder f’s are
handled by noting that f — min f > 0. O

6. UNIQUENESS OF THE INFINITE CLUSTER

In this section we prove that GRC Gibbs measures and weak limits of finite volume GRC
measures have at most one infinite cluster almost surely (Theorem 3.3). This is a direct
consequence of Theorem 1 from [13], once we show that the limiting measure satisfies the
positive finite energy condition. Using a slightly stronger form of the condition than that in
[13], we say that a GRC measure p has positive finite energy if for all bonds b € B(Z?), we
have

p(ny = 1|B]B(Zd)\{b}) >0 p-almost everywhere. (6.1)

Here B zay s} is the o-algebra generated by all cylinder functions on {0, 1}B(Zd)\{b}.
We start with a lemma concerning GRC measures that are either Gibbs states or weak limit
points of finite volume GRC measures.

Lemma 6.1 Let p be a translation invariant GRC measure that is either a Gibbs state or
it is a weak limit of the form lim, ugfc( -m,,). Then the measure p satisfies the positive
finite energy condition, provided BJ > 0.

Proof. Consider a finite set of bonds B and the characteristic function 1z ) of the event
{n|np = Np}. The claim (6.1) will be proved once we verify that there exists a constant ¢ > 0



28 M. BISKUP, C. BORGS, J.T. CHAYES, R. KOTECKY

such that for every B C B(Z?) \ {b} and every 7, one has

/N(dn)ﬂ{%}(n)#(ﬁb = 1|Bgzay y) (n) > C/u(dn)]l{%}(n)u(nb = 0[Bgzayp 1) () (6.2)
Indeed, (6.2) implies that
(e = 1Bgzay 53) (M) = cpu(m = 0|Bgzay 153) (1) (6.3)

almost surely, which in turn yields

C
(= 1|Bgzay 5y)(n) > (6.4)

“1l+ec
almost surely and thus (6.1). Now, since Iz 1 is Bp(zay\ ()-measurable, the inequality (6.2) is
equivalent to

() g, —1y) = ey L, —o0y)- (6.5)

If ue GORC the inequality (6.5) is implied by
15" Uiy D=1y 110e) = 5™ (U Dy, —op Ine)- (6.6)
for at least one D D BU {b}. Indeed, it suffices to integrate (6.6) by p using the DLR equation

(2.12).

If, on the other hand, u is obtained as a weak limit of finite volume GRC measures, u =
limy, 00 ugfc (+|m,,), then the inequality (6.5) follows from (6.6) as well, provided (6.6) holds
for all sufficiently large D = B, D> BU {b} and boundary conditions ng. = n,,. Indeed, for all
e > 0 and all sufficiently large n we have

|ERC (U D=1y 1) — #(Lgy Lpp=1y)| <€, (6.7)
and

|15 (Ui y Um0y 1) — (U3 Uy —0y)| < e (6.8)
Combined with (6.6), we get

1y ip,=1y) = en(Upy L, —0y) — €(1 +¢). (6.9)

Since € can be made arbitrary small by choosing n large enough, we again obtain (6.5).
To get (6.6), we evaluate the infimum of the ratio

PSR (1 = 1, mp) (1 1Mpe)

15 (= 0, My 5y 171
over all mp 53 Let us consider, for any n with 7, = 0, the components Cy(n) and Cy(n)
attached to the endpoints z and y of the bond b = (z,y). If Cz(n) = Cy(n), using (3.6) we
immediately see that the ratio (6.10) equals e®/ — 1. On the other hand, if C,(n) and Cy(n)
are different components of the graph (Z%, Boe.(n)), then

(6.10)

HS{RC(% =1, 77]1))\{1;}"’7]1))0) 8J ZmeQmax(h) am
GRC > (€7 —1)—=g 5 (6.11)
g (= 0, M 6311 ) (X tn=1m)
since
q =B (hm—hmax)([V(Cz () |+V(Cy(m))]) 2 Gm
Zm:l qme Y meQmaX(h) (612)

>
(an:l qmefﬁ(hm*hmax)W(Cz(??))\) (Zgnzl qme—ﬂ(hm—hmax)W(Cy(n))l) 0 gm)?
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by the obvious fact that 0 < e Plhm—hmax) < 1. ]
Proof of Theorem 3.3. Since the positive finite energy condition has been established in both
relevant cases, the result follows immediately from Theorem 1 in [13]. O

In order to prove the corollary to Theorem 3.3, we will prove a lemma that states that the
specifications MI%RC are “almost surely quasilocal” in the language of [16, 21]. For finite sets
A, A with A € A C Z9, let M be the event

Mana={n: Vz,y € A > A° and y <> A® implies xm) y}, (6.13)
0

where x M) y is the event that there is a path of occupied bonds in By(A) connecting x and
0
Y.

Lemma 6.2 (i) Let B C Bo(Z%) be a finite set, and let f be a cylinder function depending
only on the bonds in B. Then the function

1 = Dy o (45 (f| 15e) (6.14)

is quasilocal for any pair of finite sets A, A with A D A D V(B).
(ii) Let p is a GRC limit state or a GRC Gibbs state with at most one infinite cluster and
A C Z% is finite, then

p(Map) Tl as  ATZ (6.15)

Proof. Recalling the definition of uGRC(:|nge) in terms of (3.6), we note that it is enough to
prove that the function n — llMA’A(n)WB?RC(ﬁm Npe) is quasilocal for all g € {0,1}%. Let
A> A, and let n and n® be two configurations differing at a single bond b € ]B%(A)C, n =
0, n,l; = 1. Suppose that n € Mx x is such that and that there is a cluster C' connecting A with
B(A)C. By the definition (6.13) of M A.A, the configuration n° also satisfies these conditions,
and the component C of (Z%, Boec(n)) connecting A with B(A)¢ is unique. Moreover, the value
of WERC (| nge) is clearly not affected by changing from n to n° unless V({b}) N V(C) # 0.
Suppose that the latter occurs and denote by C? the corresponding component under 1°. Then

‘WIBCS;RC(ﬁM Nhe) — W (7] UIBC)‘ < (7 — 1)[Boec(ma)0B]
q
3 qmleﬁ(hm—hmax)w(cb)\ — PUlm—hma)VOI| - (6.16)

m=1

It turns out that the r.h.s. of (6.16) is exponentially small in dist(b,A). Indeed, for the
terms with hp, < hmax, both terms between the absolute value signs go to zero exponentially
fast, while for h,, = hmax both terms tend exponentially fast to one as dist(b,A) — oc.
Thus, the r.h.s. of (6.16) is summable over the positions of b. By the standard telescoping
trick, this proves quasilocality (i.e., continuity in the product topology) of the function 1 —
]IMA,A (n)WIé}RC('F’IB’ nIBC)7 as required by (1)

(ii) Since Ma a T Ma, where M, is the set of configurations featuring at most one infinite
component incident with A, we have that pu(Maa) T p(Ma) = 1, by the assumption that p
has at most one infinite cluster. O
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Proof of Corollary to Theorem 3.3. Let p1 = lim,,_, ,uB RC(.|m,,) be a translation invariant GRC
limit state. It is not hard to verify that u, = GRC( | m,,) satisfies the DLR condition

n(f) = / i () 1S [150), (6.17)

for any B-cylinder function f and any B C B,. Since the specifications ,uGRC( f1) are not
quasilocal, this does not imply, however, that the limiting measure p satisfies the DLR equation.
To circumvent this problem we follow the strategy of [21] and [16] involving the “almost sure
quasilocality” of u§RC(f|-).

Let B be a finite set of bonds, and let f be a bounded B-cylinder function. Since both f
and T, g (- )uSRC(f | +) are quasilocal for all A D V(B), we have

(Lt (IO ) = Tt (Lat (ST ) (618)
and
p(f) = lm pn(f) = lm g (u5"C(f 1)), (6.19)

where we have used (6.17) in the last step.
Let € > 0. By Theorem 3.3, p has a unique infinite cluster, which allows us to use (6.15).
Combined with the boundedness of u$F°(f|-), we can therefore choose A, Ay and ng such

that
€

(RO 1) = (Ut sy (EC(F )| < 5 (6:20)
and
i (SR 1)) = i (Wats e (IR 1)) < 5 (6:21)
provided A; C A C Ay and n > ng. Combining (6.18) — (6.21), we get
|u(f) = p(pE™(f )] < e. (6.22)
Since € was arbitrary, we get that u(f) = p(uSEC(f]-)), i.e., u € GHRC. O

Proof of Theorem 3.4. To prove Theorem 3.4, we will prove that for all finite sets of bonds B
and By with B; N By = ), and for all bounded cylinder functions f and g depending only on
the bonds in B; and Bs, respectively, we have

wlaf) = wlgrg;“(f1-)), (6.23)

provided p has at most one infinite cluster with probability one.
In a first step, we use the DLR equation (2.11) and the consistency of the specifications
{uSRCY to conclude that for B O By U By we have

ulaf) = [ namug™(of|ns)

/ () S (guSFC(f11)] 7). (6.24)

Next let A D V(By), and let Mx y(g,) be the event introduced in (6.13). Since both g and

Tty v, (- )u](Bff{C(f | -) are quasilocal, we have

: GRC
E/‘lléf)r(lzd) (dn) (g]lMA V(]Bil)'u’ (f| )| nBC) - N(QHMA V(]Bl)'uIBl (f| )) (625)



GIBBS STATES OF GRAPHICAL REPRESENTATIONS IN THE POTTS MODEL 31

Here, we have used the fact that as a quasilocal function, the function glixg, V(El>uBl RC(f|+) can
be approximated arbitrarily well by local functions, and then we have applied the DLR equation
(2.11) for local functions. To complete the proof, we use that j(Ma y@,)) T #(Now < 1) =1
as A 1 Z% by Lemma 6.2. Since f and ¢ are bounded, we conclude that for all € > 0 we can
choose A in such a way that

€
and

(M s HETCUI1)) = (gmERO(71)| < 5 (6.27)

provided B D B(A). Combined with (6.24) and (6.25) this proves that
|19 f) = n(gngy“(f1)] < e. (6.28)
Since € was arbitrary, this completes the proof of (6.23) and hence the proof of Theorem 3.4.
O
Proof of Theorem 2.3. As pointed out in the remark after Theorem 2.3, the statements of the
theorem are special cases of those in Theorem 3.1(ii), Theorem 3.3 and its corollary. O]

7. WEAK LiMITS OF THE ES GIBBS MEASURES

Since by Theorem 2.3(i) the limits (2.17) and (2.18) exist for every quasilocal f depending
only on the bond configurations 7, to prove Theorem 2.4 we just need to extend this to functions
of both o and n. In this regard, it will turn out to be useful to swap the o-dependence and
n-dependence under the expectation w.r.t. the ES Gibbs measures. Before we formulate this
precisely, let us give some definitions.

For any collection {F;}{_, of pairwise disjoint finite sets F; C Z<, let us define

free H 1 ﬁ H €’maW(C)| (7 1)
e = L et Oreel ) |
v(C )m]—‘m;&@

Here, 1¢7,.. fj}(n) is the indicator of the event that, under m, no point in F; is connected to
any point in F; by a path of occupied bonds, the product over C' runs over all components of
the set Boec(n) with V(C) N F,, # 0, and Ofpee(C) is as in (3.2) (with ¢, = 1).

Similarly, given a finite set A with F = U!_;F; C A, let us define

q
FA{}'} Hﬂ{f«ﬁf} H

1<j m=1 C:
V(C)NFm#£0D

W XA,T?L(Ca m) (7.2)

for each m € {1,...,q}, where we recall the definitions (3.5) and use xa = (C, m) to denote

1 V(C)NA° =0 or m=m

. (7.3)
0 otherwise.

XA,m(a m) = {

Remark. In the following, it will be important to remember explicitly from which value of the
boundary spin the measure uﬁcm(wir originated. Therefore we shall temporarily write M%Cm

instead of pﬁcwir.
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Lemma 7.1 Let A C Z% be a finite set and let f be a cylinder function in (A, B(A)). Then
there are numbers (ayz,\) such that

M%,Sfree(f) = Z a{}-@} Mﬁ,cfree (FJ{I;?}) (74)
{Fi}

N%,Sm(f) = Z a{rFy Mﬁ,cm (FJT{E}) (7.5)
{73}

for each m € {1,...,q} and all A D A with Bo(A) D B(A). Moreover, ayr;y = 0 whenever
there is an x € F = U}_| F; with dist(z, A) > 1. In particular, both sums above are finite.

Proof. Let A be such that A D A and Bo(A) D B(A). Then by using that u%iree and u%sm are
Gibbs measures we have

:U’]/%,Sfree(f) = :u];i,sfree (NE?’B(A)(H O Ac, nIB(A)“))? (76)

and similarly for ME%( f). The finite volume specification ,uE’S]B( A)( fl o ac,Mp(a)) depends only
on spin variables at the exterior boundary 94 of A, and not on ng(4).. It therefore suffices to
prove the claim for functions of the spin variables that are supported in A = A U JA.

Each such function f can be uniquely recast as ) (7} U} f{F,}, where a(r,, are real num-
bers such that agz,, = 0 whenever F ¢ A, and

q
f{}—l}(o’) - H H 5ox,m- (77)

m=1 z€F,

It is now a matter of a direct computation to show that, for all m € {1,...,q},

M/E\,Sfree(f{fi}’ T’) = Ff?f} (TI)

- (7.8)
M%,Sm(f{fi} |n) = FA,{fi} (m).

Namely, the components C' of By.(n) such that V(C) N F, # 0 necessarily satisfy that
V(@) N F; = 0 for all i # m. This gives rise to the indicators liz,.z,). For i such
that HK]- ll{fﬁ,fj}(n) = 1, the spin configuration can be integrated out, yielding the ra-
tios ePhmIV(ON /B4 00 (O) resp. eIV /O, +(C). However, one gets the latter only when
V(C)NA® =0 or m =m. The claim is finished by taking the expectation w.r.t. n. O

It was shown in Lemma 7.1 that o-dependent cylinder functions can be interchanged under
the expectation for n-dependent functions F{g??} and FKL{ ) Unfortunately, the weak limits
(2.17) and (2.18) cannot yet be invoked to conclude the existence of (2.19) and (2.20), the
reason being that the Fyz,’s are, in general, not quasilocal. (Moreover, FK:”{ 7} even depends
explicitly on the expanding volume.) However, both functions Fﬁjﬁf} and F/’C’{ £} turn out to
be “almost surely” quasilocal, in the terminology of [21] and [16], which is still sufficient for
the limits (2.17) and (2.18) to exist.

For finite sets F, A with F C A, let Ma 7 be the event define in (6.13). Let further

MR ry = {neMnpzr: x€F with z <+ A® implies = € F, }, (7.9)
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and recall go = #{m: hy, = hpax}. For each A, m € {1,...,q}, and {F;} define also a random
variable QU (F by putting

otherwise.

q Fm & A°
QR 7y = { ’ . (7.10)

The remainder of the proof is based on an approximation of Fy,;’s by quasilocal functions and
showing that the error incurred thereby upon the expectations of Fyr,’s is negligible. These
claims are formulated in Lemma 7.2 and Lemma 7.3 below.

Lemma 7.2 For all finite A C Z* and any {F;} with F = U;F;
(i) F{fg‘_ie} g is quasilocal for all m € {1,...,q}.
(ii) F{frf.e} Tamy # 38 quasilocal.

Proof. (i) Let m be fixed and let A D A. Observe that HMZ"{JE , [lic; Y7 7,y is a cylinder

function in B(A). Hence, only the contributions from the product over the connected com-
ponents in (7.1) can be altered by flipping a bond b € B(A). Let us estimate precisely the
incurred change.

Let n and n° be two configurations differing at a single bond b € B(A), n, = O,ng = 1.
Suppose that n € MY (-, is such that [lic; Y7 7,3 (n) = 1 and that there is a C' connecting

Fm with B(A)°. By the definition (7.9) of MY (7> the configuration n’ also satisfies these

three conditions, and by the definition (6.13) of M (7}, the component C' of (Z%, Boce(n))
connecting F,, and B(A)¢ is unique. Moreover, the value of F{fr]‘_ie} is not affected by changing

from 1 to n° unless V({b} N V(C) # (. Suppose that the latter occurs and denote by C? the
corresponding component under nb. Then

eBhm|V(CO)| o Bhm|V(C)
’ free free ‘ _
{7 } {}— } - @free (Cb) @free (C)

where we have estimated all ratios by 1, except for the one affected by flipping b. As in the
proof of Lemma 6.2, the r.h.s. of (7.11) is exponentially small in dist(b, F). This proves (i).
To prove (ii), it clearly suffices to note that

FIE [HMM: Z Lug }] (7.12)

is a cylinder event in B(A). Namely, the functlon in the brackets is zero unless there is no
component incident with F that reaches up to A°. In that case, F{fr]‘jie} depends only on bonds

: (7.11)

from B(A), i.e, it is effectively a local function. O
The next lemma has two parts, both of which will be needed in the proof of Theorem 2.4.
It turns out that the first part can be proved for the more general GRC model.

Lemma 7.3 Let {F;}, F and m be such that F = U], F; and hyp = hmax.

(i) Then
li li M =1 7.13
S, lim s Kee(MaF) = (7.13)
lim lim MAm ROMa,rF) = 1. (7.14)

A 74N P74
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. 4 Fi m m ree
(ii) In addition, let Gj:X,A};m = FA,{E}HMA? — QA,{E}HMX,{E}F{fﬂ}‘ Then

: : RC (A%} _
Ah}%d Ah/‘HZld B m (GA,A,m) =0. (7.15)

Proof. (i) The inner limits on the Lh.s. exist because Ma 7 is a cylinder event, and the GRC
measures have a weak limit by Theorem 3.1(ii). The outer limit is then a consequence of the
fact that Ma r T Mg, where M £ is the set of configurations featuring at most one infinite
component incident with F. The limits are thus equal to u$i° (M) and pSRC (M g), respec-
tively. Now, since SR and pSRC are translation invariant (as already proved Theorem 3.1)
and are obtained as weak limits of finite volume GRC measures, we can apply Theorem 3.3 to
assert that both these measures have almost surely at most one infinite cluster. This means
pEEC(Mg) = 1 = pSRC(Mx). By putting these observations together, (7.13) and (7.14) are
proven.

To prove (ii), take {F;} and A C A with A D F. Then the following three possibilities can
occur for configurations i € {0, 1}B(A):
(A) F «» A
(B) F < A° but F «+» A°
(C) F < A°.

Clearly, under (A), the absence of components connecting F with the outside of A implies
f
]1_/\/[21‘{}_1‘} = llMAj:v QZL{]:Z} = 1, and FX}{]_-Z} = }4_W{.r7__eie}7 (716)

by the inspection of (7.1) and (7.2). Consequently, all terms in the definition of G}{ﬁ}m cancel
and GV, = 0.
If (C) occurs then both terms contributing to Gj\fi}m are zero unless there is a unique

component connecting F to dA, and this component connects F,, to dA. If we have such a
component Cy, o, we get

Ofree(Cm,n)
_ _ _ pfr free\“m A
Iz oy = WMa s QR gry =00 and Fiiry = Fipy -5 e 0T (7.17)

Since Ofree(Crnon)/ ePhm|V(Cm.a)l ig equal to go plus an error term that is exponentially small in
the distance between JF,,, and JA, this implies that G/{\fi}m tends to zero as A 7 Z4.

The proof of (7.15) therefore boils down to the analysis of (B). Let P/{A denote the event (B),
Le., P/{A ={n: F < A° but F < A°}. Then, by the preceding reasoning, |Gf\f£}m| < q()]lp[g\rA

plus an error exponentially small error term that tends to zero as A * Z¢. Thus, it suffices to
prove that

lim lim RS (P \) = 0. 7.18
A%dA>n£dﬂA,m( Aa) (7.18)

We will establish this by proving that the events (A) or (C) get the full mass under these
limits. First we recall the well known characterization

RC : RC c
F < 00) = lim F < A°). 7.19
Koy, ( ) Al/‘Zd /~LA,m( ) ( )
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This follows from the fact that for A C A we have the inequalities u~ (.7-" & A% < MRC (F +

A°) < 7m(.7-" <> A°), where the first one is due to monotonicity of {.7-" < At in A and the
second one is due to (4.15).
Since {F «» A} 1 {F «» oo} as A /‘ 72, we easily get that

li li F +» AYUA{F < A°Y}) =1, 7.20
L 8 (T 2 850 0 A7) .
proving the desired claim. O

With Lemma 7.2 and 7.3 in the hand, the proof of Theorem 2.4 can be concluded.
Proof of Theorem 2.4. By Lemma 7.1, the existence of the limits (2.19) and (2.20) has been

reduced the existence of the limits limy »zq pRY o ( {fg‘_?e}) and limy zq uﬁcm(F]\”{ 7 }). To prove

the existence of the latter, let € > 0. Then there are finite sets A, A;, Ay C Z% such that

Mi{gree(MA,f) >1- 6/2 (721)
PR (MaF) > 1—€/4 (7.22)
—€/4 < o (FR iy Wa r — QR (g FIE) < /4 (7.23)

for any A D A and A; D A D Ay, and any m such that h,, = hmax. Since both F{]—‘}A and

free

{ Fy are bounded by one, this yields

free

free ) Mf\{gree( {F }]lMA J—‘)

) Htree (F{ES, <e€/2 (7.24)

‘MA,m Fiey) = b (QR 7y Iy o f?e})’ < €/2. (7.25)

free

Now the functions F{f}]lMA’f and QX {-7'—1‘}]1 R }F{fgﬁe} are quasilocal by Lemma 7.2 and

because Q'Y (F is of finite support. Hence, by Theorem 2.3, the limit A 7 Z¢ can be performed
on the expectations of these functions. Consequently

| lim sup uﬁ%ee( Er]'jie}) — lim i%f u%%ee( {fg?-e})‘ <e (7.26)
A7 AL
limsu F — lim inf F' )| <e 7.27
| e D tiho (FR 5y imin R (FR )] < € (7.27)
The arbitrariness of e finishes the claim. O

8. GI1BBS UNIQUENESS AND ABSENCE OF PERCOLATION

Before proving Theorem 2.5, we shall first establish three useful claims.

Lemma 8.1 Let v € G®5 be a measure with v(|S| < 1) = 1, and let p be its RC marginal.
Then u € GgRC,

Proof. 1t suffices to show that for all finite sets of bonds B and all B-cylinder function f,
we have pu(f|npe) = pBC(f|mpe). Since u is the m-marginal of v, it is enough to show that
v(f|nge) = pBC(f|mme). By the definition of conditional probabilities, we have that v-almost
surely

() = / v(dor, dng|mge (1o acs mge), (8.1)
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for all finite A with V(B) C A C Z%. Given ngc, we now take A large enough such that there is
no finite cluster C'(ng.) connecting V(B) to A°. With this choice, however, one easily computes
that v(f|oac, nge) = phC(f|mge) for any B-cylinder function f, because by the assumption of
the lemma, all infinite clusters have almost surely the same color. Since B is arbitrary, this
implies ;1 € GRC and, in fact, it implies the stronger statement (3.16). O

Lemma 8.2 The measures mewm and uﬁ?ec are strongly mizing and, in particular, ergodic

w.r.t. translations in any of the lattice principal directions.

Proof. Let 7 denote the translation in one of the lattice principal directions. We shall first show
GRC

that pCRC . (fgo ) — pSRC . (£ uSRC . (g) for all L2-functions f and g. As is well known,
it actually suffices to verify this for cylinder functions (which are dense in L?) and, since we
have a space with a natural ordering, we can even restrict ourselves to f, g monotone.

Let A C Z% be a finite set with connected complement A°, and let f, g be non-negative
monotone increasing cylinder functions supported in B(A). Let further g, = g o 7" and
A, = 7(A). Then fg, is also monotone increasing and hence for any integer n such that
B(A)NB(A,) =0 and any A D AU A, we have

NgRrrCl:axww(fgn) < MA maxwir (fgn’{nﬂ% (B(A)UB(A - 1})

M\
—Mglf‘n(fwm(f)ugﬁ?w(gn) LA i (F) A i () (8.2)

Taking the limit A 7 Z? followed by n — co and A 7 Z%, we get

lim sup pstnis (f 90 7") < Hinosewis () o (9)- (8:3)
n—oo
Since the complementary inequality follows from FKG, the strong mixing property of uggg?wir

is established.
The case of the free measure is completely analogous; one just needs to take f and g positive
decreasing. O
To formulate the next lemma, we need some notation. For a finite connected cluster C' of
configuration n we define a measure 7o on spin configurations on V(C') by

_ L —shmv(e
)= ; Ofree (C) Iel;[ )5%7” 8.4)

For each m € Qmax(h) we also define an infinite volume coloring measure

vm(o|n) = 1T rem(@viem)) 1] doem- (8.5)

Clm): [V(C(m))|<oo w500

Lemma 8.3 Let m € Quax(h), and let v € G with v(S C {m}) = 1. Let u be the RC
marginal of v. Then for each cylinder function f of o and n

() = [ wtampn(sim). (5.6)
In particular, if v1,vo € QF% are two measures with the same RC marginal, then vy = vs.

Proof. Let f by a (A,B(A)) cylinder function. Invoking the argument after (8.1) with B = (),
for v-almost all  (those whose infinite cluster(s) have color m), we can find A D A large
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enough but finite such that v(f|oac,n) does not depend on o ae, in which case one easily
verifies that

v(floae,m) =vim(fIn). (8.7)
The latter expectation depends only on 71, hence (8.1) implies the desired representation of
v(f) in terms of v, (f|n) and the RC marginal of v. O

Proof of Theorem 2.5(i ) We shall prove that any v € G5 not exhibiting percolation is equal to
the limiting measure pf oo Whose existence was established previously. The proof of this claim
goes along the lines of the argument in (5.12)—(5.25), however, it is much simpler in this case
due to the absence of infinite clusters.

Let the sequences (A;) and (A,(n)) be defined as in (5.12). Since there are no infinite
components v-a.s, we have Ap(n) = {z € A,: 2 «» AS} and B,(n) = 0 for all n > 1 and
v-almost all 7. Assume f is a cylinder function and given € > 0, take A large enough so that
f is supported in (A, By(A)) and

‘:quree f) - :ugeS)e(f)‘ <e (88)
for all V' O A. Since the indicator function of the event {A,(-) = A,} does not depend on the
configuration in (A,Bg(A)), we have that

() = v(aaza) + D vk feel D an()=4,) (8.9)
AnDA
by (2.7). Combined with (8.8), this gives the estimate

V(fAan(pay) + [thee(f) — €] v(Tia, (- y5ay) < v(f)

BS (8.10)
< V(fAau(za)) + [Hiree(f) + €] v(La, ()oa))-
Since f is bounded and A,, * Z% v-a.s., the bounded convergence theorem yields
[V (f) = e (f)] < e (8.11)
The arbitrariness of € finishes the claim. O
Proof of Theorem 2.5(ii). If Px(f3,J,h) = 0, then puES . (N, > 0) = ,umm]r(N >0)=0

and (3.14) implies the same is true for any v € G¥S. Thus G¥ = GFS = {45 }. On the other
hand, pBS . (Ns > 0) = 0 implies that the same is true for all z € GRC by (3.10). Repeating
the argument in the proof of Theorem 2.5(i) for the RC measure p (and using Theorem 3.4 to
guarantee the analogue of (2.7)), we get that p = ufree for all RC Gibbs measures u, implying

G = {tiree - 0

Remark. Given Theorem 3.4, which is stated for the more general GRC model, the second part
of the above proof remains valid for the GRC model. As a consequence, all GRC Gibbs states
are equal to the measure uSEC if Poo(3,J,h) = 0, implying that G9F¢ = {uSECY whenever
P (B,J,h) =0.

Proof of Theorem 2.5(iii). We first show that
S (0, = M| 2 < 00) = Sy i (8.12)

provided P (3, J, h) > 0 and m € Quax. Since puES(Ny = 1) = 1 if P (8, J,h) > 0, equation
(8.12) implies that uES (A ) = 1.
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To prove (8.12), we recall the well known fact that
Hrmie (0 00) = 1m0 6 A), (8.13)
see equation (7.19) above. As a consequence, we get that for all m € Quax,

ES : ES c
+ 00) = lim 0 < A°). 8.14
Hom (l’ ) Al/‘Zd/JJA,m( ) ( )

Combined with the fact that pjy, (0 > A 00 = M) = priy, (0 < A€)dp, 5, this implies (8.12).
It remains to show that the state M%S is extremal whenever m € Quax. 1o this end, let us
assume that

pES = A4+ (1= M (8.15)
with v;(A75,) = 1 and 0 < A < 1. By Lemma 8.1, the RC marginals y; of v; are RC Gibbs
states, which implies that (8.15) induces a similar decomposition for uggxwir. However, uggxwir
is extremal by Lemma 8.2, which implies that pu; = ps = uggxwir. Using Lemma 8.3, this
implies v1 = 1o, and hence extremality of ,U%S. O

9. RANDOM CLUSTER GIBBS MEASURES FOR d = 2

Proof of Theorem 2.6(i). The proof of Theorem 2.6(i) remains again valid for the more general
GRC model. For J < J,, the statement has already been proven in the last section. Let us

therefore suppose that J > J. and d = 2. Then the first condition (and item (iii) of Corollary of
GRC,J GRC,J

Theorem 3.1) implies that there is percolation under p . % . oy Satisfies

the following claims

(1) GRC"-i is separately ergodic in all lattice directions

2) GRC,J

Hnascwir

(3) &9 45 FKG,

Fmasewir
as has been proved previously, the powerful result of [14] asserts that the infinite cluster is
unique under MSESV’V‘IJr Moreover, by a corollary to this result, the cluster contains an infinite
series of nested circuits that (eventually) encircle any point of the lattice.
Now, according to Theorem 3.1(iii), any pu € GRC at the coupling constant J is FKG

dominating the measure MGRC’J. Let J > J; > J.. Then

free

GRC,J GRC,J;
,U,( ) F%G lu’free ( ) F%G Iu’maxwir ( )7 (91)
where the second inequality is Theorem 3.1(iv). Thus, all GRC Gibbs measures at J exhibit
an infinite cluster as well as the above circuits about the origin, because the latter is an FKG
increasing event.
The proof is concluded in a manner similar to the argument (8.8)-(8.11). Let thus f be a
cylinder function with support in B(A), where A is supposed to be sufficiently large so that

|9 e () = i ()] < € (9-2)
for any V'O A. Let {A,} be an increasing sequence of boxes centered at the origin, and
let €, be the set of all configurations n for which there exists a closed circuit I'" of occupied
bonds surrounding A and connected to the infinite cluster, such that it is entirely contained
in Bop(Ay). Let us use I'y,(n) to denote the outermost such circuit contained in Bg(A,,) and
Vr,, (n) the set of its interior sites. Let 1o, be the characteristic function of €, and, for a

Moreover, since u

is invariant under lattice reflections and rotations
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given circuit I, let Typ, _ry denote the characteristic function of the set of all configurations
such that the corresponding outermost circuit I'), equals I'.

Using the fact that the function Iy, _ry does not depend on the values of the GRC config-
uration on B(Vr), we now apply Theorem 3.4 with B = B(VT) to get

p(fla,) = u(fr,—ry) = > (e (FIms@me) Yr,—r})
I I

- Z“(”Vr,maxwir(f)ﬂ{rn:r}), (9.3)

T

where the sum is over all closed circuits I' of occupied bonds surrounding A and contained
wholly in By(A,,). Since f is bounded and u(Q,) — 1 as n — oo, we have that |u(f1lqg,) —
w(f)| < e for n sufficiently large. Using (9.2) for V' = V¢, we conclude that

GRC
‘:u'(f) - :U’ma.xwir(f)‘ < 3e. (94)
Since € is arbitrary, we get the desired statement that each GRC Gibbs state necessarily equals
the measure uga{gm. O

Proof of Theorem 2.6(ii). We again only need to prove the statement of J > J.. Using
Theorem 3.2, equation (3.15) instead of Theorem 3.1(iii), we obtain the bound (9.1) for the
RC marginal p of any v € GP5 with |Quax| = 1. Let v be such a measure. Applying the steps
leading to (9.3) to the measure v and a cylinder function f with support in (A, B(A)), we will
have to calculate the conditional expectation v(f|ove, Nyye) = /‘\E}FS7]B(VF)(f| Ve, MB(Vp)e)-
By Theorem 5.1 the value of o, on the sites x € 9Vt is constrained to be one of the colors in
Qmax. Since we assumed that |Qmax| = 1, we obtain that v(f|ove, Np4)e) = M‘E/—E’m(f), where
m is the unique spin for which A, = hpyax. Continuing as in the proof of (i), we obtain that
v=pbs, O

10. MaAprs BETWEEN ES, SPIN AND RC GIBBS MEASURES

Proof of Theorem 2.1. Let pi™ (- | o ac) denote the Gibbs measure on spins in A with boundary
condition opc. The proof is based on the crucial observations that, for the special choice
B =B(A),

(A) ME%(A)( *| o Ac, Mp(a):) does not depend on Mp(pye.

(B) The spin marginal of ,u/E\?B( A)( “| o Ac, Mp(A)e) is precisely ui™(-|oac).
Let now v € G, A c Z? be finite, and let f be a function depending only on the spin
configuration in A. Then, by (2.6), (A), (B), and the definition of marginals, we have

() (f) = v(f) = / v(dor, dm) a5, 0 (Fl e, M) =

~ [vtdoan) i (flowe) = [(Ws) o) iz (Flow). (0.)

proving that IIgr € G, Hence, indeed, IIg is a map from G¥S to G™™.

To prove that Ilg is an isomorphism, let us first establish its surjectivity. We begin by
noting that the set {(A,B(A))} is cofinal in the set of all pairs {(A,B)}, ordered by inclusion.
(Namely, for any (A,B) there exist A such that A C A and B C B(A).) Then it is easy to
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see that the validity of (2.6) for the pairs (A, B(A)) implies its validity for general (A,B) (see
Remark 1.24 of [15]). Let now pu € G and consider the following ES measure

a(+) = [ (o) WS n) (- o sy (10.2)
on the set of on configurations in (A, B(A)). Here the configuration np 4 is added only for the
formal completeness since by (A) its value does not matter for v,. By taking into account the

consistency of the finite volume ES measures {,u];iSB}, the measures v ( - ) satisfy the restricted
DLR equations

() = [ valdo,dn) i (f o mz) (103

for any A C A, B C B(A), and any K,I@—cylinder function f. Moreover, let A1 D Ay O A be
two sets. Then for any such function f (as before) we have

an(1) = [ der) S (s )
/ (dU)MAIB(Al)(N/\Q, B(As) (f]- }U'Al»mBa(Al))
:/M(dU)NﬂN(MAQ, B(As2) (f]- }UAC

- / (A0) 15 5 n (] @ r5 Tscamre) = s ().

(10.4)

Here the first equality is due to (10.2), the second one follows from the fact that uﬁfﬁ( A1) is
a finite volume Gibbs measure, the third one is established by applying (A) to the measure
/‘%SIB(AQ)(f’ - ) and subsequently (B) to the expectation w.r.t. “E?B(Al)’ and, finally, the fourth

equality follows from the fact that u € G~. Consequently, as A 7 Z¢, vp(f) is eventually a
constant for any cylinder function f. In particular, the weak limit v = limy x4 A exists and,
by (10.3), it satisfies (2.6), i.e., v € GFS. Finally, IIsv = pu, since for any A-cylinder function f
of spins

(M) (f) = v(f) = / 1(der) 15, ) (Fl e, Tgay) = / w(do) g™ (f| oae) = u(f), (10.5)

proving that Ilg is surjective.
In order to see that IIg is also injective, we notice that if 7 € GFS is such that IIgv = p,
then

v(f)= ;(NE,SIB%(A)(ﬂ : )) = (sv) (NE,SIB%(A (f]- )) (MA ]B(A)(f| : )) (10.6)

for any (A,B(A))-cylinder function f. Here the first equation is the DLR equation for v, the
second equation follows from (A), and the third equation is the assumption IIgv = p. Now,
the right hand sides of (10.6) and (10.2) coincide, so v = v, with v defined by taking the limit
A 2 7% of vy in (10.2). In particular, all measures ¥ satisfying IIg7 = p are equal, yielding
thus injectivity of Ilg.

The part of the claim concerning translation invariant measures is proved in the same way,
because both constructions (10.1) and (10.2) preserve translation invariance. O
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Proof of Theorem 2.2(i). We first note that the marginal of any ES Gibbs state with at most
one infinite cluster is an RC Gibbs state by Lemma 8.1. This proves that IIrc maps Q’g% into
ghe.

Next we show that the map is surjective on ggﬁ? Let p € QRC Recall the definition of F{fﬁe}

n (7.1). It turns out that Ffl;ﬁe} satisfies the following identity:

Z B Fouta) Fossn ) (M) = FES (1) (10.7)

for each {F;}, any x §§ F = U;F; and any n. Namely, let F; «» F; for ¢ # j in ; and suppose
x <> Fp, for some m. Then the sum on the Lh.s. of (10.7) degenerates to the m-th entry, which
is easily identified with the r.h.s. On the other hand, if z <+ F,, for all m, then the sum in
(10.7) can be propagated through the products in (7.1) up to the last term, where the desired
identity then follows by taking also (3.2) into account.

The relation (10.7) enables us to define a joint measure on o and 7. Let u € GRC and let
A,y denote the event

Aipy={o: oo =mVz e Fy,}. (10.8)

Note that Az, is a cylinder event in F. Consider the set function v, for the sets on the
product space of configurations (o, n), defined as

v(Ary x B) = p( F{51s), (10.9)
where B stands for any cylinder event on configurations 1. Due to the fact that p is a measure
on n and due to (10.7), the set function defined in (10.9) satisfies the consistency condition for
all finite volume projections and, by the Kolmogorov theorem, it thus gives rise to a measure

n (o,n).
Using (10.7), the mp-marginal of v is p, so it remains to show that v € G¥5. Due to the
consistency of the ES specifications (2.4), it is enough to show that v-almost surely

v(ioa, B(A) lo e, nB(A)C) = :U’E?B(A) (oa, TIB(A) loan, ma;(A)c) (10.10)
for all finite A C Z?. For that, it actually suffices to establish that
Ali/(I%d V(08 M) T a: Mp(a)e) = HRB(A)(TA TBA) |0, TBA))- (10.11)

To calculate the Lh.s., we shall evaluate v(o s, ng A) ‘77153( A)c). In order to keep the expressions

short, we assume without loss of generality that hyax = 0. Using (10.9) and the strong form
of the DLR equation (3.16), we write

V(o n e M3a)e) = H(F) Ynaea 1 BA)) = Frag (Musia) (Mea)ne@)),  (10.12)

where (A;) is the partition of A defined by A; = {z € Alo, = i}.
In order to evaluate the r.h.s., we use (7.1) and (3.6) to get

P (maca) (s maay) = [ ] Laswn,y (0 H 11

eﬁhm|V(C(77))|

i<j m=1V(C(n))NAnm#0 Otree (C'(1))
(87 — 1)[Boce(mNE(A)]
) Ofee(C(m)), (10.13
Zg(a) (NB(A)) 11 (C(m)), (10.13)

V(Cm)NV(B(A))#0
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where Zg(a)(Np(a)) is the normalization factor for ﬂ]%(%)( . ’77153( A)e)- Rewriting

H H H Okree (C(1))

m=1V(C(n))NAm#0 Otrce (C(m)) V(C(m)NV(B(A))#0

_ f[ H eﬁhle(C(n H H PhmVICmI(10.14)

m=1 V(C(n)NAm#0 @free( m=1 V(C(n))NV(B(A))#0
V(C(m)NA=0 V(C(m)NAm#D

Shm[V(C(m))]

where we introduced A = AUOA and A,, = A,, N A, and inserting the identity
PhmVICM) = Bhm[V(CM)NA| Shm [V(CM)NAT] (10.15)

we can now extract all terms that depend on o a and N from the r.h.s. of (10.13) to obtain
the Gibbs factor W (o a, nga)|oaa, Npa):) times a term depending only on oA A and nga)e.
This yields the representation

v(oa e Maa)) = N(Taa: Taa)e) i sa) (T8, Maa) oo, Taa)); (10.16)
which in turn leads to the identity

V(o a, M) [T A2 Ta(a)e) = 1A B(a) (T A TB(A) | Toa, TB(A)); (10.17)

provided that oy a is consistent with nga)e. Equation (10.17) immediately gives the desired
claim (10.11) and hence (10.10). O

Proof of Theorem 2.2(ii-iv). Let v € gg% Since {Noo = 0} is a tail event, there is a unique

decomposition of v into Aoy + Asol>0, where vy € gg and vso € Gy ES " The decomposition
(2.13) then follows by further conditioning upon the color of the spin on the infinite cluster
of v~¢9. This proves (ii). To prove (iii), we just invoke Theorem 2.5(i), Lemma 8.3 and
Theorem 2.2(i). To prove (iv), we need to realize that if |Qmax(h)| = 1, then the decomposition
is completed already by conditioning on the presence/absence of the infinite cluster, which
works the same on both QE? and Qg(f. O
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