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Abstract. We consider the random 2-satisfiability problem, in which each instance is a formula
that is the conjunction of m clauses of the form x∨ y, chosen uniformly at random from among
all 2-clauses on n Boolean variables and their negations. As m and n tend to infinity in the
ratio m/n → α, the problem is known to have a phase transition at αc = 1, below which the
probability that the formula is satisfiable tends to one and above which it tends to zero. We
determine the finite-size scaling about this transition, namely the scaling of the maximal window
W (n, δ) = (α−(n, δ), α+(n, δ)) such that the probability of satisfiability is greater than 1− δ for
α < α− and it is less than δ for α > α+. We show

W (n, δ) = (1 − Θ(n−1/3), 1 + Θ(n−1/3)),

where the constants implicit in Θ depend on δ. We also determine the rates at which the
probability of satisfiability approaches one and zero at the boundaries of the window. Namely,
for m = (1 + ε)n, where ε may depend on n as long as |ε| is sufficiently small and |ε|n1/3 is
sufficiently large, we show that the probability of satisfiability decays like exp

(−Θ
(
nε3
))

above
the window, and goes to one like 1 − Θ

(
n−1|ε|−3

)
below the window. We prove these results

by defining an order parameter for the transition and establishing its scaling behavior in n both
inside and outside the window. Using this order parameter, we prove that the 2-SAT phase
transition is continuous with an order parameter critical exponent of 1. We also determine the
values of two other critical exponents, showing that the exponents of 2-SAT are identical to
those of the random graph.

Keywords: 2-SAT, satisfiability, constraint satisfaction problem, phase transition, finite-size
scaling, critical exponents, random graph, order parameter, spine, backbone.
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1. Introduction and Statement of Results

There has recently been interest in a new field emerging at the intersection of statistical
physics, discrete mathematics, and theoretical computer science. The field is characterized
by the study of phase transitions in combinatorial structures arising in problems from
theoretical computer science.

Perhaps the most interesting phenomena in statistical physics are phase transitions.
These transitions occur in systems with infinitely many degrees of freedom, i.e. sys-
tems specified by infinitely many random variables. Physically, the transitions repre-
sent changes in the state of the system; mathematically, the transitions are manifested
as nonanalyticities in relevant functions of an external control parameter, such as the
temperature. In systems with a large but finite number of degrees of freedom, one can
study the approach to nonanalytic behavior. This study is called finite-size scaling. In
systems with continuous phase transitions characterized by critical exponents, the form
of the finite-size scaling turns out to be related to these exponents.

Discrete mathematics often focuses on the study of large combinatorial structures.
Random versions of these structures (with respect to natural distributions) are discrete
systems with large but finite numbers of degrees of freedom. In the limit of an infinite
number of degrees of freedom, these systems can and often do undergo phase transitions.
The study of threshold phenomena emerging in these large combinatorial structures is
therefore analogous to finite-size scaling in statistical physics.

The theory of complexity focuses on the difficulty of solving certain combinatorial
problems which arise naturally in theoretical computer science. The complexity of a
given problem is determined by the difficulty of solving any instance of the problem (i.e.,
in the worst case). Researchers have also studied randomly chosen instances of certain
problems, and determined average- or typical-case complexity. However, even when it
is determined that a problem is easy or hard on average, it is not clear what properties
characterize the hard instances.

The convergence of these three disciplines is a consequence of the recent observation that
one can define control parameters in terms of which certain theoretical computer science
problems undergo phase transitions, and the even more interesting observation that the
hardest instances of these problems seem to be concentrated at the phase transition point.
The problem for which this phenomenon has been studied most extensively is the k-satis-
fiability problem. Our work is the first complete, rigorous analysis of finite-size scaling
for a satisfiability problem.

The k-satisfiability (k-SAT) problem is a canonical constraint satisfaction problem in
theoretical computer science. Instances of the problem are formulae in conjunctive normal
form: a k-SAT formula is a conjunction of m clauses, each of which is a disjunction of
length k. The k elements of each clause are chosen from among n Boolean variables and
their negations. Given a formula, the decision version of the problem is whether there
exists an assignment of the n variables satisfying the formula.



2 B. BOLLOBÁS, C. BORGS, J. T. CHAYES, J. H. KIM, D. B. WILSON, September 5, 1999

It is known that the k-satisfiability problem behaves very differently for k = 2 and
k ≥ 3 [Coo71]. For k = 2, the problem is in P [Coo71]; indeed, it can be solved by a
linear time algorithm [APT79]. For k ≥ 3, the problem is NP-complete [Coo71], so that
in the worst case it is difficult to determine whether a k-SAT formula is satisfiable or not
— assuming P �= NP. Note, however, that even for k = 2, variants of the k-SAT problem
are difficult. For example, the MAX-2-SAT problem, in which one determines whether
the maximum number of satisfiable clauses in a 2-SAT formula is bounded by a given
integer, is an NP-complete problem [GJS76]. See [GJ79] and references therein.

More recently, it has been realized that—rather than focusing on worst-case instances—
it is often useful to study typical instances of the fixed-k problem as a function of the
parameter α = m/n. Consider the random k-SAT problem, in which formulae are gen-
erated by choosing uniformly at random from among all possible clauses. As m and n
tend to infinity with limiting ratio m/n → α, considerable empirical evidence suggests
that the random k-SAT problem undergoes a phase transition at some value αc(k) of
the parameter α ([MSL92], [CA93], [LT93], [KS94]): For α < αc, a random formula is
satisfiable with probability tending to one as m and n tend to infinity in the fixed ratio
α = m/n, while if α > αc, a random formula is unsatisfiable with probability tending to
one as m and n tend to infinity, again with m/n → α.

Existence of the phase transition is on a different footing for k = 2 and k ≥ 3. For
k = 2, it was shown by Goerdt ([Goe92], [Goe96a]), Chvátal and Reed [CR92], and
Fernandez de la Vega [Fer92] that a transition occurs at αc(2) = 1. For k ≥ 3, it may
not be possible to locate the exact value of the transition point. However, there has
been considerable work bounding the value of the presumed 3-SAT threshold from below
and above. Using a succession of increasingly sophisticated and clever algorithms for
finding SAT solutions with high probability, lower bounds on αc(3) were improved from
1 ([CF86], [CF90], [CR92]) to 1.63 [BFU93] to 3.003 [FS96]. Bounding the probability of
finding a solution by the expected number of solutions gave an upper bound on αc(3) of
5.191 [FP83]; increasingly sophisticated counting arguments gave a succession of improved
upper bounds on αc(3) from 5.08 [EF95] to 4.758 [KMPS95] to 4.602 [KKK96] to 4.596
([Jan99], [SV99]). Although these bounds are relatively tight, they nevertheless allow for
the possibility of a non-sharp transition. However, motivated by the empirical evidence,
Friedgut [Fri97] and later Bourgain [Bou97] showed that indeed there is a sharp transition
(although they did not prove that the probability of satisfiability approaches a limit).
These proofs were based on a general argument which shows that global, as opposed to
local, phenomena lead to sharp transitions. However, the existence of a limiting threshold
is still an open problem.

Having established the sharpness of the transition, the next step is to analyze some of
its properties. Finite-size scaling is the study of changes in the transition behavior due
to finite-size effects, in particular, broadening of the transition region for finite n. To be
precise, for 0 < δ < 1, let α−(n, δ) be the supremum over α such that for m = αn, the
probability of a random formula being satisfiable is at least 1− δ. Similarly, let α+(n, δ)
be the infimum over α such that for m = αn, the probability of a random formula being
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satisfiable is at most δ. Then, for α within the scaling window

W (n, δ) = (α−(n, δ), α+(n, δ)), (1.1)

the probability of a random formula being satisfiable is between δ and 1 − δ. Since, by
[Fri97], for all δ, |α+(n, δ) − α−(n, δ)| → 0 as n → ∞, we say that the scaling window
represents the broadening of the transition due to finite-size effects. Sometimes we shall
omit the explicit δ dependence of α±(n, δ) and W (n, δ), writing instead α±(n) and W (n).
In these cases, the power laws we quote will be uniform in δ, but the implicit constants
may depend on δ.

The first model for which such broadening was established rigorously is the random
graph model. While the existence of the phase transition for this model was already proved
by Erdős and Rényi ([ER60], [ER61]), the broadening of the transition was established
only 24 years later by Bollobás [Bol84]. In particular, this work gave the precise power law
form of α±(n). See also [Bol85] and the references therein. These results were refined in
several very detailed calculations with generating functions ([LLuc90], [LLPW94], [JKLLP94]).
For the finite-dimensional analogue of the random graph problem, namely percolation on
a low-dimensional hypercubic lattice, the broadening was established by Borgs, Chayes,
Kesten and Spencer ([BCKS98a], [BCKS98b]), who also related the power law form of
α±(n) to the critical exponents of the percolation model.

The question of finite-size scaling in the k-SAT model was first addressed by Kirkpatrick
and Selman [KS94], who presented both a heuristic framework and empirical evidence for
analysis of the problem. There has also been subsequent empirical ([SK96], [MZKST98])
and theoretical ([MZ96], [MZ97], [MZKST98]) work, the latter using the replica method
familiar from the study of disordered, frustrated models in condensed matter physics (see
[MPV87] and references therein). Although the empirical and theoretical work has yielded
a good deal of insight, rigorous progress on finite-size scaling in k-SAT has been quite
limited.

In this work, we address the question of finite-size scaling in the 2-SAT problem; in
particular, we obtain the power law form of the scaling window W (n) = (α−(n), α+(n)),
together with the rates of convergence at the boundaries of the window. Previous work
on 2-SAT by Goerdt [Goe96b] has shown that α−(n) ≥ 1−O(1/

√
log n), while Verhoeven

[Ver98] has recently obtained the result α+(n) ≤ 1+O(n−1/4). Numerical work on the scal-
ing window for 2-SAT is somewhat controversial: While earlier simulations [MZKST98]
suggested that the window scales like W (n) = (1−Θ(n−1/2.8), 1+Θ(n−1/2.8)), recent sim-
ulations by Wilson [Wil98] indicate that the 2-SAT formulae considered in [MZKST98]
are not long enough to reach the asymptotic regime.1 Indeed, we shall prove in this paper
that W (n) = (1 − Θ(n−1/3), 1 + Θ(n−1/3)), as conjectured earlier by Bollobás, Borgs,
Chayes and Kim [BBCK98] and predicted numerically in [Wil98]. We also show how the
probability of satisfiability tends to 1 and 0 at the edges of the window.

1As usual, f = Θ(g) means that there exist positive, finite constants c1 and c2 such that c1 ≤ f/g ≤ c2.
Unless noted otherwise, these constants are universal. In fact, in the above formulae for W (n), the
constants depend on δ.
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In order to state our results precisely, we need a little notation. Let x1, . . . , xn denote
n Boolean variables. Writing x for the negation of x, our n variables give 2n literals
x1, . . . , xn, x1, . . . , xn. Two literals x and y are said to be strictly distinct if neither x = y
nor x = y. A k-clause is a disjunction C = u1∨· · ·∨uk of k strictly distinct literals, and a
k-SAT formula is a conjunction F = C1 ∧ · · · ∧Cm of k-clauses C1, . . . , Cm. We say that
H is a subformula of F if it can be obtained from F by deleting some of its clauses. A
k-SAT formula F = F (x1, . . . , xn) is said to be satisfiable, or SAT, if there exists a truth
assignment ηi ∈ {0, 1}, i = 1, . . . , n, such that F (η1, . . . , ηn) = 1. Here, as usual, 0 stands
for the logical value FALSE, and 1 is the logical value TRUE. We write “F is SAT” if
the formula F is satisfiable, and “F is UNSAT” if the formula F is not satisfiable. We
also sometimes use the alternative notation SAT(F ) and UNSAT(F ) to denote these two
cases.

We consider the random 2-SAT problem in two essentially equivalent forms, given by a
priori different probability distributions of random 2-SAT formulae on x1, . . . , xn. First,
we consider the probability space of formulae Fn,m chosen uniformly at random from all
2-SAT formulae with exactly m different clauses. (Here x∨y is considered to be the same
as y∨x, but different from e.g. x∨y.) Second, we consider the space of formulae Fn,p with
2-clauses on x1 , . . . , xn chosen independently with probability p. In this introduction, we
shall state theorems in terms of the Fn,m; the equivalent theorems for the Fn,p will be
given in Section 3. The conversion between the two formulations of the problem is given
in Appendix A. In both cases, we use P(A) to denote the probability of an event A.

As usual in 2-SAT, it is convenient to study the phase transition in terms of the pa-
rameter ε representing the deviation of α from its critical value:

m = (1 + ε)n. (1.2)

When studying finite-size effects, we shall take the parameter ε to depend on n. Our
analysis shows that the appropriate scaling of ε is n−1/3, so that it is natural define yet
another parameter λ = λn according to

ε = λnn
−1/3, (1.3)

and distinguish the cases λn bounded, λn → ∞ and λn → −∞.
Our main result is the following theorem.

Theorem 1.1. There are constants ε0 and λ0, 0 < ε0 < 1, 0 < λ0 < ∞, such that
whenever |λn| ≤ ε0n

1/3:

P(Fn,m is SAT) =


1−Θ

(
1

|λn|3
)

if λn < −λ0,
Θ(1) if |λn| ≤ λ0,

exp
(−Θ

(
λ3n
))

if λn > λ0.

(1.4)

Note that the behaviors for λn < 0 and λn > 0 can be cast in the same form by writing
P(Fn,m is SAT) = 1−Θ(|λn|−3) = exp(−Θ(|λn|−3)).

Theorem 1.1 gives us the exact form of the scaling window:
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Corollary 1.2. For all sufficiently small δ > 0, the scaling window (1.1) is of the form

W (n, δ) = (1−Θ(n−1/3), 1 + Θ(n−1/3)),

where the constants implicit in the definition of Θ depend on δ, and are easily calculated
from equation (1.4).

Of course, the theorem gives us more than the boundaries of the window; it also gives
us the rates of approach of the probability of satisfiability at these boundaries. As an
easy special case of the rate result at the upper boundary, note that if ε is positive and
independent of n, then our result for λ > λ0 gives that

P(Fn,m is SAT) = exp(−Θ(ε3n)). (1.5)

This strengthens both the result of Fernandez de la Vega [Fer98] that P(Fn,m is SAT) =
O(exp(−f(ε)√n)) and the recent improvement of Achlioptas and Molloy [AM98] that
P(Fn,m is SAT) = O(exp(−f(ε)n)) for some f(ε) > 0.

The key to our analysis is the introduction of an order parameter for the 2-SAT phase
transition. As usual in statistical physics, an order parameter is a function which vanishes
on one side of the transition and becomes non-zero on the other side. Control of the growth
of the order parameter was the key to Bollobás’ analysis of finite-size scaling in the random
graph [Bol84], and to Borgs, Chayes, Kesten and Spencer’s analysis of finite-size scaling
in percolation [BCKS98b]. Our order parameter for satisfiability is the average density
of the spine of a Boolean formula, which we define as follows. Given a formula F in
conjunctive normal form, we define the spine S(F ) as the set of literals x such that there
is a satisfiable subformula H of F for which H ∧ x is not satisfiable,

S(F ) = {x | ∃H ⊂ F,H is SAT and H ∧ x is UNSAT}. (1.6)

Our notion of the spine was motivated by the insightful concept of the backbone,
B(F ), introduced by Monasson and Zecchina [MZ96] — where the backbone density
|B(F )|/n was originally called “the fraction of frozen variables.” The backbone B(F ) is
the set of literals that are required to be FALSE in any assignment that minimizes the
number of unsatisfied clauses in F . It is easy to see that B(F ) ⊂ S(F ), and in particular
B(F ) = S(F ) if F is satisfiable. One of the principal differences between the spine and
the backbone is that the spine is monotone in the sense that adding clauses to a formula
only enlarges its spine. It is the monotonicity which enables us to achieve analytical
control of the spine. In addition, we have found that the spine is easier to simulate than
the backbone [Wil98]. We believe that the spine will become an important tool in the
analysis of satisfiability problems.

Consider now a satisfiable 2-SAT formula F . It is not hard to see that the addition of
the 2-clause C = x∨y makes F (or, more precisely, makes F ∧C) unsatisfiable if and only
if both x and y lie in the spine. Building a random 2-SAT formula by adding clauses one
by one at random to an initially empty (and hence satisfiable) formula, we can therefore
control the probability that a formula is satisfiable if we have sufficient control of the
spine in each step. This is the strategy we shall follow to prove Theorem 1.1.
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In the course of proving Theorem 1.1, we obtain detailed estimates on the expectation
and variance of the size of the spine inside the scaling window m ∈ [n − Θ(n2/3), n +
Θ(n2/3)], i.e. the finite-size scaling of the spine. Before stating these results, however, let us
give the behavior of the size of S(Fn,m) on the scale n. To this end, let ϑ : (0,∞) → (0, 1)
be the function satisfying

1− ϑ(ε) = exp[−(1 + ε)ϑ(ε)], (1.7)

i.e.

ϑ(ε) = 1−
∞∑
k=0

kk−1

k!
[(1 + ε)e−(1+ε)]k. (1.8)

Note that ϑ(ε) = 2ε+O(ε2) for ε sufficiently small. The size of the spine is given by:

Theorem 1.3. For any fixed ε ∈ (−ε0, ε0), where ε0 is the constant from Theorem 1.1,
we have

E(|S(Fn,m)|) =


Θ(ε−2) if ε < 0
Θ(n2/3) if ε = 0
2nϑ(ε) + o(n) if ε > 0.

(1.9)

The behavior above, coupled with the role of the spine in the proof of Theorem 1.1,
justifies our identification of the density of the spine as an order parameter for the 2-
SAT transition. In the language of phase transitions, Theorem 1.3 implies that the
2-SAT transition is second-order (or continuous), with order parameter critical expo-
nent β = 1. Here, as usual, we say that the order parameter has critical exponent β if
limn→∞ E(|S(Fn,m)|)/n = Θ(εβ) as ε ↓ 0, see discussion following Remark 1.5.

The next theorem states our results for the finite-size scaling of the spine S(Fn,m):

Theorem 1.4. Let ε0 and λ0 be the constants in Theorem 1.1. Suppose |λn| ≤ ε0n
1/3.

Then

E(|S(Fn,m)|) =


1
2λ

−2
n n2/3(1 + o(1)) if λn < −λ0

Θ(n2/3) if |λn| ≤ λ0
4λnn2/3(1 + o(1)) if λn > λ0,

(1.10)

where the o(1) terms represent errors which go to zero as |λn| → ∞ and ε = λnn
−1/3 → 0.

Remark 1.5. In the course of proving Theorems 1.1, 1.3 and 1.4, we shall prove bounds on
the variance of |S(Fn,m)| which allow us to generalize the above statements in expectation
to statements in probability.

Statistical mechanical models with second-order (i.e., continuous) transitions are often
characterized by critical exponents which describe the behavior of fundamental quantities
at or approaching the critical point. It turns out (see [BCKS98b] and announcements
in [Cha98] and [CPS99]) that it is possible to read off some of these exponents from the
finite-size scaling form of the order parameter and the scaling window. In particular,
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the scaling of the order parameter at the critical allows us to evaluate the so-called field
exponent δ as

E(|S(Fn,m)|) = Θ
(
n

δ
1+δ

)
if |λn| < λ0. (1.11)

Similarly (again using [BCKS98b], [Cha98] and [CPS99]), the scaling of the window allows
us to identify the exponent sum 2β + γ, according to

W (n, δ) =
(
1−Θ(n−1/(2β+γ)), 1 + Θ(n−1/(2β+γ))

)
, (1.12)

where β is the order parameter exponent described above, i.e.

lim
n→∞

1
n
E(|S(Fn,m)|) = Θ(εβ) as ε ↓ 0, (1.13)

and γ is the so-called susceptibility exponent. Comparing equations (1.13), (1.12), and
(1.11) to Theorem 1.3, Corollary 1.2, and Theorem 1.4, respectively, we get the following.

Corollary 1.6. The 2-SAT transition is a second-order (i.e. continuous) transition with
critical exponents:

β = 1, γ = 1, and δ = 2.

Thus we have proved that the critical exponents of the random 2-SAT problem are iden-
tical to those of the random graph. See [BBCKW99] for a more detailed discussion of the
critical exponents for 2-SAT.

The organization of this paper is as follows. In Section 2, we discuss the well-known
representation of 2-SAT formulae as directed graphs, a representation we use extensively
in our proofs. In that section, we also derive new results on various representations of
the spine in terms of directed graphs. While most of the results in Section 2 concern
given formulae, not distributions of formulae, a final result there gives a mapping of
a distribution of certain sets in the graphical representation of random 2-SAT into the
standard random graph model. In Section 3, we state our main technical estimates on the
expectation and variance of the size of the spine, and formulate an analogue of Theorem 1.1
for the distribution Fn,p. We then outline the strategy of our proof, giving first our
heuristic for the expected size of the spine, and then showing how this will be used to
obtain the size of the scaling window (Theorem 1.1). While the width of the scaling
window can be determined from the spine expectation and variance estimates alone, the
rate of approach from above in Theorem 1.1 requires that a sufficiently large spine forms
with extremely high probability. In order to prove this, in Section 4, we define structures
we call “hourglasses” which are basically precursors to the spine, and we state a theorem
giving conditions under which a giant hourglass forms. The proof of the hourglass theorem
is given in Section 9. In Section 4, we use the expectation and variance results on the spine,
and the hourglass theorem, to establish the analogue of Theorem 1.1 for the distribution
Fn,p. In Sections 5 and 6, we develop some machinery from random graph theory and
derive moment bounds, which enable us to prove the expected size and variance results
for the spine in Sections 7 and 8, respectively. Appendix A contains the conversion from
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our results on Fn,p to Fn,m, and Appendix B establishes a technical result on the cluster
size distribution in the random graph problem.

2. The Digraph Representation of 2-SAT

In the digraph representation, each 2-SAT formula corresponds to a certain directed
graph (or digraph) DF . To motivate the mapping of F into DF , note that F is satisfiable
if and only if all clauses in F are satisfiable. Thus, if F contains a clause C = x ∨ y,
a satisfying truth assignment with x set to FALSE requires that y is set to TRUE, and
a satisfying assignment with y set to FALSE requires that x is set to TRUE. So the
clause x ∨ y corresponds to the logical implications x = TRUE =⇒ y = TRUE and
y = TRUE =⇒ x = TRUE. We shall encode this fact in the digraph DF by including
the edges x → y and y → x in DF iff F contains a clause C = x ∨ y.

To be precise, given a 2-SAT formula F , define the digraph DF as the directed graph
with vertex set2

[n] = {x1, . . . , xn, x1, . . . , xn} (2.1)

and edge set

EF = {x → y | (x ∨ y) is a clause in F}. (2.2)

Since (x ∨ y) and (y ∨ x) are considered to be the same clause, the digraph DF contains
the edge x → y if and only if it contains the edge y → x. As usual, an oriented path in
DF is a sequence of vertices v0, v1, . . . , vk ∈ [n] and edges vi → vi+1 for i = 0, 1, . . . , k− 1.
We say that this path is a path from x to y if v0 = x and vk = y. We write x�

DF

y, or

sometimes simply x� y, if DF contains an oriented path from x to y. By convention, we
shall say x�x for all x. Finally, we say that DF contains a contradictory cycle if x � x
and x� x for some x ∈ [n].

The following lemma connecting the structure of the digraph DF with the satisfiability
of the formula F is implicit in all digraph analyses of 2-SAT, see e.g. [Goe92]. For
completeness, we shall give an explicit proof here.

Lemma 2.1. A 2-SAT formula F is satisfiable if and only if the digraph DF has no
contradictory cycle.

Proof. Let us first assume that F is satisfiable, with satisfying assignment ηi ∈ {0, 1}, i =
1, . . . , n. Consider an edge x → y in the corresponding digraph. Since F (η1, . . . , ηn) = 1,
the presence of the edge x → y gives the logical implication x = FALSE =⇒ y = TRUE.
A contradictory cycle x� x� x therefore gives the logical implication x = TRUE =⇒
x = FALSE =⇒ x = TRUE, which is not compatible with any truth assignment for x.

We prove the converse by induction on the number n of variables. For n = 1 there is
nothing to prove. Turning to the induction step, suppose that the digraph DF has no
contradictory cycles. We claim that in this case F is satisfiable. To this end, we first

2Note that we deviate from the standard notation, where [n] stands for the set {1, 2, . . . , n}.
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recall the definition of strongly connected components for directed graphs. We say that
two vertices x and y in a directed graph are strongly connected if x � y � x, i.e. if the
directed graph DF has a cycle containing x and y. The strongly connected component of
a vertex x is the induced subgraph of DF containing the set of vertices

CS(x) = {y | x� y � x}. (2.3)

Somewhat loosely, we call CS(x) the strong component of x. Clearly, the strong compo-
nent partitions the vertex set [n]. We define a partial order ≤ on the set of all strong
components by taking CS(x) ≤ CS(y) if x � y, and so x′ � y′ for all x′ ∈ CS(x) and
y′ ∈ CS(y). Let CS be a minimal element in this partial order, i.e. let CS be a strong
component such that DF contains no edge x → y with x /∈ CS and y ∈ CS. For a set of
literals M , let

M = {y | y ∈ M}. (2.4)

Since DF has no contradictory cycle, CS ∩ CS = ∅. Furthermore, since CS is a minimal
element in our partial order, CS must be a maximal element. If we set all literals in CS

to FALSE, and so all literals in CS to TRUE, then all clauses in F containing at least one
literal from CS ∪ CS are TRUE. This process removes all the variables corresponding to
literals in CS and CS from [n], and all clauses involving these variables from F , leading
to a new 2-SAT formula F ′. Since the graph DF ′ is a subgraph of DF , it contains
no contradictory cycles either. Using the inductive hypothesis, we obtain a satisfying
assignment for F , which completes the proof of the converse and hence of the theorem.

�
Remark 2.2. If F is a mixture of one and two-clauses, i.e. if it is of the form F = H ∧
x1 ∧ · · · ∧ xk where H is a 2-SAT formula and x1, . . . , xk are literals, we define DF by
including the edges xi → xi, i = 1, . . . , k, in addition to the edges in DH . It is not hard
to see that the above proof applies also to this situation, giving again that F is SAT if
and only if DF contains no contradictory cycles.

While the previous lemma says that contradictions in a formula correspond to cycles in
the digraph, the next lemma says that the spine of a formula corresponds to “half-cycles”
in the digraph. This graphical description of the spine is central to our analysis.

Lemma 2.3. For every 2-SAT formula F ,

S(F ) = {x | x�
DF

x}, (2.5)

where DF is the digraph corresponding to F .

Proof. Suppose that x � x, and let x = v0 → v1 → · · · → vr−1 → vr = x be a shortest
directed path from x to x in DF . Then no literal appears twice in the path, although a
literal and its negation may well do so. Let ' be the smallest positive integer such that v�
is not strictly distinct from all of v0, v1, . . . , v�−1, and let 0 ≤ k < ' be such that v� = vk.
Then H = (v0 ∨ v1) ∧ (v1 ∨ v2) ∧ · · · ∧ (v�−1 ∨ v�) is a subformula of F that is satisfied by
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setting each of v0, v1, . . . , v�−1 to FALSE. On the other hand, H ∧ x = H ∧ v0 is UNSAT
since in order to satisfy it, we would have to set v0 to TRUE, then v1 to TRUE, and so
on, ending with the requirement that v� be set TRUE. However, as vk is TRUE, v� is
already set FALSE. This completes the proof that x� x implies that x ∈ S(F ).

Conversely, suppose that H ⊂ F is SAT and H ′ = H∧x = H∧(x∨x) is UNSAT. Then
DH′ has a contradictory cycle C = u� u� u. Since DH does not have a contradictory
cycle, the cycle C of H ′ contains the oriented edge x → x, say u� u� x → x� u. But
then in DH we have x� u� u� x, so x� x. Hence if x ∈ S(F ) then x�

DF

x. �

Our next lemma gives an alternative representation for the spine of a 2-SAT formula
F . In order to state it, we introduce the out-graph D+

F (x) of a vertex x in DF as the set
of vertices and edges that can be reached from x. D+

F (x) therefore has the vertex set

L+(x) = L+
F (x) = {y | x�

DF

y}, (2.6)

and contains all edges y → z in DF such that y ∈ L+
F (x). For future reference, we also

introduce the in-set

L−(x) = L−
F (x) = {y | y�

DF

x} (2.7)

and the corresponding in-graph D−
F (x). Note that x ∈ L±

F (x) since, by our convention,
x� x for all x.

As we shall see, the spine of a 2-SAT formula F can equivalently be described as the
set of literals x such that L+

F (x) is not strictly distinct, where for simplicity, we say that
a set M ⊂ [n] is strictly distinct (s.d.) if the literals in M are pairwise strictly distinct.

Lemma 2.4. For every 2-SAT formula F

{x | x� x
DF

} = {x | L+
F (x) is not s.d.}

= {x | L+
F (x) \ {x, x} is not s.d.}. (2.8)

Proof. We start with the first equality in (2.8). If x� x, then {x, x} ⊂ L+
F (x), so L+

F (x)
is not strictly distinct. If L+

F (x) is not strictly distinct, then {y, y} ⊂ L+
F (x) for some

literal y ∈ [n], and hence x � y and x � y. But x � y implies that y � x, which
together with x� y implies x� x.

To prove the second equality, we first note that the set of literals x for which L+
F (x) \

{x, x} is not strictly distinct is obviously a subset of the set of literals x such that L+
F (x)

is not strictly distinct. We are thus left with the proof that the statement that L+
F (x) is

not strictly distinct implies the (apparently stronger) statement that L+
F (x)\{x, x} is not

strictly distinct. So let us assume that L+
F (x) is not strictly distinct. By the first equality

in (2.8), this implies x� x. Since the digraph of a 2-SAT formula does not contain any
direct edges from x to x, we conclude that there must be a literal y strictly distinct from
x such that x � y � x. The latter statement implies that both x � y and x � y, so
that L+

F (x) \ {x, x} is not strictly distinct. �
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Remark 2.5. As the above proof shows, the first equality in (2.8) is true for mixed formulas
of 1- and 2-SAT clauses as well. The second is obviously false for mixed formulas of 1-
and 2-SAT clauses, as the simple example of the formula F = x shows.

The Trimmed Out-Graph. We end this section with a construction of a trimmed
version of the out-graph D+

F (x), which we denote by D̃+
F (x) with vertex set denoted by

L̃+
F (x). The utility of this trimmed graph is that we shall be able to relate it to the ordinary

unoriented random graph. Specifically, for F = Fn,p, we shall compare the distribution
of D̃+

F (x) to that of the connected component of a given vertex in the random graph
Gn,2p−p2 , where, as usual, Gn,p̃ denotes the random graph on {x1, . . . , xn} that is obtained
from the complete graph on {x1, . . . , xn} by keeping each edge with probability p̃. To
this end, we shall map a subgraph D̃F of a digraph DF to an unoriented graph on a
subset of {x1, . . . , xn} by first identifying all literals xi and xi with the corresponding
variable xi, i = 1, . . . , n, and then identifying all oriented edges xi → xj, i, j = 1, . . . , n,
i �= j, with the corresponding unoriented edge {xi, xj}. Rather than introducing a special
notation for the resulting graph, we shall just refer to it as the graph D̃F , “considered as
an unoriented graph on a subset of {x1, . . . , xn}.” With a slight abuse of notation, we shall
also speak of a component, Cn,2p−p2(x), of a vertex x in Gn,2p−p2 , when x, and not x, is a
variable in {x1, . . . , xn}. To make this precise, we shall use the symbol 〈x〉 ∈ {x1, . . . , xn}
to denote the variable associated with the literal x, and the symbol Cn,2p−p2(x) to denote
the connected component of the vertex 〈x〉 in Gn,2p−p2 .

Construction of the trimmed out-graph.
We construct the trimmed out-graph D̃+

F (x) by doing a local search in DF starting from
literal x, and at the same time we construct that portion of the random graph Gn,2p−p2

which determines the connected component of vertex 〈x〉. Let the “current graph” be
that subgraph of DF which consists of the vertices and edges that have been examined
by the local search. The “frontier” consists of those vertices of the current graph from
which further searching may be done. Initially the current graph consists of just the
literal x, and x is in the frontier. Eventually the frontier will be empty, terminating the
local search, at which point D̃+

F (x) will be defined to be the current graph. During the
search, certain edges v → w will be tested to see if they are in DF , and the search records
whether the results are “yes” or “no” on the corresponding unoriented edge 〈v〉 ∼ 〈w〉.
These test results will later be used to construct the random graph Gn,2p−p2 . Each step
in the local search consists of the substeps listed below.

1. An arbitrary literal v in the frontier is selected (one choice is the lexicographically
smallest).

2. For each literal w such that neither w nor w is in the current graph, check if v → w
is in DF , and record either “yes” or “no” on the edge 〈v〉 ∼ 〈w〉 accordingly.

3. For each literal w for which “yes” was recorded, declare w to be a “new literal” —
unless “yes” was recorded for both w and w, in which case we declare only one (say
the unnegated one) of them to be a “new literal.”
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4. Adjoin each new literal w and the edge v → w to the current graph.
5. Adjoin each new literal w to the frontier. Remove v from the frontier.
6. Consider the ordered pair of vertices (w, f) such that either (1) w is new and f is

in the frontier but not new, or (2) w and f are both new, and w is lexicographically
smaller. Test if w → f or f → w in DF , and record either “yes” or “no” on the edge
〈w〉 ∼ 〈f〉 accordingly. If there is one “yes,” adjoin the corresponding edge to the
current graph, if there are two “yes”’s, adjoin only one of the edges to the current
graph.

Lemma 2.6. The trimmed out-graph D̃+
F (x) defined above has the following properties.

i) D̃+
F (x) is a subgraph of D+

F (x).
ii) L̃+

F (x) is strictly distinct.
iii) L̃+

F (x) = L+
F (x) if and only if L+

F (x) is strictly distinct.
iv) For F = Fn,p, the digraph D̃+

F (x), when considered as an unoriented graph on a subset
of {x1, . . . , xn}, has the same distribution as Cn,2p−p2(x). In particular, |L̃+

Fn,p
(x)| and

|Cn,2p−p2(x)| are equidistributed.

Proof. By construction, properties (i) and (ii) are obvious. Property (iii) is not much
more difficult. There are certain possible edges leading out of the vertex set L̃+

F (x) that
were never tested, or that were tested and present, but then excluded from the trimmed
out-graph D̃+

F (x) anyway. But each such edge either led to a literal already in L̃+
F (x), or

else led to a literal whose complement was in L̃+
F (x). Thus if the literal set L+

F (x) were
to contain more literals than L̃+

F (x), then L+
F (x) would not be strictly distinct. On the

other hand, if L+
F (x) and L̃+

F (x) are identical, then L+
F (x) is trivially strictly distinct by

property (ii).
Property (iv) is similarly easy. First, for each literal u ∈ [n], we define [u] = {u, u}. By

induction we shall prove that, at the beginning and end of each step of the search, the
following properties hold:

1. For every pair of literals u and v of the current graph, precisely two edges between
[u] and [v] have been tested.

2. For every literal v in the current graph but not in the frontier, and every literal w
such that neither w nor w is in the current graph, precisely two edges between [v]
and [w] have been tested, both results being “no.”

3. For every literal v in the frontier, and any literal w such that neither w nor w is in
the current graph, none of the edges between [v] and [w] have been tested.

4. If none of u, u, v, v are in the current graph, then no edges between [u] and [v] have
been tested.

5. For any pair of strictly distinct literals u, v ∈ [n], either none or precisely one of the
four edges between [u] and [v] appears in the current graph. The latter happens if
and only if some test between [u] and [v] was positive.
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Indeed, assume that (1) – (5) hold at the beginning of a step. To prove that (1) holds
at the end of the step, we first note that no edge between [u] and [v] was tested in the
current step if neither u nor v is new. If v is old and u is new, then either v was the
selected vertex in the frontier, in which case the edges v → u and v → u have been
tested in the current step, or v was not in the frontier, in which case precisely two edges
between [u] and [v] were tested in a previous step (with answer “no”) by the inductive
assumption (2). If both v and u are new, then no edge between [u] and [v] was tested in a
previous step by the inductive assumption (3), and precisely two edges (the edges u → v
and v → u) between [u] and [v] are tested in the current step.

To prove (2), we note that if v is in the current graph but not in the frontier, it was in
the frontier in some previous step, and got removed from the frontier after all edges from
v to vertices u, with neither u nor u in the current graph at the time, were tested. This
includes in particular the vertex w in question, and since we assume that neither w nor w
is in the current graph, it follows that both tests must have given the result “no” at the
time. After that step, v is not in the frontier, so no edge containing v or v is ever tested
again, implying statement (2).

Statement (3) follows from the observation that an edge between a vertex v in the
current graph and a vertex w such that neither w nor w is in the current graph is only
tested if v is the selected vertex in the current step, in which case it is not in the frontier
after this step anymore.

Statement (4) is obvious, since an edge f → w is only tested if either f is in the frontier
(and hence in the current graph before the current step), or both f and w are new vertices,
which means they are in the current graph after steps (1) – (6).

To prove (5), we consider three cases. In the first case, none of the vertices u, u, v and
v is in the current graph, in which case no edge between [u] and [v] appears in the current
graph by the inductive assumption (4). The second case is the one in which exactly one
of the four vertices u, u, v and v is in the current graph. Without loss of generality, let us
assume that this is the vertex v. Then none of the edges between [u] and [v] appears in
the current graph by (2) and (3). The third case is that precisely two of the four vertices
u, u, v and v are in the current graph, say u and v. Then precisely two of the four edges
between [u] and [v] have been tested by the inductive assumption (1). Since the above
search procedure always tests two of the four edges between [u] and [v] at a given time,
and adds one (but not both) of them precisely when at least one of them tests positive,
we get (4).

We now use the properties (1) – (5) above to prove statement (iv) of the lemma. If
we pick the unordered pairs of numbers between 1 and n in some arbitrary order, each
time randomly saying “present” (with probability 2p− p2) or “absent” (with probability
(1−p)2), then even if the order in which we pick the pairs depends on the previous random
choices of present/absent, the result will be the random graph Gn,2p−p2 . This is in effect
what the trimmed local search does, except that it stops when the connected component
containing 〈x〉 has been determined. Thus D̃+

F (x), when regarded as an undirected graph,
is just the connected component containing 〈x〉 in Gn,2p−p2 . �



14 B. BOLLOBÁS, C. BORGS, J. T. CHAYES, J. H. KIM, D. B. WILSON, September 5, 1999

3. Strategy of the Proof

In this section, we shall first state our principal estimates and results for the distribution
Fn,p (to be proved in later sections), and then give the heuristics for these results.

3.1. Main Results for the Distribution Fn,p. As explained in the last section, the
spine of a formula F consists of all literals x for which x� x (see Lemma 2.3), which in
turn is just the set of all literals x such that L+

F (x) is strictly distinct (see Lemma 2.4).
If F is distributed according to the model Fn,p, the expectation and variance of the size
of S(Fn,p) are therefore given by the equations

E(|S(Fn,p)|) =
∑
x∈[n]

P(x �
Fn,p

x) (3.1)

and

E(|S(Fn,p)|2)− E(|S(Fn,p)|)2 =
∑

x,y∈[n]
P

(
x �

Fn,p

x and y �
Fn,p

y
)
− P

(
x �

Fn,p

x
)
P

(
y �

Fn,p

y
)
,

(3.2)

where x �
Fn,p

x a shorthand for x �
DFn,p

x.

The following two theorems allow us to prove suitable bounds on the expected size and
variance of the spine of a random 2-SAT formula, and are at the heart of our proofs.
Before we can proceed, we unfortunately need a short interlude on Landau symbols:

In this paper, we shall use Landau’s notation f = O(g) and f = o(g). As usual,
f = O(g) stands for a bound |f | ≤ c|g|, where c is a universal constant, unless otherwise
specified. If we have a bound of the form |f | ≤ h(g)|g|, where h(g) is a function which
is bounded above, though not necessarily uniformly, for finite g, and which is uniformly
bounded above as g goes to zero, we shall use the notation f = O0(g). In this notation,
ex

2 − 1 is O0(x2), but it is not O(x2).
Our use of the symbol o(g) is slightly stronger than usual. Typically, f = o(g) means

that f/g goes to zero as the independent variables in question tend to their limiting values,
but usually f = o(g) does not require that f/g is bounded in the whole domain of the
independent variables. We require both uniform boundedness and that f/g tends to zero.
Since it may be ambiguous which independent variables tend to ∞ or 0 in an expression
of the form f = o(g), we frequently specify the variables in question. Thus f = oλ,ε(g)
means that f/g → 0 as λ → ∞ and ε → 0. For example, in this notation, the o(1) terms
in Theorem 1.4 would be written as oε,λn(1).

Finally, as mentioned earlier, f = Θ(g) means that there exist positive, finite constants
c1 and c2 such that c1 ≤ f/g ≤ c2. Unless noted otherwise, these constants are universal.

Theorem 3.1. There are constants λ0 and ε0, 0 < λ0 < ∞ and 0 < ε0 < 1, such that
the following statements hold for

p =
1
2n

(1 + ε) =
1
2n

(1 + λnn
−1/3) (3.3)
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and λ0 ≤ |λn| ≤ ε0n
1/3.

i) If ε < 0, then

P

(
x �

Fn,p

x
)
=

n−1/3

4λ2n

(
1 + oε,λn(1)

)
. (3.4)

ii) If ε > 0, then

P

(
x �

Fn,p

x
)
= ϑ(ε)

(
1 + oλn(1

)
),

= 2λnn−1/3(1 + oλn(1
)
+O(ε)

)
(3.5)

where ϑ(ε) is defined in (1.7).

Theorem 3.2. Let p, ε and λn be as in Theorem 3.1. Then the following statements hold
for all strictly distinct literals x and y.
i) If ε < 0, then

P

(
x �

Fn,p

x
)
P

(
y �

Fn,p

y
)
≤ P

(
x �

Fn,p

x and y �
Fn,p

y
)
= O

(n−2/3

λ4n

)
. (3.6)

ii) If ε > 0, then

0 ≤ P

(
x �

Fn,p

x and y �
Fn,p

y
)
− P

(
x �

Fn,p

x
)
P

(
y �

Fn,p

y
)
= O

(n−2/3

λn

)
. (3.7)

Remark 3.3. By monotonicity, the bound (3.6) can be extended to all λn ∈ [−n1/3,−λ0].
Indeed, using that the events x� x and y � y are monotone events, we have that

P

(
x �

Fn,p

x and y �
Fn,p

y
)
≤ P

(
x �

Fn,p0

x and y �
Fn,p0

y
)

provided p ≤ p0. Setting p0 = (1 − ε0)/2n, using equation (3.6) to bound the right
hand side by O

(
n−2/3/(n1/3)4

)
, and observing that n−2/3/(n1/3)4 = O

(
n−2/3/λ4n

)
provided

λn ∈ [−n1/3,−ε0n1/3], we obtain that

P

(
x �

Fn,p

x and y �
Fn,p

y
)
= O

(n−2/3

λ4n

)
for all λn ∈ [−n1/3,−λ0]. (3.8)

Given the above two theorems, we shall prove the following analogue of Theorem 1.1
for the ensemble Fn,p.

Theorem 3.4. There are constants λ0 and ε0, 0 < λ0 < ∞ and 0 < ε0 < 1, such that
the following statements hold for p = 1

2n(1 + λnn
−1/3) and λ0 ≤ |λn| ≤ ε0n

1/3.
i) If λn < 0, then

P(Fn,p is SAT) = exp
(−Θ

(|λn|−3)). (3.9)

ii) If λn > 0, then

P(Fn,p is SAT) = exp
(−Θ

(
λ3n
))
. (3.10)
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For fixed λn, both (3.4) and (3.5) are of the form P(x� x) = Θ(n−1/3). Together with
equation (3.1), Theorem 3.1 therefore implies that the expected size of the spine scales
like n2/3, provided λn stays bounded as n → ∞. The heuristics for this scaling with n
will be given in the next subsection, and the actual proof of the scaling will be given
in Sections 5–7. Theorem 3.2 allows us to control the deviations of the random variable
|S(Fn,p)| from its expectation; its proof will be given in Section 8. Together, these two
theorems allow us to prove Theorem 3.4, which is just the analogue of Theorem 1.1 in the
model Fn,p. In the final subsection, we shall describe the strategy of this proof. While
the actual proof is easier in the model Fn,p, the heuristic argument is easier in the model
Fn,m. Our goal in the last subsection is therefore to describe how the scaling n2/3 for the
size of the spine in the model Fn,m leads to bounds of the form (3.9) and (3.10). The
actual proof of Theorem 3.4 is given in Section 4.

3.2. Heuristics for the Scaling of the Spine. The proof of Theorem 3.1 (and
hence also the proof of the expected size of the spine, Theorem 1.4) uses the digraph
representation of the last section. Indeed, by Lemmas 2.3, 2.4, 2.6 (iii) and 2.6 (iv), and
the fact the probability of the event x � x does not depend on the choice of the literal
x ∈ [n], we have

E(|S(Fn,p)|) = 2nP (x� x)

= 2nP

(
L+
Fn,p

(x) �= L̃+
Fn,p

(x)
)

= 2n
n∑

k=1

[
P

(
|L̃+

Fn,p
(x)| = k

)
− P

(
|L+

Fn,p
(x)| = k, L+

Fn,p
(x) is s.d

)]
= 2n

n∑
k=1

[
P (|Cn,2p−p2(x)| = k)− P

(
|L+

Fn,p
(x)| = k, L+

Fn,p
(x) is s.d

)]
.

(3.11)

It turns out that for 2p− p2 near to the random graph threshold 1/n, and k ≤ Θ(n2/3),
the size of the largest component in the random graph, the probability that L+

Fn,p
(x) is

strictly distinct and has size k is well approximated by P (|Cn,2p−p2(x)| = k), so that the
summand in equation (3.11) is approximately zero. On the other hand, for 2p− p2 near
1/n and k ≥ Θ(n2/3), only the sum over P (|Cn,2p−p2(x)| = k) contributes to (3.11). Thus
we can approximate

E(|S(Fn,p)|) ≈ 2nP
(|Cn,2p−p2(x)| ≥ n2/3

)
. (3.12)

As the reader might imagine, the above arguments require a good deal of justifica-
tion; see Section 5–7 for precise bounds. But for 2p− p2 near 1/n, the probability
that |Cn,2p−p2(x)| ≥ n2/3 scales like the probability that x lies in the largest compo-
nent in the random graph, which in turn scales like n−1/3 (see e.g. [Bol85]). This implies
that the expected size of the spine S(Fn,p) scales like n2/3 provided p is of the form
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p = 1
2n(1±Θ(n−1/3)). Observing that the models Fn,p and Fn,m are equivalent as long as

m is near its expected value
(
n
2

)
p (see Appendix A), we obtain the scaling of Theorem 1.4.

3.3. Heuristics for the Scaling of the Window. As explained earlier, our goal is
to describe how the behavior E(|S(Fn,m)|) = Θ(n2/3) leads to the bounds (3.9) and (3.10).
To this end, consider a process which builds random formulas as follows: Given a 2-SAT
formula Fm, let Fm+1 = Fm ∧ C, where C = x ∨ y is chosen uniformly at random from
the set of all 2-clauses over {x1, . . . , xn} that have not yet been used in Fm. Obviously,
the distribution of Fm is the same as that of Fn,m. Furthermore, Fm+1 is satisfiable if and
only if Fm is satisfiable and either x or y does not lie in the spine of Fm. Conditioned on
the events that Fm is SAT and that S(Fm) has size s, the probability that Fm+1 is SAT
is therefore equal to

P

(
SAT(Fm+1)

∣∣∣ SAT(Fm) and |S(Fm)| = s
)
= 1−

(
s

2

)(
4
(
n

2

)
−m

)−1

= 1− s(s− 1)
4n(n− 1)− 2m

. (3.13)

By the analogue of Theorem 3.1 for the model Fn,m and the monotonicity of the expected
size of the spine, we have that near the transition point, E(|S(F )|) = Θ(n2/3). Neglecting
the difference between statements in expectation and statements in probability, equation
(3.13) therefore implies that the probability that Fm+1 is UNSAT, conditioned on Fm

being satisfiable, is Θ(n4/3/n2) = Θ(n−2/3). After Θ(n2/3) steps, a satisfiable formula
therefore becomes UNSAT, giving the a finite-size scaling window of width Θ(n2/3) in m,
and hence of width Θ(n−1/3) in m/n. This is the result in Corollary 1.2.

In order to explain heuristically the error bounds exp(−Θ(|λn|−3)) and exp(−Θ(λ3n))
in Theorem 1.1, we proceed as follows. As a consequence of (3.13), we have that

P

(
SAT(Fm+1) | SAT(Fm)

)
= 1−

E
(
(|S(Fm)|2 − |S(Fm)|)

∣∣∣ SAT(Fm)
)

4n(n− 1)− 2m
, (3.14)

and hence

P(SAT(Fm)) =
m−1∏
k=0

(
1−

E
(
(|S(Fk)|2 − |S(Fk)|)

∣∣∣ SAT(Fk)
)

4n(n− 1)− 2k

)
. (3.15)

Neglecting the difference between conditional and unconditional expectations, and ap-
proximating |S(Fk)|2 − |S(Fk)| by |S(Fk)|2, we get

P(SAT(Fm)) ≈
m−1∏
k=0

(
1− 1

4n2 − 2k
E
(|S(Fk)|2

))

≈ exp
(

−
m−1∑
k=0

1
4n2

E
(|S(Fk)|2

))
. (3.16)
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For λn < 0 and k = (1 + λn−1/3)n, λ ∈ (−n1/3, λn), we then approximate E
(|S(Fk)|2

)
by E

(|S(Fn,p)|2
)
, p = (1 + λn−1/3)/2n. Using Theorems 3.1 and 3.2 to estimate this

probability, we have

P(SAT(Fm)) ≈ exp
(

− 1
4n2

∫ m

k=0
dkE

(|S(Fk)|
)2)

≈ exp
(

− 1
4n2

∫ λn

−n1/3
n2/3dλΘ

(
n2/3/λ2

)2)
= exp

(
Θ(|λn|−3)

)
, (3.17)

giving the bound (1.4) below the threshold. In a similar way, we can integrate the bound
(3.5) to obtain a heuristic derivation of (1.4) above the threshold.

The actual proof of Theorem 1.1 in the form (3.9)–(3.10) will be given in the next
section, and relies heavily on Theorems 3.1 and 3.2, which in turn are proven in Sections
5–8. In addition, we shall need two more technical lemmas, to be proven in Section 9. In
Appendix A, we discuss the relation between the models Fn,m and Fn,p.

4. Probability of Satisfiability

In this section we prove Theorem 3.4, which together with Appendix A establishes
Theorem 1.1. The lower bounds depend on the second moment estimates of Theorem 3.2,
which is proved in Section 8. The upper bounds depends on a theorem showing that with
high probability there are many structures, to be called hourglasses, that are “seeds” for
the growth of the spine. The hourglass theorem is proven in Section 9, after we develop
suitable machinery in the intervening sections.

To derive the bounds, we shall find it convenient to view the random formula Fn,p as a
process, and to couple the processes for all possible values of n and p. To do this, for each
unordered pair of natural numbers we pick four random variables uniformly distributed
on the interval from 0 to 1, so that the set of all these random variables indexed by
4 copies of

(
N

2

)
(sometimes denoted N

(2)) is a set of independent random variables. As
usual

(
X
2

)
denotes the set of unordered pairs of elements of the set X. A pair of natural

numbers specify two different variables of the formula, and the four random variables
associated with the pair correspond to the four different clauses that can be made using
these variables, so that each possible clause C has its own random variable UC . A clause
C appears in the formula on n variables at probability p precisely when the indices of its
two variables are not larger than n, and UC < p. We shall call UC the birthday of the
clause C. The process F̃ is the collection of all these random variables, and it defines a
family of formulas by

Fn,p =
∧

C:n(C)≤n, UC<p

C, (4.1)
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where n(C) denotes the maximum index of the two variables in clause C. It is easy to
see that for each value of n and p, the distribution of the resulting formula Fn,p is exactly
the distribution introduced before, which justifies our using the same notation as before.
By construction, satisfiability of Fn,p is monotone decreasing in n and p.

Lower bounds. To derive the lower bounds of Theorem 1.1, it is sufficient to consider
the coupling above for a fixed value of n, so we suppress the variable n. Given F̃ (i.e., Fp

for each p), we define the reduced formula Φ̃ = (Φp)p∈[0,1] as follows: Φ0 has no clauses.
Start with p = 0, and increase it until p = 1. Clauses are added to Fp one at a time; each
time we add a clause to Fp, we also add that clause to Φp provided that doing so does
not make Φp unsatisfiable.

Given Φ̃ we can define a new formula process H̃ as follows: For each clause C appearing
in Φ̃, set its birthday in H̃ to coincide with its birthday in Φ̃. For each clause C not
appearing in Φ1, there is some smallest value pmin of p for which Φp ∧C is not satisfiable.
Pick the birthday of C in Hp uniformly at random in the interval [pmin, 1). Since the H̃
process is drawn uniformly at random from the set of F̃ processes with reduced formula
Φ̃, the H̃ and F̃ processes are identically distributed. Also note that the first time that
Hp differs from Φp is also the first time that Hp becomes unsatisfiable.

Let U(F ) denote the number of different clauses C such that F ∧C is unsatisfiable. If
F is itself satisfiable, then

U(F ) =
(|S(F )|

2

)
,

where as usual S(F ) denotes the spine of F .
Conditional on the reduced process being Φ̃ andHp being satisfiable (i.e. thatHp = Φp),

the probability that Hp+δ is satisfiable is

(
1− δ

1− p

)U(Φp)

= exp
[
−U(Φp)

1− p
δ +O(δ2)

]

provided δ is small enough. Multiplying these probabilities for p = 0, δ, 2δ, . . . , and passing
to the limit δ → 0, we find that conditional upon Φ̃, the probability that Hp is satisfiable
is given by

P[SAT(Hp)|Φ̃] = exp
[
−
∫ p

0

U(Φs)
1− s

ds

]
.

We have
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P[SAT(Fp)] = P[SAT(Hp)]

= EΦ̃

[
P[SAT(Hp)|Φ̃]

]
= EΦ̃

[
exp

[
−
∫ p

0

U(Φs)
1− s

ds

]]
≥ expEΦ̃

[
−
∫ p

0

U(Φs)
1− s

ds

]
= exp

[
−
∫ p

0

EΦ̃[U(Φs)]
1− s

ds

]
= exp

[
−
∫ p

0

4
(
n
2

)
P[x� x and y � y in Φs]

1− s
ds

]

≥ exp
[
−4
(
n

2

)∫ p

0

P[x� x and y � y in Fs]
1− s

ds

]
,

where x and y are strictly distinct.
Next we proceed to estimate the integral. Since we are principally interested in the

case p = O(1/n), let us assume p = on(1) so that the effect of the denominator of the
integrand is negligible. Recalling that p and λn are related by (3.3), and setting

s = s(t) =
1 + tn−1/3

2n
,

we get

P[SAT(Fp)] ≥ exp
[
−(1 + on(1))n2/3

∫ λn

−n1/3
P[x� x and y � y in Fs(t)]dt

]
. (4.2)

Remark 4.1. It is not hard to derive the analogue of (4.2) in the model Fn,m. Indeed,
starting from (3.15), rewriting

E
(
|S(Fk)|2 − |S(Fk)|

∣∣∣ SAT(Fk)
)
= 4
(
n

2

)
P
(
x� x and y � y in Fk

∣∣ SAT(Fk)
)
,

where x and y are strictly distinct, and observing that by the FKG inequality,

P
(
x� x and y � y in Fk

∣∣ SAT(Fk)
) ≤ P(x� x and y � y in Fk),

one gets

P
(
SAT(Fn,m)

) ≥ m−1∏
k=0

[
1− (1 +O(m/n2)

)
P
(
x� x and y � y in Fn,k

)]
.
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Proof of the lower bound of Theorem 3.4 in the subcritical regime. For t ∈ [−n1/3,−λ0],
the probability in the integrand in equation (4.2) is O(n−2/3/t4) by Theorem 3.2 and
Remark 3.3. Integrating, we find that

P[SAT(Fp)] ≥ exp
[
Θ
(

1
λn

3

)]
= 1−Θ

(
1

|λn|3
)

provided λn ∈ [−n−1/3,−λ0]. ←
�

Proof of the lower bound of Theorem 3.4 in the supercritical regime. By Theorems 3.1
and 3.2, the probability in the integrand in equation (4.2) is 4n−2/3t2(1 +O(ε) + oλn(1)),
provided t ∈ [λ0, ε0n1/3]. In the middle region t ∈ [−λ0, λ0] we upper bound the probabil-
ity in the integrand by Θ(n−2/3), and we bound it in the left region t ∈ [−n1/3,−λ0] by
O(n−2/3/t4) as above. Integrating, we find that

P[SAT(Fp)] ≥ exp
[
−4 + oε,λn(1)

3
λn

3
]
.

provided λn ∈ [λ0, ε0n1/3]. →
�

Upper bounds. To bound from above the probability of satisfiability, we use Theo-
rem 4.3 below, which states that with high probability there are certain types of structures
contained within the directed graph associated with a formula.

Definition 4.2. An hourglass is a triple (v, Iv, Ov) where v is a literal, and Iv and Ov are
two disjoint sets of literals not containing v, such that for each x ∈ Iv, there is a path
x� v in Iv ∪ {v}, and for each y ∈ Ov, there is a path v � y in Ov ∪ {v}. Furthermore,
we require that {v} ∪ Iv ∪ Ov is strictly distinct. We call v the central literal, Iv the
in-portion, and Ov the out-portion of the hourglass.

Theorem 4.3. There are constants λ0 and ε0, 0 < λ0 < ∞ and 0 < ε0 < 1, such that for
p = 1

2n(1+λnn
−1/3) and λ0 ≤ |λn| ≤ ε0n

1/3, the following statements hold with probability
at least 1− exp(−Θ(|λn|3).
i) If λn < 0, then there are at least Θ(|λn|3) disjoint, mutually strictly distinct hourglasses
with in-portion and out-portion each of size at least n2/3/λ2n.
ii) If λn > 0, then there is at least one hourglass with in-portion and out-portion each of
size Θ(λnn2/3).

The proof of this theorem will be given in Section 9. There we shall use the coupling of
the trimmed out-graph G̃+

Fn,p
(x) to the random graph process Gn,2p−p2 (see Lemma 2.6 and

its proof) to explicitly construct Θ(|λn|3) many hourglasses below threshold. To prove the
theorem above threshold, we shall show that, when λ is increased from its value below
the threshold to its value above the threshold, a constant fraction of these subcritical
hourglasses will merge into one giant hourglass of size Θ(|λn|3)Θ(n2/3/λ2n). See Section 9
for details.
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Here, we shall use the hourglasses to derive the upper bounds on satisfiability both to
the left and to the right of the window.
Proof of upper bound of Theorem 3.4 in the subcritical regime. To get the bound on the
left, we increase p from (1 − tn−1/3)/2n to (1 − (t/2)n−1/3)/2n, with λ0 ≤ t ≤ ε0n

1/3.
For any pair of vertices, whether or not there was a directed edge between them before,
afterwards the probability of finding such an edge is at least (t/4)n−4/3. For each hourglass,
for each pair of literals u and v in the out-portion of the hourglass, if the clause u ∨ v
appears, then we claim that the central vertex and the entire in-portion of the hourglass
is afterwards part of the spine of the formula. Indeed, let x be such a vertex. Then x� u
and x � v since u and v are in the out-portion of the hourglass. But the appearance of
the clause u ∨ v implies that u → v, so that we have x � u → v. Together with x � v,
which is equivalent to v � x, we conclude that x� x. The probability of the event that
the clause u∨ v appears is at least Θ((n2/3/t2)2tn−4/3) = Θ(1/t3). If furthermore a clause
appears that contains two literals in the in-portion, then the formula is not satisfiable.
These events are independent, so the probability that they both occur is at least Θ(1/t6).
But since with high probability there are Θ(t3) hourglasses, with probability at least
Θ(1/t3) the formula becomes unsatisfiable. Setting t = 2|λn| gives the desired upper
bound on the left. ←

�
Proof of upper bound of Theorem 3.4 in the supercritical regime. To get the bound on the
right, we start with p = (1+tn−1/3)/2n (with λ0 ≤ t ≤ ε0n

1/3), where the probability that
there is no giant hourglass is at most exp(−Θ(t3)), and then increase it to (1+2tn−1/3)/2n.
Any clauses of the form (u ∨ v) where u and v are in the out-portion of the the giant
hourglass beforehand will afterwards appear with probability at least tn−4/3. This will
cause the in-portion of the giant hourglass to become part of the spine of the formula,
except with probability that can be bounded by

(
1− tn−4/3

)Θ(tn2/3)2 = exp(−Θ(t3)).
Furthermore, any clauses of the form (u ∨ v) where u and v are in the in-portion of
the giant hourglass beforehand will afterwards appear with probability at least tn−4/3.
Therefore the formula will become unsatisfiable, except with probability that is again
exponentially small in t3. Setting t = λn/2 completes the proof. →

�
Remark 4.4. Instead of using Theorem 4.3, one can alternatively use Theorems 3.1 and 3.2
to prove that below the window, the spine has size at least E(|S(Fn,p)|)/2 with probability
exp(−O(1)). Increasing p as in the above proof, one obtains an alternative proof of the
fact that, with probability at least Θ(1/|λn|3), the formula becomes unsatisfiable below
the threshold. While a similar argument can be used to show that above the window,
the probability of satisfiability goes to zero, we cannot use Theorems 3.1 and 3.2 alone
to prove that it goes to zero exponentially fast in λ3n. For this, we need the hourglass
theorem.
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5. Machinery from Random Graph Theory

In this section we establish several bounds needed in the proofs of Theorems 3.1 and
3.2. As in earlier sections, we use the notation Gn,p for the (unoriented) random graph on
{1, 2, . . . , n} with edge probability p. We also consider Dn,p, the random directed graph
on {1, 2, . . . , n} in which each oriented edge is chosen independently with probability p.
We use the symbol L+

n,p(x) to denote both the set of vertices y ∈ {1, 2, . . . , n} that can be
reached from a vertex x in the random digraph Dn,p, and the set of vertices y ∈ [n] that
can be reached from a vertex x in the digraph corresponding to a random 2-SAT formula
Fn,p. If the difference is not clear from the context, we shall use the notations L+

Dn,p
(x)

and L+

Fn,p
(x) to distinguish the two cases. We begin this section with a basic lemma which

is implicit in the work of Karp [Kar90].

Lemma 5.1. The probability that in the random digraph Dn,p every vertex can be reached
from a given vertex is precisely the probability that the random graph Gn,p is connected.

Proof. We may assume that the vertex in question is vertex 1. First, we shall inductively
define a subtree T = T (Dn,p) of Dn,p, rooted at 1, with each edge oriented away from
1. To this end, set X0 = {1}, Y0 = ∅, and let T0 be the subtree of Dn,p with the single
vertex 1. Suppose that we have defined a pair (Xi, Yi) of subsets of {1, 2, . . . , n} with
Yi ⊂ Xi, and a subtree Ti with V (Ti) = Xi. (We think of Yi as the set of vertices we have
“exposed”, i.e. tested for outgoing edges, and Xi as the set of vertices we have selected so
far.) If Xi = Yi then Ti is our tree T . Otherwise, let xi be the smallest element of Xi \Yi.
Let Γ+(xi) denote the set of vertices in {1, 2, . . . , n} that can be reached by single edges of
Dn,p that are oriented outward from xi. Now set Xi+1 = Xi∪Γ+(xi), Yi+1 = Yi∪{xi}, and
take Ti+1 to be obtained from Ti by adding to it the vertices in Xi+1 \Xi, together with
all the edges from xi to Xi+1 \Xi. The vertex set of the subtree T of Dn,p constructed in
this way is clearly L

+

n,p(1); in particular, L+

n,p(1) = {1, 2, . . . , n} iff V (T ) = {1, 2, . . . , n}.
Since the edges of T are oriented away from 1, we may view T as an unoriented tree.

Now, let us construct a subtree T ′ = T ′(Gn,p) of the random graph Gn,p rooted at 1 by
precisely the same algorithm. The lemma will follow if we show that

P(T (Dn,p) = T0 ) = P(T ′(Gn,p) = T0 ) (5.1)

for every tree T0 with vertex set {1, 2, . . . , n}.
Given T0, we can define the Xi’s as above. We have T (Dn,p) = T0 if and only if the

random digraph Dn,p is such that
1) it contains all the edges of T0 (oriented away from vertex 1),
2) it contains no edge oriented from xi to {1, 2, . . . , n} \Xi+1.

Similarly, T ′(Gn,p) = T0 if and only if the random graph Gn,p is such that
1) it contains all the edges of T0,
2) it contains no edge from xi to {1, 2, . . . , n} \Xi+1.

Notice that the probability that Dn,p contains a given set K of oriented edges, and no
edge of a second set K ′ of oriented edges, is p|K|(1 − p)|K′| provided that K ∩ K ′ = ∅.
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Moreover, this is equal to the probability that Gn,p contains a set K̃ of unoriented edges,
and no edge of a second set K̃ ′ of unoriented edges, provided that K̃ ∩ K̃ ′ = ∅, |K̃| = |K|
and |K̃ ′| = |K ′|. Thus relation (5.1) holds, and we are done. �

Returning to the 2-SAT problem Fn,p, let x be a fixed literal. The probability that,
in a random 2-SAT formula Fn,p, the set L+

n,p(x) consists of k strictly distinct literals is
trivially independent of x; we shall denote it by Pn,p(k):

Pn,p(k) = P({|L+

n,p(x)| = k} ∩ {L+

n,p(x) is s.d.}). (5.2)

Lemma 5.2. For all n, k and p, with 1 ≤ k ≤ n and 0 < p < 1, we have

Pn,p(k) = 2k−1
(
n− 1
k − 1

)
(1− p)2kn−3k2/2−k/2

P(Gk,p is connected ). (5.3)

Proof. Let X be a set of k strictly distinct literals with x ∈ X. For y, z ∈ X, the
dual of the implication y → z involves no literal in X. Therefore the probability that
L

+

Fn,p
(x) = X is Pa Pb, where Pa is the probability that every vertex of the random digraph

DX,p can be reached from x and Pb is the probability that the random 2-SAT formula
Fn,p contains no implication from the set I(X,Xc) = {y → z : y ∈ X, z �∈ X}.

By Lemma 5.1, we have Pa = P(Gk,p is connected), so we turn to the task of calculating
the probability Pb.

Note that there are k(2n − k) implications in the set I(X,Xc). However, a 2-SAT
formula Fn,p contains none of the k implications y → y, y ∈ X. Also, if y ∈ X and z ∈ X,
then y → z and z → y are dual implications, i.e. Fn,p contains y → z if and only if it
contains z → y. In fact, both implications y → z and z → y belong to I(X,Xc) if and
only if y ∈ X, z ∈ X and y �= z. Hence I(X,Xc) contains (k2 − k)/2 dual pairs, so that
the probability that Fn,p contains no implication from I(X,Xc) is

Pb = (1− p)k(2n−k)−k−(k2−k)/2 = (1− p)2kn−3k2/2−k/2.

Therefore,

P(L
+

Fn,p
(x) = X ) = P(Gk,p is connected )(1− p)2kn−3k2/2−k/2. (5.4)

Since there are 2k−1
(
n−1
k−1

)
choices for the set X, the lemma is proved. �

In order to transform Lemma 5.2 into a form suitable for applications, note that the
probability that Gk,p is connected is trivially expressed in terms of f(k,m), the number
of connected labelled graphs with k vertices and m edges, and that f(k,m) has a good
and fairly simple approximation when m−k is not too large compared to k. To state this
approximation, let us define an array of numbers ck,� by f(k, k − 1 + ') = ck,�k

k−2+3�/2.
The somewhat peculiar choice of the parameter ' is justified by the fact that ck,� �= 0
if and only if 0 ≤ ' ≤ (

k
2

) − k + 1. Also, if ' is not too large then f(k, k − 1 + ') has
order about kk−2+3�/2. More precisely, since f(k, k− 1) is just the number of trees with k
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labelled vertices, by Cayley’s theorem we have ck,0 = 1. Also,

ck,1 = (1 +O(k−1/2))(π/8)1/2, (5.5)

ck,� ≤ 1 for all k ≥ 1 and ' ≥ 0, and for all 2 ≤ ' ≤ (k2)− k+ 1 and some c < ∞, we have

ck,� ≤ (c/')�/2, (5.6)

see [Bol85]. When ' is fairly small compared to k, there are rather detailed estimates for
ck,�. To be precise, Wright ([Wri77],[Wri80]) showed that for 2 ≤ ' = o(k1/3) we have

ck,� = γ(3π)1/2
( e

12('− 1)
)(�−1)/2(1 + o�(1)), (5.7)

where γ = 0.159155 . . . is the the limit of a certain bounded increasing sequence. Later
it was shown that γ = 1/(2π).

The probability that Gk,p is connected and has k − 1 + ' edges is just

ck,�k
k−2+3�/2pk−1+�(1− p)(

k
2)−k+1−�,

so Lemma 5.2 has the following immediate consequence.

Corollary 5.3. For all n, k and p, with 1 ≤ k ≤ n and 0 < p < 1, we have

Pn,p(k) =
1
n

(
n

k

)
(2pk)k−1(1− p)2kn−k2−2k+1Sp(k), (5.8)

where

Sp(k) =
(k
2)−k+1∑
�=0

ck,�

(k3/2p
1− p

)�
. (5.9)

If k3/2p/(1− p) is bounded, then

Sp(k) = 1 +
√
π

8
k3/2p

1− p

[
1 +O(k−1/2) + O0

(k3/2p
1− p

)]
, (5.10)

where O0(·) is the Landau symbol introduced at the beginning of Section 3.

To estimate Pn,p(k), we relate it to known bounds on related events in random graphs.
To this end, we recall the definition of the trimmed out-graph D̃+

F (x) in Section 2 and
its relation to the random graph Gn,2p−p2 on n vertices with edge probability 2p− p2, see
Lemma 2.6. Recall that the vertex set of D̃+

Fn,p
(x) is denoted by L̃+

n,p(x). We define

Qn,p(k) = P(|L̃+
n,p(x)| = k). (5.11)

By Lemma 2.6 part (iv),

Qn,p(k) = P{|Cn,2p−p2(x)| = k} , (5.12)
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where Cn,2p−p2(x) is the connected component in Gn,2p−p2 containing a fixed vertex x. For
all n, k and p, with 1 ≤ k ≤ n and 0 < p < 1, we have

Qn,p(k) =
(
n− 1
k − 1

)
(1− 2p+ p2)k(n−k)

P(Gk,2p−p2 is connected )

=
1
n

(
n

k

)
((2p− p2)k)k−1(1− p)2kn−2k2+k2−3k+2S2p−p2(k). (5.13)

In Section 9, we shall also need bounds on the probability Rn,p(k) that Cn,2p−p2(x) is a
tree of size k,

Rn,p(k) = P (|Cn,2p−p2(x)| = k and Cn,2p−p2(x) is a tree) . (5.14)

Recalling the derivation of Corollary 5.3, we immediately see that Qn,p(k) and Rn,p(k) are
related by

Qn,p(k) = Rn,p(k)S2p−p2(k). (5.15)

The following lemma will be used to turn well-known bounds on Qn,p(k) into bounds
on Pn,p(k).

Lemma 5.4. For all 0 < p < 1,

Pn,p(k) ≤ Qn,p(k). (5.16)

If p ≤ 1/2 and k3/2p is bounded, then

0 ≤ Qn,p(k)− Pn,p(k) =
√
π

8
k3/2p

1− p

[
1 +O(k−1/2) + O0

(k3/2p
1− p

)]
Pn,p(k) . (5.17)

If p ≤ 1/2 and k3/2p ≥ 1, then

Pn,p(k) = O
(
'02−�0Qn,p(k)

)
, (5.18)

where

'0 = '0(k) = min
{

k3p2

12(1− p)2
, n1/5

}
. (5.19)

Proof. By Lemma 2.6, L+
Fn,p

(x) is strictly distinct if and only if L+
Fn,p

(x) = L̃+
Fn,p

(x). As a
consequence,

Pn,p(k) = P(L+
Fn,p

(x) = L̃+
Fn,p

(x) and |L+
Fn,p

(x)| = k)

= P(L+
Fn,p

(x) = L̃+
Fn,p

(x) and |L̃+
Fn,p

(x)| = k)

≤ P(|L̃+
Fn,p

(x)| = k) = Qn,p(k), (5.20)
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which proves (5.16). Rewriting (5.13) in the form

Qn,p(k) =
1
n

(
n

k

)
(2pk)k−1(1− p/2)k−1(1− p)2kn−k2−3k+2S2p−p2(k)

= Pn,p(k)(1− p/2)k−1(1− p)−k+1S2p−p2(k)/Sp(k) (5.21)
≥ Pn,p(k)S2p−p2(k)/Sp(k) (5.22)

and observing that Sp(k) is a monotone increasing function of p/(1 − p), and hence of p
(see (5.9)), we have S2p−p2(k) ≥ Sp(k), obtaining an alternative proof of the bound (5.16).

If p ≤ 1/2 and k3/2p is bounded, then both k3/2p/(1−p) and k3/2(2p−p2)/(1−2p+p2)
are bounded by a constant times k3/2p. By (5.10), we therefore have

S2p−p2(k)
Sp(k)

= 1 +
√
π

8
k3/2p

1− p

[
1 +O(k−1/2) + O0

(k3/2p
1− p

)]
and hence by (5.21)

Qn,p(k) = Pn,p(k)(1 +O(kp))
(
1 +

√
π

8
k3/2p

1− p

[
1 +O(k−1/2) + O0

(k3/2p
1− p

)])
. (5.23)

As a consequence,

Qn,p(k)
Pn,p(k)

− 1 =
√
π

8
k3/2p

1− p

[
1 +O(k−1/2) + O0

(k3/2p
1− p

)]
which implies the bound (5.17).

In order to prove (5.18), we decompose Sp(k) as

Sp(k) =
∑
�≥0

ck,�

(k3/2p
1− p

)�
=
∑

0≤�<�0

ck,�

(k3/2p
1− p

)�
+
∑
�≥�0

ck,�

(k3/2p
1− p

)�
= S ′

p(k) + S ′′
p (k) ,

where S ′
p(k) is the first and S ′′

p (k) is the second sum above. If ' ≤ n1/5 then ' = o(k1/3),
so by (5.7) we have

S ′
p(k) = O

( ∑
2≤�<�0

( e1/2k3/2p

121/2('− 1)1/2(1− p)

)(�−1)
k3/2p

)
.

By taking the ratio of successive terms in the series( e1/2k3/2p

121/2('−1)1/2(1− p)

)−(�−1)( e1/2k3/2p

121/2'1/2(1− p)

)�
=
( e1/2k3/2p

121/2(1− p)

) 1
'1/2

(
1 +

1
'−1

)−(�−1)/2

≥
( e1/2k3/2p

121/2(1− p)

) 1
'1/2

e−1/2,
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we see that the summand is an increasing function of ' for 2 ≤ ' ≤ '0 + 1. Since the
('0 + 1)st term is in the sum for S ′′

p (k), we then have

S ′
p(k) = O('0S ′′

p (k)) .

To bound S ′′
p (k), we note that

2p
1− p

=
2p− p2

1− (2p− p2)

so that

S ′′
p (k) =

∑
�≥�0

ck,�

(k3/2p
1− p

)�
≤ 2−�0

∑
�≥�0

ck,�

(k3/22p
1− p

)�
= 2−�0

∑
�≥�0

ck,�

(k3/2(2p− p2)
1− (2p− p2)

)�
= 2−�0S ′′

2p−p2(k) ,

and therefore

Sp(k) = O
(
'02−�0S ′′

2p−p2(k)
)
= O

(
'02−�0S2p−p2(k)

)
.

Combined with (5.22), this gives the desired bound (5.18). �

Our later estimates rely heavily on bounds on the expectation of the size of the com-
ponent of a given vertex in a random graph, Lemma 5.5 below. Although sharper forms
of these bounds were already proved by Bollobás [Bol84], LLuczak [LLuc90], and Janson et
al. [JKLLP94], these previous estimates were proved only for a restricted range of λ (e.g.
λ ≤ n1/12), whereas we require the full range (i.e. λn ≤ ε0n

1/3). These estimates turn out
to be rather involved; the proof is given in Appendix B.

We remark that the bound we shall obtain in (5.24) below is closely related to the
order of the giant component: if λn → ∞ and λn = o(n1/3) then, for p = (1+λnn

−1/3)/n,
with probability tending to 1, the random graph Gn,p has a unique giant component with
(2 + o(1))λnn2/3 vertices.

Lemma 5.5. There are constants c, ε0 and λ0, c > 0, 0 < ε0 < 1, and 0 < λ0 < ∞
with the following property. Let λ0 ≤ λn ≤ ε0n

1/3 and, as before, set ε = λnn
−1/3 and

p =
(
1 + λnn

−1/3
)
/2n. Then

(i) ∑
k≥λnn2/3

Qn,p(k) = ϑ(ε)(1 +O(1/λ2n)) (5.24)
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and
(ii)


λnn2/3�∑
k=�n2/3/λn


Qn,p(k) = O(e−cλnn−1/3). (5.25)

6. Moment Estimates

In this section we shall bound the moments of the number of literals x for which the set
L

+

n,p(x) consists of strictly distinct literals. Recall that Pn,p(k) is the probability that, for
a variable x, the set L+

n,p(x) consists of k strictly distinct literals. We use Corollary 5.3
to get a good estimate of Pn,p(k). Note that

1
n

(
n

k

)
(2pk)k−1 =

1
2pnk

(k/e)k

k!
(2npe)k

k−1∏
i=0

(
1− i

n

)
=

exp[−1/(12k + δk)]
2pn

√
2πk3/2

(2npe)k
k−1∏
i=0

(
1− i

n

)
,

where 0 ≤ δk ≤ 1 for each k. Recalling that 2np = 1 + ε = 1 + λnn
−1/3, with |ε| ≤ ε0,

ε0 < 1, we write

log(1 + ε) = ε− 1
2
ε2 +Θ(ε3)

and

log
(
1− i

n

)
= − i

n
− i2

2n2
−Θ

( i3
n3

)
and obtain

1
n

(
n

k

)
(2pk)k−1 =

exp[−Θ(1/k)]
2pn

√
2πk3/2

exp
{
k + kε− 1

2
kε2 + kΘ(ε3)

}
× exp

{
− k2

2n
+Θ

(k
n

)
− k3

6n2
+Θ

(k2
n2

)
−Θ

(k4
n3

)}
.

Expressing

(1− p)2kn−k2−2k+1 = exp
{

− (p+Θ(p2))
(
2kn− k2 − 2k + 1

)}
= exp

{
− k − εk +

k2

2n
+
εk2

2n
+
k(1 + ε)

n
−Θ(p2kn)

}
,
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we therefore get

Pn,p(k) =
1

2pn
√
2π k3/2

×

exp
{

− kε2

2
− k3

6n2
+
εk2

2n
+O

(k
n

)
−Θ

(k4
n3

)
+ kΘ(ε3)−Θ(1/k)

}
Sp(k).

(6.1)

Lemma 6.1. If k/n2/3 is bounded, then Pn,p(k), Qn,p(k) and Rn,p(k) can be rewritten in
the form

1
2pn

√
2π k3/2

exp
{

− kε2

2

(
1−Θ(ε)−Θ

(kn−2/3

λn

))
+ O0

(k3/2
n

)
−Θ(1/k)

}
. (6.2)

Remark 6.2. It is evident that the multiplicative error terms 1 − Θ(ε) − Θ(kn−2/3/λn)
above can be made arbitrarily close to 1 if ε is small enough and λn is large enough, i.e. if
1 � λn � n1/3, or equivalently n−1/3 � ε � 1. Likewise the additive error terms can be
made arbitrarily small when 1 � k � n2/3. We follow the standard convention that “if
a � b then c = (1+ o(1))d” means that the o(1) error term can be made arbitrarily small
by taking the ratio b/a large enough, and in our earlier notation may be re-expressed as
“c = (1 + ob/a(1))d.”

Proof of Lemma 6.1. With the assumption that k/n2/3 is bounded, we can use our bound
(5.10) on Sp(k) together with the bounds k/n ≤ k3/2/n, k4/n3 = O(k3/n2) = O0(k3/2/n),
and k3/n2 = O0(k3/2/n) to rewrite (6.1) as

Pn,p(k) =
1

2pn
√
2π k3/2

exp
{

− kε2

2
(1−Θ(ε)) +

εk2

2n
+ O0

(k3/2
n

)
−Θ(1/k)

}
. (6.3)

Note that the ratio between the second and first terms in the exponential is k/(nε) =
k/(λnn2/3), so we can further rewrite (6.3) as (6.2). The estimate (6.2) for Qn,p(k) follows
immediately from the estimate for Pn,p(k) and (5.23), and the estimate for Rn,p(k) follows
from that for Qn,p(k) and (5.15). �
Lemma 6.3. There are constants c, ε0 and λ0 with c > 0, 0 < ε0 < 1 and 0 < λ0 < ∞,
such that the following statements hold for a > 1/2 and λ0 ≤ |λ| ≤ ε0n

1/3.
i) If λn < 0, then ∑

k≥n2/3/|λn|
kaQn,p(k) = O

([
2
ε2

]a−1/2

e−c|λn|
)
, (6.4)

where the constant implicit in the Landau symbol O(·) depends on a.
ii) For both positive and negative λn, we have∑

k≤n2/3/|λn|
ka Qn,p(k) =

1 + oε,λn(1)
2pn

Γ(a− 1/2)√
2π

[
2
ε2

]a−1/2

, (6.5)
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where the oε,λn(1) term depends upon a, and for fixed a becomes as small as we like if |λn|
is large enough and ε = λn/n

1/3 is small enough.

Remark 6.4. Here, as in the rest of this paper, Γ denotes the gamma function, which
interpolates factorials. Recalling that Γ(1/2) =

√
π, the lemma immediately implies that

below the window the expected size a component of a given vertex in Gn,2p−p2 can be
estimated by

E(|Cn,2p−p2(x)|) = 1
2pn|ε|(1 + oε,λn(1)). (6.6)

Note also that (6.4) implies that below the window

∑
k≥n2/3/|λn|

Qn,p(k) =
∑

k≥n2/3/|λn|

k

k
Qn,p(k) ≤ λn

n2/3

∑
k≥n2/3/|λn|

kQn,p(k) = O
(
n−1/3e−c|λn|) .

(6.7)

Proof of Lemma 6.3. We start with the proof of ii). The limit of the summation is
n2/3/|λ| = n1/3/|ε|; we first sum the portion up to 1/ε separately. For this portion, the
sum is ∑

k<1/|ε|
ka Qn,p(k) = O((1/ε)a−1/2), (6.8)

where here and throughout this proof, constants may depend upon a.
Referring to our expression (6.2) for Qn,p(k), we see that for the remainder of the terms

in the sum, the additive error terms in the exponential tend to zero when k/n2/3 ≤ 1/|λ| is
small enough and k ≥ 1/|ε| is large enough, and so they contribute only a multiplicative
error of 1 + o(1). The multiplicative error terms in the exponential can also be made
arbitrarily close to 1 by taking |λ| large enough and |ε| small enough. Therefore we have

1 + oε,λn(1)
2pn

√
2π

B(2− δ) ≤
∑

1/|ε|≤k≤n1/3/|ε|
ka Qn,p(k) ≤ 1 + oε,λn(1)

2pn
√
2π

B(2 + δ) (6.9)

where δ = oε,λn(1) and

B(t) =
∑

1/|ε|≤k≤n1/3/|ε|
ka−3/2 exp

[
−kε2

t

]
. (6.10)
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Since the summand in (6.10) is unimodal, we may approximate the sum with an integral

B(t) =
∫ n1/3/|ε|

1/|ε|
ka−3/2 exp

[
−kε2

t

]
dk +O

(
max ka−3/2 exp

[
−kε2

t

])
=
∫ n1/3|ε|/t

|ε|/t

[
tu

ε2

]a−3/2

exp[−u]t du
ε2

+O

([
1
ε2

]a−3/2
)

=
[
t

ε2

]a−1/2 ∫ |λ|/t

|ε|/t
ua−3/2 exp[−u] du+O

([
1
ε2

]a−3/2
)

=
[
t

ε2

]a−1/2

[Γ(a− 1/2) + oε,λn(1)] +O

([
1
ε2

]a−3/2
)

=
[
t

ε2

]a−1/2

[Γ(a− 1/2) + oε,λn(1)] (6.11)

where the oε,λn(1) depends on a. Combining (6.8), (6.9) and (6.11), we get (6.5).
To prove i), we use the well know fact that the cluster size distribution in Gn,p̃, with

p̃ = 2p − p2, is stochastically dominated by a birth process with binominal offspring
distribution Binomial(n, p̃), which in turn is stochastically dominated by a Poisson birth
process with parameter n log[1/(1− p̃)] = 2np(1 + O(1/n)). Writing this parameter as
1 + ε̃, we therefore get the estimate

∑
k>n2/3

|λn|

kaQn,p(k) ≤ 1
1 + ε̃

∑
k≥n2/3/|λn|

ka
kk−1

k!
((1 + ε̃)e−(1+ε̃))k

≤ 1
1 + ε̃

n∑
k≥n2/3/|λn|

ka√
2πk3

exp
(
− ε̃2

2
k
)

=
1 +O(1/n)
2pn

√
2π

∑
k≥ n2/3

|λ|

ka−3/2 exp
{
−kε2

2
(1 + on(1))

}
. (6.12)

Bounding the sum on the right hand side by O
([

(n2/3)λ−2
n

]a−1/2
e−c|λn|

)
, we obtain the

estimate (6.4). �

Lemma 6.5. There are constants c, ε0 and λ0 with c > 0, 0 < ε0 < 1 and 0 < λ0 < ∞,
such that for a > 1/2 and λ0 ≤ |λ| ≤ ε0n

1/3, we have
n∑

k=1

ka Pn,p(k) =
1 + oε,λn(1)

2pn
Γ(a− 1/2)√

2π

[
2
ε2

]a−1/2

(6.13)
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and ∑
k≥n2/3/|λn|

ka Pn,p(k) =
[
1
ε2

]a−1/2
{
O(e−Θ(|λn|)) if λn < 0
O(e−Θ(λ−3/5

n )) if λn > 0,
(6.14)

where the constants implicit in both the oε,λn(1) term and the O term depends upon a, and
where ε = λnn

−1/3 as usual.

Remark 6.6. The particular values of a that we shall need are a = 1, a = 3/2, and a = 2.
For these values, we have

∑
k

kaPn,p(k) =
1 + oε,λn(1)

2pn
×


|ε|−1 a = 1√

2/π ε−2 a = 3/2
|ε|−3 a = 2 ,

(6.15)

where as before the summation can range over all k, or over all k ≤ n2/3/|λn|.
Remark 6.7. Using the same trick as in (6.7), we can write

∑
k≥n2/3/|λn|

Pn,p(k) =
∑

k≥n2/3/|λn|

k

k
Pn,p(k) = n−1/3 ×

{
O(e−Θ(|λn|)) if λn < 0
O(e−Θ(λ−3/5

n )) if λn > 0.
(6.16)

Proof of Lemma 6.5. To prove the lemma, we again consider three regions of k: k ≤
n2/3/|λn|, n2/3/|λn| ≤ k ≤ n2/3|λn|, and k ≥ n2/3|λn|. In the first region, we use (5.23) to
approximate Pn,p(k) by Qn,p(k). Combined with Lemma 6.3, this gives

∑
k≤ n2/3

|λ|

kaPn,p(k) =
1 + oε,λn(1)
2pn

√
2π

[
2n2/3

λn
2

]a−1/2

Γ(a− 1/2). (6.17)

For λn < 0, we combine the second and the third region. Using the fact that Pn,p(k) ≤
Qn,p(k) by (5.16), we then use Lemma 6.3 to obtains the bound (6.14) below threshold.

Above threshold, the contribution from the second region is∑
n2/3/|λn|≤k≤n2/3|λn|

kaPn,p(k) ≤
∑

n2/3/|λn|≤k≤n2/3|λn|
kaQn,p(k) by (5.16)

≤ (n2/3|λn|)a
∑

n2/3/|λn|≤k≤n2/3|λn|
Qn,p(k)

≤ (n2/3|λn|)a exp[−Θ(|λn|)]n−1/3 by (5.25)

=
[
2n2/3

λ2n

]a−1/2

× exp[−Θ(|λn|)] . (6.18)
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In the third region we use (5.18) to write∑
k≥n2/3|λn|

kaPn,p(k) = O

( ∑
k≥n2/3|λn|

ka '0(k) 2−�0(k) Qn,p(k)
)
. (6.19)

Consider the prefactor, i.e. the summand ignoring the factor of Qn,p(k). Provided '0(k +
1) < n1/5, recalling the definition of '0 in (5.19), we can differentiate the logarithm of the
prefactor to get

d

dk
log
[
ka+3p2/(12(1− p)2)2−k3p2/(12(1−p)2)

]
=

a+ 3
k

− (log 2)3k2
p2

12(1− p)2

which will be nonpositive provided

4(a+ 3)
log 2

≤ k3p2 =
k3

4n2
(1 + ε)2,

which will hold if |λn| is large enough, where “large enough” depends upon a. Provided
that these conditions are met, the prefactor takes on its largest value in the first term,
k = n2/3|λn|. Eventually, if k gets large enough, '0(k) may stop increasing, and take on
the value n1/5. If a ≥ 0 then the prefactor will then increase up to na+1/52−n1/5 . Thus the
maximum value of the prefactor is

max
{
(n2/3λn)a

λn
3

(48 + oε,λn(1))
2−λn

3/(48+oε,λn (1)), na+1/52−n1/5

}
.

Since by assumption ε = λnn
−1/3 ≤ 1, we have n ≥ Θ(λn3), so the second term in the

max is na exp[−Θ(n1/5)] exp[−Θ(λn3/5)]. Thus we can write the maximum prefactor as

max
{
n(2/3)a exp[−Θ(λn3)], na exp[−Θ(n1/5)] exp[−Θ(λn3/5)]

}
≤ n(2/3)a exp[−Θ(λn3/5)].

Upon substituting the above expression into (6.19), we find∑
k≥n2/3|λn|

ka Pn,p(k) ≤
∑

k≥n2/3|λn|
n(2/3)a exp[−Θ(λn3/5)]Qn,p(k)

≤ n(2/3)a−1/3 exp[−Θ(λn3/5)]

=
[
2n2/3

λn
2

]a−1/2

exp[−Θ(λn3/5)] (6.20)

where we used (5.24) to get the second line.
The bounds (6.18) and (6.20) imply (6.14) above threshold, and (6.14) and (6.17) imply

the estimate (6.13). �
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7. Expected Size of Spine

After the preparation of the last three sections, we are ready to prove the bounds (3.4)
and (3.5) in Theorems 3.1.
Proof of Theorem 3.1. We begin with a derivation which holds for ε of both signs, and
later distinguish ε < 0 from ε > 0. Since

∑
k≥1Qn,p(k) = 1, we have

P

(
x �

Fn,p

x
)
= 1−

∑
k≥1

Pn,p(k) =
∑
k

(
Qn,p(k)− Pn,p(k)

)
.

By (5.17),∑
k≤ n2/3

|λ|

(
Qn,p(k)− Pn,p(k)

)
=
√
π

8

∑
k≤ n2/3

|λ|

p

1− p
k3/2

[
1 +O(k−1/2) +O

(k3/2p
1− p

)]
Pn,p(k)

=
√
π

8
(1 + oλn(1))

∑
k≤ n2/3

|λ|

p
[
k3/2 +O(k)

]
Pn,p(k)

=
√
π

8
(1 + oλn(1))

[
(1 + oε,λn(1))

p

2pn

√
2/π
ε2

+O(p/ε)

]
by (6.15)

=
1 + oε,λn(1)

4nε2
=

1 + oε,λn(1)
4n1/3λn2

.

So far everything we have done in this section holds for both the subcritical region and
the supercritical region. We now consider these regions separately.
Subcritical regime:

We use (6.7) to sum over the remaining values of k:

0 ≤
∑

k>n2/3/|λn|

(
Qn,p(k)− Pn,p(k)

) ≤ ∑
k>n2/3/|λn|

Qn,p(k) = O(e−c|λn|n−1/3) .

Putting these two ranges together we get

P

(
x �

Fn,p

x
)
=
∑
k

(
Qn,p(k)− Pn,p(k)

)
=

∑
k≤n2/3/|λn|

(
Qn,p(k)− Pn,p(k)

)
+

∑
n2/3/|λn|<k

(
Qn,p(k)− Pn,p(k)

)
=

1 + oε,λn(1)
4n1/3λn2

+O

(
e−c|λn|

n1/3

)
=

1 + oε,λn(1)
4n1/3λn2

,
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which completes the proof of (3.4). ←
�

Supercritical regime:
If k is “mid-size,” we can apply (5.16) and (5.25):

0 ≤
∑

n2/3/λn<k≤λnn2/3

(
Qn,p(k)− Pn,p(k)

) ≤ ∑
n2/3/λn<k≤λnn2/3

Qn,p(k) = O(e−cλn/n1/3) .

If k is “large,” we proceed as in the proof of (6.20) to write∑
k>λnn2/3

(
Qn,p(k)− Pn,p(k)

)
=
(
1−O(exp[−Θ(λn3/5)])

) ∑
k>λnn2/3

Qn,p(k)

= ϑ(ε)(1 + oλn(1)) by (5.24)

= 2λnn−1/3(1 + oλn(1) +O(ε)) .

Putting these three ranges of k together, we find

P

(
x �

Fn,p

x
)
=
∑
k

(
Qn,p(k)− Pn,p(k)

)
=

 ∑
k≤n2/3/λn

+
∑

n2/3/λn<k≤λnn2/3

+
∑

k>λnn2/3

(Qn,p(k)− Pn,p(k)
)

=
1 + oε,λn(1)
4n1/3λn2

+O

(
e−cλn

n1/3

)
+ ϑ(ε)(1 + oλn(1))

= ϑ(ε)(1 + oλn(1))

= 2λnn−1/3(1 + oλn(1) +O(ε)) .

which yields (3.5) and completes the proof of Theorem 3.1. →
�

8. Variance of the Size of the Spine

In this section we shall prove the bounds (3.6) and (3.7) on the variance of the size of
the spine given in Theorem 3.2. First, we note that the lower bound is immediate from the
Harris-Kleitman correlation inequality (see [Har60], [Kle66]), which was later generalized
to the FKG inequality [FKG71]. We use x�

n
x as a shorthand for x �

Fn,p

x, and if M is a

set of literals, x�
M

x means that there is a path from x to x using only literals in M .

Lemma 8.1. For strictly distinct literals x, y, we have

P
(
x�

n
x, y �

n
y
)− P

(
x�

n
x
)2 ≤

∑
k≥1

Pn,p(k)
(
P
(
x�

n
x
)− n− k

n− 1
P
(
x �

n−k
x
))

.
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Proof. Let P̂n,p(k; y) denote the event that L+(y) is strictly distinct, and |L+(y)| = k. So
in particular P

(
P̂n,p(k; y)

)
= Pn,p(k). Using the resolution of the identity

1 = Iy�y +
∞∑
k=1

IP̂n,p(k;y),

where IA denotes the indicator function of the event A, we can decompose P
(
x �

n
x
)
in

two different ways to obtain

P
(
x�

n
x, y �

n
y
)
+
∑
k

P
(
x�

n
x, P̂n,p(k; y)

)
= P

(
x�

n
x
)(

P
(
y �

n
y
)
+
∑
k

P
(
P̂n,p(k; y)

))
,

so that

P
(
x�

n
x, y �

n
y
)− P

(
x�

n
x
)
P
(
y �

n
y
)
=
∑
k

(
P
(
x�

n
x
)− P

(
x�

n
x|P̂n,p(k; y)

))
Pn,p(k).

(8.1)

To estimate the probability on the right, consider the event P̂n,p(k; y). With probability
(k − 1)/(n − 1) either x or x is in L+(y). If x ∈ L+(y) then x �� x. If x ∈ L+(y), the
situation is more complicated, so we shall bound the probability below by 0. If L+(y)
contains neither x nor x, then any path from x to x avoids literals in L+(y). In this case
we may as well explore the out-graph L+(x) restricted to avoid the variables in L+(y);
with probability P

(
x �

n−k
x
)
the restricted out-graph will contain x. Thus we conclude

P
(
x�

n
x|P̂n,p(k; y)

)
=

n− k

n− 1
P
(
x �

n−k
x
)
+

1
2
k − 1
n− 1

P
(
x�

n
x|x ∈ L+(y), P̂n,p(k; y)

)
≥ n− k

n− 1
P
(
x �

n−k
x
)
.

Substituting this into (8.1) proves the lemma. �
Next we relate the probabilities of the events x �

n−k
x and x�

n
x.

Lemma 8.2. If λn = εn1/3 is large enough, and ε = λnn
−1/3 is small enough, then

P
(
x �

n+1
x
)− P

(
x�

n
x
) ≤


1 + oε,λn(1)
2n|λn|3 if λn < 0

2 + oε,λn(1)
n

if λn > 0 .

Proof. Suppose x ��
n
x. Let X denote L+

n,p(x), which then must be strictly distinct. We

shall consider four cases depending on whether or not X → xn+1 and whether or not
X → xn+1:
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Case 1. X �→ xn+1 and X �→ xn+1. Then x ��
n+1

x.

Case 2. X → xn+1 and X → xn+1. Then x �
n+1

x.

Case 3. X → xn+1 and X �→ xn+1. It is clear that if xn+1 �
[n+1]\[X]

xn+1, where [X] denotes

X ∪X, then x �
n+1

x. Suppose that conversely x �
n+1

x. Since x ��
n
x, either xn+1 or xn+1

is in the path from x to x in [n + 1]. The first such occurence must be xn+1, so we have
xn+1 �

n+1
x, and its contrapositive x �

n+1
xn+1. Since x �� xn+1 within [n] ∪ {xn+1}, it

must be that xn+1 occurs in the path from x to xn+1. In particular xn+1 �
n+1

xn+1. We

may assume without loss of generality that xn+1 and xn+1 occur only at the endpoints
of this path. If a literal in X occurred in the path from xn+1 to xn+1, consider the last
such one. The next literal cannot be xn+1 by assumption, nor can it be xn+1, since this
occurs only at the beginning of the path. So the next literal would have to lie inside X, a
contradiction. If a literal in X occured in the path from xn+1 to xn+1, we could take the
contrapositive and similarly derive a contradiction. Thus xn+1 � xn+1 using only literals
in [n+ 1] \ [X], i.e. xn+1 �

[n+1]\[X]
xn+1. Thus conditional upon L+

n (x) = X, we can write

X → xn+1, X �→ xn+1, x �
n+1

x iff X → xn+1, X �→ xn+1, xn+1 �
[n+1]\[X]

xn+1

P[X → xn+1, X �→ xn+1, x �
n+1

x |L+
n (x) = X] =

P[X → xn+1]P[X �→ xn+1]P[xn+1 �
[n+1]\[X]

xn+1]

since the events on the right and the event L+
n (x) = X are determined by pairwise disjoint

sets of variables.
Case 4. X �→ xn+1 and X → xn+1. By symmetry, cases 3 and 4 have the same probability.

Putting these four cases together we see

P
(
x �

n+1
x|L+

n,p(x) = X
)
=
[
1− (1− p)|X|]2 + 2

[
1− (1− p)|X|](1− p)|X|

P[x �
n+1−|X|

x]

≤p2|X|2 + 2p|X|P[x �
n+1−|X|

x] . (8.2)

As a consequence,

P
(
x �

n+1
x
)− P

(
x�

n
x
)
= P

(
x �

n+1
x \ x�

n
x
)

=
∑
X⊂[n]

X strictly distinct

P
(
L+
n,p(x) = X

)
P
(
x �

n+1
x|L+

n,p(x) = X
)

≤
∑
k

Pn,p(k)(p2k2 + 2pkP[x �
n+1−k

x])

≤ p2
∑
k

Pn,p(k)k2 + 2pP[x�
n
x]
∑
k

Pn,p(k)k. (8.3)
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Hence by (6.15), we have

P
(
x �

n+1
x
)− P

(
x�

n
x
) ≤ p2

1 + o(1)
2pn

1
|ε|3 + 2pP[x�

n
x]
1 + o(1)
2pn

1
|ε|

=
1 + o(1)
4n2|ε|3 +

1 + o(1)
n|ε| ×


1 + o(1)
4nε2

if λn < 0 by (3.4)

(2 + o(1))ε if λn > 0 by (3.5)

= [1 + o(1)]×
{
1/[2n2|ε|3] if λn < 0,
2/n if λn > 0.

= [1 + o(1)]×
{
1/[2n|λn|3] if λn < 0,
2/n if λn > 0.

In the above, all of the o(1) terms are oε,λn(1). �

Corollary 8.3. Provided k ≤ n2/3/|λn|, we have

Pr
(
x�

n
x
)− P

(
x �

n−k
x
) ≤


(1 + oε,λn(1))

k

2n|λn|3 if λn < 0

(1 + oε,λn(1))
2k
n

if λn > 0 .

Proof. We seek

P
(
x�

n
x
)− P

(
x �

n−k
x
)
=

n−1∑
m=n−k

[
P
(
x �

m+1
x
)− P

(
x�

m
x
)]

,

and need only show that each summand is well-approximated by P
(
x �

n+1
x
)−P

(
x�

n
x
)
.

Define λn′ by

p ≡ 1 + λnn
−1/3

2n
=

1 + λn
′m−1/3

2m
,

so that
m

n

[
1 + λnn

−1/3]− 1 = λn
′m−1/3

and thus

m− n

n
m1/3 + λn

(m
n

)4/3
= λn

′ .

Since m = (1 + oε,λn(1))n, and |n−m| ≤ k � n2/3, it follows that λn′ = (1 + oε,λn(1))λn.
Thus when we apply Lemma 8.2 with m and λn

′ rather than n and λn, we obtain an
answer that differs by a factor of 1 + oε,λn(1), as desired. �
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Proof of Theorem 3.2. We can now complete our estimate of the covariances. For strictly
distinct literals x and y we have

Cov(x�
n
x, y �

n
y) = P

(
x�

n
x, y �

n
y
)− P

(
x�

n
x
)
P
(
y �

n
y
)

≤
∑
k≥1

Pn,p(k)
(
P
(
x�

n
x
)− n− k

n− 1
P
(
x �

n−k
x
))

by Lemma 8.1

=
∑
k≥1

Pn,p(k)
k − 1
n− 1

P
(
x�

n
x
)
+
∑
k≥1

Pn,p(k)
n− k

n− 1

(
P
(
x�

n
x
)− P

(
x �

n−k
x
))

≤ P
(
x�

n
x
) 1
n

∑
k≥1

Pn,p(k)k +
∑
k≥1

Pn,p(k)
(
P
(
x�

n
x
)− P

(
x �

n−k
x
))

.

As a consequence,

Cov(x�
n
x, y �

n
y) ≤

≤ P
(
x�

n
x
) 1
n

∑
k≥1

Pn,p(k)k +
∑
k≥1

Pn,p(k)
(
P
(
x�

n
x
)− P

(
x �

n−k
x
))

= P
(
x�

n
x
)1 + o(1)

nε
+

 ∑
k≤n2/3/|λn|

+
∑

k>n2/3/|λn|

Pn,p(k)
(
P
(
x�

n
x
)− P

(
x �

n−k
x
))

≤ P
(
x�

n
x
)1 + o(1)

nε
+

∑
k≤n2/3/|λn|

Pn,p(k)


(1 + o(1))k
2n|λn|3

(2 + o(1))k
n

+
∑

k>n2/3/|λn|
Pn,p(k)P

(
x�

n
x
)

=


1 + o(1)
4ε2n

(2 + o(1))ε

1 + o(1)
nε

+


1 + o(1)
2n|λn|3ε
2 + o(1)

nε

+


exp[−Θ(λn)]n−1/3 × 1 + o(1)

4ε2n
exp[−Θ(λn3/5)]n−1/3 × (2 + o(1))ε


=


1 + o(1)
2n|λn|3ε
2 + o(1)

nε

 =


1 + o(1)
2n2/3λn4

2 + o(1)
n2/3λn


where the upper entry applies to the subcritical regime, and the lower entry applies to the
supercritical regime. In the above, the o(1) terms are all oε,λn(1). This gives the variance
bound above threshold. The bound on the second moment below threshold follows by
combining the above variance bound with Theorem 3.1. �
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9. The Existence of Hourglasses

In this section we prove Theorem 4.3, which was central to the proof of the upper
bounds in Theorem 3.4.

Proof of Theorem 4.3 (i) on the existence of many hourglasses in the subcritical regime.
Let t be a large positive number, but still small compared to n1/3, and let p = (1 −

tn−1/3)/2n. We shall construct a process for growing hourglasses one by one. However,
as we deplete variables, the distribution changes, so that the hourglasses so constructed
are not identically distributed. We therefore use the following two variations of this naive
procedure: In the first process, instead of drawing from n variables, we draw only from
n′ = n − tn2/3 variables, so that we have a “buffer” of tn2/3, and replenish the variables
as necessary. However, even this process can lead to trouble in the unlikely event that
we have a very long run which uses up our entire reserve of variables. So we construct
another process which aborts the growth of an hourglass when it would use up too many
variables.

To be explicit, consider the trimmed out-graphs and trimmed in-graphs of various
literals, where the in- and out-graphs are restricted to sets of n′ = n − tn2/3 variables.
Recall from Lemma 2.6 that the trimmed out-graph D̃+

Fn′,p
(x) of a literal x is, when

regarded as an undirected graph, identically distributed to the connected component
containing x in Gn′,2p−p2 . We shall follow the convention that no matter how many
trimmed out-graphs or trimmed in-graphs we have explored in the past, when exploring
another in-graph or out-graph, we shall always restrict our attention to variables that are
in none of the in-graphs or out-graphs found so far (except, possibly, for the root), and
we shall add variables to ensure that there are n′ = n− tn2/3 variables for the tree to grow
within. (Recall that for the upper bounds we assume that we have a variable for each
natural number.) In this way the sizes and structures of all the trees will be independent
and identically distributed. As we alluded to above, later we shall consider a variation on
this process.

Since there are somewhat fewer than n variables in which we explore the out-graphs
and in-graphs, this decreases the average out-degree of each literal, and has the effect of
shifting the formula further into the subcritical regime. Specifically, if we define t′ by

1− tn−1/3

2n
= p =

1− t′(n′)−1/3

2n′ ,

we see that t′ = (2 + o(1))t.
Pick a literal u, and look at its trimmed out-graph T within n′ unused variables. Recall

the definition of Rn,p(k), the probability that Cn,2p−p2(u) is a tree of size k. By using
Lemma 6.1 for Rn,p(k), we see that, for some c, there is a (c + o(1))(t/n1/3) chance that
T is a tree of size between 2n2/3/t2 and 4n2/3/t2. Here, as explained in the first sentence
of the proof, we are assuming 1 � t � n1/3, so by Remark 6.2, in the remainder of this
proof all o(1) terms without subscripts are of the form ot/n1/3,t(1). By comparing with
random graphs, if T is a tree, then it is uniformly distributed amongst the spanning trees
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of size |T |. Using the structural properties of random spanning trees (see e.g. [Ald90]), if
we pick a random vertex w �= u in T , with probability at least (1 − o|T |(1))e−1 the path
connecting u to w has length at least

√
2|T |. Let v be the middle vertex in the path from

u to w (in case of tie, we choose the vertex closer to w). With probability at least 1/2, at
least half of the remaining vertices of the tree will be connected to v via the path from v
to w — these vertices will be in the out-graph of v. In the event that the path from u to
v has length at least (|T |/2)1/2 ≥ n1/3/t, and v has at least 1

2 |T | ≥ n2/3/t2 descendents in
the trimmed out-graph of u, say that vertex v is “promising,” and that the path from u
to v is the tail. We thus have shown

P

[
a random vertex v in D̃+

Fn′,p
(u) is promising

]
= (1 + o(1))

c

2e
t

n1/3
.

In the event that vertex v is promising, we proceed to explore the trimmed in-graphs
of the first n1/3/t vertices on v’s tail. Again by Lemma 6.1, each individual in-graph will
have size at least n2/3/t2 with probability at least (c+ o(1))(t/n1/3). The probability that
none of them is so large is at most (1 + o(1))e−c. If any of them is so large, we shall call
v a “central variable,” and v together with its explored out-graph and in-graph both of
size at least n2/3/t2 an “hourglass” (see Definition 4.2). Each time that we pick a literal
and look for an hourglass as described above, we find one with probability at least

(1 + o(1))
c(1− e−c)

2e
t

n1/3
.

Next let us compute how many variables we expect to use up while exploring the
trimmed out-graph and trimmed in-graphs. At this point we recall from Lemma 6.3 and
equation (6.6) that if G is either the trimmed in-graph or trimmed out-graph of a vertex,

E[|G|] = (1 + o(1))
(n′)1/3

t′
= (1 + o(1))

n1/3

2t
.

We always explore one out-graph, and with probability (1+o(1))[c/(2e)]t/n1/3 we explore
 n1/3/t! in-graphs. Thus the expected number of variables used up is

(1 + o(1))
[
1 +

c

2e

] n1/3
2t

.

If we look for an hourglass for
4e

c(1− e−c)
n1/3/t

times, then the probability that we fail to find an hourglass is (1 + o(1))e−2, and the
expected number of variables that we use up is

(1 + o(1))
[
2e
c

+ 1
]

1
1− e−c

n2/3

t2
.

The probability that we use up more than 3(1 + o(1)) times the expected number of
variables is at most 1/3+o(1). Therefore, with probability at least 1− e−2−1/3−o(1) ≥



SCALING WINDOW OF THE 2-SAT TRANSITION, September 5, 1999 43

1/2 (for large enough t and small enough tn−1/3) we both find an hourglass, and do not
use up more than bn2/3/t2 variables, where b = 3[1 + 2e/c]/(1− e−c).

Now consider the following modification of the above procedure: as above we use the
local search procedure in Section 2 to explore the trimmed out-graphs and trimmed in-
graphs, hoping to find an hourglass, but as soon as we use up bn2/3/t2 variables, we abort
and stop looking for the hourglass. Then we can repeat this procedure t3/b times, be
guaranteed to use no variables other than the first n of them, and find a number of disjoint
hourglasses that stochastically dominates the binomial distribution Binomial(t3/b, 1/2).
By Chernoff’s inequality [Che52] (see also [McD89]), the probability that we find fewer
than half as many hourglasses as we expect will be no larger than exp[−t3/(8b)]. ←

�
Proof of Theorem 4.3 (ii) on the existence of a giant hourglass in the supercritical regime.
Let t be a large positive number, but still small compared to n1/3. When p = (1 −
tn−1/3)/2n, as we have just seen, there will be Θ(t3) hourglasses with in- and out-portion of
size at least n2/3/t2, except with probability exp(−Θ(t3)). We now increase p by a suitably
large constant times tn−4/3, say Mtn−4/3. For any two hourglasses, the probability of an
edge from the out-portion of the first hourglass to the in-portion of the second hourglass is
therefore at least M/t3. Then the central variable of the first hourglass implies the central
variable of the second hourglass. Conceptually we can think of the directed graph whose
nodes are the hourglasses, and place a directed edge from one node to another whenever
the hourglasses connect up like this. The edges of this graph occur independently of one
another, and the average out-degree of the graph is Θ(Mt3/t3) = Θ(M). By choosing M
large enough, we can make the average out-degree to be any convenient constant that we
like. In particular, if the average out-degree is a constant larger than 1, then we might
expect the connections to percolate, so that there is some node v that can reach a constant
fraction of the other nodes through edges of this graph, and is reachable by a constant
fraction of the other nodes. Provided this happens, each literal in the out-portions of
the nodes reachable by v is implied by the central variable of node v, and each literal in
the in-portions of the nodes that can reach v will imply the central variable of v, thereby
giving the desired giant hourglass with in-portion and out-portion each of size Θ(tn2/3).

It remains to be shown (in Lemma 9.1) that we get the requisite percolation except
with probability that is exponentially small in the number of nodes of the graph. →

�
The following lemma is related to one proved by Karp in [Kar90] which showed that

with high probability there is a giant component of size Θ(N) in supercritical directed
percolation. For our purposes “with high probability” is not sufficient; we need the
exceptional events to be exponentially rare.

Lemma 9.1. In a random directed graph on N vertices, in which each directed edge occurs
independently with probability 6/N , then except with probability that is exponentially small
in Θ(N), there is a vertex v with out-graph of size Θ(N) and in-graph of size Θ(N).

Proof. For convenience, let N ′ =  N/3!, so that there are at least 3N ′ − 2 vertices, and
the probability of each directed edge is at least 2/N ′. (We can throw out some of the
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edges to make the probability exactly 2/N ′.) To search for a node v with a large in-graph
and out-graph, we consider candidate vertices one at a time, and explore the in-graph
and out-graph of the candidate, restricting the explorations of the in-graph and out-graph
to disjoint sets of N ′ − 1 vertices, none of which have yet been explored in the course of
examining a previous failed candidate. In this way we ensure that the sizes of the in-graph
and out-graph are independent, and both distributed in the same manner as the size of
the component containing a particular vertex in the random graph GN ′,2/N ′ . We do the
explorations in a parallel interleaved fashion, so that if either the in-graph or out-graph is
found to be too small, then exploration of the other is immediately halted. We shall show
that for large enough N ′, except with probability exponentially small in N ′, after looking
at N ′/50 candidates, the failed candidates have not wasted more than N ′ variables, and
we find a successful candidate with in-graph and out-graph each of size at least N ′/10.

We first claim that for any real γ and integers k and N ′ such that 0 ≤ γ ≤ N ′ and
1 ≤ k ≤ N ′, there is an s between 1/2 and 1 so that

P
(|C(x)| = k in GN ′,γ/N ′

)
= kk−2

(
N ′ − 1
k − 1

)( γ

N ′

)k−1 (
1− γ

N ′

)kN ′−sk2

. (9.1)

Indeed, the probability that the component C(x) containing the vertex x has size k can
be bounded below by the probability that C(x) is a tree of size k. To bound P

(|C(x)| = k
)

from above, we note that the connectedness of C(x) implies that C(x) contains a tree of
size k. Summing over all possibilities for this spanning tree, we therefore get∑

trees T � x
|T |=k

P
(
T = C(x)

) ≤ P
(|C(x)| = k

) ≤ ∑
trees T � x

|T |=k

P
(
T ⊆ C(x), |T | = |C(x)|).

This give a lower bound of

kk−2
(
N ′ − 1
k − 1

)( γ

N ′

)k−1 (
1− γ

N ′

)k(N ′−k)+((k
2)−(k−1))

and an upper bound of

kk−2
(
N ′ − 1
k − 1

)( γ

N ′

)k−1 (
1− γ

N ′

)k(N ′−k)
,

which establishes the claim (9.1).
Next define X by

X =

{
|C(x)| if |C(x)| < N ′/10
0 if |C(x)| ≥ N ′/10

.
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Using the bound (9.1) on P
(|C(x)| = k

)
we see that

P
(|C(x)| = k

) ≤ kk−2
(
N ′ − 1
k − 1

)( γ

N ′

)k−1 (
1− γ

N ′

)kN ′−k2

≤ kk−1

k!
γk−1e−kγ+γk2/N ′

. (9.2)

For k ≤ N ′/10, we get

P
(|C(x)| = k

) ≤ kk−1e−k

k!
1
γ
ek(1−γ+log γ+γ/10).

Assuming γ = 2, this gives

P
(|C(x)| = k

) ≤ kk−1e−k

k!
1
2
e−k/10 (9.3)

so that

N ′/10∑
k=1

P
(|C(x)| = k

)
ek/10 ≤

N ′/10∑
k=1

kk−1e−k

k!
1
2
≤ 1

2

∞∑
k=1

kk−1e−k

k!
=

1
2
.

Consequently

E[eX/10] ≤ 1
2
+ P
(|C(x)| ≥ N ′/10

)× e0/10 ≤ 3/2.

Let Yi be the number of variables lost on the ith candidate if it is a failure; Yi = 0 if
the ith candidate is successful:

Yi =


0 ith candidate successful
2k − 1 ith candidate failed because in-graph had size k < N ′/10
2k ith candidate failed because out-graph had size k < N ′/10.

Thus P(Y = j) ≤ P
(
X =  j/2!), and hence

E[eYi/20] =
∑
j

P(Yi = j)ej/20 ≤ 2
∑
j even

P(X = j/2)ej/20 = 2E[eX/10] ≤ 3.

Letting

S =
βN ′∑
i=1

Yi
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be the total number of variables lost on failed candidates, we see

P(S > N ′) = P
(
eS/20 > eN

′/20)
≤ E[eS/20]

eN ′/20

=
E[eY/20]βN ′

eN ′/20

≤ 3βN ′

eN ′/20 ,

which is exponentially small in N ′ for β = 1/50.
Next consider P

(|C(x)| ≥ N ′/10
)
. By (9.2) and (9.3) we have

P

(
|C(x)| ≥ N ′

10

)
= 1−

10 logN ′∑
k=1

P
(|C(x)| = k

)− N ′/10∑
k=10 logN ′

P
(|C(x)| = k

)
≥ 1− exp[200 log2N ′/N ′]

10 logN ′∑
k=1

kk−1

k!
γk−1e−kγ −

N ′/10∑
k=10 logN ′

kk−1e−k

k!
1
2
e−k/10

> 1− exp[200 log2N ′/N ′]
∞∑
k=1

kk−1

k!
γk−1e−kγ − 1

2N ′

= 1− exp[200 log2N ′/N ′](1− ϑ(γ − 1))− 1
2N ′

= ϑ(γ − 1)−O(log2N ′/N ′).

Thus with probability (1− o(1))ϑ(γ−1)2 > 0.63 (for large enough N ′), both the in-graph
and out-graph have size at least N ′/10.

Therefore, if we try N ′/50 candidates, the probability that we lose too many variables
on failed candidates, or have enough variables but still fail to find a vertex with in-graph
and out-graph of size at least N ′/10, is bounded by

3N ′/50

eN ′/20 + 0.37N
′/50,

which establishes the lemma. �

Appendix A. Relation between Fn,p and Fn,m

While the literature focuses on Fn,m, where a given number of clauses are specified, most
of our theorems and proofs are done for Fn,p, where each clause has some independent
chance of appearing in the formula, and the total number of clauses is random. In this
appendix, we discuss the relation between the models Fn,m and Fn,p. With respect to
monotone properties, these two models are practically interchangeable, provided m is
about 4

(
n
2

)
p, the expected number of clauses in Fn,p. Write N for the number of 2-clauses
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on x1, . . . , xn, so that N = 2n(n − 1), and let MN,p be a binomial random variable with
parameters N and p. Then we have

P(SAT(Fn,p)) =
N∑

m=0

P(MN,p = m)P(SAT(Fn,m)) ,

E(S(Fn,p)) =
N∑

m=0

P(MN,p = m)E(S(Fn,m)) ,

and

E(S2(Fn,p)) =
N∑

m=0

P(MN,p = m)E(S2(Fn,m)).

Since P(SAT(Fn,m)) is a monotone decreasing function of m, for every 0 < m < N we
have

P(SAT(Fn,m))− P(MN,p > m) ≤ P(SAT(Fn,p)) ≤ P(SAT(Fn,m)) + P(MN,p < m).

Similarly, we have

P(UNSAT(Fn,m))− P(MN,p < m)
≤ P(UNSAT(Fn,p))

≤ P(UNSAT(Fn,m)) + P(MN,p >m) ,

E(S(Fn,m))− 2nP(MN,p < m) ≤ E(S(Fn,p)) ≤ E(S(Fn,m)) + 2nP(MN,p >m) ,

and

E(S2(Fn,m))− 4n2P(MN,p < m) ≤ E(S2(Fn,p)) ≤ E(S2(Fn,m)) + 4n2P(MN,p >m) .

In bounding the probability in the tail of the binomial distribution, we shall make use
of the following Chernoff type inequality (see e.g. [McD89]):

P(|MN,p − pN | ≥ ρpN) ≤ e−ρ2pN/3, (A.1)

provided 0 < p ≤ 1/2.
To bound the probability of unsatisfiability in the subcritical regime, the expected size

of the spine, and the second moment of the size of the spine, we set

p =
1 + λn−1/3

2n
and

m = (1 + λ′n−1/3)n,
with

λ′ = λ± n−1/12.
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Then the probability that MN,p is too large or too small (compared with m) is

exp(−Θ(n1/6)) = o(1/n2).

From this we see that our bounds for Fn,p imply the desired bounds for Fn,m in the
subcritical regime.

To convert the bounds on the probability of satisfiability on the right from Fn,p to
Fn,m, because this probability is so small, in order for it to dwarf P(MN,p < m) and
P(MN,p > m), we need to have a larger gap between λ and λ′. We set

λ′ = λ± λ6/5

n1/15
.

Then the probability of a large deviation is at most

exp[−Θ(λ12/5n1/5)] = o
(
exp[−Θ(λ3)]

)
,

if λ is small enough compared to n1/3. Furthermore, λ′/λ is arbitrarily close to 1 provided
λ is sufficiently small compared to n1/3. Thus our bounds for satisfiability of Fn,p in the
supercritical regime carry over to corresponding bounds for Fn,m.

Appendix B. Proof of Lemma 5.5

In this appendix, we prove Lemma 5.5. We start with the proof of statement (i). To this
end, we again use that the cluster size distribution in Gn,p̃, p̃ = 2p− p2, is stochastically
dominated by a Poisson birth process with parameter

κ̂ = n log 1/(1− p̃) = 2n log 1/(1− p) = 2np(1 +O(1/n)). (B.1)

Writing this parameter as κ̂ = 1 + ε̂, and observing that the probability that a Poisson
birth tree with parameter κ̂ has size k is (1/κ̂)(kk−1/k!)(κ̂e−κ̂)k, we therefore get∑

k≥n2/3/λn

Qn,p(k) ≤ ϑ(ε̂) +
1
κ̂

∑
k≥n2/3/λn

kk−1

k!
(κ̂e−κ̂)k

≤ ϑ(ε̂) +
1
κ̂

∑
k≥n2/3/λn

1√
2πk3

(κ̂e1−κ̂)k (B.2)

where

ϑ(ε̂) = 1− 1
κ̂

∞∑
k=0

kk−1

k!
(κ̂e−κ̂)k (B.3)

is the survival probability in a Poisson birth process with parameter κ̂. If ε ≤ ε0, then

κ̂e1−κ̂ ≤ e−cε2 (B.4)

for some constant c = c(ε0), so that∑
k≥n2/3/λn

Qn,p(k) ≤ ϑ(ε̂) +O
( 1√

λnn2/3
e−cλn

)
≤ ϑ(ε̂)(1 +O(e−cλn)) (B.5)
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where we have used that ϑ(ε̂) = Θ(ε̂) = Θ(λnn−1/3) in the last step. Since ε̂ = ε +
O(n−1) = ε(1 +O(λ−3

n )), we conclude that∑
k≥n2/3/λn

Qn,p(k) ≤ ϑ(ε)(1 +O(λ−3
n )) (B.6)

= Θ(λnn−1/3) . (B.7)

To prove a lower bound, we show that∑
k<n2/3/λn

Qn,p(k) ≤ 1− ϑ(ε)(1 +O(λ−2
n )). (B.8)

Together with (ii), which will be proved below, this gives the desired bound. To prove
(B.8), we will first show that for k ≤ n2/3/λn,

Qn,p(k) ≤ 1
1 + ε′

kk−1

k!
((1 + ε′)e−(1+ε′))k

[
1 +O

(k3/2
n

)]
, (B.9)

where ε′ is defined as the positive solution of

(1 + ε′)e−ε′
= (1 + ε)e−εeε

2λ−2/2. (B.10)

Indeed, using (5.13), we bound

Qn,p(k) ≤ 1
n

(
n

k

)
(2pk)k−1e−p(2nk−k2−3k+2)S2p−p2(k)

=
(2pnk)k−1

k!

[ k−1∏
i=0

(
1− i

n

)]
e−p(2nk−k2−3k+2)S2p−p2(k)

≤ (2pnk)k−1

k!
e−k(k−1)/2ne−p(2nk−k2−3k+2)S2p−p2(k). (B.11)

For k ≤ n2/3/λn, we have S2p−p2(k) = 1 + O(k3/2/n). Combined with the observation
that pk2 − k2/2n = εk2/2n ≤ kε2/2λ2 we therefore get

Qn,p(k) ≤ (2pnk)k−1

k!
e−(2pn−ε2λ−2/2)k

[
1 +O

(k3/2
n

)]
=

1
1 + ε

kk−1

k!

(
(1 + ε)e−(1+ε−ε2λ−2/2)

)k [
1 +O

(k3/2
n

)]
. (B.12)

Using the definition (B.10) of ε′ and observing that ε′ ≤ ε, we get (B.9).
As a consequence of (B.9), we now have∑
k<n2/3/λn

Qn,p(k) ≤
∑

k<n2/3/λn

1
1 + ε′

kk−1

k!
((1 + ε′)e−(1+ε′))k

[
1 +O

(k3/2
n

)]
, (B.13)

≤ 1− ϑ(ε′) +O
( ∑

k<n2/3/λn

k3/2

n

1
1 + ε′

kk−1

k!
((1 + ε′)e−(1+ε′))k

)
. (B.14)
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Observing that ε ≤ ε0 implies ε′ ≤ ε0, which implies a bound of the form (B.4) for
κ′ = 1 + ε′, we now bound the sum over k as follows:∑

k<n2/3/λn

k3/2

n

1
κ′
kk−1

k!
(κ′e−κ′

)k ≤
∑

k<n2/3/λn

k3/2

n

1√
2πk3

(κ′e1−κ′
)k

= O
( 1
n

) ∑
k<n2/3/λn

e−cε2k = O
( 1
n

) 1
1− e−cε2

= O
( 1
nε2

)
= ϑ(ε)O(λ−3

n ). (B.15)

Together with the observation that ε′ = ε(1 − Θ(λ−2
n )) for ε small enough, the bounds

(B.14) and (B.15) imply (B.8).
Next we prove statement (ii). To this end, we use a refinement (due to Alon and

Spencer [AS92]) of the viewpoint employed by Karp [Kar90] and used here in the proof
of Lemma 5.1. Define N0 = n − 1, and for positive t, Nt = Binomial(Nt−1, 1− p̃). Then
let Yt = n− t−Nt, and define T to be the least t such that Yt = 0. This random variable
T has the same distribution as the size of the connected component containing a given
vertex in Gn,p̃ [AS92].

Condition the Nt process to be small enough that Yt is positive whenever t < n2/3/λ
(i.e. T ≥ n2/3/λ). How does this affect the distribution of Nt for larger values of t? We
can think of the Nt’s as being determined by a collection of i.i.d. 0-1 random variables
with probability 1− p̃. Each Nt is monotone increasing in these variables. By FKG, the
above conditioning can only decrease the distribution of Nt (increase the distribution of
Yt) for any given value of t, and in particular makes it less likely that Yt ≤ 0 for some t
in a given range. Thus we have

P

(
n2/3/λ ≤ T ≤ n2/3λ

)
= P

(
n2/3/λ ≤ T

)
P

(
∃t : Yt ≤ 0, n2/3/λ ≤ t ≤ λn2/3|n2/3/λ ≤ T

)
= O

( λ

n1/3

)
P

(
∃t : Yt ≤ 0, n2/3/λ ≤ t ≤ λn2/3

)
by (B.7)

= O
( λ

n1/3

)[
P

(
Yn2/3/λ≤0

)
+ P

(
∃t : Yt=0, n2/3/λ≤ t ≤λn2/3

)]
,

(B.16)

where in the last line we used Yt+1 ≥ Yt − 1.
Let Xt denote the event that Yt = 0. Let Zt denote the event that Yt = 0 and Ys > 0

for n2/3/λ ≤ s < t. Let
S =

∑
n2/3/λ≤t≤λn2/3+n2/3/λ2

IXt ,

where as before IA denotes the indicator of the event A. We have

S ≥
∑

n2/3/λ≤t≤λn2/3

IZt

∑
0≤∆≤n2/3/λ2

IXt+∆ ,
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so that

E[S] ≥
∑

n2/3/λ≤t≤λn2/3

P[Zt]E

 ∑
0≤∆≤n2/3/λ2

IXt+∆ |Zt


=

∑
n2/3/λ≤t≤λn2/3

P[Zt]
∑

0≤∆≤n2/3/λ2

P
(
Yt+∆ = 0|Yt = 0

)
(B.17)

≥
∑

n2/3/λ≤t≤λn2/3

P[Zt] min
t

∑
0≤∆≤n2/3/λ2

P
(
Yt+∆ = 0|Yt = 0

)
≥ P[∃t : Yt = 0]min

t

∑
0≤∆≤n2/3/λ2

P
(
Yt+∆ = 0|Yt = 0

)
, (B.18)

where in (B.17) we used the fact that the Yt’s are Markovian, and in the last line the
range of t is given by n2/3/λ ≤ t ≤ λn2/3.

Next we estimate P[Yt+∆ = 0|Yt = 0] and P[Yt = 0|Y0 = 1]. Since

Ys+∆ = Ys −∆+Binomial(n− s− Ys, 1− (1− p̃)∆),

we seek
P

(
Binomial(m, r) = E[Binomial(m, r)] + x

)
where m = n− s− Ys, r = 1− (1− p̃)∆, and x = ∆− Ys −mr.

We have m = (1+o(1))n and r = ∆p̃(1+O(∆p̃)) = Θ(∆p̃). Thus E[Binomial(m, r)] =
mr = Θ(∆) and Var[Binomial(m, r)] = Θ(∆). We approximate x by

x = ∆− Ys − (n− s− Ys)(∆p̃+O(∆2p̃2))

= −Ys +∆(1− p̃n+ p̃s+ p̃Ys +O(∆np̃2)).

Now assuming Ys = 0 or 1, and s = O(λn2/3), and writing p̃ as (1 + ε̃)/n, we further
approximate

x = −Ys +∆(−ε̃+O(λn−1/3) +O(1/n) +O(λn−1/3))
= −Ys +∆O(ε)
= ∆O(ε) if Ys = 0.

The normal approximation to the binomial is valid when

x � Var[Binomial(m, r)]2/3;

see Feller [Fel68, Volume I, chapter VII.3]. In particular, if x=O(Var[Binomial(m, r)]1/2) =
O(∆1/2), which happens when ∆ = O(1/ε2) = O(n2/3/λ2), we have

P[Binomial(m, r) = E[Binomial(m, r)] + x] = Θ(Var[Binomial(m, r)]−1/2) = Θ(∆−1/2)
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which implies

P
(
Ys+∆ = 0|Ys = 0

)
= Θ(∆−1/2)

and hence ∑
0≤∆≤n2/3/λ2

P
(
Yt+∆ = 0|Yt = 0

)
= Θ(∆1/2)

∣∣∣n2/3/λ2

0
= Θ(n1/3/λ). (B.19)

Next we estimate E[S]. If s = 0 and t = ∆, we bound x by

x = t− 1− (n− 1)(1− (1− p̃)t) ≤ t− n+ n(1− p̃)t ≤ t− ntp̃+ n

(
t

2

)
p̃2

≤ t− nt(2p− p2) + 2nt(t− 1)p2 ≤ t− nt2p+ 2nt2p2 ≤ −tε+ t2(1 + ε)2/(2n) ≤ −tε/9,
provided t ≤ (λ + 1/λ2)n2/3 ≤ n and ε < 1/3. The deviations x from the mean are too
large for the normal approximation to be valid. In this case one would typically use the
Chernoff bound, but we also need the 1/

√
Var term not found in the standard Chernoff

bound. Thus we note that the following variation of the bound is easily deduced from the
derivation given by Feller of the normal approximation to the binomial distribution.

P[Yt = 0] = O
( 1√

t
e−Θ(x2/t))

= O
( 1√

t
e−Θ(tε2)) recalling |x| ≥ tε/9

= O
( 1√

n2/3/λ
e−Θ(λ)) since t ≥ n2/3/λ

= O
(
n−1/3e−Θ(λ)).

(B.20)

Now summing over t, we get

E[S] =
∑

n2/3/λ≤t≤λn2/3+n2/3/λ2

P[Yt = 0] = O
(
n1/3e−Θ(λ)). (B.21)

Combining the bounds (B.18), (B.19), and (B.21), we see that

P[Yt = 0 for some t such that n2/3/λ ≤ t ≤ λn2/3] = O
(
exp(−Θ(λ))

)
. (B.22)

We also need

P[Yn2/3/λ ≤ 0] ≤ exp(−Θ(λ)), (B.23)

which follows from the straight Chernoff bound. Substituting (B.22) and (B.23) into
(B.16) we obtain

P[n2/3/λ ≤ |C(0)| ≤ λn2/3] = O
(
n−1/3 exp(−Θ(λ))

)
,

as desired.
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