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Abstract

We study two widely used algorithms, Glauber dynamics and the Swendsen-Wang
algorithm, on rectangular subsets of the hypercubic lattice Zd. We prove that un-
der certain circumstances, the mixing time in a box of side length L with periodic
boundary conditions can be exponential in Ld−1. In other words, under these cir-
cumstances, the mixing in these widely used algorithms is not rapid; instead, it is
torpid. The models we study are the independent set model and the q-state Potts
model. For both models, we prove that Glauber dynamics is torpid in the region with
phase coexistence. For the Potts model, we prove that Swendsen-Wang is torpid at
the phase transition point.
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1 Introduction

Monte Carlo Markov chains (MCMC) are used in computer science to design algorithms
for estimating the size of large combinatorially defined structures. In statistical physics,
they are used to study the behavior of idealized models of physical systems in equilibrium.
In the latter case, the models of interest are usually defined on regular, finite-dimensional
structures such as the hypercubic lattice Zd. In both applications, it is necessary to run
the chain, M, until it is close enough to its steady state. Thus it is important to design
rapidly mixing algorithms, i.e. algorithms for which the mixing time, τM, is small.
In this paper, we study two statistical physics models, the q-state Potts model and the

independent set problem. We consider these models on the graphs on which they are most
often studied in physical applications, namely on subsets of Zd. For the Potts model, we
study two types of Monte Carlo Markov chains – Glauber dynamics, and the empirically
more rapid Swendsen-Wang dynamics.
Both the Potts model and the independent set model are characterized by non-negative

parameters, the former by a so-called inverse temperature β, and the latter by a so-called
fugacity λ (see definitions below). Both models are known to undergo phase transitions
from a so-called disordered phase with a unique equilibrium state to an ordered phase with
multiple equilibrium states. Due to the multiple states, the ordered phase is also known as
the region of phase coexistence.
The point of this work is to relate the mixing times of the MCMCs to the phase structures

of the underlying equilibrium models. In particular, we show that Glauber dynamics is slow,
or torpid, for both models in their regions of phase coexistence, while Swendsen-Wang for
the Potts model is torpid at the phase transition point. This latter result has apparently
come as a surprise to some physicists who use the Swendsen-Wang algorithm to simulate
the Potts model, and who have tacitly assumed that it mixes rapidly for all values of the
inverse temperature.
In addition to this “physically surprising” result, our work is new in a number of respects.

While there has recently been a good deal of work in the theoretical CS community on
slowness of Swendsen-Wang dynamics for the Potts model (see citations below), this is
the one of the first works to consider the physically relevant case of the hypercubic lattice
Γd = Zd and finite portions thereof. (In Γd, two lattice points are joined by an edge if they
differ by 1 in one coordinate.) From a technical point of view, the hypercubic lattice is
much more challenging than the complete graph. However, these technical difficulties give
us the opportunity to use some beautiful and non-trivial results. In particular, our work
brings to bear, and to some extent extends, very sophisticated statistical physics expansion
techniques for the problem of controlling the number of cutsets in graphical expansions of
these models. Specifically, we use so-called Pirogov-Sinai theory [22] from the statistical
physics literature, in the form adapted to the Potts model by Borgs, Kotecký and Miracle-
Sole ([5], [6]). We also use the new and powerful combinatoric estimates of Lebowitz and
Mazel [18] for controlling the number of cutsets. Finally, we use the lovely isoperimetric
inequalities of Bollobás and Leader [2].
In this introduction, we will first describe our work on MCMC for the Potts model, and

then for the independent set problem. In both cases, we will state basic versions of the
results, and then discuss generalizations to be derived in a more detailed version of this
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work [3].
The q-state Potts Model (see [27], [28]) on an arbitrary graph G = (V,E), |V | = n is

defined as follows: a coloring σ is a map from V → [q] = {1, 2, . . . , q}. Let D(σ) be the
set of edges with endpoints of a different color and let d(σ) = |D(σ)|. The weight of a
coloring w(σ) is e−βd(σ). We turn this into a probability distribution µ by normalizing
with the partition function Z =

∑
σ w(σ). To study this model empirically, one needs to

be able to generate σ with probability (close to)

µ(σ) =
w(σ)
Z

. (1)

The model is said to be ferromagnetic if β ≥ 0, otherwise it is anti-ferromagnetic. Note
that β = −∞ corresponds to random proper colorings.
The widely used Swendsen-Wang algorithm [25] for the ferromagnetic model uses a

Markov chain with state space [q]V which has steady state µ – see Section 3. Gore and
Jerrum [14] proved that on the complete graph Kn with q ≥ 3, there is a certain value
of β (inverse temperature) such that the mixing time of the algorithm is exponential in n.
Jerrum [16] has coined the phrase torpid mixing to describe this phenomenon. Cooper and
Frieze [8] extended their arguments to show that in the Potts model on the random graph
Gn,p, this phenomenon persists with high probability for p = Ω(n−1/3). Li and Sokal [19]
proved a linear (in the number of sites) lower bound for finite boxes in Zd. (For positive
results on this algorithm see [8], Cooper, Dyer, Frieze and Rue [7], Huber [15], Martinelli
[21].)
Our first result concerns this algorithm and the simpler Glauber dynamics – see Section

3. an Let T = TL,d = (Z/LZ)d be the d-dimensional torus of side L. We view this as
a graph where two points are connected by an edge if they differ by 1 (mod L) in one
component. It has vertex set V = VL,d and edge set E = EL,d. Using the results of Borgs,
Kotecký and Miracle-Solé [6], we prove the following negative result:
identified.

Theorem 1 For d ≥ 2 and sufficiently large q, there exists βc = βc(q, d) such that:
(a) The mixing time τSW of the Swendsen-Wang algorithm on TL,d at βc satisfies

τSW ≥ eK1L/(logL)2

for some absolute constant K1 > 0.
(b) The mixing time τGD of the Glauber dynamics for β ≥ βc satisfies

τGD ≥ eK2L/(logL)2

for some absolute constant K2 > 0.

It turns out that we can strengthen the bounds of Theorem 1 so that the lower bound is
of the form eKLd−1/(logL)2 . In order to do this, we have to refine the geometric analysis of
Section 4 to improve the finite-size scaling bounds of [6]. This requires much more involved
analysis, which will be carried out in detail in [3].
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For an arbitrary graph G = (V,E), an independent set is a set of vertices I ⊂ V such
that no pair of vertices i, j ∈ I is incident to the same edge e ∈ E. Dyer, Frieze and Jerrum
[10] considered the problem of generating a nearly random independent set of a bipartite
graph. They prove that Glauber dynamics exhibits torpid mixing on almost all regular
graphs of degree 6 or more and that the problem is NP-hard for regular graphs of degree
25 or more. In statistical physics, the independent set problem is called the hard-core gas
model. In general there is a parameter λ > 0 called the fugacity and one wants to generate
independent sets I with probability proportional to λ|I| i.e.

µ(I) =
λ|I|∑

J independent λ
|J | . (2)

Our second result concerns this problem. The Glauber dynamics chain is a simple chain on
the independent sets of graph G that selects a random vertex and adds/deletes it to/from
the current independent set with some probability dependent on λ – see Section 3. Dyer
and Greenhill [11], Luby and Vigoda [20] have proved that this chain is rapidly mixing for
λ < 2

∆−2 , where ∆ denotes the maximum degree of G.
We also prove bounds on more general Markov chains. To define this class, let I, I ′ be

independent sets, and let D(I, I ′) = |I \ I ′| + |I ′ \ I|. For an ergodic Markov chain ML

on TL,d, let DML
be the maximum of D(I, I ′) over all I and I ′ for which the transition

probability is non-zero. We say that ML is local if DML
is bounded uniformly in L, and

we say that it is ρ-quasi-local if DML
≤ ρLd for some ρ < 1 which is independent of L.

Theorem 2 For d ≥ 2 and λ sufficiently large, the mixing time τGD of the Glauber chain
on TL,d satisfies

τGD ≥ eK3Ld−1/(logL)2

for some constant K3 > 0 depending only on the dimension d. More generally, let τL be the
mixing time for any ergodic Markov chain on TL,d which is ρ-quasi-local for some ρ < 1.
Then

τL ≥ eK4Ld−1/(logL)2

for some constant K4 depending only on d and ρ.

As stated above, Theorem 2 is also not the optimal theorem we can prove. Combining
the methods developed in Sections 4 and 5 of this paper with those of [26], we can improve
the bound eK3Ld−1/(logL)2 on the mixing time of the Glauber dynamics for the independent
set problem to a bound of the form eK3Ld−1 , see [3] for details. However, at this time,
we can strengthen the bound only for Glauber dynamics, not for more general quasi-local
Markov chains.
Finally, we want to point out that our techniques for proving slow mixing are quite robust,

and can be applied to many models exhibiting the phenomenon of phase coexistence. All
that we require is that the equilibrium model have energy barriers between different phases
that is high enough to apply the techniques of [4], and that the dynamics is not sufficiently
global to permit jumps over these barriers. (An example of a Markov chain which “jumps
over” energy barriers is the Swendsen-Wang algorithm at temperatures below the transition
temperature.) See [3] for the description of permissible algorithms, and a proof of slow
mixing for these more general models.
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2 Mixing Time

Let M be an ergodic Markov chain on a finite state space Ω, with transition probabilities
P (x, y), x, y ∈ Ω. Let π denote the stationary distribution of M.
Let x ∈ Ω be an arbitrary fixed state, and denote by Pt,x(ω) the probability that the

system is in state ω at time t given that x is the initial state.
The variation distance ∆(π1, π2) between two distributions π1, π2 on Ω is defined by

∆(π1, π2) = max
S⊆Ω

|π1(S)− π2(S)| = 1
2

∑
ω∈Ω

|π1(ω)− π2(ω)| .

The variation distance at time t with respect to the initial state x is then defined as

∆x(t) = ∆(Pt,x, π).

We define the function d(t) = maxx∈Ω∆x(t) and the mixing time

τ = min{t : 2d(t) ≤ e−1}.
A property of d(t) given in [1] is that d(s + t) ≤ 2d(s)d(t), implying in particular that
d(t) ≤ exp(−
t/τ�). It is therefore both necessary and sufficient that chains be run for
some multiple of mixing time in order to get a sample which is close to a sample from the
steady state.
For our purposes, the Swendsen-Wang algorithm is rapidly mixing if its mixing time τSW

is bounded by a polynomial in n, the number of vertices of G. Similarly for the Glauber
chain.
Jerrum and Sinclair [24] introduced the notion of conductance to the study of finite time

reversible Markov chains. A chain is reversible if it satisfies the detailed balance equations:

π(x)P (x, y) = π(y)P (y, x), for all x, y ∈ Ω.
Putting Q(x, y) = π(x)P (x, y) and Q(A,B) =

∑
(x,y)∈A×B Q(x, y), we define the conduc-

tance of a set of states ∅ �= S ⊂ Ω as

ΦS =
Q(S, S̄)
π(S)π(S̄)

where S̄ = Ω \ S. (3)

The conductance ΦM of the chain itself is simply minS �=∅ΦS. We prove our lower bounds
on mixing time by showing that ΦM is small and then using the well-known bound [1]

e−1/τM ≥ 1− ΦM. (4)

3 MCMC Algorithms

There are several MCMC algorithms that are used to generate a random sample from
these distributions corresponding to the hard-core model and ferromagnetic Potts model.
The Glauber dynamics is perhaps the simplest such Markov chain. Its transitions are as
follows: Choose a vertex at random, and modify the spin of that vertex by choosing from
the distribution conditional on the spins of the other vertices remaining the same. We will
detail the algorithm for the hard-core model on independent sets.
Glauber Dynamics: From an independent set σ,
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G1 Choose v uniformly at random from V .

G2 Let

σ′ =

{
σ ∪ {v} with probability λ/(1 + λ)
σ \ {v} with probability 1/(1 + λ).

G3 If σ′ is an independent set, then move to σ′, otherwise stay at the current independent
set σ.

For the ferromagnetic Potts model, an alternative method, the Swendsen-Wang process
[25], is often preferred over other dynamics in Markov chain Monte Carlo simulations.
Swendsen-Wang Algorithm:

SW1 Let B = E \D(σ) be the set of edges joining vertices of the same color. Delete each
edge of B independently with probability 1 − p, where p = 1 − e−β. This gives a
subset A of B.

SW2 The graph (V,A) consists of connected components. For each component a colour
(spin) is chosen uniformly at random from [q] and all vertices within the component
are assigned that colour (spin).

The Swendsen-Wang algorithm was motivated by the equivalence of the ferromagnetic
q-state Potts model and the random cluster model of Fortuin and Kasteleyn [13], which we
now describe.
Given a graph G = (V,E), let G(A) = (V,A) denote the subgraph of G induced by the

edge set A ⊆ E. In the random cluster model, G(A) is the measure given by

µ(G(A)) =
1
Z
p|A|(1− p)|E|−|A|qc(A), (5)

where c(A) is the number of components of G(A) and p is a probability.
The relationship between the two models is elucidated in a paper by Edwards and Sokal

[12]. The Potts and random cluster models are defined on a joint probability space [q]n×2E.
The joint probability π(σ, A) is defined by

π(σ, A) =
1
Z

∏
(i,j)∈E

((1− p)δ(i,j) �∈A + pδ(i,j)∈Aδσi=σj
)), (6)

where Z is a normalizing constant. By summing over σ or A we see that the marginal
distributions are correct, and (remarkably) the normalising constants in both Potts and
Cluster models are the value of Z given in the expression above.
The Swendsen-Wang algorithm can be seen as given σ, (i) choose a random A′ according

to π(σ, A′) and then (ii) choose a random σ′ according to π(σ′, A′).
After Step SW1 we say that we are in the FK representation of the chain.
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4 Minimal Cutsets

Let G = (V,E) be a connected graph. For W ⊂ V we define GW as the graph (W,EW ),
where EW is the set of all edges in E that join two vertices in W . We say that C ⊂ W
is a component of W if C is the vertex set of a component of GW . As usual, we define a
subset γ ⊂ E to be a cutset if (V,E \ γ) is disconnected. We define γ to be a minimal
cutset if all cutsets contained in γ are identical to γ. If γ is minimal, (V,E \ γ) has exactly
two components. For W ⊂ V , we let W denote the complement of W , i.e. W = V \ W .
We denote the set of edges between two disjoint sets of vertices W and W ′ by (W : W ′).
Finally, we use C(W ) to denote the set of components of W .
We consider the cutset ∂W = (W : W ) and decompose it as ∂W = ∪C∈C(W )∂C. We

will further decompose ∂C into minimal cutsets, see Lemma 1 below. In order to state the
lemma, we introduce the sets

ΓC = {(C : D)|D ∈ C(C)} = {(D : D)|D ∈ C(C)}

and
Γ(W ) =

⋃
C∈C(W )

ΓC .

Lemma 1 Consider W ⊂ V .
(a) Let C,C ′ be different components of W . There exist unique D ∈ C(C) and D′ ∈ C(C ′)
such that D ⊆ D′ or equivalently D′ ⊆ D.
(b) For C ∈ C(W ), ∂C has a unique decomposition into minimal cutsets as ∂C = ∪γ∈ΓC

γ.
(c) If γ, γ′ ∈ Γ(W ) are distinct then they are disjoint.
(d) Let C and C ′ be two (not necessarily distinct) components of W ⊂ V . If X or X is a
component of C and Y or Y is a component of C ′ then

X ∩ Y = ∅, X ∩ Y = ∅, X ∩ Y = ∅, or X ∩ Y = ∅.

Proof in appendix

Let γ = (D : D) be a minimal cutset of G, in particular D and D are connected. We
then define Int γ as the smaller (in terms of cardinality) of D and D. If D and D have the
same size, we can define Int γ as either D or D. For definiteness, we define Int γ as the
one containing a fixed point xo ∈ V . For a cutset γ we define Ext γ = V \ Int γ, and for a
collection Γ of minimal cutsets, we define the interior of Γ and the common exterior of Γ
as as

Int Γ =
⋃
γ∈Γ

Int Γ and Ext Γ =
⋂
γ∈Γ

Ext γ.

Note that Int Γ ∪ Ext Γ = V for all sets Γ of minimal cutsets.

Lemma 2 Let W ⊂ V .
(a) Let γ, γ′ ∈ Γ(W ). If Int γ ∩ Int γ′ �= ∅ , then either Int γ ⊂ Int γ′ or Int γ′ ⊂ Int γ.
(b) Either W or W is a subset of Int Γ(W ).
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Proof in appendix

Next we specialize to the torus TL,d = (VL,d, EL,d). Consider a set W ⊂ VL,d and a fixed
minimal cutset γ corresponding to W . For e ∈ γ we define a dual (d − 1)-dimensional
cube e∗ which is (i) orthogonal to e and (ii) bisects e, when TL,d is considered as immersed
in the continuum torus (R/Z)d. (In dimension d = 3, the two-dimensional dual cells are
referred to as plaquettes). We define a graph Γ∗ = (γ∗, E∗) where γ∗ = {e∗ : e ∈ γ}
and (e∗

1, e
∗
2) ∈ E∗ iff e∗

1 ∩ e∗
2 is a cube of dimension d − 2. The components of Γ∗ are

called the co-components of γ. These co-components are connected hypersurfaces of dual
(d− 1)-dimensional cells.
In the following, we will call cutsets with one co-component topologically trivial, and cut-

sets with more than one co-component topologically non-trivial. Small components which
can be embedded in Zd give rise to cutsets with only a single co-component, which are
therefore topologically trivial. Topologically non-trivial cutsets arise from certain compo-
nents which are large enough to “feel” the non-trivial topology of the torus. For example,
the component C = {x ∈ VL,d | 1 ≤ x1 ≤ L/2} gives rise to a cutset whose two co-connected
components are two parallel interfaces, each of which has size Ld−1.

Lemma 3 (a) Given a fixed edge e ∈ EL,d there are at most νk, ν = min{3, d64/d}, distinct
co-components γ of size k with e ∈ γ.
(b) If a cutset is non-trivial, each of its co-components contains at least Ld−1 edges.

Proof in appendix

5 Independent Sets

In this section, we give a proof of Theorem 2. We start with some notation. For a bipartite
graph G = (V,E) we arbitrarily call the vertices in one partition even, and those in the
other partition odd. We write Veven for the set of even vertices in V , and Vodd for the set
of odd vertices in V . We denote the collection of independent sets of G by Ω. Let I be
an independent set in Ω. We then define Wodd(I) as the set of vertices in and adjacent to
a vertex in the set I ∩ Vodd. Similarly Weven(I) is defined for I ∩ Veven. We define the set
Γodd(I) as the set of minimal cutsets corresponding to Wodd(I), Γodd(I) = Γ(Wodd(I)), and
similarly for the set Γeven(I). Finally, for a cutset γ, we define V (γ) =

⋃
{x,y}∈γ{x, y}.

Lemma 4 (a) If γ ∈ Γodd(I), then V (γ) ∩ I = ∅.
(b) For γ ∈ Γodd(I), the vertices in the set V (γ) ∩ Int γ are either all even or all odd.
(c) For γ ∈ Γodd(I), there exists an independent set Iγ such that Γodd(Iγ) = {γ}.
(d) Either I ∩ Vodd or I ∩ Veven is a subset of Int Γodd(I).

Proof:
(a) We have to prove that {x, y} ∩ I = ∅ whenever {x, y} ∈ γ ⊂ ∂Wodd(I). First notice

that for an odd vertex v, v ∈ Wodd(I) ⇔ v ∈ I, whereas if v is even then v ∈ Wodd(I) ⇔ v
has a neighbor w ∈ I. Suppose that x ∈ I, y �∈ I. If x is odd then x, y ∈ Wodd(I). If x is
even, then x, y �∈ Wodd(I). In either case, we have the contradiction that {x, y} �∈ ∂Wodd(I).
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(b) If γ ∈ Γodd(I),then γ = (D : D) = (C : D) for some componenent C of Wodd(I)
and some component D of C. As a consequence, either (V (γ) ∩ Int γ) ⊆ Wodd(I), or
(V (γ) ∩ Int γ) ⊆ Wodd(I). If an odd vertex v is in the set Wodd(I) then v ∈ I and w ∈
Wodd(I) for all neighbors w of v. Thus an odd vertex v ∈ Wodd(I) cannot be incident
to an edge in ∂Wodd(I). As a consequence, the vertices of V (γ) ∩ Int γ are is even if
(V (γ) ∩ Int γ) ⊆ Wodd(I) and odd otherwise.

(c) If the vertices of the set V (γ)∩Int γ are even then let Iγ = (Vodd∩Int γ)∪(Veven∩Int γ).
Otherwise, exchange the sets Vodd and Veven in the definition of Iγ.

(d) Lemma 2 implies that either

Wodd(I) ⊂ Int Γodd(I) or Wodd(I) ⊂ Int Γodd(I).

Since I ∩ Vodd ⊂ Wodd(I) and I ∩ Veven ⊂ Wodd(I), the result follows. ✷

From now on, we specialize to the graph TL,d. For a vertex v = (v1, . . . , vd) ∈ V and
a “direction” α ∈ {±1, . . . ,±d}, we define the shift σα(v) as the vertex with coordinates
vi for i �= |α| and vi + sign(α) (mod L) for i = |α|, where sign(α) = α/|α|. For a cutset
γ ∈ Γodd(I), we define γα = {(v, w)|(v, w) ∈ γ, v ∈ Int γ, w = σα(v)}.

Lemma 5 For any cutset γ ∈ Γodd(I) and any direction α, |γα| = |γ|/2d.

Proof: We first prove the lemma for d = 2. Let γ∗ be the set of edges dual to the edges in
γ. The set γ∗ is a union of cycles, and each edge in the +1 or −1 direction in any of these
loops is followed by an edge in the +2 or −2 direction by Lemma 4 (b). We therefore have
that |γi| + |γ−i| is independent of the direction i. Since γ is a cutset, |γi| must be equal
to |γ−i|, which implies the claim. For d > 2, we consider the intersection of Int γ with a
two-dimensional plane S({ki}) = {x ∈ T | xi = ki, i /∈ {1, 2}}. Since also the points in
(V (γ)∩ Int γ)∩ S({ki}) are all even or all odd, the above arguments can be applied to the
intersection of γ and S({ki}), implying that |γ1| = |γ−1| = |γ2| = |γ−2| since it is true for
the intersection of these sets with any of the hyperplanes S({ki}). Applying this argument
for an arbitrary pair of directions, we get the lemma. ✷

The next lemma is a generalization of a lemma first proved by Dobrushin in [9].

Lemma 6 Let Γ be a set of minimal cutsets, and let ΩΓ = {I : Γ ⊂ Γodd(I)}. Then

µ
(
ΩΓ

) ≤ λ− ∑
γ∈Γ(|γ|/2d) (7)

Proof: We first note that it is enough to prove there exists an injective map φΓ : ΩΓ → Ω
such that

µ(I) = λ− ∑ |γi|/2dµ(φΓ(I)).

Indeed, given such a map, we have

µ(ΩΓ) = λ− ∑ |γi|/2dµ(φΓ(ΩΓ)) ≤ λ− ∑ |γi|/2d.
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In order to construct such a map φΓ, we introduce the partial order γ ≤ γ′ ⇔ Int γ ⊂
Int γ′. We then observe that, by induction, it is enough to prove that for any Γ and any
γ ∈ Γ such that γ is minimal in Γ with respect to the partial order, we have an injective
map φγ : ΩΓ → ΩΓ\{γ} such that µ(I) = λ−|γ|/2dµ(φγ(I)).
We will now construct such a map. Consider I ∈ ΩΓ. Let σ = σα. The proof holds for

any choice of α. Defining

φγ(I) = (I ∩ Int γ) ∪ σ(I ∩ Int γ) ∪ (Int γ \ σ(Int γ)),
we will have to show that φγ is an injection, that I ′ = φγ(I) is an independent setwith
µ(I ′) = µ(I)λ|γ|/2d and that I ′ ∈ ΩΓ\{γ}.
The first statement is obvious from the fact that the three sets I1 = I ∩ Int γ, I2 =

σ(I ∩ Int γ) and I3 = Int γ \ σ(Int γ) are pairwise disjoint (use Lemma 4 (a) to see that I1

and I2 are disjoint).
I1, I2 are obviously independent and the independence of I3 follows from I3 ⊆ V (γ) and

Lemma 4(b). To then prove that I ′ is an independent set, we use that, again by Lemma 4
(a), the sets I1 ∪ I2 and I1 ∪ I3 are independent sets. It remains to show that I2 ∪ I3 is also
an independent set. Consider v ∈ Int γ \ σ(Int γ) and w ∈ σ(I ∩ Int γ). Then v /∈ σ(Int γ)
and hence σ−α(v) /∈ Int γ. On the other hand, σ−α(w) ∈ I ∩ Int γ. Therefore, σ−α(v)
and σ−α(w) cannot be adjacent by Lemma 4 (a), which implies that v and w cannot be
adjacent.
To prove µ(I ′) = µ(I)λ|γ|/2d, we notice that |(I ∩ Int γ)∪σ(I ∩ Int γ)| = |I|. Thus φγ has

increased the size of the independent set by exactly |Int γ \σ(Int γ)| which is |γ−α| = |γ|/2d
by Lemma 5.
To see that I ′ ∈ ΩΓ\{γ} note that Wodd(I ′) =Wodd(I) \ Int γ. There are two possibilities

for γ′ ∈ Γ \ {γ}: Int γ ∩ Int γ′ = ∅ implying that dist(Int γ, Int γ′) ≥ 2 and I ∩ Int γ′ = I ′ ∩
Int γ′. Otherwise, Int γ ⊆ Int γ′ implying dist(Int γ,Ext γ′) ≥ 2 and I ∩Ext γ′ = I ′ ∩Ext γ′.

✷

Lemma 7 Let Ω(k1, . . . , kt) be the set of independent sets I ∈ Ω which contain a set
of odd trivial cutsets of sizes k1, . . . , kt. Then for a = min1≤i≤t ki, b = max1≤i≤t ki and
k =

∑t
i=1 ki, we have

µ(Ω(k1, . . . , kt)) ≤ (e(b− a+ 1)Ld/t)t(νλ−1/(2d))k.

Let Ωn.t. be the set of I ∈ Ω such that Γodd(I) contains at least one non-trivial cutset. Then

µ(Ωn.t.) ≤
(
Ld (νλ

−1/2d)Ld−1

1− νλ−1/2d

)2

exp
(
Ld (νλ

−1/2d)Ld−1

1− νλ−1/2d

)
.

Proof: To generate {γ1, ..., γt} with |γi| = ki, we first choose edges ei in a certain fixed
direction, e.g. direction 1, and then cutsets γi � ei. (Every cut set contains an edge in
direction 1 – see Lemma 5) In this way, each {γ1, ..., γt} is counted

∏b
j=a tj! times, where

tj is the number of ki with ki = j. The previous lemma and Lemma 3 (a) yield

µ(Ω(k1, . . . , kt)) ≤ Ldt∏b
j=a(tj!)

(νλ−1/(2d))k.

9



(Note that it is safe to use the bound from Lemma 3(a) to bound the number of trivial
cutsets, since for each trivial cutset, the dual is a single co-component.) Since

∑b
j=a tj = t,

b∏
j=a

(tj!) ≥
b∏

j=a

(
tj
e

)tj

≥ ( t

e(b− a+ 1)
)t

and hence the result follows.
To prove the second statement, we use the previous lemma and the fact that each non-

trivial cutset has at least two co-connected components to bound

µ(Ωn.t.) ≤
∞∑
k=2

∑
γ
(k)
n.t.

λ−|γ(k)
n.t.|/2d.

Here the sum
∑

γ
(k)
n.t.

goes over minimal cutsets with k co-components. Using Lemma 3,
and the fact that there are at most Lkd possibilities for the k starting edges for the k
co-components of γ(k)

n.t., we conclude that

µ(Ωn.t.) ≤
∞∑
k=2

1
k!

( ∞∑
&=Ld−1

Ld(νλ−2d)&
)k

≤
∞∑
k=0

1
k!

( ∞∑
&=Ld−1

Ld(νλ−2d)&
)k+2

,

which concludes the proof of the second statement.
✷

Lemma 8 Let 0 < α < 1, and let

Ωα = {I ∈ Ω : Γodd(I) contains only trivial cutsets, and
∣∣Int Γodd(I)

∣∣ ≥ αLd}.

If λ is sufficiently large, say λ1/(2d) ≥ 200ν/α, then

µ(Ωα) ≤ 2−cαLd−1/(logL)2

for some constant cα depending on α and d.

Proof: For I ∈ Ωα, the isoperimetric inequality of Bollobás and Leader [2] implies that
|γ| ≥ |Int γ|(d−1)/d and hence∑

γ∈Γodd(I)

|γ|d/(d−1) ≥
∑

γ∈Γodd(I)

|Int γ| ≥ |
⋃

γ∈Γodd(I)

Int γ| ≥ αLd. (8)

If there is a cutset in Γodd(I) of size at least Ld−1, then Lemma 7 directly gives the desired
bound. Assume all cutsets are of size at most Ld−1. Let Γi(I) = {γ ∈ Γodd(I) : 2i−1 ≤
|γ| < 2i}, i = 1, 2, ..., r = �log2 L

d−1 + 1�. Then since ∑∞
i=1

1
i2
= π2/6, there exists i such

that ∑
γ∈Li

|γ|d/(d−1) ≥ c∗
α
Ld/i2

10



where c∗
α
= 6α/π2. Thus I is in Ω(k1, ..., kt) for some t and k1, ..., kt with 2i−1 ≤ kj ≤ 2i

and
∑t

j=1 k
d/(d−1)
j ≥ c∗

α
Ld/i2. Moreover, kj ≤ 2i implies that t ≥ c∗

α
Ld/(i22id/(d−1)). This

together with Lemma 7 gives

µ(Ωα) ≤
r∑

i=1

∑
t≥c∗

αLd/(i22id/(d−1))

∑
2i−1≤kj<2i

j=1,... ,t

µ(Ω(k1, ..., kt))

≤
r∑

i=1

∑
t≥c∗

αLd/(i22id/(d−1))

∑
2i−1≤kj<2i

j=1,... ,t

(e2iLd/t)t(νλ−1/(2d))
∑

kj .

Since
∑

kj ≥ 2i−1t and there are at most 2it choices for k1, k2, . . . , kt,

µ(Ωα) ≤
r∑

i=1

∑
t≥c∗

αLd/(i22id/(d−1))

(e22iLd/t)t(νλ−1/(2d))2
i−1t

≤
r∑

i=1

∑
t≥c∗

αLd/(i22id/(d−1))

(
ei222i2id/(d−1)(c∗α)

−1(νλ−1/(2d))2
i−1)t

≤
r∑

i=1

∑
t≥c∗

αLd/(i22id/(d−1))

([
ei222i2id/(d−1)]21−i

(c∗α)
−1(νλ−1/(2d))

)2i−1t

,

where we have used the fact that (c∗α)
−1 ≥ 1 in the last step. Bounding

[
ei222i2id/(d−1)

]21−i ≤[
ei2(16)i

]21−i ≤ [e(16e)i]21−i ≤ 16e2 we see that for λ large enough (e.g. for λ1/2d ≥
32e2ν/c∗α) , one gets

µ(Ωα) ≤
r∑

i=1

∑
t≥c∗

αLd/(i22id/(d−1))

2−2i−1t ≤ r21−c∗
α2r−1Ld/(r22rd/(d−1)) ≤ 2−cαLd−1/(logL)2 .

✷

We show next that if I is chosen from the probability distribution (2), then |I| is unlikely
to be small.

Lemma 9 Let 0 < δ < 1. Then

µ
(
|I| ≤ (1− δ)

Ld

2

)
≤ (2λ−δ/2)L

d

.

Proof: There are at most 2Ld independent subsets in TL,d and so the weight of those of
size at most (1 − δ)Ld/2 is at most 2Ld

λ(1−δ)Ld/2. On the other hand, the set of all even
points has weight λLd/2. The lemma follows immediately. ✷

Lemma 10 For any ρ < 1, there is a constant c∗
ρ
such that for λ sufficiently large,

µ(||I ∩ Vodd| − |I ∩ Veven|| ≤ ρLd/2) ≤ exp(−c∗ρLd−1/(logL)2).

11



Proof: Let δ = (1 − ρ)/2. Lemma 7 and Lemma 9 imply that µ(Ωn.t.) and µ(|I| ≤
(1− δ)Ld/2) are small enough. Moreover, Lemma 8 for α = (1−ρ)/8 implies that µ(Ωα) is
also small enough. If none of the three events whose probabilities we discuss above occurs,
then |I| > (1− δ)Ld/2 and |Int Γodd(I)| < Ld(1− ρ)/8. The latter and Lemma 4(d) imply
that either |I ∩ Vodd| < Ld(1 − ρ)/8 or |I ∩ Veven| < Ld(1 − ρ)/8. This together with the
former yields that either

|I ∩ Vodd| − |I ∩ Veven| = |I| − 2|I ∩ Veven| > (1− δ)Ld/2− Ld(1− ρ)/4

or
|I ∩ Veven| − |I ∩ Vodd| = |I| − 2|I ∩ Vodd| > (1− δ)Ld/2− Ld(1− ρ)/4.

Since (1− δ)Ld/2− Ld(1− ρ)/4 = ρLd/2, this concludes the proof. ✷

Proof of Theorem 2: We now partition Ω = Ω(ρ)
odd ∪ Ω(ρ)

even ∪ Ω(ρ)
rest where

Ω(ρ)
odd = {I ∈ Ω : |I ∩ Vodd| − |I ∩ Veven| > ρLd/2}

Ω(ρ)
even = {I ∈ Ω : |I ∩ Veven| − |I ∩ Vodd| > ρLd/2}
Ω(ρ)

rest = Ω \ (Ω(ρ)
odd ∪ Ω(ρ)

even)

By the last lemma µ(Ω(ρ)
rest) ≤ exp(−c∗ρLd−1/(logL)2), and by symmetry µ(Ω(ρ)

odd) =
µ(Ω(ρ)

even). Now consider Glauber dynamics. Clearly, if I ∈ Ω(ρ)
odd and I ′ is obtained by

a single transition then I ′ ∈ Ω(ρ)
odd ∪ Ω(ρ)

rest. The same is true if we generalize from Glauber
dynamics to an ergodic Markov chain that is ρ-quasi-local. (See the paragraph before The-
orem 2 for the definition of ρ-quasi-local.) To complete our proof by estimating ΦS (see
(3)) for S = Ωodd, first notice µ(S)µ(S) ≥ 1/5. Furthermore,

Q(S, S) =
∑

I∈Ωodd
J∈Ωrest

µ(I)P (I, J) =
∑

I∈Ωodd
J∈Ωrest

µ(J)P (J, I) ≤ µ(Ωrest).

The theorem now follows. ✷

6 Swendsen-Wang Algorithm on a d-dimensional Torus

This section is deferred to the appendix. We combine the methods and results of [6] and
[5] with those of the last section to prove Theorem 1.
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Appenices

A Proof of Lemma 1

Proof:
(a) We will first prove uniqueness. Since C ∩C ′ = ∅, C ′ ⊂ C and C ⊂ C ′. Furthermore,

C is connected. Hence, there exists a unique D′ ∈ C(C ′) such that C ⊂ D′. For all
D ∈ C(C), C ⊂ D. Therefore, if there exists a D′ ∈ C(C ′) with D ⊂ D′, D′ must be
the unique component containing C. The uniqueness of D is proved similarly. Next, we
prove existence. Let D′ be as above, so that D′ ⊂ C. Since C ∪ D′′ is connected for all
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D′′ ∈ C(C ′), the set D′ = C ′ ∪ ⋃{D′′ ∈ C(C ′) : D′′ �= D′} is connected. As a consequence,
D′ ⊂ C must lie in one of the components D of C.

(b) Obviously, ∂C = ∪γ∈ΓC
is a decomposition of ∂C into minimal cutsets of G. To prove

uniqueness, assume that γ ⊂ ∂C is a minimal cutset of G. Then there exists a D ∈ C(C)
such that (D : D) ⊂ γ. Otherwise, C ∪D is connected in G \ γ for every D ∈ C(C), which
would imply that G \ γ is connected. Since γ is minimal, (D : D) ⊂ γ implies (D : D) = γ.

(c) For cutsets γ and γ′ corresponding to the same component C, disjointness follows
from the explicit form given in (b). Assume that γ ∩ γ′ �= ∅ for two different components
C and C ′. This would imply that ∂C ∩ ∂C ′ �= ∅, which in turn implies that C and C ′ are
connected in G, and hence in GW . But this contradicts the assumption that C and C ′ are
different components of GW .

(d) Without loss of generality X ∈ C(C) and Y ∈ C(C ′). We consider several cases:

• If X = Y then X ∩ Y = ∅.
• If C = C ′ and X �= Y , then X and Y are different components of C which implies
that X ∩ Y = ∅.

• If C �= C ′ then we use part (a) of this lemma. We condition on whether X and/or Y
are the unique D ∈ C(C) and D′ ∈ C(C ′

) such that D ⊆ D′.

– X �= D, Y �= D′ : Since Y ⊂ D′ and part (a) implies that X ⊂ D ⊂ D′, so we
have that X ∩ Y = ∅.

– X �= D, Y = D′: We saw in the previous case X ⊂ D′ and thus X ∩Y = ∅. The
case when X = D, Y �= D′ is symmetric.

– X = D, Y = D′: Since X ⊂ Y by part (a), X ∩ Y = ∅.
✷

B Proof of Lemma 2

Proof: (a) Let X = Int γ and Y = Int γ′, and assume without loss of generality that
X ∩ Y �= ∅. Applying the previous lemma, we have three cases:
(i) X ∩ Y = ∅, which is equivalent to X ⊂ Y ,
(ii) X ∩ Y = ∅, which is equivalent to Y ⊂ X, and
(iii) X ∩ Y = ∅ which is equivalent to X ⊂ Y . Notice that |X| ≥ |V |/2 which implies

that |Y | ≥ |V |/2 and |Y | ≤ |V |/2. This contradicts the fact that |Y | = |Int γ′| ≤ |Y | unless
equality holds, i.e. unless |Y | = |Y | = |X| = |X| = |V |/2. Together with X ⊂ Y , this
implies X = Y in contradiction to our assumption X ∩ Y �= ∅.

(b)We consider two cases. Suppose that for every C ∈ C(W ) there is a cutset γ ∈ Γ(W )
with C ⊂ Int γ. Then, clearly

W =
⋃

C∈C(W )

C ⊂
⋃

γ∈Γ(W )

Int γ.
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Suppose instead that there is C ∈ C(W ) such that C �⊂ Int γ for all γ. Then since C
is a subset of D for every component D of C, the interior of the corresponding cutset
γ

D
= (D : D) must be D. Thus C = ∪D∈C(C)Int γD

. In particular, since C is a component
of W ,

W ⊂ C ⊂
⋃

γ∈Γ(W )

Int γ.

✷

C Proof of Lemma 3

Proof:
(a) This follows from the observation that the proofs in [23] and [18] may be applied
without changes to the torus.

(b) We need some notation. Consider a set of edges X and its dual X∗. Define the
boundary ∂X∗ of X∗ as the set of (d− 2)-dimensional hypercubes which belong to an odd
number of (d − 1)-dimensional cells in X∗. If ∂X∗ = ∅, define the Z2 winding vector of
X∗ as the vector N(X∗) = (N1, . . . , Nd), where Ni is the number of times X∗ intersects an
elementary loop in the ith lattice direction mod 2.
Let X be a cutset, X = (W : W ), where W ⊂ V . Let W ⊂ (R/Z)d be the union of

all closed unit cubes with center w ∈ W . Then X∗ is the boundary of the set W , and
hence ∂X∗ = ∅. Obviously, each elementary loop must leave and enter the set W the
same number of times, implying that the winding vector of X∗ is 0. On the other hand,
it is not difficult to prove that each set of edges X with ∂X∗ = ∅ and N(X∗) = 0 is a
cutset for some set of points W ⊂ V , X = (W : W ). Indeed, the assumptions ∂X∗ = ∅
and N(X∗) = 0 imply that every closed loop in TL,d intersects X∗ an even number of
times. Considering an arbitrary vertex w0 ∈ V and the set of all “walks” of the form
(w0, w1, . . . , wk), {wi, wi+1} ∈ EL,d, we then define W as the set of points which can be
reached from w0 by a walk which intersects X∗ an odd number of times.
Consider now a non-trivial minimal cutset γ and one of its co-components γ̃. Since γ

is a cutset, ∂γ∗ = ∅. This property is inherited by all its co-components, implying that
∂γ̃∗ = ∅. Obviously, N(γ̃∗) is different from zero, since otherwise γ̃ would be a cutset
itself, in contradiction to the assumption that γ is minimal. Let j be a direction for which
Nj(γ̃∗) �= 0. Then γ̃∗ intersects any fundamental loop in the j-direction an odd number of
times, giving that γ̃∗ contains at least Ld−1 dual (d− 1)-dimensional cells.

✷

D Swendsen-Wang Algorithm on a d-dimensional Torus

In this section we combine the methods and results of [6] and [5] with those of the last
section to prove Theorem 1.
Recall the standard representation of the Potts model in Section 1. On the graph Zd,

d ≥ 2, this model is known to undergo a phase transition as the inverse temperature, β,
passes through a certain critical temperature βc = βc(q, d). To make this statement precise,
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we introduce finite-volume distributions with boundary conditions. We consider the graph
G = (V,E), where V = [L]d and E consists of all pairs of vertices in V whose coordinates
differ by 1 in one coordinate. We say that a vertex lies in the (inner) boundary of V if one
of its coordinates is either 1 or L. For a coloring σ of V , we then introduce the weights
wL,k(σ) = e−βd(σ)+βnk(σ), where nk(σ) is the number of vertices in the boundary of V
that have color k. With ZL,k =

∑
σ wL,k(σ), the finite-volume distributions µL,k with

boundary condition k are then defined as µL,k(σ) = wL,k(σ)/ZL,k, and the spontaneous
magnetization m∗(β) is defined as the L → ∞ limit of the finite-volume magnetizations
mL(β) = L−d

∑
x∈V (µL,1(σx = 1)−1/q). The above-mentioned phase transition can then be

characterized as a transition between a high-temperature, disordered region β < βc where
the spontaneous magnetization is zero, and a low-temperature, ordered region β > βc where
the spontaneous magnetization is positive.
As a first step towards proving Theorem 1, we define the contours corresponding to

a configuration A ∈ Ω = 2E. To this end, we embed the vertex set V of the torus
T = (V,E) into the set V = (R/(LZ))d. For a set X ⊂ V, we define its diameter
diam(X) = infy∈V supx∈X dist(x, y), where dist(x, y) is the ;∞-distance between the two
points x and y in the torus V. For an edge e = {x, y} ∈ E, let e be the set of points in V
that lie on the line between x and y. Given A, we call a closed k-dimensional unit hypercube
c ⊂ V with vertices in V occupied if all edges e with e ⊂ c are in A. We then define the set
V(A) ⊂ V as the 1/3-neighbourhood of the union of all occupied k-dimensional hypercubes,
k = 1, . . . , d, i.e., V(A) = {x ∈ V : ∃c occupied, such that dist(x, c) < 1/3}, and the set
V (A) as the intersection of V(A) with the vertex set V of the discrete torus T . Note that
V (A) =

⋃
{x,y} {x, y}. The set Γ(A) of contours corresponding to a configuration A ∈ Ω

are then the components of the boundary of V(A).
Following [6], we decompose the set of configurations Ω into three sets Ωord, Ωdis and

ΩBig. To this end, we define a contour γ to be small if diam(γ) ≤ L/3. The set ΩBig is then
just the set of configurations A ∈ Ω for which Γ(A) contains at least one contour that is not
small. Next, restricting ourselves to small contours γ, we define the set Ext γ as the larger
of the two components of V \ γ, the set Ext γ as the intersection of Ext γ with V , and the
set Int γ as V \ Ext γ. For A ∈ Ω \ ΩBig, let IntA =

⋃
γ∈Γ(A) Int γ and ExtA = V \ IntA.

The sets Ωord, Ωdis and ΩBig are then defined as

ΩBig = {A ⊂ E : ∃γ ∈ Γ(A) such that diam(γ) > L/3}
Ωord = {A ⊂ E : diam(γ) ≤ L/3 ∀γ ∈ Γ(A) and V (A) ∩ ExtA �= ∅}
Ωdis = {A ⊂ E : diam(γ) ≤ L/3 ∀γ ∈ Γ(A) and V (A) ∩ ExtA = ∅}.

Lemma 11 Let A ∈ Ωord, and let AExtA = {b ∈ E : b ⊂ ExtA}. Then
(a) ExtA = V (A) ∩ ExtA �= ∅, and
(b) (ExtA,AExtA) is connected.

Proof: (a) Proceeding as in the proof of Lemma 2 (b), we obtain that either V (A) ⊂ IntA
or V (A) ⊂ IntA. Since A ∈ Ωord, we conclude that the latter is the case, which is equivalent
to the statement that ExtA = V (A) ∩ ExtA.
(b) The proof of this statement, which is implicit in [6], is straightforward but tedious.

We leave it to the reader.
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✷

In the next lemma we summarize some of the results of [6] used in this paper. We need
some notation. Let A ∈ Ω \ΩBig, and let γ ∈ Γ(A). We say that γ is an exterior contour in
Γ(A) if γ ⊂ Ext γ′ for all γ′ ∈ Γ(A)\{γ}, and denote by Γext(A) the set of exterior contours
in Γ(A). Also, we define the size ‖γ‖ of a contour γ as the number of times γ intersects the
set

⋃
e∈E e. In order to motivate this definition, assume for a moment that the definition of

the set V(A) had involved an ε-neighborhood, instead of the 1/3-neighborhood used above.
With such a definition, the (d−1)-dimensional area of a contour γ would actually converge
to ‖γ‖ as ε → 1/2.

Lemma 12 For all d ≥ 2 there are constants c > 0 and q0 < ∞ such that the following
statements hold for q ≥ q0.
(a) βc = log q/d+O(q−c).
(b) For all β > 0,

µ(ΩBig) ≤ q−cL.

(c) If β = βc, then

µ(Ωord) =
q

q + 1
+O(q−cL) and µ(Ωdis) =

1
q + 1

+O(q−cL).

(d) If β ≥ βc, then
µ(Ωord) ≥ q

q + 1
+O(q−cL).

(e) If β ≥ βc and Γ is a set of contours, then

µ
(
A ∈ Ω \ Ωbig and Γ ⊂ Γext(A)

)
≤ q−c

∑
γ∈Γ ‖γ‖.

Observing that for A ∈ Ω \ ΩBig, the set ExtA can be written as
⋃

γ∈Γext
Ext γ, which in

turn implies that IntA =
⋂

γ∈Γext
Int γ, we can now continue as in Section 5 to prove an

analog of Lemma 8. Defining

Ω(α)
ord = {A ∈ Ωord : |{b ∈ A : b ⊂ ExtA}| ≥ (1− α)dLd},
Ω(α)

dis = {A ∈ Ωdis : |IntA| ≤ αLd},

and Ω(α)
Big = Ω \ (Ω(α)

ord ∪ Ω(α)
dis ), we therefore get the following lemma.

Lemma 13 Let d ≥ 2 and 0 < α < 1. Then there are constants c > 0 and cα > 0 such
that for q large enough the following statements hold.
(a) If β ≥ βc, then

µ(Ω(α)
Big) = O(q−cL) +O(q−cαLd−1/(logL)2)

and
µ(Ω(α)

ord) ≥ q

q + 1
+O(q−cL) +O(q−cαLd−1/(logL)2).

(b) If β = βc, then

µ(Ω(α)
ord) =

q

q + 1
+O(q−cL) +O(q−cαLd−1/(logL)2).
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Proof of Theorem 1(a): Let S = Ω(α)
ord. The conductance ΦSW of the Swendsen-Wang

chain can then be estimated as follows:

ΦSW ≤ ΦS =
1

µ(S)
Pr(A′ /∈ Ω(α)

ord | A ∈ Ω(α)
ord). (9)

Here A is chosen according to the measure µ defined in (5) and A′ is constructed from A
by one step of the Swendsen-Wang algorithm. We have

Pr(A′ /∈ Ω(α)
ord | A ∈ Ω(α)

ord) = Pr(A
′ ∈ Ω(α)

dis | A ∈ Ω(α)
ord) + Pr(A

′ ∈ Ω(α)
Big | A ∈ Ω(α)

ord).

Observing that A ∈ Ω(α)
ord implies |A| ≥ (1−α)dLd while A′ ∈ Ω(α)

dis implies |A′| ≤ d|V (A′)| ≤
d|IntA′| ≤ dαLd, we see that A′ can only be in Ω(α)

dis if at least (1−2α)dLd edges are deleted
in Step (SW1) of Swendsen-Wang. But the number of edges deleted is dominated by the
binomial B(dLd, 1− pc) and so

Pr(A′ ∈ Ω(α)
dis | A ∈ Ω(α)

ord) ≤
(

dLd

(1− 2α)dLd

)
(1− pc)(1−2α)dLd

≤
(
e(1− pc)
1− 2α

)(1−2α)dLd

= e−Ω((log q)Ld),

where we have used Lemma 12(a) to bound 1− pc = e−βc = e−Ω(log q) . Also

Pr(A′ ∈ Ω(α)
Big | A ∈ Ω(α)

ord) ≤ Pr(A′ ∈ Ω(α)
Big)

Pr(A ∈ Ω(α)
ord)

= O(q−cL) +O(q−cαLd−1/(logL)2),

by Lemma 13(a). Using Lemma 13(b) to bound µ(S) = 1− µ(Ω(α)
ord) from below, we obtain

that

ΦSW = O(q−cL) +O(q−cαLd−1/(logL)2).

✷

Proof of Theorem 1(b):
Let Ω̂ = [q]V be the set of colorings, and let Vk(σ) = {x ∈ V : σx = k} be the set of

vertices that have color k in the coloring σ ∈ Ω̂. We then define the sets

Ω̂(α)
k = {σ ∈ Ω̂ : |Vk| ≥ (1− α)|V |}, , k ∈ [q],

Ω̂(α)
ord =

⋃
k∈[q]

Ω̂(α)
k ,

Ω̂(α)
dis = {σ ∈ Ω̂ : |Vk| ≥ (1− α)2

q
|V | for all k ∈ [q]},
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and
Ω̂(α)

Rest = Ω̂ \ (Ω̂(α)
ord ∪ Ω̂(α)

dis ).

To estimate the probability of Ω̂(α)
ord in the measure (1), we use the fact that both the

measure (1) (denoted µ̂ in this section) and the measure (5) (denoted µ in this section) are
marginals of the Edwards-Sokal measure (6). Thus

µ̂(Ω̂(α)
ord) =

∑
A∈Ω

π(Ω̂(α)
ord | A)µ(A), (10)

where π(Ω̂(α)
ord | A) is the conditional measure of Ω̂(α)

ord, given A ∈ Ω. Observing that A ∈ Ω(α)
ord

implies that all vertices in ExtA have the same color by Lemma 11 and the definition (6)
of π, we have that

π(Ω̂(α)
ord | A) = 1 if A ∈ Ω(α)

ord. (11)

For A ∈ Ω(α)
dis , on the other hand, all nA = |ExtA| ≥ (1 − α)|V | vertices in ExtA are

colored independently of each other, so that

π
(
|Vk(σ) ∩ V | ≤ (1− α)2V )

∣∣∣ A)
≤ π

(
|Vk(σ) ∩ ExtA| ≤ (1− α)nA)

∣∣∣ A)
=

∑
k≤(1−α)|nA

(
nA

k

)(1
q

)k(
1− 1

q

)nA−k

≤ e−c∗Ld

for some constant c∗ depending on q and α. As a consequence,

π(Ω̂(α)
dis | A) ≥ 1−O(e−c∗Ld

) if A ∈ Ω(α)
dis . (12)

Combining (10) – (12) with Lemma 13 and the fact that Ω̂(α)
dis ∩ Ω̂(α)

ord = ∅ if α is chosen
small enough, we then get

µ̂(Ω̂(α)
k ) =

1
q
µ̂(Ω̂(α)

ord) =
1
q
µ(Ω(α)

ord) +O(e−c∗Ld

) +O(q−cL) +O(q−cαLd−1/(logL)2),

µ̂(Ω̂(α)
dis ) = µ(Ω(α)

dis ) +O(e−c∗Ld

) +O(q−cL) +O(q−cαLd−1/(logL)2)

and

µ̂(Ω̂(α)
Rest) = O(e−c∗Ld

) +O(q−cL) +O(q−cαLd−1/(logL)2).

We complete our proof by estimating ΦS (see (3)) for S = Ω̂
(α)
k . First notice µ̂(S)µ̂(S) ≥

(1− 1/q)/2q. Since the heat bath algorithm can only change one vertex at a time, it does
not make transitions between the different sets Ω̂(α)

k , nor does it make transitions between
Ω̂(α)

1 and Ω(α)
dis . Thus

Q(S, S) =
∑

I∈Ω̂(α)
1 ,J∈Ω(α)

Rest

µ̂(I)P (I, J) =
∑

I∈Ω̂(α)
1 ,J∈Ω(α)

Rest

µ̂(J)P (J, I) ≤ µ̂(Ω(α)
Rest).

The theorem now follows. ✷
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