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Abstract

Component software techniques have been developed to facilitate software reuse. State
and functionality are encapsulated inside components with the goal of limiting program
errors due to implicit interactions between components. Late binding of components
allows implementations to be chosen at run-time, thereby increasing opportunities for
reuse. Current component infrastructures also provide version management capabilities
to control the evolutionary development of components. In addition to the general goal of
reuse, component software has also focused on enabling distributed computing. Current
component infrastructures have strong support for distributed applications.

By leveraging these strengths of component software, a component-based operating system (OS)
application programmer interface (API) can remedy two weaknesses of current monalithic,
procedural APIs. Current APIs aretypically very rigid; they can not be modified without
jeopardizing legacy applications. This rigidity resultsin bloat in both APl complexity and support
code. Also current APIs focus primarily on the single host machine. They lack the ability to name
and manipulate OS resources on remote machines. An APl constructed entirely of components
can leverage version management and distributed computing facilities. Version management can
be used to identify legacy APIs, which can then be dynamically loaded. OS resources modded as
components can be instantiated on remote machines and then manipulated with the natural access
semantics.

We have deve oped the COP system as prototype component-based APl for Windows NT. The
system provides an API with version management capabilities and with a method for naming and
manipulating remote OS resources. The advantages are gained with a minimum of overhead and
without sacrificing legacy compatibility.



1. Introduction

Component software methodology has primary been motivated by the desire for software re-use.
As described by Szyperski [1998], software components are “binary units of independent
production, acquisition, and deployment that interact to form a functioning system.” The
methodology itsdf focuses on independence by establishing a strict encapsulation of state and
functionality inside each component. This encapsulation helps facilitate reuse. A significant
obstacle to effective reuse is the natural evolution of software. Evolution creates multiple versions
of the component, a number of which may be actively used by clients. The ability to manage
multiple versions of codeis generally called versioning and is addressed by most current
component infrastructures. Also, as component software designers have always considered the
distributed application domain important, infrastructures have extensive support for the operation
of distributed components.

These advantages of software components can be leveraged to diminate shortcomings present in
current operating system (OS) application programmer interface (API) designs. OS APIs are
typically monoalithic procedural interfaces addressing single-machine requirements. Their design
limits options for evolutionary development and also complicates application development for
distributed systems.

During an operating system's lifetime, its functionality will change, and these changes must be
reflected inthe API. A set of API calls may become obsolete or their semantics may change. In
an ideal world, obsolete calls would be deleted and calls with modified semantics (but
unmodified parameters and return values) would remain the same. Unfortunately, calls can
neither be ddeted nor can their semantics change. Such APl modifications would jeopardize the
operation of legacy applications.

Legacy applications are an important concern for today's operating systems. Installation of a new
operating system version is already expensive (in time and money). If new application versions
are also required, the expense is only compounded. (In some cases, new versions may not even be
feasible)) Operating system evolution must be designed to support legacy applications. Since any
changes to the API can break legacy applications, API calls typically become fixed once
published. Obsolete calls can never be ddeted, and new call semantics must always be introduced
through new calls. Backward compatibility thus leads to bloat in both the API and the supporting
code.

For example, the UNIX 98 specification (endorsed by IBM, Sun, and NCR) lists 21 calls reserved
for legacy support. Many of these calls have been superceded by new, more powerful calls (e.g.
the signal management function, signal (), has been replaced with the more powerful
sigaction ()). Appl€s Carbonimplementation of the Macintosh OS API deprecates over
2100 functions for the earlier MacOS 8.5 implementation. Win32, the primary API for
Microsoft's family of 32-bit operating systems, contains over 1700 legacy API calls, including
146 calls providing support for its predecessor, Windows 3.1.

Also the distributed computing paradigm is not well supported by typical operating systems APIs.
Virtually all APIs do of course have support for inter-machine communication, but high-level
support for accessing remote OS resources is lacking. The primary omission is a uniform method
of naming remote resources, for example windows, files, and synchronization objects. This



omission prevents an application from easily using resources scattered throughout a distributed
system.

A multi-user game serves as a good example. This class of applications needs to open windows,
sound channds, and input devices (e.g. joysticks) on numerous machines throughout a distributed
system. With typical OS APIs, these applications must rely almost entirely on ad-hoc
mechanisms to access the necessary remote resources.

The above two weaknesses in modern OS API's can be iminated by the application of
component software methodology. A component-based API is constructed entirely of software
components, with each component moddiing an OS resource. As components encapsulate their
state and functionality, all access and manipulation functions for a particular resource type are
contained in its component. The factoring inherent in a component-based API allows for efficient
versioning, and the state and access encapsulation allow OS resources to be instantiated on
remote machines.

To clarify, we only propose to componentize the API. The underlying OS can be monalithic,
micro-kernd, or component-based. By componentizing the API, we are controlling the access to
the OS. Control at this point is sufficient to provide API versioning and also to expose OS
resources outside of the host machine. The process of making resources available remotely is
called remoting.

In this paper, we describe COP (Component-based Operating system Proxy), a prototype of a
componentized API. The COP system acts a “traffic cop” that directs OS requests to the
appropriate version or resource location. The system currently targets the Win32 API and is
implemented on top of Windows NT 4.0. Our implementation currently covers approximately
350 Win32 calls, enough to provide needed development support for a separate project in
distributed component applications. We have found that COP only introduces a minimum of
overhead in thelocal case, while providing outstanding OS support for evolutionary development
and distributed applications.

2. Component Software Overview

In this section, we will provide a brief overview of the component software methodology and two
popular infrastructures. Components have been an extremely rich area of ongoing work during
the last ten years. Necessarily, we will only focus on aspects directly related to this paper. To
begin, we will provide definitions for some important terms used in this paper.

The term component was specifically defined in the previous section. Roughly speaking, a
component provides functional building blocks for a complex application. Aninterfaceis awel-
known contract specifying how a component's functionality is accessed. Interfaces take the form
of aset of function or method calls, including parameter and return types. A component instance
refers to a component that has been loaded into memory and is accessible by a client. All
communication between component instances occurs through interfaces. Component software
fundamentally maintains a strict separation between the interface and the implementation. This
separation is a key requirement for enforcing components to encapsulate their functionality and
for guaranteeing component independence.



I ndependence allows components to be composed without introducing implicit interactions that
may lead to subtle program errors. The ability to compose is also enhanced by allowing one
component to be substituted for another, so long as the substitute provides the same, or an
extension of, the functionality of the original. Through polymor phism components with differing
implementations of the same interface may be interchanged transparently. A final issuein
composition is the point in time at which component choices are bound. Late binding allows an
application to choose components dynamically.

Independence, polymorphism, and late binding are methodological concepts that facilitate reuse
in component software. Component infrastructures also address related implementation issues,
namely mixed development languages and execution platforms. All popular infrastructures
provide mechanisms that allow development in multiple languages and execution across multiple
hardware platforms.

Two of the more popular component infrastructures are Microsoft’s Component Object Modd
(COM) [Microsoft, 1995] and the Object Management Group’s Common Object Request Broker
Architecture (CORBA) [Object Management Group, 1996]. Although originally motivated by
different goals, they have largely converged to promote software reuse independent of
development language in both a single-machine and distributed computing environment. COP is
built on top of COM, and so the next subsection will provide an overview of COM. The
following subsection will then contrast the differences between COM and CORBA, focusing
especially on the effects on a system such as COP.

2.1. Component Object Model (COM)

COM was developed by Microsoft to address the need for cross-application interaction. As the
work evolved, the Distributed COM (DCOM) extensions [Microsoft, 1998] were introduced to
support distributed computing. COM provides language independence by employing a binary
standard. Component interfaces are implemented as a table of function pointers, which are called
vtabl es because they mimic the format of C++ virtual function tables. References to component
instances arereferred to as interface pointers. These are actually double-indirect pointers to the
vtable. The extralevd of indirection is provided as an implementation convenience. For example,
an implementation can attach useful information to the interface pointer, information that will
then be shared by all references to theinterface.

In keeping with component software methodology, COM maintains a strict separation between a
component interface and implementation. COM in fact says nothing about the implementation,
only about theinterfaces. Interfaces can be defined through single inheritance. (Note only the
interfaceis inherited; implementation is entirely separate.) The lack of multiple inheritanceis not
alimitation. COM components can implement multiple interfaces regardless of inheritance
hierarchy. This provides much the same power as multiple interface inheritance.

All COM interfaces must inherit from the ITUnknown interface. ITUnknown contains a
QueryInterface () method and two methods for memory management. For our
discussion, QueryInterface () isthemost important. A client must use this method to
obtain a specific interface pointer from a component instance.

COM components are identified by a globally unique class ID (CLSID). Similarly, all interfaces
are specified by a global uniqueinterface ID (11D). A client instantiates a component instance by
callingthe COM CoCreateInstance () function and specifying the desired CLSID and



IID. A pointer to the desired interfaceis returned. Given an interface pointer, the client can use
QueryInterface () todetermineif the component also supports other interfaces.

By convention, COM holds that all published interfaces areimmutable in terms of both syntax
(interface method names and method parameters) and semantics. If a changeis madeto an
interface, then a new interface, complete with a new 11D, must be created. Immutable interfaces
providefor a very effective versioning mechanism. A client can request a specific interface
(through its published 11D) and be assured of the desired syntax and semarntics.

Under COM, components can be instantiated in three different execution contexts. Components
can beinstantiated directly in the application’s process (in-process), in another process on the
same machine (local), or on another machine (remote). The ability to access instances regardless
of execution context is called location transparency. COM provides location transparency by
requiring that all instances are accessed through the vtable.

O— O— O—
. . Component
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O— Network O— O—
Connection

Figure 1. For acall to aremote component instance, the proxy first marshals dataargumentsinto a suitable
transmission format. The request and data are then sent across the network by the transport mechanism.
(The default mechanism is an object-oriented extension of DCE RPC.) At the server, the stub receives the
request, unmarshals the data, and invokes the requested interface function. The processis reversed for the
function return values.

For in-process instances, the component implementation is usually held in a dynamically linked
library (DLL) and is loaded directly into the process' address space. The vtable then points
directly to the component implementation. For local or remote components, the component
implementation is loaded into another process and the application must engage in some type of
inter-process communication (IPC). To handle these cases, COM instantiates a proxy and stub
pair to perform the communication (see Figure 1). The vtableis set to point directly to the proxy.

Before an IPC mechanism can be used, data must be packaged into a suitable transmission
format. This step is called marshaling. The proxy is responsible for marshaling data and then
sending the data and the request to the component instance. At the component instance, the stub
receives the request, unmarshals the data, and invokes the appropriate method on the instance.
The process is reversed for any return values.

A system programmer can customize the IPC mechanism. Otherwise COM defaults to using

shared memory for the Local case and an extension of the Open Group's Distributed Computing
Environment remote procedure call facility (DCE RPC) [Hartman, 1992] for the Remote case.

2.2 COM, CORBA, and a Component-based API



Both COM and CORBA share many fundamental similarities, especially in the area of distributed
computing. For remote communication, CORBA uses an architecture that is very similar to COM.
In essence, both architectures offer the same capabilities for remote component instances.

The two systems however differ greatly in their versioning capabilities. Of current CORBA
implementations, IBM’s System Object Modd (SOM) builds interface specifications at run-time
[Forman, 1995], and so interface methods can be added or re-ordered, but not removed. SOM’s
strategy does not address semantic changes. To address semantic changes, CORBA repository
IDs could be used to uniquely identify interfaces in much the same manner as COM |IDs.
However, repository IDs are only checked when an instance is created and not when an instance
referenceis obtained directly from another component instance. A more fundamental problemis
that CORBA's conventional object model merges all inherited interfaces into the same
namespace, so it isimpossible to simultaneously support multiple interface versions unless all
method signatures are different. A component-based API built on top of CORBA would therefore
not be able to offer very robust versioning capabilities.

This work focuses on component software support for evolutionary development and distributed
resources in operating systems. Component software infrastructures provide a plethora of other
interesting application support, such as transactions, licensing, and persistence. These areas are
beyond the scape of our current work.

3. COP Implementation

In this section, we describe the COP implementation. The first subsection describes how the
monolithic WIN32 API was factored into a set of interfaces. The second subsection then
discusses the COP run-time system, including its support for versioning, distributed computing,

and legacy applications.
3.1 Factoring a Monolithic API

Thefirst step in constructing a component-based APl is to split, or factor, the monolithic API into
aset of interfaces. After factoring, the entire API should be modeed by the set of interfaces, with
individual and independent OS resources and services modded by independent interfaces. A

good factoring scheme produces interfaces that are appropriatdy independent and provides the
benefits of clarity, effective versioning, and clean remoting of resources.

Our discussion here applies our factoring strategy to the Win32 API. (Our factoring of a 1000+
subset of Win32 islisted in Appendix A.) However, our strategy and techniques should be
generally applicable to monoalithic, procedural APIs.



. BOOL AdjustWindowRect (RECT *, DWORD, BOOL) ;
APl Subset: HANDLE CreateWindow(...);
int DialogBoxParam(...,HANDLE, ...);
int FlashWindow (HANDLE, ...);
HANDLE GetProp (HANDLE, ...);
int GetWindowText (HANDLE, ...) ;

Final Factorization:

IWin32WindowHandle I — IWi_n32DiangHandIe
FlashWindow() [>T DialogBoxParam()
\
IWin32WindowState IWin32WindowProperty
GetWindowText() GetProp()

IWin32WindowFactory
CreateWindow()

IWin32Utility
AdjustWindowRect()

Figure 2: The factoring of a simple subset of the Win32 API. Proposed interfaces are listed in bold and
prefixed with “IWin32". IWin32WindowHandl e aggregates the IWin32WindowState and
IWin32WindowProperty interfaces. IWin32DialogHandle inherits from IWin32WindowHandle, since
dialogs extend the functionality of plain windows.

Our factoring strategy involves three steps. First, the monolithic API calls are factored into
groups based on functionality. For example, all graphical window calls are placed in a
IWin32Window" group. Second, the calls in each group are factored into three sub-groups
according to their effect on OS resources. The effect is easily identifiable through the call
parameters and return value. A loaded OS resource is exported to the application as an opague
value called a kernel handle. Calls that create kernd handles

(i.e. OS resources) are moved to afactory interface, and calls that then query or manipulate the
these kernd handles are moved to a handle interface. Any other calls that do not directly involve
kernd handles (but may instead manipulate OS settings or provide generic services) are moved to
a utility interface.

In thethird step, we further refine the factorization. In many cases, a monolithic APl may contain
aset of callsthat acts on a number of different OS resources. For example, Win32 has several
calls that synchronization on a specified handle. The specified handle can represent a standard
synchronization resource, such as a mutual exclusion lock, or less common synchronization
resources such as processes or files. Our first two steps in factoring will not capture this
relationship. Continuing the example, the synchronization calls will be placed in a
IWin32SyncHandle interface, while the process and file calls will be placed in
IWin32ProcessHandle and IWin32FileHandle interfaces, respectively. For correctness though,
the process and file interfaces should also include the synchronization calls. Since the process and
file handles can be thought of as logically extending the functionality of the synchronization

! The IWin32 prefix denotes an interface to a Win32 APl component.



handle, we can modd this rdationship through interface inheritance. Both IWin32ProcessHandle
and IWin32FileHandle will inherit from the IWin32SyncHandle interface.

Figure 2 is an example of our factoring of the Win32 window functions. The example necessarily
focuses on a small, but representative, subset (six calls) of the 130+ window calls. The
AdjustWindowRect () call determines the necessary size of a window given specific
settings. The second call, CreateWindowEx (), creates a window, and the remaining calls
create a window, execute a dialog box, flash the window's title bar, query various window
properties, and return the current text in the window title bar.

These calls all operate on windows and so are first factored to a windows group. Next the calls
are further factored depending on the use of a kernd handles (denoted by HANDLE in Figure 2).
In the third step, we have further factored the IWin32WindowHandle into IWin32WindowState
and IWin32Property interfaces. The State and Property interfaces simply help to make the AP
easier to read. Theseinterfaces do not extend the IWin32WindowHandle interface, but instead
compose theinterface. We moded this relationship through interface aggregation. Also, we have
factored the dialog calls into their own interface, since the dialogs are logically extensions of
plain windows. Again this relationship is modeled through interface inheritance.

Properly applied, this factorization strategy will produce a set of interfaces, each with a tightly
defined set of calls to access the appropriate underlying OS resource. The factorization will
improve API clarity by clearly defining the specific methods for accessing each OS resource and
also therdationship between API calls. Versioning capabilities will also be improved since
modifications can be isolated within the affected interfaces. Finally, a good factorization
inherently encapsulates functionality (and the associated state), which facilitates the remoting of
OS resources.

Application

Legacy Translation Layer

@%%@Q{%@w{%@

COP Component Layer

Operating System

Figure 3: The COP Runtime system consists of a component layer that presents the OS APl and an
optional Legacy Trandation layer available for Win32 applications.



3.2 Run-time System

Overview

At run-time, the application accesses the OS through the COP component layer (see
Figure 3). These components implement the interfaces described in the previous
subsection. Aswith the interfaces they implement, the components can aso be roughly
classified as factories, handles, or utilities.

Most applications will instantiate factory components during initialization and then use the
factories to create OS resources during execution. A basic implementation of a factory component
first invokes the OS to create the desired resource. The OS will return a kernd handle to identify
the resource. This handle however is only valid on the local machine. To enable remote access to
the resource, the factory also creates an instance of the associated handle component and stores
the kernd handle in the instance s private state. Then rather than returning the kernel handle, the
factory returns a pointer to the instance of the handle component. The application makes
subsequent accesses to the resource through the instance pointer.

Utility components do not directly manipulate loaded kernel resources, but instead
provide generic services such as conversion between time formats or calculating the
necessary window rectangle to contain a specified client rectangle and the general
window elements. These components can instantiated whenever necessary, anywhere
throughout the system. Again once instantiated, all accesses will occur through the
instance pointer.

On asimple level then, the instance pointer provides COP with one of its main
advantages over typical modern OS APIs. The instance pointer uniquely names the
loaded resource throughout the system and also acts as a gateway to the underlying
remoting mechanism (COP/DCOM). With COP, applications can create resources
throughout the system and subsequently use the instance pointer to accessthemin a
location transparent manner.

Versioning

COP s other main advantage over modern OS APIsisits versioning capabilities. These
capabilities follow directly from our factoring strategy and COM’s robust versioning
mechanism. As described above, published COM interfaces are immutable and are
named by a globally unique ID. Clients can request specific interfaces and be assured of
desired call syntax and semantics.

To mark the specific interfaces, an application can store the appropriate IDs in its data segment.
Alternatively, the OS binary format could be extended to support static binding to a dynamic
interface in the same way that current operating systems support static binding to DLLs (or
shared libraries). With such an extension, an application binary would declare a set of interfaces
to which it should bind instead of a set of DLLs. Of course, COP-aware applications can query
dynamically for special interfaces.
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Figure 4: COPisableto instantiate OS resourcesin a number of locations: inside the client process (in-
process), in another process on the same machine (local), or on another machine (remote). The client
application can still access the resources in alocation transparent manner by virtue of the proxy manager,
proxy, and stub components.

One of the main contributions of COP is the ahility to instantiate OS resources anywhere
throughout a distributed system (see Figure 4). COP components can be instantiated
inside the application’s process (in-process), in another process on the same machine
(local), or on another machine (remote). As described in Section 2, in-process
components only experience the added overhead of an indirect function call. In the local
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case, a COM proxy/stub pair is used to marsha data across the process boundaries. The
local caseis less efficient than the in-process case, however it provides better fault
isolation. The remote case also uses the same general proxy/stub architecture. However,
in the remote case, COP aso includes an optional Proxy Manager that can be used to
optimize remote communication. A common Proxy Manager task isto cache remote data
in the hopes of avoiding unnecessary communication. For example, COP currently
caches information to improve the re-drawing of remote windows. The Win32 call
BeginPaint () signalsthe beginning of are-draw operation by creating a new drawing
context resource. In order to be available remotely, this resource must be wrapped by a
COP component. Rather than creating a new component instance on each re-draw
operation, COP currently caches a component instance (in the Proxy Manager) and re-
uses the instance for the re-draw wrapper.

Although hidden from the application, extra state is obviously required to maintain the
location transparency. For instance, the system must keep track the location of
component instances and data concerning the network connection. COM maintains this
state automatically. COP components often have little extra state to maintain. Asthe only
common example, handle components need to store the value of their associated kernel
handle. Optional Proxy Manager implementations may also require extra state, for
instance the cache of remote data mentioned above.

In aless common case, some components need extra state to maintain location
transparent results. The different execution context — in-process, local, or remote — may
cause some calls to execute differently. (We of course try to maintain the same operation
asthe norma Win32 API.) For example, thecall RegisterClass () registersa
window class” for use within a process. The call returns an error if the class is already
registered within the process. A naive component implementation could report this error
incorrectly in some cases. In COP, this call falls under the IWin32WindowUTtility
interface (since it does not target kernel handles). Consider the case where two
applications try to register the same class on the same remote machine. To access
RegisterClass (), both applications would create an instance of
IWin32WindowUTtility. Since these instance will both be remote and on the same
machine, COM creates the instances inside the same process to optimize performance.
Note that the instances are separate COM instances, but they do share the same process.
The first application to register the class will succeed, but the second application will fall
since the class has aready been registered inside the COM process. In attempting to
mimic standard Win32 operation, this error would be incorrect since the application
processes are separate. In COP, the IWin32WindowUtility implementation maintains a
list of classes each process has registered. The implementation can then determine if the
caller has already registered the specified class and avoid any spurious errors.

2 A window class specifies various window settings, such as the default cursor and background. Windows
are created based on registered window classes.
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Obstacles to Remoting OS Resources

Apart from state problems, there are other OS aspects that do pose remoting problems.
OS callback functions are a significant obstacle to remote execution. Numerous API
functions contain callback functions that the caller specifies and the OS invokes on
certain events. For example, the Win32 call EnumWindows () calls a specified callback
function for each top-level window on the screen. Callbacks are a problem when the
caler (i.e. the location of the callback function) is on a different machine from the OS
invoking the callback. COP solves this problem in the same way that it remotes OS
resources. COP wraps all callback functions with components. Instead of passing the
address of the callback function, COP passes a pointer to the component instance
wrapping the callback. The OS can then simply use the instance pointer to invoke the
callback function in alocation transparent manner.

Asynchronous events are the other main obstacle to remote execution. Some OS resources, such
as windows, synchronization objects, and asynchronous I/O, must respond to asynchronous
events. Windows must receive events such as mouse clicks, key strokes, and re-draw messages
and send them to the user-specified window procedure for processing. The OS must ensure
synchronization objects are given to requestors as semantics dictate. In asynchronous /O, the OS
must notify the caller when an |1/O operation is complete. In all these cases, the OS assumes all
involved parties reside on the same machine. COP therefore needs to provide extra support to
remote these types of resources.

COP remotes these resources by creating a special event agent on the remote machine.
This agent is responsible for fielding asynchronous events and forwarding them to the
client application. COP currently has support for remote windows. A window procedure
issimply a special case of a callback routine. The OS calls the window procedure on
every window event. At window creation time, COP creates a component instance to
wrap the specified window procedure. COP then invokes the CreateWindowEx ()
method of the IWin32WindowFactory instance on the remote machine.

The IWin32WindowFactory instance creates an | Win32WindowHandle instance, which
will manage the actua window. The IWin32WindowHandle instance creates the window
as part of initialization. Instead of specifying the application’s window procedure though,
IWin32WindowHandle specifies its own procedure. In addition stores the pointer to the
instance of the application’s window procedure, which was provided through a hook in
CreateWindowEx ().

COM actualy delivers remote function call requests to COP components through a
standard message queue. An idle component instance Smply spins on the message queue,
waiting for function call requests. Fortuitously, window events are also delivered through
the same message queue. In the course of polling for incoming requests, the
IWin32WindowHandle instance will aso discover pending window events. The instance
can then use the stored instance pointer to send the messages to the application’s window
procedure for processing.

12



Synchronization and asynchronous 1/O can be handled in the same manner — an event
agent can be instantiated on the remote machine. The agent will wait for the desired event
and then forward notification to the application via a callback component.

Legacy Translation Layer

Our ultimate intention is for applications to write directly to the COP API. To ease the transition
and to support legacy applications that can not be re-written, we have also built an optional COP
Tranglation layer (see Figure 3). This layer is responsible for intercepting the procedural Win32
calls and translating them to COP. To help minimize translation overhead, we have purposdy
designed the COP interface methods to use the same parameters as their Win32 counterparts.

Run-time interception is performed with the Detours package [Hunt, 1998]. One of this package' s
many features is the ability to instrument an application’s binary file and add a specified DLL to
the start of thelist loaded at program initialization. This ensures that the specified DLL isthefirst
loaded by the application. We use Detours place our COP startup DLL at the start of thelist. The
startup DLL then uses the Detours package to intercept and re-route Win32 calls to the Legacy
Tranglation layer. Detours performs the interception by re-writing the first few instructions of a
subroutine so that upon entrance, control is automatically transferred to a user-defined detour
function. The replaced instructions are combined with a jump instruction to form a trampoline.
The detour function can call the trampoline code to invoke the original subroutine, in our case the
original Win32 call.

The Legacy Trandation layer is then responsible for creating the COP factory and utility
instances as necessary. (The handle instances are created by the factory instances.) The layer of
course caches pointers to interfaces to avoid unnecessary overhead. This approach works well for
existing, single-machine Win32 applications, and also even allows the functionality of these
applications to be transparently extended. The Translation Layer can be configured to
automatically create resources on remote machines. For example, all window resources can be
started on a remote machine, very similar to X-Window [Scheifler, 1986] remote displays. We
have used this feature to remote the display of several existing Win32 applications. A remote
display however only leverages a small amount of COP's most power feature — the ability to
trivially connect to resources scattered throughout a distributed system.

Thedesign of the Trandlation layer is rdatively straightforward, but one significant problem did
arise. Our trandation layer intercepts all invocations of a specified call, even if the call isinvoked
from within another Win32 call. Re-entrancy problems can result. For example, COP allows
applications to access the Win32 registry® on remote machines, however COP must do so by
instantiating a registry (IWin32Registry) component on the remote machine. The component is
instantiated through the Win32 CoCreateInstanceEx () call, which itsdf accesses the
registry. If COP intercepted and handled the registry call from CoCreateInstanceEx (),
an infinite recursion would result. The Legacy Tranglation Layer tracks when an application is
inside a Win32 call and avoids COP handling if an infinite recursion would start. This problem
does not arise outside of legacy support, since all clients explicitly specify the execution context
when attaching to the COP API.

% The Win32 registry is a database of application configuration information.
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4. Results

Theinitial goal for COP is to support the development of the Millennium system. Millennium
will be a thin software layer that monitors the execution of a distributed component-based
application and intdligently distributes the component instances to maximize performance. As
components are distributed throughout the system, they still must be able to access remote OS
resources. COP provides that capability.

To this end, we have currently remoted the registry, windows, graphic device interface (the low-
level drawing routines), and file APIs. This subset consists of approximately 350 calls and is
enough to support the development of Millennium. This also includes the appropriate support in
the Legacy Trandation Layer.

The primary advantage of COP is enhanced functionality — better versioning support and the
ability to instantiate OS resources throughout a distributed system. To gauge the overhead
introduced by COP, we have performed two benchmark tests. Our tests were performed on a
Gateway 2000 machine with a Pentium |1 processor running at 266MHz. The machine has a
512K bytes off-chip cache and 64Mbytes of RAM. Our benchmark timings were calculated based
onthe Win32 QueryPerformanceCounter () cal, which has a resolution of
approximately 1 microsecond on our machine.

Our first benchmark focused on estimating the overhead of our Legacy Translation layer. Our test
measured the amount of time to make a“ null” Win32 call. (The call actually passes one
integer parameter and returns an integexr value.) Our benchmark application simply calls
a generic Win32 function, which COP intercepts and routes to the Tranglation Layer. The
Translation Layer then invokes the associated component instance. The component instance
immediately returns a success value, which the Trandlation Layer returns to the application.

As expected, an in-process component instance adds very little overhead in this case. The Win32
“null” call can be executed in 1.3 micraseconds. If the component instanceis instantiated as a
Local server (in ancther process), the Win32 “null” call time jumps to 200 microseconds. This
jump in timeis due to the crossing of procedure boundaries.

The second test we performed was to examine the full overhead on an existing Win32

application. We chose RegEdt32, atoal for editing the Win32 registry. At startup, the application
reads the entire registry and displays the contents on screen for editing. We measured thetime
required to start the application and read all d ements from the local registry. Wefed thisis an
interesting benchmark because it includes not only the time to make COP calls, but also thetime
to instantiate COP components. Our COP implementation patched all the involved registry calls,
and the startup phase involved a little over 9,500 registry calls, all handled by COP. We report the
average of three runs. Our machine was rebooted in between each run in order to remove effects
from the Window NT (file) cache.

The plain application (with no COP overhead) starts up in 0.833 seconds. The application using
COP in-process components starts in 1.118 seconds, a 34% increase. A large amount of this
overhead is due to the cost of instantiating the components. In a normal situation, this overhead
would be amortized. The application using COP Local components startsin 5.296 seconds, with
the increase due to the frequent process boundary craossings.
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We did not benchmark COP with remote components, since the choice of network will have such
a strong influence on the results. We fed that these results show that in-process COP components
add only a minimal amount of overhead, while providing benfits in versioning management.
When COP components are moved to remote machines, the overhead will be much higher, but
network transmission time will still be the dominant concern. Regardless, the functionality of the
system will be much greater — an application can easily access scattered, remote OS resources.

5. Related Work in Operating Systems

Kernd call interposition is the process of intercepting kernd calls and re-routing them to pieces
of extension code. There has been alarge amount of work, published and unpublished, in this
area. Interposition Agents [Jones, 1993] in particular was highly influential to our work. This
work demonstrated that a kernd call interface (Berkeley UNIX 4.3) could be factored into a small
set of abstractions, which were then used as the basis for an object oriented interposition toolkit.
Another recent system of noteis SLIC [Ghormley, 1998]. This system allows multiple
interposition extensions to be composed at run-time, but the system is not object or component-
based. SLIC and Interposition Agents can be considered full-featured interposition systems. COP
uses interposition techniques, but our goal is not a general interposition system. Our goal is a new
style of API that provides versioning and distributing computing benefits. A general interposition
system should be built on top of our component-based API.

As we consider a component-based OS API here, other research efforts are considering building
an entirdy component-based OS. The OS could then be assembled dynamically in order to reflect
the execution environment. Two such examples are MM Lite [Heander, 1998] and Joed [Oberon,
1998]. Both of these operating systems can drop unnecessary components, such as virtual
memory or network communication, when running on a slim embedded processor platform. To
our knowledge, none of this work addresses API versioning or the naming of remote OS
resources. Also, importantly this work requires building a kernd from scratch, whereas our work
can be easily applied to existing commercial operating systems.

Thework closest to our own is the Inferno distributed operating system [Dorward, 1997]. In this
system, all OS resources are treated as files — that is named and manipulated like files. This
unique approach provides the advantage of a global, hierarchical namespace for all resources, but
also the disadvantage of a rather limited access interface. In contrast, our approach in COP retains
the natural semantics for manipulating remote resources.

There have been numerous projects that have focused on remoting small subsets of OS
functionality. X Windows [Scheifler, 1986] provides remote access to a system's graphical user
interface. Microsoft's Terminal Server [Microsoft, 1997] does the same for Windows NT
platforms. Distributed file systems like NFS [Lyon, 1985] provide remote access to files. Unlike
these systems, a component-based API targets the remoting of all OS resources.

6. Conclusions

Component software provides excellent support for the evolutionary development of
software and for distributed computing. By basing an OS API on components, a system
can gain considerable leverage in these two areas. The OS can export different versions
of the API, allowing the API to be modified without jeopardizing legacy applications.
Instead the support for legacy applications can be dynamically loaded. By modeling the
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OS resources as components in the API, a global namespace is created. An application
can instantiate and manipulate any number of resources scattered throughout a distributed
system. Natural access semantics for the remote resources is maintained by virtue of the
encapsulation of functionality inherent in components. Applications will no longer have
to rely on ad-hoc methods to access remote resources.

Future work on COP will focus on increasing coverage of the Win32 API. (There are
thousands of callsinthe API.) Also we are interested in researching methods to provide
consistent, global view and management of resources throughout a cluster and also for
providing fault tolerance and security throughout the system.
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Appendix A: Proposed Factoring of a 1000+ subset of Win32

This Appendix lists the interface hierarchy and factoring of a 1000+ subset of Win32. The subset
contains the necessary Win32 calls to support three OS-intensive applications: Microsoft
Picturelt!, the Microsoft Developers’ Network Corporate Benefits sample, and Microsoft
Research’s Octarine. Thefirst isa commercial image manipulation package, the second is a
widdy distributed sample three-tiered, client-server application, and the third is a prototype

COM -based integrated productivity application. This subset does not cover DirectX or ODBC,
but we fed it does cover many of the mgjor areas of functionality in Win32.

All obsolete Windows 3.1 (16-bit) calls have been placed in IWin16 interfaces. In

implementation, the top-levd call prototypes will mirror their WIN32 counterparts, with the
appropriate parameters replaced by interface pointers. Note that these calls can wrap lower-leve
methods that implement different parameters. For example, the lower level methods could return
descriptive HRESUL Ts directly and the WIN32 return types as OUT parameters. Also, we expect
ANSI API calls to be implemented as wrappers of their UNICODE counterparts. The wrappers
will simply perform argument trandation and then invoke the counterpart.

The next subsection lists the interface hierarchy. Inheritance relationships are clearly shown by
the connecting lines, while aggregation is pictured by placing one interface block within another.

Thefinal subsection then lists the call factorization. In the factorization list, “X : Y” denotes that
XinheritsfromY, and“Y € X" denotesthat X isaggregated into Y.

19



Interface Hierarchy

IWinApi

L IWIin32Api

— IWin32Handle

— IWin32SecurityToken

— IWin32Module

. IWin32SyncHandle

— IWin32Console

— IWin32Event

— IWin32Mutex

IWin32Process

IWin32ProcessContext

— IWin32Semaphore

IWin32Thread

IWin32ThreadContext

IWin32ThreadMessage

— IWin32WaitableTimer

IWin32ConsoleFactory

IWin32EventFactory

IWin32FileMappingFactory

IWin32ModuleFactory

IWin32MutexFactory

IWin32PipeFactory

IWin32ProcessFactory

IWin32SecurityTokenFactory

IWin32SemaphoreFactory

IWin32WaitableTimerFactory

IWin32FileFactory

IWin32FileSystem

IWin32FileUtility

IWin32AtomicUtility

— IWin32AsynclOHandle

— IWin32File

IWin32FindFile

— IWin32FileMapping

IWin32Pipe

20




IWinApi

IWin32Api
IWin32DDEUtility
— IWin32Memory
— IWin32DDEFactory
IWin32VirtualMemory | [ \Win32DDE
IWin32Heap
— IWin32VirtualMemoryFactory — IWin320LE
— IWin32HeapFactory — IWin320LEUtility
— IWin32Keyboard — IWin320OLEFactory
| Iwin32KeyboardLayout — IWin320OLEMarshalUtility

— IWin32KeyboardLayoutFactory | IWin320leMoniker

— IWin320leMonikerFactory

— IWin32CriticalSection

— IWin320leStream

— IWin32CriticalSectionFactory

— IWin320leStg

— IWin32Printer -
— IWin320leStgFactory

— IWin32PrinterFactory

— IWin32SecurityAccess

— IWin32PrinterUtility

— IWin32SecurityACL

— IWin32Regist . . .
n gty — IWin32SecurityACLUtility

— IWin32Resource

— IWin32SecurityDescriptor

— IWin32Drop
— IWin32SecurityDescriptorFactory

— IWin32EnvironmentUtility

— IWin32Shell
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IWinApi

L IWin32Api
IWin32Window IWin32WindowUtility
IWin32WindowState
] IWin32WindowFactory
IWin32WindowProperties - -
IWin32DialogFactory
IWin32Dialog -
IWin32Menu
IWin32DialogState IWin32MenuState
IWin32DeviceContext IWin32MenuFactory

IWin32DeviceContextFont

IWin32DeviceContextFactory

IWin32DeviceContextCoordinates

IWin32Path

IWin32DeviceContextProperties

IWin32EnhMetaFileFactory

IWin32ScreenClip

IWin32BitmapFactory

IWin32EnhMetaFile

IWin32BrushFactory

IWin32GDIObjFactory

IWin32FontFactory

IWin32PaletteFactory

IWin32PaletteSystem

IWin32PenFactory

IWin32Print
— IWin32GDIObj
— IWin32Bitmap — IWin32Palette
— IWin32Brush — IWin32Pen
— IWin32Font — IWin32Region

IWin32RegionFactory
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IWinApi

— IWin32Api
— IWin32Accel IWin32GLU
— IWin32AccelFactory IWin32GL
— IWin32Atom IWin32lcon
— IWin32AtomFactory IWin32lconFactory
— IWin32Beep IWin32MWP
— IWin32Clipboard IWin32Rect

— IWin32ClipboardFactory

IWin32SystemUTtility

— IWin32Colorspace

IWin32StringUtility

— IWin32ColorspaceFactory

IWin32WindowsHook

— IWin32Cursor IWin32WindowsHookFactory
— IWin32CursorFactory IWin32WindowsHookUTtility
— IWin32CursorUtility IWin32Utility
— IWin16Api
IWinl6Handle IWin16FileFactory
L IWinl6File IWinl6ProcessFactory

IWinl6Memory

IWin16GlobalMemory

IWinl6LocalMemoryFactory

IWinl6LocalMemory

IWin16GlobalMemoryFactory

IWin16DeviceContext

— IWinl6MetaFile

IWin16MetaFileFactory

IWin16Registry

IWin16Profile
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Call

Factorization

Generic Handles
IWin32Handle

CloseHandle
Atoms

IWin32Atom

Global DeleteAtom
Global GetAtomNameA

IWin32AtomFactory
Global AddAtomA
Clipboard

IWin32Clipboard

ChangeClipboardChain
CloseClipboard
GetClipboardData
GetClipboardFormatNameA
GetClipboardFormatNamewW
GetClipboardOwner
GetClipboardViewer
GetOpenClipboardWindow
IsClipboardFormatAvailable
SetClipboardData

IWin32ClipboardFactory
RegisterClipboardFormatA
RegisterClipboardFormat\W

Console

IWin32Console : IWin32SyncHandle
GetConsoleMode
GetNumberOfConsol elnputEvents
PeekConsol elnputA
ReadConsoleA
ReadConsol elnputA
SetConsoleMode
SetStdHandle
WriteConsol eA

IWin32ConsoleFactory

AllocConsole
GetStdHandle

Drawing
IWinl16DeviceContextFont :
IWinl16DeviceContext

EnumFontFamiliesA
EnumFontsw
GetCharWidthA
GetTextExtentPointA
GetTextExtentPointW

IWinl6MetaFile : IWin16DeviceContext

CloseMetaFile
CopyMetaFileA
DeleteMetaFile
EnumMetaFile
GetMetaFileA

GetM etaFileBitsEx
GetWinMetaFileBits
PlayMetaFile
PlayMetaFileRecord

IWinl6MetaFileFactory
GetEnhMetaFileA
SetEnhM etaFileBits
SetM etaFileBitsEx

IWin32Bitmap:IWin32GDIObject
CreatePatternBrush
GetBitmapDimensi onEx
GetDIBits
SetBitmapDimensionEx
SetDIBits
SetDIBitsToDevice

IWin32BitmapFactory
CreateBitmap
CreateBitmaplndirect
CreateCompatibleBitmap
CreateDIBSection
CreateDIBitmap
CreateDiscardableBitmap

IWin32BrushFactory
CreateBrushindirect
CreateDIBPatternBrushPt
CreateHatchBrush
CreateSolidBrush

IWin32Colorspace
DeleteCol orSpace

IWin32ColorspaceFactory
CreateCol or SpaceA

IWin32Cursor
DestroyCursor
SetCursor

IWin32CursorFactory
GetCursor

IWin32CursorUtility
ClipCursor
GetCursorPos
SetCursorPos
ShowCursor

IWin32DeviceContext &
IWin32DeviceContextFont,

24



IWin32DeviceContextCoords,
IWin32Path,
IWin32DeviceContextProperties,
IWin32ScreenClip

AngleArc

Arc

ArcTo

BitBIt

Chord

CreateCompatibleDC

DeleteDC

DrawEdge

DrawEscape

DrawFocusRect

DrawFrameControl

Drawlcon

DrawlconEx
DrawStateA

DrawTextA
DrawTextW
Ellipse
EnumObjects
ExtFloodFill
ExtTextOutA
ExtTextOutW
FillRect
FillRgn
FloodFill
FrameRect
FrameRgn
GdiFlush
GetCurrentObject
GetCurrentPositionEx
GetPixel
GrayStringA
GrayStringW
InvertRect
InvertRgn
LineDDA
LineTo
MaskBlIt
MoveToEXx
PaintRgn
PatBIt

Pie

PIgBIt
PolyBezier
PolyBezierTo
PolyDraw
PolyPolygon
PolyPolyline
Polygon
Polyline

PolylineTo
Rectangle

ReleaseDC
ResetDCA
RestoreDC
RoundRect

SaveDC
ScrolIDC

SetPixel
SetPixelV
StretchBlIt
StretchDIBits
TabbedTextOutA
TextOutA
TextOutw
WindowFromDC

IWin32DeviceContextCoordinates

DPtoLP
LPtoDP

IWin32DeviceContextFactory

CreateDCA
CreateDCW
Createl CA
Createl CW
CreateMetaFileA
CreateMetaFilewW

IWin32DeviceContextFont

EnumFontFamiliesExA
GetAspectRatioFilterEx
GetCharABCWidthsA
GetCharABCWidthsFloatA
GetCharABCWidthsw
GetCharWidth32A
GetCharWidth32w
GetCharWidthFloatA
GetFontData
GetGlyphOutlineA
GetGlyphOutlinewW
GetKerningPairsA
GetOutlineTextMetricsA
GetTabbedTextExtentA
GetTextAlign
GetTextCharacterExtra
GetTextCharsetInfo
GetTextColor

GetTextExtentExPointA
GetTextExtentExPointW

GetTextExtentPoint32A
GetTextExtentPoint32W
GetTextFaceA
GetTextMetricsA
GetTextMetricswW

25



SetMapperFlags
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification

IWin32DeviceContextProperties
GetArcDirection
GetBkColor
GetBkMode
GetBoundsRect
GetBrushOrgEx
GetColorAdjustment
GetCol orSpace
GetDeviceCaps
GetMapMode
GetNearestColor
GetPolyFillMode
GetROP2
GetStretchBlItM ode
GetViewportExtEx
GetViewportOrgEx
GetWindowEXxtEx
GetWindowOrgEx
OffsetViewportOrgEx
OffsetWindowOrgEx
PtVisible
RectVisible
ScaleViewportExtEx
Scal eWindowExtEx
SetArcDirection
SetBkColor
SetBkMode
SetBoundsRect
SetBrushOrgEXx
SetCol orAdjustment

SetCol orSpace
SetDIBColorTable

SetiCMMode
SetMapMode
SetMiterLimit
SetPolyFillMode
SetROP2
SetStretchBltMode
SetViewportExtEx
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx
UpdateColors
IWin32EnhMetaFile:
IWin32DeviceContext
CloseEnhMetaFile
CopyEnhMetaFileA

CreateEnhMetaFileA
CreateEnhMetaFilewW
DeleteEnhMetaFile
EnumEnhMetaFile

Gdi Comment
GetEnhMetaFileBits
GetEnhM etaFileDescriptionA
GetEnhM etaFileDescriptionW
GetEnhM etaFileHeader
GetEnhM etaFilePal etteEntries
PlayEnhMetaFile

PlayEnhM etaFileRecord

IWin32EnhMetaFileFactory
SetWinMetaFileBits

IWin32FontFactory
CreateFontA
CreateFontIndirectA
CreateFontIndirectW
CreateFontW

IWin32GDIObject
DeleteObject
GetObjectA
GetObjectType
GetObjectW
Sel ectObject
UnrealizeObject

IWin32GDIObjectFactory
GetStockObject

IWin32Icon
Copylcon
Destroylcon
Getlconinfo

IWin32lconFactory
Createlcon
CreatelconFromResource
Createl conFromResourceEx
Createlconlndirect
CreateMenu

IWin32Palette : IWin32GDIObject
AnimatePal ette
GetNearestPal ettelndex
GetPaletteEntries
ResizePalette
SelectPalette
SetPaletteEntries

IWin32PaletteFactory
CreateHalftonePal ette
CreatePalette

IWin32PaletteSystem
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GetSystemPal etteEntries
GetSystemPal etteUse
RealizePalette

IWin32Path
AbortPath
BeginPath
CloseFigure

EndPath
Fill Path

FlattenPath
GetMiterLimit
GetPath
PathToRegion
StrokeAndFillPath
StrokePath
WidenPath

IWin32PenFactory
CreatePen
CreatePenindirect
ExtCreatePen

IWin32Print : IWin32DeviceContext

AbortDoc
EndDoc
EndPage
Escape
ExtEscape
SetAbortProc
StartDocA
StartDocW
StartPage

IWin32Rect
CopyRect
Equal Rect
InflateRect
IntersectRect
IsRectEmpty
OffsetRect
PtinRect
SetRect
SetRectEmpty
SubtractRect
UnionRect

IWin32Region : IWin32GDIObject

CombineRgn
EqualRgn
GetRegionData
GetRgnBox
OffsetRgn
PtinRegion
RectInRegion
SetRectRgn

IWin32RegionFactory
CreateEllipticRgn
CreateEllipticRgnindirect
CreatePol yPolygonRgn
CreatePolygonRgn
CreateRectRgn
CreateRectRgnindirect
CreateRoundRectRgn
ExtCreateRegion

IWin32ScreenClip :
IWin32DeviceContext

ExcludeClipRect
ExcludeUpdateRgn
ExtSelectClipRgn
GetClipBox
GetClipRgn
IntersectClipRect
OffsetClipRgn
SelectClipPath
SelectClipRgn

Environment

File

IWin32EnvironmentUtility
FreeEnvironmentStringsA
FreeEnvironmentStringswW
GetEnvironmentStrings

GetEnvironmentStringsw
GetEnvironmentVariableW

SetEnvironmentVariableA
SetEnvironmentVariableW

IWinl16File : IWinl6Handle
_hread
_hwrite

_ldose
_llseek

_lopen

_lwrite
IWinl6FileFactory

OpenFile

_lcreat

_Iread

IWin32File : IWin32AsynclOHandle

FlushFileBuffers
GetFilelnformationByHandle
GetFileSize

GetFileTime

GetFileType

LockFile

LockFileEx

ReadFile

ReadFileEx
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SetEndOfFile
SetFilePointer
SetFileTime
UnlockFile
WriteFile
WriteFileEx

IWin32FileFactory
CreateFileA
CreateFilew
OpenFileMappingA
IWin32FileMapping:
IWin32ASynclOHandle
MapViewOfFile
UnmapViewOfFile

IWin32FileMappingFactory
CreateFileMappingA

IWin32FileSystem
CopyFileA
CopyFileEx
CopyFilew
CreateDirectoryA
CreateDirectoryExA
CreateDirectoryExW
CreateDirectoryW
DeleteFileA
DeleteFilew
GetDiskFreeSpaceA
GetDiskFreeSpaceEx
GetDriveTypeA
GetDriveTypeW
GetFileAttributesA
GetFil eAttributesw
GetFileVersioninfoA
GetFileVersioninfoSizeA
GetLogical DriveStringsA
GetLogical Drives
GetVolumelnformationA
GetV olumelnformationW
MoveFileA
MoveFileEx
MoveFilew
RemoveDirectoryA
RemoveDirectoryW
SetFileAttributesA
SetFileAttributesw
UnlockFileEx
VerQueryValueA

IWin32FileUtility
AreFileApisANS
CompareFileTime
DosDateTimeToFileTime

FileTimeToDosDateTime
FileTimeToLocalFileTime
FileTimeToSystemTime
GetFullPathNameA
GetFullPathNamew
GetShortPathNameA
GetShortPathNamewW
GetTempFileNameA
GetTempFileNamew
GetTempPathA

GetTempPathwW
LocalFileTimeToFileTime

SearchPathA
SystemTimeToFileTime

IWin32FindFile : IWin32ASynclOHandle
FindClose
FindCloseChangeNatification
FindFirstFileEx
FindNextChangeNoatification
FindNextFileA
FindNextFilew

IWin32FindFileFactory
FindFirstChangeNotificationA
FindFirstChangeNotificationW
FindFirstFileA
FindFirstFilew

Interprocess Communication

IWin32DDE
DdeAccessData
DdeDisconnect
DdeFreeDataHandle
DdeFreeStringHandle
DdeUnaccessData

IWin32DDEFactory
DdeClientTransaction
DdeConnect
DdeCreateStringHandleA

IWin32DDEUtility
DdeGetLastError
DdelnitializeA
ReuseDDEIParam
UnpackDDEIParam

IWin32Pipe : IWin32AsynclOHandle
PeckNamedPipe

IWin32PipeFactory
CreatePipe
Keyboard
IWin32Keyboard
GetAsyncKeyState

28



GetKeyState

GetK eyboardState
MapVirtual KeyA
SetKeyboardState
VKK eyScanA
keybd_event

IWin32KeyboardLayout
ActivateK eyboardL ayout

IWin32KeyboardLayoutFactory

GetK eyboardL ayout
Memory

IWinl6GlobalMemory : IWin1l6Memory

GlobalFlags
GlobalFree
GlobalLock
GlobalReAlloc
GlobalSize
GlobalUnlock

IWin16GlobalMemoryFactory
GlobalAlloc
GlobalHandle

IWin32Heap : IWin32Memory
HeapAlloc
HeapCompact
HeapDestroy
HeapFree
HeapReAlloc
HeapSize
HeapValidate
HeapWalk

IWin32HeapFactory

GetProcessHeap
HeapCreate

IWinl6LocalMemory : IWinl6Memory

LocalFree
LocalLock
LocalReAlloc
LocalUnlock

IWin32LocalMemoryFactory
LocalAlloc

IWinl6Memory
IsBadCodePtr
IsBadReadPtr
IsBadStringPtrA
IsBadStringPtrw
IsBadWritePtr

IWin32Memory
IsBadCodePtr

IsBadReadPtr
IsBadStringPtrA
IsBadStringPtrw
IsBadWritePtr

IWin32VirtualMemory : IWin32Memory

VirtualFree
Virtual Lock
Virtual Protect
Virtual Query
VirtualUnlock

IWin32VirtualMemoryFactory

VirtualAlloc

IWin32Module : IWin32Handle

DisableThreadLibraryCalls
EnumResourceNamesA
FindResourceA
FreelLibrary
GetModuleFileNameA
GetModuleFileNamew
GetProcAddress
LoadBitmapA
LoadBitmapW
LoadCursorA
LoadCursorW
LoadlconA

LoadlconW
LoadimageA
LoadMenuA
LoadMenulndirectA
LoadStringA

Sizeof Resource

IWin32ModuleFactory

GetModuleHandleA
GetM oduleHandlew
LoadLibraryA
LoadLibraryExA
LoadLibraryW

Multiple Window Position
IWin32MWP

BeginDeferWindowPos
DeferWindowPos
EndDeferWindowPos

IWin320le

CoDisconnectObj ect
CoL ockObjectExternal
CoRegisterClassObject
CoRevokeClassObject
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IWin320leFactory
BindMoniker
CoCreatelnstance
CoGetClassObject
CoGetInstanceFromFile
CreateDataAdviseHol der
CreateDataCache
CreatelockBytesOnHGIl obal
CreateOleAdviseHol der
CreateStreamOnHGlI obal

OleCreate
OleCreateDefaultHandl er

OleCreateFromData
OleCreateFromFile
OleCreatelink
OleCreatelinkFromData
OleCreateLinkToFile
OleGetClipboard
OleLoad

IWin320leMarshalUtility
CoMarshalInterface
CoReleaseMarshal Data
CoUnmarshalInterface

IWin320leMoniker
CreateGenericComposite
CreateltemMoniker
CreatePointerM oniker
CreateURLMoniker
MkParseDisplayName
M onikerCommonPrefixWith
MonikerRelativePathTo

IWin320leMonikerFactory
CreateBindCtx
CreateFileMoniker
GetRunningObjectTable

IWin320leStg
OleConvertlStorageToOLESTREAM
OleSave
ReadClassStg
ReleaseStgMedium
WriteClassStg
WriteFmtUser TypeStg

IWin320leStgFactory
StgCreateDocfile
StgCreateDocfileOnlLockBytes
StglsStorageFile
StgOpenStorage

IWin320leStream
GetHGl obal FromStream
OleConvertOLESTREAMTol Storage

Olel.oadFromStream
OleSaveToStream
ReadClassStm
WriteClassStm

IWin320leUtility

CLSIDFromProgID
CLSIDFromString
CoCreateGuid
CoFileTimeNow
CoFreeUnusedLibraries
CoGetMalloc
Colnitialize
CoRegisterM essageFilter
CoTaskMemAlloc
CoTaskMemFree
CoTaskMemRealloc
CoUninitiaize
GetClassFile

GetHGI obal FromILockBytes
IIDFromString
OleGetlconOfClass
Olelnitiaize
OlelsRunning
OleRegEnumVerbs
OleRegGetMiscStatus
OleRegGetUser Type
OleSetClipboard
OleUninitialize
ProgIDFromCLSID
PropVariantClear
RegisterDragDrop
RevokeDragDrop
StringFromCLSID
StringFromGUID2
StringFromlID

OpenGL
IWin32GL

glBegin
glClear
glClearColor
glClearDepth
glColor3d
glEnable

g End

glFinish

g MatrixMode
g/Normal 3d

gl PolygonM ode
gl PopMatrix
glPushMatrix
ol Rotated
glScaled
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g Translated
gVertex3d

g Viewport

wgl CreateContext
wgl GetCurrentDC
wglMakeCurrent

IWin32GLU

Printer

gluCylinder
gluDeleteQuadric
gluNewQuadric
gluPerspective
gluQuadricDrawsStyle
gluQuadricNormals

IWin32Printer

ClosePrinter
DocumentPropertiesA
GetPrinterA

IWin32PrinterFactory

OpenPrinterA
OpenPrinterW

IWin32PrinterUtility

Process

DeviceCapabilitiesA
EnumPrintersA

IWinl6ProcessFactory

IWin32Process : IWin32SyncHandle €

WinExec

IWin32ProcessContext
DebugBreak
ExitProcess

Fatal AppExitA

Fatal Exit
GetExitCodeProcess
GetCurrentProcessld

GetProcessVersion
GetProcessWorkingSetSize
OpenProcessToken
SetProcessWorkingSetSize
TerminateProcess

Unhandl edExceptionFilter

IWin32ProcessContext

GetCommandLineA
GetCommandLineW
GetCurrentDirectoryA
GetCurrentDirectoryW
GetStartuplnfoA
SetConsol eCtrlHandler
SetCurrentDirectoryA
SetCurrentDirectoryW

SetHandl eCount
SetUnhandl edExceptionFilter

IWin32ProcessFactory

CreateProcessA
CreateProcesswW
OpenProcess

IWinl16Profile

GetPrivateProfilelntA
GetPrivateProfileStringA
GetPrivateProfil eStringW
GetProfilelntA
GetProfilelntwW
GetProfileStringA
GetProfileStringW
WritePrivateProfileStringA
WritePrivateProfileStringw
WriteProfileStringA
WriteProfil eStringW
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