
Component-based Operating System
APIs: A Versioning and Distributed

Resource Solution

Robert J. Stets†
Galen C. Hunt

Michael L. Scott†

July 1999

Technical Report
MSR-TR-99-24

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

†Department of Computer Science
University of Rochester
Rochester, NY 14627

 1

Component-based Operating System APIs: A Versioning and
Distributed Resource Solution

Robert J. Stets†, Galen C. Hunt, and Michael L. Scott†

Microsoft Research †Department of Computer Science
One Microsoft Way University of Rochester
Redmond, WA 98052 Rochester, NY 14627
galenh@microsoft.com {stets, scott}@cs.rochester.edu

Abstract

Component software techniques have been developed to facilitate software reuse. State
and functionality are encapsulated inside components with the goal of limiting program
errors due to implicit interactions between components. Late binding of components
allows implementations to be chosen at run-time, thereby increasing opportunities for
reuse. Current component infrastructures also provide version management capabilities
to control the evolutionary development of components. In addition to the general goal of
reuse, component software has also focused on enabling distributed computing. Current
component infrastructures have strong support for distributed applications.

By leveraging these strengths of component software, a component-based operating system (OS)
application programmer interface (API) can remedy two weaknesses of current monolithic,
procedural APIs. Current APIs are typically very rigid; they can not be modified without
jeopardizing legacy applications. This rigidity results in bloat in both API complexity and support
code. Also current APIs focus primarily on the single host machine. They lack the ability to name
and manipulate OS resources on remote machines. An API constructed entirely of components
can leverage version management and distributed computing facilities. Version management can
be used to identify legacy APIs, which can then be dynamically loaded. OS resources modeled as
components can be instantiated on remote machines and then manipulated with the natural access
semantics.

We have developed the COP system as prototype component-based API for Windows NT. The
system provides an API with version management capabilities and with a method for naming and
manipulating remote OS resources. The advantages are gained with a minimum of overhead and
without sacrificing legacy compatibility.

 2

1. Introduction

Component software methodology has primary been motivated by the desire for software re-use.
As described by Szyperski [1998], software components are “binary units of independent
production, acquisition, and deployment that interact to form a functioning system.” The
methodology itself focuses on independence by establishing a strict encapsulation of state and
functionality inside each component. This encapsulation helps facilitate reuse. A significant
obstacle to effective reuse is the natural evolution of software. Evolution creates multiple versions
of the component, a number of which may be actively used by clients. The ability to manage
multiple versions of code is generally called versioning and is addressed by most current
component infrastructures. Also, as component software designers have always considered the
distributed application domain important, infrastructures have extensive support for the operation
of distributed components.

These advantages of software components can be leveraged to eliminate shortcomings present in
current operating system (OS) application programmer interface (API) designs. OS APIs are
typically monolithic procedural interfaces addressing single-machine requirements. Their design
limits options for evolutionary development and also complicates application development for
distributed systems.

During an operating system's lifetime, its functionality will change, and these changes must be
reflected in the API. A set of API calls may become obsolete or their semantics may change. In
an ideal world, obsolete calls would be deleted and calls with modified semantics (but
unmodified parameters and return values) would remain the same. Unfortunately, calls can
neither be deleted nor can their semantics change. Such API modifications would jeopardize the
operation of legacy applications.

Legacy applications are an important concern for today's operating systems. Installation of a new
operating system version is already expensive (in time and money). If new application versions
are also required, the expense is only compounded. (In some cases, new versions may not even be
feasible.) Operating system evolution must be designed to support legacy applications. Since any
changes to the API can break legacy applications, API calls typically become fixed once
published. Obsolete calls can never be deleted, and new call semantics must always be introduced
through new calls. Backward compatibility thus leads to bloat in both the API and the supporting
code.

For example, the UNIX 98 specification (endorsed by IBM, Sun, and NCR) lists 21 calls reserved
for legacy support. Many of these calls have been superceded by new, more powerful calls (e.g.
the signal management function, signal(), has been replaced with the more powerful
sigaction()). Apple’s Carbon implementation of the Macintosh OS API deprecates over
2100 functions for the earlier MacOS 8.5 implementation. Win32, the primary API for
Microsoft's family of 32-bit operating systems, contains over 1700 legacy API calls, including
146 calls providing support for its predecessor, Windows 3.1.

Also the distributed computing paradigm is not well supported by typical operating systems APIs.
Virtually all APIs do of course have support for inter-machine communication, but high-level
support for accessing remote OS resources is lacking. The primary omission is a uniform method
of naming remote resources, for example windows, files, and synchronization objects. This

 3

omission prevents an application from easily using resources scattered throughout a distributed
system.

A multi-user game serves as a good example. This class of applications needs to open windows,
sound channels, and input devices (e.g. joysticks) on numerous machines throughout a distributed
system. With typical OS APIs, these applications must rely almost entirely on ad-hoc
mechanisms to access the necessary remote resources.

The above two weaknesses in modern OS APIs can be eliminated by the application of
component software methodology. A component-based API is constructed entirely of software
components, with each component modeling an OS resource. As components encapsulate their
state and functionality, all access and manipulation functions for a particular resource type are
contained in its component. The factoring inherent in a component-based API allows for efficient
versioning, and the state and access encapsulation allow OS resources to be instantiated on
remote machines.

To clarify, we only propose to componentize the API. The underlying OS can be monolithic,
micro-kernel, or component-based. By componentizing the API, we are controlling the access to
the OS. Control at this point is sufficient to provide API versioning and also to expose OS
resources outside of the host machine. The process of making resources available remotely is
called remoting.

In this paper, we describe COP (Component-based Operating system Proxy), a prototype of a
componentized API. The COP system acts a “traffic cop” that directs OS requests to the
appropriate version or resource location. The system currently targets the Win32 API and is
implemented on top of Windows NT 4.0. Our implementation currently covers approximately
350 Win32 calls, enough to provide needed development support for a separate project in
distributed component applications. We have found that COP only introduces a minimum of
overhead in the local case, while providing outstanding OS support for evolutionary development
and distributed applications.

2. Component Software Overview

In this section, we will provide a brief overview of the component software methodology and two
popular infrastructures. Components have been an extremely rich area of ongoing work during
the last ten years. Necessarily, we will only focus on aspects directly related to this paper. To
begin, we will provide definitions for some important terms used in this paper.

The term component was specifically defined in the previous section. Roughly speaking, a
component provides functional building blocks for a complex application. An interface is a well-
known contract specifying how a component's functionality is accessed. Interfaces take the form
of a set of function or method calls, including parameter and return types. A component instance
refers to a component that has been loaded into memory and is accessible by a client. All
communication between component instances occurs through interfaces. Component software
fundamentally maintains a strict separation between the interface and the implementation. This
separation is a key requirement for enforcing components to encapsulate their functionality and
for guaranteeing component independence.

 4

Independence allows components to be composed without introducing implicit interactions that
may lead to subtle program errors. The ability to compose is also enhanced by allowing one
component to be substituted for another, so long as the substitute provides the same, or an
extension of, the functionality of the original. Through polymorphism components with differing
implementations of the same interface may be interchanged transparently. A final issue in
composition is the point in time at which component choices are bound. Late binding allows an
application to choose components dynamically.

Independence, polymorphism, and late binding are methodological concepts that facilitate reuse
in component software. Component infrastructures also address related implementation issues,
namely mixed development languages and execution platforms. All popular infrastructures
provide mechanisms that allow development in multiple languages and execution across multiple
hardware platforms.

Two of the more popular component infrastructures are Microsoft’s Component Object Model
(COM) [Microsoft, 1995] and the Object Management Group’s Common Object Request Broker
Architecture (CORBA) [Object Management Group, 1996]. Although originally motivated by
different goals, they have largely converged to promote software reuse independent of
development language in both a single-machine and distributed computing environment. COP is
built on top of COM, and so the next subsection will provide an overview of COM. The
following subsection will then contrast the differences between COM and CORBA, focusing
especially on the effects on a system such as COP.

2.1. Component Object Model (COM)

COM was developed by Microsoft to address the need for cross-application interaction. As the
work evolved, the Distributed COM (DCOM) extensions [Microsoft, 1998] were introduced to
support distributed computing. COM provides language independence by employing a binary
standard. Component interfaces are implemented as a table of function pointers, which are called
vtables because they mimic the format of C++ virtual function tables. References to component
instances are referred to as interface pointers. These are actually double-indirect pointers to the
vtable. The extra level of indirection is provided as an implementation convenience. For example,
an implementation can attach useful information to the interface pointer, information that will
then be shared by all references to the interface.

In keeping with component software methodology, COM maintains a strict separation between a
component interface and implementation. COM in fact says nothing about the implementation,
only about the interfaces. Interfaces can be defined through single inheritance. (Note only the
interface is inherited; implementation is entirely separate.) The lack of multiple inheritance is not
a limitation. COM components can implement multiple interfaces regardless of inheritance
hierarchy. This provides much the same power as multiple interface inheritance.

All COM interfaces must inherit from the IUnknown interface. IUnknown contains a
QueryInterface() method and two methods for memory management. For our
discussion, QueryInterface() is the most important. A client must use this method to
obtain a specific interface pointer from a component instance.

COM components are identified by a globally unique class ID (CLSID). Similarly, all interfaces
are specified by a global unique interface ID (IID). A client instantiates a component instance by
calling the COM CoCreateInstance() function and specifying the desired CLSID and

 5

IID. A pointer to the desired interface is returned. Given an interface pointer, the client can use
QueryInterface() to determine if the component also supports other interfaces.

By convention, COM holds that all published interfaces are immutable in terms of both syntax
(interface method names and method parameters) and semantics. If a change is made to an
interface, then a new interface, complete with a new IID, must be created. Immutable interfaces
provide for a very effective versioning mechanism. A client can request a specific interface
(through its published IID) and be assured of the desired syntax and semantics.

Under COM, components can be instantiated in three different execution contexts. Components
can be instantiated directly in the application’s process (in-process), in another process on the
same machine (local), or on another machine (remote). The ability to access instances regardless
of execution context is called location transparency. COM provides location transparency by
requiring that all instances are accessed through the vtable.

Application
Network

Connection

Component
Instance

StubProxy

Figure 1: For a call to a remote component instance, the proxy first marshals data arguments into a suitable
transmission format. The request and data are then sent across the network by the transport mechanism.
(The default mechanism is an object-oriented extension of DCE RPC.) At the server, the stub receives the
request, unmarshals the data, and invokes the requested interface function. The process is reversed for the
function return values.

For in-process instances, the component implementation is usually held in a dynamically linked
library (DLL) and is loaded directly into the process’ address space. The vtable then points
directly to the component implementation. For local or remote components, the component
implementation is loaded into another process and the application must engage in some type of
inter-process communication (IPC). To handle these cases, COM instantiates a proxy and stub
pair to perform the communication (see Figure 1). The vtable is set to point directly to the proxy.

Before an IPC mechanism can be used, data must be packaged into a suitable transmission
format. This step is called marshaling. The proxy is responsible for marshaling data and then
sending the data and the request to the component instance. At the component instance, the stub
receives the request, unmarshals the data, and invokes the appropriate method on the instance.
The process is reversed for any return values.

A system programmer can customize the IPC mechanism. Otherwise COM defaults to using
shared memory for the Local case and an extension of the Open Group’s Distributed Computing
Environment remote procedure call facility (DCE RPC) [Hartman, 1992] for the Remote case.

2.2 COM, CORBA, and a Component-based API

 6

Both COM and CORBA share many fundamental similarities, especially in the area of distributed
computing. For remote communication, CORBA uses an architecture that is very similar to COM.
In essence, both architectures offer the same capabilities for remote component instances.

The two systems however differ greatly in their versioning capabilities. Of current CORBA
implementations, IBM’s System Object Model (SOM) builds interface specifications at run-time
[Forman, 1995], and so interface methods can be added or re-ordered, but not removed. SOM’s
strategy does not address semantic changes. To address semantic changes, CORBA repository
IDs could be used to uniquely identify interfaces in much the same manner as COM IIDs.
However, repository IDs are only checked when an instance is created and not when an instance
reference is obtained directly from another component instance. A more fundamental problem is
that CORBA's conventional object model merges all inherited interfaces into the same
namespace, so it is impossible to simultaneously support multiple interface versions unless all
method signatures are different. A component-based API built on top of CORBA would therefore
not be able to offer very robust versioning capabilities.

This work focuses on component software support for evolutionary development and distributed
resources in operating systems. Component software infrastructures provide a plethora of other
interesting application support, such as transactions, licensing, and persistence. These areas are
beyond the scope of our current work.

3. COP Implementation

In this section, we describe the COP implementation. The first subsection describes how the
monolithic WIN32 API was factored into a set of interfaces. The second subsection then
discusses the COP run-time system, including its support for versioning, distributed computing,
and legacy applications.

3.1 Factoring a Monolithic API

The first step in constructing a component-based API is to split, or factor, the monolithic API into
a set of interfaces. After factoring, the entire API should be modeled by the set of interfaces, with
individual and independent OS resources and services modeled by independent interfaces. A
good factoring scheme produces interfaces that are appropriately independent and provides the
benefits of clarity, effective versioning, and clean remoting of resources.

Our discussion here applies our factoring strategy to the Win32 API. (Our factoring of a 1000+
subset of Win32 is listed in Appendix A.) However, our strategy and techniques should be
generally applicable to monolithic, procedural APIs.

 7

BOOL AdjustWindowRect(RECT *, DWORD, BOOL);
HANDLE CreateWindow(...);
int DialogBoxParam(...,HANDLE, ...);
int FlashWindow(HANDLE, ...);
HANDLE GetProp(HANDLE, ...);
int GetWindowText(HANDLE,...);

IWin32WindowFactory
CreateWindow()

IWin32Utility
AdjustWindowRect()

IWin32WindowHandle
FlashWindow()

IWin32WindowState
GetWindowText()

IWin32WindowProperty
GetProp()

IWin32DialogHandle
DialogBoxParam()

Final Factorization:

API Subset:

Figure 2: The factoring of a simple subset of the Win32 API. Proposed interfaces are listed in bold and
prefixed with “IWin32”. IWin32WindowHandle aggregates the IWin32WindowState and
IWin32WindowProperty interfaces. IWin32DialogHandle inherits from IWin32WindowHandle, since
dialogs extend the functionality of plain windows.

Our factoring strategy involves three steps. First, the monolithic API calls are factored into
groups based on functionality. For example, all graphical window calls are placed in a
IWin32Window1 group. Second, the calls in each group are factored into three sub-groups
according to their effect on OS resources. The effect is easily identifiable through the call
parameters and return value. A loaded OS resource is exported to the application as an opaque
value called a kernel handle. Calls that create kernel handles
(i.e. OS resources) are moved to a factory interface, and calls that then query or manipulate the
these kernel handles are moved to a handle interface. Any other calls that do not directly involve
kernel handles (but may instead manipulate OS settings or provide generic services) are moved to
a utility interface.

In the third step, we further refine the factorization. In many cases, a monolithic API may contain
a set of calls that acts on a number of different OS resources. For example, Win32 has several
calls that synchronization on a specified handle. The specified handle can represent a standard
synchronization resource, such as a mutual exclusion lock, or less common synchronization
resources such as processes or files. Our first two steps in factoring will not capture this
relationship. Continuing the example, the synchronization calls will be placed in a
IWin32SyncHandle interface, while the process and file calls will be placed in
IWin32ProcessHandle and IWin32FileHandle interfaces, respectively. For correctness though,
the process and file interfaces should also include the synchronization calls. Since the process and
file handles can be thought of as logically extending the functionality of the synchronization

1 The IWin32 prefix denotes an interface to a Win32 API component.

 8

handle, we can model this relationship through interface inheritance. Both IWin32ProcessHandle
and IWin32FileHandle will inherit from the IWin32SyncHandle interface.

Figure 2 is an example of our factoring of the Win32 window functions. The example necessarily
focuses on a small, but representative, subset (six calls) of the 130+ window calls. The
AdjustWindowRect() call determines the necessary size of a window given specific
settings. The second call, CreateWindowEx(), creates a window, and the remaining calls
create a window, execute a dialog box, flash the window’s title bar, query various window
properties, and return the current text in the window title bar.

These calls all operate on windows and so are first factored to a windows group. Next the calls
are further factored depending on the use of a kernel handles (denoted by HANDLE in Figure 2).
In the third step, we have further factored the IWin32WindowHandle into IWin32WindowState
and IWin32Property interfaces. The State and Property interfaces simply help to make the API
easier to read. These interfaces do not extend the IWin32WindowHandle interface, but instead
compose the interface. We model this relationship through interface aggregation. Also, we have
factored the dialog calls into their own interface, since the dialogs are logically extensions of
plain windows. Again this relationship is modeled through interface inheritance.

Properly applied, this factorization strategy will produce a set of interfaces, each with a tightly
defined set of calls to access the appropriate underlying OS resource. The factorization will
improve API clarity by clearly defining the specific methods for accessing each OS resource and
also the relationship between API calls. Versioning capabilities will also be improved since
modifications can be isolated within the affected interfaces. Finally, a good factorization
inherently encapsulates functionality (and the associated state), which facilitates the remoting of
OS resources.

Operating System

Application

COP Component Layer

Legacy Translation Layer

Figure 3: The COP Runtime system consists of a component layer that presents the OS API and an
optional Legacy Translation layer available for Win32 applications.

 9

3.2 Run-time System

Overview

At run-time, the application accesses the OS through the COP component layer (see
Figure 3). These components implement the interfaces described in the previous
subsection. As with the interfaces they implement, the components can also be roughly
classified as factories, handles, or utilities.

Most applications will instantiate factory components during initialization and then use the
factories to create OS resources during execution. A basic implementation of a factory component
first invokes the OS to create the desired resource. The OS will return a kernel handle to identify
the resource. This handle however is only valid on the local machine. To enable remote access to
the resource, the factory also creates an instance of the associated handle component and stores
the kernel handle in the instance’s private state. Then rather than returning the kernel handle, the
factory returns a pointer to the instance of the handle component. The application makes
subsequent accesses to the resource through the instance pointer.

Utility components do not directly manipulate loaded kernel resources, but instead
provide generic services such as conversion between time formats or calculating the
necessary window rectangle to contain a specified client rectangle and the general
window elements. These components can instantiated whenever necessary, anywhere
throughout the system. Again once instantiated, all accesses will occur through the
instance pointer.

On a simple level then, the instance pointer provides COP with one of its main
advantages over typical modern OS APIs. The instance pointer uniquely names the
loaded resource throughout the system and also acts as a gateway to the underlying
remoting mechanism (COP/DCOM). With COP, applications can create resources
throughout the system and subsequently use the instance pointer to access them in a
location transparent manner.

Versioning

COP’s other main advantage over modern OS APIs is its versioning capabilities. These
capabilities follow directly from our factoring strategy and COM’s robust versioning
mechanism. As described above, published COM interfaces are immutable and are
named by a globally unique ID. Clients can request specific interfaces and be assured of
desired call syntax and semantics.

To mark the specific interfaces, an application can store the appropriate IDs in its data segment.
Alternatively, the OS binary format could be extended to support static binding to a dynamic
interface in the same way that current operating systems support static binding to DLLs (or
shared libraries). With such an extension, an application binary would declare a set of interfaces
to which it should bind instead of a set of DLLs. Of course, COP-aware applications can query
dynamically for special interfaces.

 10

Application

In-process
Component

Instance

Proxy

Stub

Local
Component

Instance

Proxy
Manager
(Optional)

Stub

Remote
Component

Instance

ProxyProcess
Boundary

Machine
Boundary

Operating
System

Operating
System

Operating
System

Figure 4: COP is able to instantiate OS resources in a number of locations: inside the client process (in-
process), in another process on the same machine (local), or on another machine (remote). The client
application can still access the resources in a location transparent manner by virtue of the proxy manager,
proxy, and stub components.

Location Transparency

One of the main contributions of COP is the ability to instantiate OS resources anywhere
throughout a distributed system (see Figure 4). COP components can be instantiated
inside the application’s process (in-process), in another process on the same machine
(local), or on another machine (remote). As described in Section 2, in-process
components only experience the added overhead of an indirect function call. In the local

 11

case, a COM proxy/stub pair is used to marshal data across the process boundaries. The
local case is less efficient than the in-process case, however it provides better fault
isolation. The remote case also uses the same general proxy/stub architecture. However,
in the remote case, COP also includes an optional Proxy Manager that can be used to
optimize remote communication. A common Proxy Manager task is to cache remote data
in the hopes of avoiding unnecessary communication. For example, COP currently
caches information to improve the re-drawing of remote windows. The Win32 call
BeginPaint() signals the beginning of a re-draw operation by creating a new drawing
context resource. In order to be available remotely, this resource must be wrapped by a
COP component. Rather than creating a new component instance on each re-draw
operation, COP currently caches a component instance (in the Proxy Manager) and re-
uses the instance for the re-draw wrapper.

Although hidden from the application, extra state is obviously required to maintain the
location transparency. For instance, the system must keep track the location of
component instances and data concerning the network connection. COM maintains this
state automatically. COP components often have little extra state to maintain. As the only
common example, handle components need to store the value of their associated kernel
handle. Optional Proxy Manager implementations may also require extra state, for
instance the cache of remote data mentioned above.

In a less common case, some components need extra state to maintain location
transparent results. The different execution context – in-process, local, or remote – may
cause some calls to execute differently. (We of course try to maintain the same operation
as the normal Win32 API.) For example, the call RegisterClass() registers a
window class2 for use within a process. The call returns an error if the class is already
registered within the process. A naïve component implementation could report this error
incorrectly in some cases. In COP, this call falls under the IWin32WindowUtility
interface (since it does not target kernel handles). Consider the case where two
applications try to register the same class on the same remote machine. To access
RegisterClass(), both applications would create an instance of
IWin32WindowUtility. Since these instance will both be remote and on the same
machine, COM creates the instances inside the same process to optimize performance.
Note that the instances are separate COM instances, but they do share the same process.
The first application to register the class will succeed, but the second application will fail
since the class has already been registered inside the COM process. In attempting to
mimic standard Win32 operation, this error would be incorrect since the application
processes are separate. In COP, the IWin32WindowUtility implementation maintains a
list of classes each process has registered. The implementation can then determine if the
caller has already registered the specified class and avoid any spurious errors.

2 A window class specifies various window settings, such as the default cursor and background. Windows
are created based on registered window classes.

 12

Obstacles to Remoting OS Resources

Apart from state problems, there are other OS aspects that do pose remoting problems.
OS callback functions are a significant obstacle to remote execution. Numerous API
functions contain callback functions that the caller specifies and the OS invokes on
certain events. For example, the Win32 call EnumWindows() calls a specified callback
function for each top-level window on the screen. Callbacks are a problem when the
caller (i.e. the location of the callback function) is on a different machine from the OS
invoking the callback. COP solves this problem in the same way that it remotes OS
resources. COP wraps all callback functions with components. Instead of passing the
address of the callback function, COP passes a pointer to the component instance
wrapping the callback. The OS can then simply use the instance pointer to invoke the
callback function in a location transparent manner.

Asynchronous events are the other main obstacle to remote execution. Some OS resources, such
as windows, synchronization objects, and asynchronous I/O, must respond to asynchronous
events. Windows must receive events such as mouse clicks, key strokes, and re-draw messages
and send them to the user-specified window procedure for processing. The OS must ensure
synchronization objects are given to requestors as semantics dictate. In asynchronous I/O, the OS
must notify the caller when an I/O operation is complete. In all these cases, the OS assumes all
involved parties reside on the same machine. COP therefore needs to provide extra support to
remote these types of resources.

COP remotes these resources by creating a special event agent on the remote machine.
This agent is responsible for fielding asynchronous events and forwarding them to the
client application. COP currently has support for remote windows. A window procedure
is simply a special case of a callback routine. The OS calls the window procedure on
every window event. At window creation time, COP creates a component instance to
wrap the specified window procedure. COP then invokes the CreateWindowEx()
method of the IWin32WindowFactory instance on the remote machine.

The IWin32WindowFactory instance creates an IWin32WindowHandle instance, which
will manage the actual window. The IWin32WindowHandle instance creates the window
as part of initialization. Instead of specifying the application’s window procedure though,
IWin32WindowHandle specifies its own procedure. In addition stores the pointer to the
instance of the application’s window procedure, which was provided through a hook in
CreateWindowEx().

COM actually delivers remote function call requests to COP components through a
standard message queue. An idle component instance simply spins on the message queue,
waiting for function call requests. Fortuitously, window events are also delivered through
the same message queue. In the course of polling for incoming requests, the
IWin32WindowHandle instance will also discover pending window events. The instance
can then use the stored instance pointer to send the messages to the application’s window
procedure for processing.

 13

Synchronization and asynchronous I/O can be handled in the same manner – an event
agent can be instantiated on the remote machine. The agent will wait for the desired event
and then forward notification to the application via a callback component.

Legacy Translation Layer

Our ultimate intention is for applications to write directly to the COP API. To ease the transition
and to support legacy applications that can not be re-written, we have also built an optional COP
Translation layer (see Figure 3). This layer is responsible for intercepting the procedural Win32
calls and translating them to COP. To help minimize translation overhead, we have purposely
designed the COP interface methods to use the same parameters as their Win32 counterparts.

Run-time interception is performed with the Detours package [Hunt, 1998]. One of this package’s
many features is the ability to instrument an application’s binary file and add a specified DLL to
the start of the list loaded at program initialization. This ensures that the specified DLL is the first
loaded by the application. We use Detours place our COP startup DLL at the start of the list. The
startup DLL then uses the Detours package to intercept and re-route Win32 calls to the Legacy
Translation layer. Detours performs the interception by re-writing the first few instructions of a
subroutine so that upon entrance, control is automatically transferred to a user-defined detour
function. The replaced instructions are combined with a jump instruction to form a trampoline.
The detour function can call the trampoline code to invoke the original subroutine, in our case the
original Win32 call.

The Legacy Translation layer is then responsible for creating the COP factory and utility
instances as necessary. (The handle instances are created by the factory instances.) The layer of
course caches pointers to interfaces to avoid unnecessary overhead. This approach works well for
existing, single-machine Win32 applications, and also even allows the functionality of these
applications to be transparently extended. The Translation Layer can be configured to
automatically create resources on remote machines. For example, all window resources can be
started on a remote machine, very similar to X-Window [Scheifler, 1986] remote displays. We
have used this feature to remote the display of several existing Win32 applications. A remote
display however only leverages a small amount of COP’s most power feature – the ability to
trivially connect to resources scattered throughout a distributed system.

The design of the Translation layer is relatively straightforward, but one significant problem did
arise. Our translation layer intercepts all invocations of a specified call, even if the call is invoked
from within another Win32 call. Re-entrancy problems can result. For example, COP allows
applications to access the Win32 registry3 on remote machines, however COP must do so by
instantiating a registry (IWin32Registry) component on the remote machine. The component is
instantiated through the Win32 CoCreateInstanceEx() call, which itself accesses the
registry. If COP intercepted and handled the registry call from CoCreateInstanceEx(),
an infinite recursion would result. The Legacy Translation Layer tracks when an application is
inside a Win32 call and avoids COP handling if an infinite recursion would start. This problem
does not arise outside of legacy support, since all clients explicitly specify the execution context
when attaching to the COP API.

3 The Win32 registry is a database of application configuration information.

 14

4. Results

The initial goal for COP is to support the development of the Millennium system. Millennium
will be a thin software layer that monitors the execution of a distributed component-based
application and intelligently distributes the component instances to maximize performance. As
components are distributed throughout the system, they still must be able to access remote OS
resources. COP provides that capability.

To this end, we have currently remoted the registry, windows, graphic device interface (the low-
level drawing routines), and file APIs. This subset consists of approximately 350 calls and is
enough to support the development of Millennium. This also includes the appropriate support in
the Legacy Translation Layer.

The primary advantage of COP is enhanced functionality – better versioning support and the
ability to instantiate OS resources throughout a distributed system. To gauge the overhead
introduced by COP, we have performed two benchmark tests. Our tests were performed on a
Gateway 2000 machine with a Pentium II processor running at 266MHz. The machine has a
512Kbytes off-chip cache and 64Mbytes of RAM. Our benchmark timings were calculated based
on the Win32 QueryPerformanceCounter()call, which has a resolution of
approximately 1 microsecond on our machine.

Our first benchmark focused on estimating the overhead of our Legacy Translation layer. Our test
measured the amount of time to make a “null” Win32 call. (The call actually passes one
integer parameter and returns an integer value.) Our benchmark application simply calls
a generic Win32 function, which COP intercepts and routes to the Translation Layer. The
Translation Layer then invokes the associated component instance. The component instance
immediately returns a success value, which the Translation Layer returns to the application.

As expected, an in-process component instance adds very little overhead in this case. The Win32
“null” call can be executed in 1.3 microseconds. If the component instance is instantiated as a
Local server (in another process), the Win32 “null” call time jumps to 200 microseconds. This
jump in time is due to the crossing of procedure boundaries.

The second test we performed was to examine the full overhead on an existing Win32
application. We chose RegEdt32, a tool for editing the Win32 registry. At startup, the application
reads the entire registry and displays the contents on screen for editing. We measured the time
required to start the application and read all elements from the local registry. We feel this is an
interesting benchmark because it includes not only the time to make COP calls, but also the time
to instantiate COP components. Our COP implementation patched all the involved registry calls,
and the startup phase involved a little over 9,500 registry calls, all handled by COP. We report the
average of three runs. Our machine was rebooted in between each run in order to remove effects
from the Window NT (file) cache.

The plain application (with no COP overhead) starts up in 0.833 seconds. The application using
COP in-process components starts in 1.118 seconds, a 34% increase. A large amount of this
overhead is due to the cost of instantiating the components. In a normal situation, this overhead
would be amortized. The application using COP Local components starts in 5.296 seconds, with
the increase due to the frequent process boundary crossings.

 15

We did not benchmark COP with remote components, since the choice of network will have such
a strong influence on the results. We feel that these results show that in-process COP components
add only a minimal amount of overhead, while providing benefits in versioning management.
When COP components are moved to remote machines, the overhead will be much higher, but
network transmission time will still be the dominant concern. Regardless, the functionality of the
system will be much greater – an application can easily access scattered, remote OS resources.

5. Related Work in Operating Systems

Kernel call interposition is the process of intercepting kernel calls and re-routing them to pieces
of extension code. There has been a large amount of work, published and unpublished, in this
area. Interposition Agents [Jones, 1993] in particular was highly influential to our work. This
work demonstrated that a kernel call interface (Berkeley UNIX 4.3) could be factored into a small
set of abstractions, which were then used as the basis for an object oriented interposition toolkit.
Another recent system of note is SLIC [Ghormley, 1998]. This system allows multiple
interposition extensions to be composed at run-time, but the system is not object or component-
based. SLIC and Interposition Agents can be considered full-featured interposition systems. COP
uses interposition techniques, but our goal is not a general interposition system. Our goal is a new
style of API that provides versioning and distributing computing benefits. A general interposition
system should be built on top of our component-based API.

As we consider a component-based OS API here, other research efforts are considering building
an entirely component-based OS. The OS could then be assembled dynamically in order to reflect
the execution environment. Two such examples are MMLite [Helander, 1998] and Jbed [Oberon,
1998]. Both of these operating systems can drop unnecessary components, such as virtual
memory or network communication, when running on a slim embedded processor platform. To
our knowledge, none of this work addresses API versioning or the naming of remote OS
resources. Also, importantly this work requires building a kernel from scratch, whereas our work
can be easily applied to existing commercial operating systems.

The work closest to our own is the Inferno distributed operating system [Dorward, 1997]. In this
system, all OS resources are treated as files – that is named and manipulated like files. This
unique approach provides the advantage of a global, hierarchical namespace for all resources, but
also the disadvantage of a rather limited access interface. In contrast, our approach in COP retains
the natural semantics for manipulating remote resources.

There have been numerous projects that have focused on remoting small subsets of OS
functionality. X Windows [Scheifler, 1986] provides remote access to a system's graphical user
interface. Microsoft's Terminal Server [Microsoft, 1997] does the same for Windows NT
platforms. Distributed file systems like NFS [Lyon, 1985] provide remote access to files. Unlike
these systems, a component-based API targets the remoting of all OS resources.

6. Conclusions

Component software provides excellent support for the evolutionary development of
software and for distributed computing. By basing an OS API on components, a system
can gain considerable leverage in these two areas. The OS can export different versions
of the API, allowing the API to be modified without jeopardizing legacy applications.
Instead the support for legacy applications can be dynamically loaded. By modeling the

 16

OS resources as components in the API, a global namespace is created. An application
can instantiate and manipulate any number of resources scattered throughout a distributed
system. Natural access semantics for the remote resources is maintained by virtue of the
encapsulation of functionality inherent in components. Applications will no longer have
to rely on ad-hoc methods to access remote resources.

Future work on COP will focus on increasing coverage of the Win32 API. (There are
thousands of calls in the API.) Also we are interested in researching methods to provide
consistent, global view and management of resources throughout a cluster and also for
providing fault tolerance and security throughout the system.

7. Acknowledgements

Our factoring strategy borrows heavily from previous work by Microsoft Research’s Component
Applications group. The authors would like to thank Craig Wittenberg and Crispin Goswell for
their advice on factoring. Also Rich Draves, Mike Jones, Johannes Helander, and Rick Rashid
provided much useful feedback on factoring and design of the COP run-time.

 17

Bibliography

Dorward S., Pike R., Presotto D., Ritchie D., Trickey H. and Winterbottom P. (1997).
Bell Labs Technical Journal. Lucent Technologies, Inc.

Forman I.R., Conner M.H., Danforth S.H. and Raper L.K. (1995) Release-to-Release
Binary Compatibility in SOM. Proceedings of the Tenth Annual Conference on Object
Oriented Programming Systems, Languages, and Applications. Austin, Texas.

Ghormley D., Petrou D. Rodrigues S. and Anderson T. (1998) SLIC: An Extensibility
System for Commodity Operating Systems. Proceedings of the USENIX Annual
Technical Conference. New Orleans, Louisiana.

Hartman D. (1992) Unclogging Distributed Computing. IEEE Spectrum,
29(5), pp. 36-39.

Helander J. and Forin A. (1998) MMLite: A Highly Componentized System Architecture.
Proceedings of the Eighth ACM SIGOPS European Workshop. Sintra, Portugal.

Hunt G. (1998) Detours: Binary Interception of Win32 Functions. Technical Report MSR-TR-98-
33. Microsoft Research, Redmond, Washington.

Jones M. (1992) Interposition Agents: Transparently Interposing User Code at the System
Interface. Proceedings of the Fourteenth Symposium on Operating Systems Principles.
Asheville, North Carolina.

Lyon B., Sager G., Chang A. J., Goldberg D., Kleinman S., Lyon A. T., Sandberg A. R.,
Walsh A. D. and Weiss A. P. (1985) Overview of the Sun Network File System, Sun
Microsystems, Inc.

Microsoft Corporation and Digital Equipment Corporation (1995) The Component Object model
Specification. Redmond, Washington.

Microsoft Corporation (1997) Windows-Based Terminal Server. Beta 1, Redmond, Washington.

Microsoft Corporation (1998) Distributed Component Object Model Protocol, version
1.0. Redmond, Washington.

Oberon Microsystems (1998) Jbed Whitepaper: Component Software and Real-time
Computing. Technical Report. Zürich, Switzerland.

Object Management Group (1996) The Common Object Request Broker: Architecture
and Specification, Revision 2.0. Framingham, Massachusetts.

 18

Scheifler R. and Gettys J. (1986) The X Window System. ACM Transactions on
Graphics. 5(2), 79-109.

Szyperski C. (1998) Component Software: Beyond Object-Oriented Programming. ACM Press,
New York, New York.

 19

Appendix A: Proposed Factoring of a 1000+ subset of Win32

This Appendix lists the interface hierarchy and factoring of a 1000+ subset of Win32. The subset
contains the necessary Win32 calls to support three OS-intensive applications: Microsoft
PictureIt!, the Microsoft Developers’ Network Corporate Benefits sample, and Microsoft
Research’s Octarine. The first is a commercial image manipulation package, the second is a
widely distributed sample three-tiered, client-server application, and the third is a prototype
COM-based integrated productivity application. This subset does not cover DirectX or ODBC,
but we feel it does cover many of the major areas of functionality in Win32.

All obsolete Windows 3.1 (16-bit) calls have been placed in IWin16 interfaces. In
implementation, the top-level call prototypes will mirror their WIN32 counterparts, with the
appropriate parameters replaced by interface pointers. Note that these calls can wrap lower-level
methods that implement different parameters. For example, the lower level methods could return
descriptive HRESULTs directly and the WIN32 return types as OUT parameters. Also, we expect
ANSI API calls to be implemented as wrappers of their UNICODE counterparts. The wrappers
will simply perform argument translation and then invoke the counterpart.

The next subsection lists the interface hierarchy. Inheritance relationships are clearly shown by
the connecting lines, while aggregation is pictured by placing one interface block within another.

The final subsection then lists the call factorization. In the factorization list, “X : Y” denotes that
X inherits from Y, and “Y Ä X” denotes that X is aggregated into Y.

 20

Interface Hierarchy

IWin32SecurityToken

IWin32WaitableTimer

IWin32Semaphore

IWin32Mutex

IWin32Event

IWin32Pipe

IWin32FindFile

IWin32FileMapping

IWin32File

IWin32Console

IWin32Module

IWin32ConsoleFactory

IWin32EventFactory

IWin32FileUtility

IWin32FileSystem

IWin32FileFactory

IWin32FileMappingFactory

IWin32ModuleFactory

IWin32MutexFactory

IWin32AtomicUtility

IWin32PipeFactory

IWin32ProcessFactory

IWin32SemaphoreFactory

IWin32WaitableTimerFactory

IWin32SecurityTokenFactory

IWin32SyncHandle

IWin32AsyncIOHandle

IWin32Handle

IWin32Thread

IWin32ThreadContext

IWin32ThreadMessage

IWin32Process

IWin32ProcessContext

IWin32Api

IWinApi

 21

IWin32CriticalSection

IWin32CriticalSectionFactory

IWin32Keyboard

IWin32KeyboardLayout

IWin32KeyboardLayoutFactory

IWin32DDE

IWin32DDEFactory

IWin32DDEUtility

IWin32OLE

IWin32OLEUtility

IWin32OLEFactory

IWin32OLEMarshalUtility

IWin32OleStg

IWin32OleStgFactory

IWin32OleStream

IWin32OleMoniker

IWin32OleMonikerFactory

IWin32HeapFactory

IWin32VirtualMemory

IWin32VirtualMemoryFactory

IWin32Registry

IWin32Printer

IWin32PrinterUtility

IWin32PrinterFactory

IWin32Resource

IWin32SecurityACL

IWin32SecurityACLUtility

IWin32SecurityDescriptorFactory

IWin32SecurityAccess

IWin32SecurityDescriptor

IWin32Drop

IWin32EnvironmentUtility

IWin32Shell

IWin32Heap

IWinApi

IWin32Memory

IWin32Api

 22

IWin32WindowUtility

IWin32WindowFactory

IWin32DialogFactory

IWin32MenuFactory

IWin32Print

IWin32EnhMetaFile

IWin32DeviceContextFactory

IWin32FontFactory

IWin32PaletteSystem

IWin32GDIObjFactory

IWin32PenFactory

IWin32BitmapFactory

IWin32EnhMetaFileFactory

IWin32PaletteFactory

IWin32BrushFactory

IWin32RegionFactory

IWin32Dialog

IWin32DialogState

IWin32Bitmap

IWin32Brush

IWin32Font

IWin32Pen

IWin32Palette

IWin32Region

IWinApi

IWin32GDIObj

IWin32Menu

IWin32MenuState

IWin32DeviceContext

IWin32Path

IWin32ScreenClip

IWin32DeviceContextFont

IWin32DeviceContextProperties

IWin32DeviceContextCoordinates

IWin32Window

IWin32WindowState

IWin32WindowProperties

IWin32Api

 23

IWin16ProcessFactoryIWin16File

IWin16FileFactory

IWin16GlobalMemory

IWin16GlobalMemoryFactoryIWin16LocalMemory

IWin16LocalMemoryFactory

IWin16Profile

IWin32SystemUtility

IWin32Beep

IWin32WindowsHook

IWin32WindowsHookFactory

IWin32WindowsHookUtility

IWin32StringUtility

IWin32Utility

IWin16MetaFile IWin16MetaFileFactory

IWin32Colorspace

IWin32ColorspaceFactory

IWin32Icon

IWin32IconFactory

IWin32Cursor

IWin32CursorUtility

IWin32CursorFactory

IWin32MWP

IWin32RectIWin32Clipboard

IWin32ClipboardFactory

IWin32GL

IWin32GLUIWin32Accel

IWin32AccelFactory

IWin32Atom

IWin32AtomFactory

IWin16Registry

IWinApi

IWin16Handle

IWin32Api

IWin16Memory

IWin16DeviceContext

IWin16Api

 24

Call

Factorization

Generic Handles
 IWin32Handle

closeHandle
Atoms
 IWin32Atom

GlobalDeleteAtom
GlobalGetAtomNameA

 IWin32AtomFactory
GlobalAddAtomA

Clipboard
 IWin32Clipboard

 ChangeClipboardChain
 CloseClipboard
 GetClipboardData
 GetClipboardFormatNameA
 GetClipboardFormatNameW
 GetClipboardOwner
 GetClipboardViewer
 GetOpenClipboardWindow
 IsClipboardFormatAvailable
 SetClipboardData

 IWin32ClipboardFactory
 RegisterClipboardFormatA

 RegisterClipboardFormatW
Console
 IWin32Console : IWin32SyncHandle

 GetConsoleMode
 GetNumberOfConsoleInputEvents
 PeekConsoleInputA
 ReadConsoleA
 ReadConsoleInputA
 SetConsoleMode
 SetStdHandle
 WriteConsoleA

 IWin32ConsoleFactory
 AllocConsole
 GetStdHandle
Drawing
 IWin16DeviceContextFont :

IWin16DeviceContext
 EnumFontFamiliesA

 EnumFontsW
 GetCharWidthA
 GetTextExtentPointA
 GetTextExtentPointW

 IWin16MetaFile : IWin16DeviceContext

 CloseMetaFile
 CopyMetaFileA
 DeleteMetaFile
 EnumMetaFile
 GetMetaFileA
 GetMetaFileBitsEx
 GetWinMetaFileBits
 PlayMetaFile
 PlayMetaFileRecord

 IWin16MetaFileFactory
 GetEnhMetaFileA

 SetEnhMetaFileBits
 SetMetaFileBitsEx

 IWin32Bitmap:IWin32GDIObject
 CreatePatternBrush

 GetBitmapDimensionEx
 GetDIBits
 SetBitmapDimensionEx
 SetDIBits
 SetDIBitsToDevice

 IWin32BitmapFactory
 CreateBitmap

 CreateBitmapIndirect
 CreateCompatibleBitmap
 CreateDIBSection
 CreateDIBitmap
 CreateDiscardableBitmap

 IWin32BrushFactory
 CreateBrushIndirect

 CreateDIBPatternBrushPt
 CreateHatchBrush
 CreateSolidBrush

 IWin32Colorspace
 DeleteColorSpace

 IWin32ColorspaceFactory
 CreateColorSpaceA

 IWin32Cursor
 DestroyCursor

 SetCursor

 IWin32CursorFactory
 GetCursor

 IWin32CursorUtility
 ClipCursor

 GetCursorPos
 SetCursorPos
 ShowCursor

 IWin32DeviceContextÄ
IWin32DeviceContextFont,

 25

IWin32DeviceContextCoords,
IWin32Path,
IWin32DeviceContextProperties,
IWin32ScreenClip

 AngleArc
 Arc
 ArcTo
 BitBlt
 Chord
 CreateCompatibleDC
 DeleteDC
 DrawEdge
 DrawEscape
 DrawFocusRect
 DrawFrameControl
 DrawIcon
 DrawIconEx
 DrawStateA
 DrawTextA
 DrawTextW
 Ellipse
 EnumObjects
 ExtFloodFill
 ExtTextOutA
 ExtTextOutW
 FillRect
 FillRgn
 FloodFill
 FrameRect
 FrameRgn
 GdiFlush
 GetCurrentObject
 GetCurrentPositionEx
 GetPixel
 GrayStringA
 GrayStringW
 InvertRect
 InvertRgn
 LineDDA
 LineTo
 MaskBlt
 MoveToEx
 PaintRgn
 PatBlt
 Pie
 PlgBlt
 PolyBezier
 PolyBezierTo
 PolyDraw
 PolyPolygon
 PolyPolyline
 Polygon
 Polyline

 PolylineTo
 Rectangle
 ReleaseDC
 ResetDCA
 RestoreDC
 RoundRect
 SaveDC
 ScrollDC
 SetPixel
 SetPixelV
 StretchBlt
 StretchDIBits
 TabbedTextOutA
 TextOutA
 TextOutW
 WindowFromDC

 IWin32DeviceContextCoordinates
 DPtoLP

 LPtoDP

 IWin32DeviceContextFactory
 CreateDCA

 CreateDCW
 CreateICA
 CreateICW
 CreateMetaFileA
 CreateMetaFileW

 IWin32DeviceContextFont
 EnumFontFamiliesExA

 GetAspectRatioFilterEx
 GetCharABCWidthsA
 GetCharABCWidthsFloatA
 GetCharABCWidthsW
 GetCharWidth32A
 GetCharWidth32W
 GetCharWidthFloatA
 GetFontData
 GetGlyphOutlineA
 GetGlyphOutlineW
 GetKerningPairsA
 GetOutlineTextMetricsA
 GetTabbedTextExtentA
 GetTextAlign
 GetTextCharacterExtra
 GetTextCharsetInfo
 GetTextColor
 GetTextExtentExPointA
 GetTextExtentExPointW
 GetTextExtentPoint32A
 GetTextExtentPoint32W
 GetTextFaceA
 GetTextMetricsA
 GetTextMetricsW

 26

 SetMapperFlags
 SetTextAlign
 SetTextCharacterExtra
 SetTextColor
 SetTextJustification

 IWin32DeviceContextProperties
 GetArcDirection

 GetBkColor
 GetBkMode
 GetBoundsRect
 GetBrushOrgEx
 GetColorAdjustment
 GetColorSpace
 GetDeviceCaps
 GetMapMode
 GetNearestColor
 GetPolyFillMode
 GetROP2
 GetStretchBltMode
 GetViewportExtEx
 GetViewportOrgEx
 GetWindowExtEx
 GetWindowOrgEx
 OffsetViewportOrgEx
 OffsetWindowOrgEx
 PtVisible
 RectVisible
 ScaleViewportExtEx
 ScaleWindowExtEx
 SetArcDirection
 SetBkColor
 SetBkMode
 SetBoundsRect
 SetBrushOrgEx
 SetColorAdjustment
 SetColorSpace
 SetDIBColorTable
 SetICMMode
 SetMapMode
 SetMiterLimit
 SetPolyFillMode
 SetROP2
 SetStretchBltMode
 SetViewportExtEx
 SetViewportOrgEx
 SetWindowExtEx
 SetWindowOrgEx
 UpdateColors

 IWin32EnhMetaFile:
IWin32DeviceContext

 CloseEnhMetaFile
 CopyEnhMetaFileA

 CreateEnhMetaFileA
 CreateEnhMetaFileW
 DeleteEnhMetaFile
 EnumEnhMetaFile
 GdiComment
 GetEnhMetaFileBits
 GetEnhMetaFileDescriptionA
 GetEnhMetaFileDescriptionW
 GetEnhMetaFileHeader
 GetEnhMetaFilePaletteEntries
 PlayEnhMetaFile
 PlayEnhMetaFileRecord

 IWin32EnhMetaFileFactory
 SetWinMetaFileBits

 IWin32FontFactory
 CreateFontA

 CreateFontIndirectA
 CreateFontIndirectW
 CreateFontW

 IWin32GDIObject
 DeleteObject

 GetObjectA
 GetObjectType
 GetObjectW
 SelectObject
 UnrealizeObject

 IWin32GDIObjectFactory
 GetStockObject

 IWin32Icon
 CopyIcon

 DestroyIcon
 GetIconInfo

 IWin32IconFactory
 CreateIcon

 CreateIconFromResource
 CreateIconFromResourceEx
 CreateIconIndirect
 CreateMenu

 IWin32Palette : IWin32GDIObject
 AnimatePalette

 GetNearestPaletteIndex
 GetPaletteEntries
 ResizePalette
 SelectPalette
 SetPaletteEntries

 IWin32PaletteFactory
 CreateHalftonePalette

 CreatePalette

 IWin32PaletteSystem

 27

 GetSystemPaletteEntries
 GetSystemPaletteUse
 RealizePalette

 IWin32Path
 AbortPath

 BeginPath
 CloseFigure
 EndPath
 FillPath
 FlattenPath
 GetMiterLimit
 GetPath
 PathToRegion
 StrokeAndFillPath
 StrokePath
 WidenPath

 IWin32PenFactory
 CreatePen

 CreatePenIndirect
 ExtCreatePen

 IWin32Print : IWin32DeviceContext
 AbortDoc

 EndDoc
 EndPage
 Escape
 ExtEscape
 SetAbortProc
 StartDocA
 StartDocW
 StartPage

 IWin32Rect
 CopyRect

 EqualRect
 InflateRect
 IntersectRect
 IsRectEmpty
 OffsetRect
 PtInRect
 SetRect
 SetRectEmpty
 SubtractRect
 UnionRect

 IWin32Region : IWin32GDIObject
 CombineRgn

 EqualRgn
 GetRegionData
 GetRgnBox
 OffsetRgn
 PtInRegion
 RectInRegion
 SetRectRgn

 IWin32RegionFactory
 CreateEllipticRgn

 CreateEllipticRgnIndirect
 CreatePolyPolygonRgn
 CreatePolygonRgn
 CreateRectRgn
 CreateRectRgnIndirect
 CreateRoundRectRgn
 ExtCreateRegion

 IWin32ScreenClip :
IWin32DeviceContext

 ExcludeClipRect
 ExcludeUpdateRgn
 ExtSelectClipRgn
 GetClipBox
 GetClipRgn
 IntersectClipRect
 OffsetClipRgn
 SelectClipPath
 SelectClipRgn
Environment
 IWin32EnvironmentUtility

 FreeEnvironmentStringsA
 FreeEnvironmentStringsW
 GetEnvironmentStrings
 GetEnvironmentStringsW

 GetEnvironmentVariableW
 SetEnvironmentVariableA
 SetEnvironmentVariableW
File
 IWin16File : IWin16Handle

 _hread
 _hwrite
 _lclose
 _llseek
 _lopen
 _lwrite

 IWin16FileFactory
 OpenFile

 _lcreat
 _lread

 IWin32File : IWin32AsyncIOHandle
 FlushFileBuffers

 GetFileInformationByHandle
 GetFileSize
 GetFileTime
 GetFileType
 LockFile
 LockFileEx
 ReadFile
 ReadFileEx

 28

 SetEndOfFile
 SetFilePointer
 SetFileTime
 UnlockFile
 WriteFile
 WriteFileEx

 IWin32FileFactory
 CreateFileA

 CreateFileW
 OpenFileMappingA

 IWin32FileMapping:
IWin32ASyncIOHandle

 MapViewOfFile
 UnmapViewOfFile

 IWin32FileMappingFactory
 CreateFileMappingA

 IWin32FileSystem
 CopyFileA

 CopyFileEx
 CopyFileW
 CreateDirectoryA
 CreateDirectoryExA
 CreateDirectoryExW
 CreateDirectoryW
 DeleteFileA
 DeleteFileW
 GetDiskFreeSpaceA
 GetDiskFreeSpaceEx
 GetDriveTypeA
 GetDriveTypeW
 GetFileAttributesA
 GetFileAttributesW
 GetFileVersionInfoA
 GetFileVersionInfoSizeA
 GetLogicalDriveStringsA
 GetLogicalDrives
 GetVolumeInformationA
 GetVolumeInformationW
 MoveFileA
 MoveFileEx
 MoveFileW
 RemoveDirectoryA
 RemoveDirectoryW
 SetFileAttributesA
 SetFileAttributesW
 UnlockFileEx
 VerQueryValueA

 IWin32FileUtility
 AreFileApisANSI

 CompareFileTime
 DosDateTimeToFileTime

 FileTimeToDosDateTime
 FileTimeToLocalFileTime
 FileTimeToSystemTime
 GetFullPathNameA
 GetFullPathNameW
 GetShortPathNameA
 GetShortPathNameW
 GetTempFileNameA
 GetTempFileNameW
 GetTempPathA
 GetTempPathW
 LocalFileTimeToFileTime
 SearchPathA
 SystemTimeToFileTime

 IWin32FindFile : IWin32ASyncIOHandle
 FindClose

 FindCloseChangeNotification
 FindFirstFileEx
 FindNextChangeNotification
 FindNextFileA
 FindNextFileW

 IWin32FindFileFactory
 FindFirstChangeNotificationA

 FindFirstChangeNotificationW
 FindFirstFileA
 FindFirstFileW
Interprocess Communication
 IWin32DDE

 DdeAccessData
 DdeDisconnect
 DdeFreeDataHandle
 DdeFreeStringHandle
 DdeUnaccessData

 IWin32DDEFactory
 DdeClientTransaction

 DdeConnect
 DdeCreateStringHandleA

 IWin32DDEUtility
 DdeGetLastError

 DdeInitializeA
 ReuseDDElParam
 UnpackDDElParam

 IWin32Pipe : IWin32AsyncIOHandle
 PeekNamedPipe

 IWin32PipeFactory
 CreatePipe
Keyboard
 IWin32Keyboard

 GetAsyncKeyState

 29

 GetKeyState
 GetKeyboardState
 MapVirtualKeyA
 SetKeyboardState
 VkKeyScanA
 keybd_event

 IWin32KeyboardLayout
 ActivateKeyboardLayout

 IWin32KeyboardLayoutFactory
 GetKeyboardLayout

Memory
 IWin16GlobalMemory : IWin16Memory

 GlobalFlags
 GlobalFree
 GlobalLock
 GlobalReAlloc
 GlobalSize
 GlobalUnlock

 IWin16GlobalMemoryFactory
 GlobalAlloc

 GlobalHandle

 IWin32Heap : IWin32Memory
 HeapAlloc

 HeapCompact
 HeapDestroy
 HeapFree
 HeapReAlloc
 HeapSize
 HeapValidate
 HeapWalk

 IWin32HeapFactory
 GetProcessHeap

 HeapCreate

 IWin16LocalMemory : IWin16Memory
 LocalFree

 LocalLock
 LocalReAlloc
 LocalUnlock

 IWin32LocalMemoryFactory
 LocalAlloc

 IWin16Memory
 IsBadCodePtr

 IsBadReadPtr
 IsBadStringPtrA
 IsBadStringPtrW
 IsBadWritePtr

 IWin32Memory
 IsBadCodePtr

 IsBadReadPtr
 IsBadStringPtrA
 IsBadStringPtrW
 IsBadWritePtr

 IWin32VirtualMemory : IWin32Memory
 VirtualFree

 VirtualLock
 VirtualProtect
 VirtualQuery
 VirtualUnlock

 IWin32VirtualMemoryFactory
 VirtualAlloc

Module
 IWin32Module : IWin32Handle

 DisableThreadLibraryCalls
 EnumResourceNamesA
 FindResourceA
 FreeLibrary
 GetModuleFileNameA
 GetModuleFileNameW
 GetProcAddress
 LoadBitmapA
 LoadBitmapW
 LoadCursorA
 LoadCursorW
 LoadIconA
 LoadIconW
 LoadImageA
 LoadMenuA
 LoadMenuIndirectA
 LoadStringA
 SizeofResource

 IWin32ModuleFactory
 GetModuleHandleA

 GetModuleHandleW
 LoadLibraryA
 LoadLibraryExA
 LoadLibraryW

Multiple Window Position
 IWin32MWP

 BeginDeferWindowPos
 DeferWindowPos
 EndDeferWindowPos
Ole

 IWin32Ole
 CoDisconnectObject

 CoLockObjectExternal
 CoRegisterClassObject
 CoRevokeClassObject

 30

 IWin32OleFactory
 BindMoniker

 CoCreateInstance
 CoGetClassObject
 CoGetInstanceFromFile
 CreateDataAdviseHolder
 CreateDataCache
 CreateILockBytesOnHGlobal
 CreateOleAdviseHolder
 CreateStreamOnHGlobal
 OleCreate
 OleCreateDefaultHandler
 OleCreateFromData
 OleCreateFromFile
 OleCreateLink
 OleCreateLinkFromData
 OleCreateLinkToFile
 OleGetClipboard
 OleLoad

 IWin32OleMarshalUtility
 CoMarshalInterface

 CoReleaseMarshalData
 CoUnmarshalInterface

 IWin32OleMoniker
 CreateGenericComposite

 CreateItemMoniker
 CreatePointerMoniker
 CreateURLMoniker
 MkParseDisplayName
 MonikerCommonPrefixWith
 MonikerRelativePathTo

 IWin32OleMonikerFactory
 CreateBindCtx

 CreateFileMoniker
 GetRunningObjectTable

 IWin32OleStg
 OleConvertIStorageToOLESTREAM

 OleSave
 ReadClassStg
 ReleaseStgMedium
 WriteClassStg
 WriteFmtUserTypeStg

 IWin32OleStgFactory
 StgCreateDocfile

 StgCreateDocfileOnILockBytes
 StgIsStorageFile
 StgOpenStorage

 IWin32OleStream
 GetHGlobalFromStream

 OleConvertOLESTREAMToIStorage

 OleLoadFromStream
 OleSaveToStream
 ReadClassStm
 WriteClassStm

 IWin32OleUtility
 CLSIDFromProgID

 CLSIDFromString
 CoCreateGuid
 CoFileTimeNow
 CoFreeUnusedLibraries
 CoGetMalloc
 CoInitialize
 CoRegisterMessageFilter
 CoTaskMemAlloc
 CoTaskMemFree
 CoTaskMemRealloc
 CoUninitialize
 GetClassFile
 GetHGlobalFromILockBytes
 IIDFromString
 OleGetIconOfClass
 OleInitialize
 OleIsRunning
 OleRegEnumVerbs
 OleRegGetMiscStatus
 OleRegGetUserType
 OleSetClipboard
 OleUninitialize
 ProgIDFromCLSID
 PropVariantClear
 RegisterDragDrop
 RevokeDragDrop
 StringFromCLSID
 StringFromGUID2
 StringFromIID
 OpenGL
 IWin32GL

 glBegin
 glClear
 glClearColor
 glClearDepth
 glColor3d
 glEnable
 glEnd
 glFinish
 glMatrixMode
 glNormal3d
 glPolygonMode
 glPopMatrix
 glPushMatrix
 glRotated
 glScaled

 31

 glTranslated
 glVertex3d
 glViewport
 wglCreateContext
 wglGetCurrentDC
 wglMakeCurrent

 IWin32GLU
 gluCylinder

 gluDeleteQuadric
 gluNewQuadric
 gluPerspective
 gluQuadricDrawStyle
 gluQuadricNormals
Printer
 IWin32Printer

 ClosePrinter
 DocumentPropertiesA
 GetPrinterA

 IWin32PrinterFactory
 OpenPrinterA

 OpenPrinterW

 IWin32PrinterUtility
 DeviceCapabilitiesA

 EnumPrintersA
Process
 IWin16ProcessFactory

 WinExec

 IWin32Process : IWin32SyncHandle Ä
IWin32ProcessContext

 DebugBreak
 ExitProcess
 FatalAppExitA
 FatalExit
 GetExitCodeProcess
 GetCurrentProcessId
 GetProcessVersion
 GetProcessWorkingSetSize
 OpenProcessToken
 SetProcessWorkingSetSize
 TerminateProcess
 UnhandledExceptionFilter

 IWin32ProcessContext
 GetCommandLineA

 GetCommandLineW
 GetCurrentDirectoryA
 GetCurrentDirectoryW
 GetStartupInfoA
 SetConsoleCtrlHandler
 SetCurrentDirectoryA
 SetCurrentDirectoryW

 SetHandleCount
 SetUnhandledExceptionFilter

 IWin32ProcessFactory
 CreateProcessA

 CreateProcessW
 OpenProcess

Registry
 IWin16Profile

 GetPrivateProfileIntA
 GetPrivateProfileStringA
 GetPrivateProfileStringW
 GetProfileIntA
 GetProfileIntW
 GetProfileStringA
 GetProfileStringW
 WritePrivateProfileStringA
 WritePrivateProfileStringW
 WriteProfileStringA
 WriteProfileStringW

 IWin16Registry
 RegCreateKeyExA

 RegCreateKeyW
 RegEnumKeyA
 RegEnumKeyW
 RegOpenKeyA
 RegOpenKeyW
 RegQueryValueA
 RegQueryValueW
 RegSetValueA
 RegSetValueW

 IWin32Registry
 RegCloseKey

 RegCreateKeyA
 RegCreateKeyExW
 RegDeleteKeyA
 RegDeleteKeyW
 RegDeleteValueA
 RegDeleteValueW
 RegEnumKeyExA
 RegEnumKeyExW
 RegEnumValueA
 RegEnumValueW
 RegFlushKey
 RegNotifyChangeKeyValue
 RegOpenKeyExA
 RegOpenKeyExW
 RegQueryInfoKeyA
 RegQueryInfoKeyW
 RegQueryValueExA
 RegQueryValueExW

 32

 RegSetValueExA
 RegSetValueExW
Resource
 IWin32Resource

 LoadResource
 LockResource
Security
 IWin32SecurityACL

 AddAccessAllowedAce
 AddAccessDeniedAce
 AddAce
 DeleteAce
 GetAce
 GetAclInformation

 IWin32SecurityACLUtility
 InitializeAcl

 IsValidAcl

 IWin32SecurityAccess
 CopySid

 EqualSid
 GetLengthSid
 IsValidSid
 LookupAccountNameA
 LookupAccountSid
 LookupPrivilegeValueA

 IWin32SecurityDescriptor
 GetSecurityDescriptorDacl

 GetSecurityDescriptorGroup
 GetSecurityDescriptorOwner
 GetSecurityDescriptorSacl
 IsValidSecurityDescriptor
 SetSecurityDescriptorDacl
 SetSecurityDescriptorGroup
 SetSecurityDescriptorOwner
 SetSecurityDescriptorSacl

 IWin32SecurityDescriptorFactory
 InitializeSecurityDescriptor

 IWin32SecurityToken : IWin32Handle
 AdjustTokenPrivileges

 GetTokenInformation

 IWin32SecurityToken : IWin32Handle
 OpenProcessToken

 OpenThreadToken

Shell
 IWin32Drop

 DragFinish
 DragQueryFileW
 DragQueryPoint

 IWin32Shell
 SHGetDesktopFolder

 SHGetFileInfoA
 ShellExecuteA
Synchronization
 IWin32AtomicUtility

 InterlockedDecrement
 InterlockedExchange
 InterlockedIncrement

 IWin32CriticalSection
 DeleteCriticalSection

 EnterCriticalSection
 LeaveCriticalSection

 IWin32CriticalSectionFactory
 InitializeCriticalSection

 IWin32Event : IWin32SyncHandle
 PulseEvent

 ResetEvent
 SetEvent

 IWin32EventFactory
 CreateEventA

 IWin32Mutex : IWin32SyncHandle
 ReleaseMutex

 IWin32MutexFactory
 CreateMutexA

 OpenMutexA

 IWin32Semaphore : IWin32SyncHandle
 ReleaseSemaphore

 IWin32SemaphoreFactory
 CreateSemaphoreA

 IWin32SyncHandle : IWin32Handle
 MsgWaitForMultipleObjects

 SignalObjectAndWait
 WaitForMultipleObjects
 WaitForSingleObject
 WaitForSingleObjectEx

 IWin32WaitableTimer :
IWin32SyncHandle

 CancelWaitableTimer
 SetWaitableTimer

 IWin32WaitableTimerFactory
 CreateWaitableTimer

 OpenWaitableTimer

System
 IWin32WindowsHook

 CallNextHookEx

 33

 UnhookWindowsHookEx

 IWin32WindowsHookFactory
 SetWindowsHookExA

 SetWindowsHookExW

 IWin32WindowsHookUtility
 CallMsgFilterA

 CallMsgFilterW
Thread
 IWin32Thread : IWin32SyncHandle Ä

IWin32ThreadContext,
IWin32ThreadMessage

 DispatchMessageA
 DispatchMessageW
 ExitThread
 GetCurrentThreadId
 GetExitCodeThread
 GetThreadLocale
 GetThreadPriority
 OpenThreadToken
 ResumeThread
 SetThreadPriority
 SetThreadToken
 Sleep
 SuspendThread
 TerminateThread
 TlsAlloc
 TlsFree
 TlsGetValue
 TlsSetValue

 IWin32ThreadContext
 EnumThreadWindows
 GetActiveWindow

 IWin32ThreadFactory
 CreateThread

 IWin32ThreadMessage
 GetMessageA

 GetMessagePos
 GetMessageTime
 GetMessageW
 GetQueueStatus
 PostQuitMessage
 PostThreadMessageA
 TranslateMessage
 WaitMessage

 IWin32ThreadUtility

Timer
 IWin32Timer

 KillTimer

 SetTimer
Utilities
 IWin32Beep

 Beep
 MessageBeep

 IWin32StringUtility
 CharLowerA

 CharLowerBuffA
 CharLowerW
 CharNextA
 CharNextW
 CharPrevA
 CharToOemA
 CharUpperA
 CharUpperBuffA
 CharUpperBuffW
 CharUpperW
 CompareStringA
 CompareStringW
 FormatMessageA
 FormatMessageW
 GetStringTypeA
 GetStringTypeExA
 GetStringTypeW
 IsCharAlphaA
 IsCharAlphaNumericA
 IsCharAlphaNumericW
 IsCharAlphaW
 IsDBCSLeadByte
 IsDBCSLeadByteEx
 LCMapStringA
 LCMapStringW
 MultiByteToWideChar
 OutputDebugStringA
 OutputDebugStringW
 ToAscii
 WideCharToMultiByte
 lstrcatA
 lstrcmpA
 lstrcmpiA
 lstrcpyA
 lstrcpyW
 lstrcpynA
 lstrlenA
 lstrlenW
 wsprintfA
 wsprintfW
 wvsprintfA

 IWin32SystemUtility
 CountClipboardFormats

 EmptyClipboard
 EnumClipboardFormats

 34

 EnumSystemLocalesA
 GetACP
 GetCPInfo
 GetComputerNameW
 GetCurrentProcess
 GetCurrentProcessId
 GetCurrentThread
 GetCurrentThreadId
 GetDateFormatA
 GetDateFormatW
 GetDialogBaseUnits
 GetDoubleClickTime
 GetLastError
 GetLocalTime
 GetLocaleInfoA
 GetLocaleInfoW
 GetOEMCP
 GetSysColor
 GetSysColorBrush
 GetSystemDefaultLCID
 GetSystemDefaultLangID
 GetSystemDirectoryA
 GetSystemInfo
 GetSystemMetrics
 GetSystemTime
 GetTickCount
 GetTimeFormatA
 GetTimeFormatW
 GetTimeZoneInformation
 GetUserDefaultLCID
 GetUserDefaultLangID
 GetUserNameA
 GetUserNameW
 GetVersion
 GetVersionExA
 GetWindowsDirectoryA
 GetWindowsDirectoryW
 GlobalMemoryStatus
 IsValidCodePage
 IsValidLocale
 OemToCharA
 QueryPerformanceCounter
 QueryPerformanceFrequency
 RaiseException
 RegisterWindowMessageA
 SetErrorMode
 SetLastError
 SetLocalTime
 SystemParametersInfoA

 IWin32Utility
 MulDiv

Window

 IWin32Accel
 CopyAcceleratorTableA

 TranslateAcceleratorA

 IWin32AccelFactory
 LoadAcceleratorsA

 IWin32Dialog : IWin32Window Ä
IWin32DialogState

 ChooseColorA
 DialogBoxParamA
 DialogBoxParamW
 EndDialog
 MapDialogRect
 SendDlgItemMessageA

 IWin32DialogFactory
 CreateDialogIndirectParamA

 CreateDialogParamA
 DialogBoxIndirectParamA

 IWin32DialogState
 CheckDlgButton

 GetDlgCtrlID
 GetDlgItem
 GetDlgItemInt
 GetDlgItemTextA
 GetNextDlgGroupItem
 GetNextDlgTabItem
 IsDlgButtonChecked
 SetDlgItemInt
 SetDlgItemTextA

 IWin32Menu Ä IWin32MenuState
 DeleteMenu

 DestroyMenu
 InsertMenuA
 InsertMenuW
 IsMenu
 ModifyMenuA
 RemoveMenu
 TrackPopupMenu

 IWin32MenuFactory
 CreatePopupMenu

 IWin32MenuState
 AppendMenuA

 AppendMenuW
 ArrangeIconicWindows
 BringWindowToTop
 CheckMenuItem
 CheckMenuRadioItem
 CheckRadioButton
 EnableMenuItem
 GetMenuItemCount
 GetMenuItemID

 35

 GetMenuItemRect
 GetMenuState
 GetMenuStringA
 GetSubMenu
 HiliteMenuItem
 SetMenuDefaultItem
 SetMenuItemBitmaps

 IWin32WindowÄ
IWin32WindowProperties,
IWin32WindowState

 BeginPaint
 CallWindowProcA
 CallWindowProcW
 ChildWindowFromPoint
 ChildWindowFromPointEx
 ClientToScreen
 CloseWindow
 CreateCaret
 DefFrameProcA
 DefMDIChildProcA
 DefWindowProcA
 DefWindowProcW
 DestroyWindow
 DlgDirListA
 DlgDirListComboBoxA
 DlgDirSelectComboBoxExA
 DlgDirSelectExA
 DrawAnimatedRects
 DrawMenuBar
 EndPaint
 EnumChildWindows
 EnumWindows
 FindWindow
 FlashWindow
 MapWindowPoints
 MessageBoxA
 MessageBoxW
 MoveWindow
 OpenClipboard
 OpenIcon
 PeekMessageA
 PeekMessageW
 PostMessageA
 PostMessageW
 RedrawWindow
 ScreenToClient
 ScrollWindow
 ScrollWindowEx
 SendMessageA
 SendMessageW
 SendNotifyMessageA
 TranslateMDISysAccel
 UpdateWindow

 IWin32WindowFactory
 CreateWindowExA

 CreateWindowExW

 IWin32WindowProperties
 DragAcceptFiles

 GetClassLongA
 GetClassNameA
 GetClassNameW
 GetPropA
 GetPropW
 RemovePropA
 RemovePropW
 SetClassLongA
 SetPropA
 SetPropW

 IWin32WindowState
 EnableScrollBar
 EnableWindow
 GetClientRect
 GetDC
 GetDCEx
 GetLastActivePopup
 GetMenu
 GetParent
 GetScrollInfo
 GetScrollPos
 GetScrollRange
 GetSystemMenu
 GetTopWindow
 GetUpdateRect
 GetUpdateRgn
 GetWindow
 GetWindowDC
 GetWindowLongA
 GetWindowLongW
 GetWindowPlacement
 GetWindowRect
 GetWindowRgn
 GetWindowTextA
 GetWindowTextLengthA
 GetWindowTextW
 GetWindowThreadProcessId
 HideCaret
 InvalidateRect
 InvalidateRgn
 IsWindowEnabled
 IsChild
 IsIconic
 IsWindow
 IsWindowUnicode
 IsWindowVisible
 IsZoomed

 36

 LockWindowUpdate
 SetActiveWindow
 SetClipboardViewer
 SetFocus
 SetForegroundWindow
 SetMenu
 SetParent
 SetScrollInfo
 SetScrollPos
 SetScrollRange
 SetWindowLongA
 SetWindowLongW
 SetWindowPlacement
 SetWindowPos
 SetWindowRgn
 SetWindowTextA
 SetWindowTextW
 ShowCaret
 ShowOwnedPopups
 ShowScrollBar
 ShowWindow
 ValidateRect

 ValidateRgn

 IWin32WindowUtility
 AdjustWindowRect

 AdjustWindowRectEx
 EnumWindows
 FindWindowA
 GetActiveWindow
 GetCapture
 GetCaretPos
 GetClassInfoA
 GetClassInfoExA
 GetClassInfoW
 GetDesktopWindow
 GetFocus
 GetForegroundWindow
 InSendMessage
 IsDialogMessageA
 RegisterClassA
 RegisterClassExA
 RegisterClass

