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Abstract

The proliferation of mobile computing devices and
local-area wireless networks has fostered a growing
interest in location-aware systems and services. A key
requirement for enabling such services is user location
and tracking. In this paper we address this problem in
the context of a popular radio-frequency wireless network
technology. Our approach is based on recording and
processing real-time signal strength information
available at multiple base stations positioned to provide
overlapping coverage in the area of interest. We employ
techniques that combine empirical measurements with
signal propagation modeling. We present concrete
experimental results that demonstrate the feasibility of
estimating user location with a high degree of accuracy.

1 Introduction

The proliferation of mobile computing devices and
local-area wireless networks has fostered a growing
interest in location-aware systems and services. A key
distinguishing feature of such systems is that the
application information and/or interface presented to the
user is, in general, a function of his or her physical
location. The granularity of location information needed
could vary from one application to another. For example,
locating a nearby printer requires fairly coarse-grained
location information whereas locating a book in a library
would require fine-grained information.

While much research has focussed on developing
services architectures for location-aware systems, less
attention has been paid to the fundamental and
challenging problem of user location and tracking,
especially in in-building environments. The few efforts
that have addressed this problem have typically done so in
the context of infrared (IR) wireless networks. The
limited range of IR networks, which facilitates user

location, is a handicap for providing ubiquitous coverage
in a building. Also, often the IR network is deployed for
the sole purpose of locating people and does not provide
traditional data networking services. For these reason we
focus on radio-frequency (RF) wireless networks in our
research. Our goal is to complement the data networking
capabilities provided by RF networks with accurate user
location and tracking capabilities, thereby enhancing the
value of such networks.

Location determination in RF network requires
analyzing signal characteristics. However, a major
challenge arises due to the significant fluctuations in
channel characteristics, both in time and space, typical in
RF networks.

Our approach to the user location problem is as
follows. We use signal strength information gathered at
multiple receiver locations totriangulate the user’s
coordinates. To do the triangulation, we use both
empirically determined and theoretically computed signal
strength information.

Our experimental results are very encouraging. With
high probability we are able to estimate a user’s location
to within a few meters of his/her actual location. This
suggests that it is feasible for fine-grained location-aware
services to be built on top of RF local-area wireless
networks.

The remainder of this paper is organized as follows.
In Section 2, we survey related work in location
determination technologies. In Section 3, we discuss our
research methodology. Section 4 contains the core of the
paper where we present and analyze the empirical and the
signal propagation modeling methods. A discussion of
some related issues appears in Section 5. Finally, we
present our conclusions in Section 6.

2 Related Work

Related work in the area of user location and tracking
has been done in the following broad contexts: (1) in-
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building IR networks, (2) wide-area cellular networks
(based on RF), and (3) Global Positioning System (GPS).

The Active Badgesystem [Har94] was an early,
significant contribution to the field of location-aware
systems. In this system, a badge worn by a person emits a
unique IR signal every 10 seconds. Sensors are placed at
fixed positions within a building and as they receive the
unique identifiers, the location manager software is able
provide information about the person's location to the
requesting services and applications. While the
performance of this system is quite good, a major
drawback is that the range of the IR system is fairly small,
and consequently the building has to be wired up with a
significant number of sensors. In the few places where
such systems have been deployed, sensors have been
physically wired in every room of the building. Such a
system scales poorly, and incurs significant installation,
configuration and maintenance cost. Also, IR tends to
perform poorly in the presence of direct sunlight, which is
common in rooms with windows.

Another system that is based on IR technology is
described in [Azu93]. This system requires IR transmitters
to be located at fixed positions inside the ceiling of the
building. An optical sensor sitting on a head mounted unit
senses the IR beacons and system software determines the
position of the person. This system suffers from similar
drawbacks as the Active Badge system.

The system described in [ATC97] uses pulsed DC
magnetic fields to determine the position and orientation
of the person with a high degree of precision. Multiple
sensors are placed on body-mounted peripherals, such as
data gloves and the output from the sensors is processed
to determine location and orientation. This technology is
used extensively in the computer animation industry. It is,
however, quite expensive, and like IR, is severely range
limited. Therefore, it is not suitable for wide-scale
deployment.

Recently several location systems have been proposed
for wide-area cellular systems [Tek98]. The technological
alternatives for locating cellular telephones involve
measuring signal attenuation, angle of arrival (AOA),
and/or time difference of arrival (TDOA). Based on initial
studies, the AOA and TDOA based system have been
found to be promising.

A common variant of the angle-of-arrival technique is
known as small aperture direction finding, which requires
a complex antenna array at each of the cell site locations.
The antenna arrays can in principle work together to
determine the angle (relative to the cell site) from which
the cellular signal originated. When several cell sites can
determine their respective angles of arrival, the cell phone
location can be estimated from the intersection of
projected lines drawn out from the cell site at the angle
corresponding to the signal's origin. Due to the nature of
indoor environments, the angle of arrival technology
cannot be used reliably to compute the position of a
mobile user. Also, the TDOA technology requires very

fine grained time synchronization between the transmitter
and receiver, which is not feasible with current off-the-
shelf mobile devices.

Some systems based on the Global Positioning
Systems (GPS) have also been proposed [GPS99].
Unfortunately GPS transmissions are blocked by
buildings, so the system does not operate indoors.

The Daedalus project [Hod97] developed a system
that provides coarse level location tracking services.
Beacon signals transmitted by the base station are
augmented with location information. The mobile host
estimates its location to be the same as that of the base
station with the strongest signal. Given the relatively
large size of cells, the location information is not likely to
be very accurate.

Our work differs from previous work in that we tackle
the problem of location determination and tracking on a
widely availableradio frequencybased wireless network
in an in-building environment. RF networks offer a
significant advantage over IR networks in terms of range,
scalability, deployment, and maintenance. With speeds up
to 10 Mbps these systems have gained rapid acceptance
and are being widely deployed in companies, schools,
homes etc.

3 Research Methodology

In this section, we describe our research
methodology. We begin with a description of our
experimental testbed. We then discuss the data collection
process, including tools we developed for this purpose.
Finally, we describe the processing we performed on the
data as a precursor to the analysis described in Section 4.

3.1 Experimental Testbed

Our experimental testbed is located on one floor of a
3-storey building. The layout of the floor is shown in
Figure 1. The floor has dimension of 43.5 m by 22.5 m,
an area of 980 sq. m (10500 sq. ft.), and includes more
than 50 rooms.

We placed three base stations, BS1, BS2 and BS3, at
the locations indicated in Figure 1. Each base station was
a Pentium-based PC running FreeBSD 3.0 quipped with a
wireless adapter. Our mobile host, which was carried by
the user being tracked, was a Pentium-based laptop
computer running Microsoft Windows 95.

Each base station and the mobile host was equipped
with a Digital RoamAboutTM network interface card
(NIC), based on Lucent’s popular WaveLANTM RF LAN
technology. The network operates in the 2.4 GHz license-
free ISM (Industrial, Scientific and Medical) band. It has
a raw data rate of 2 Mbps and a one-way delay of 1-2 ms.
The range of the network, as specified in [Roa96], is 200
m, 50 m, and 25 m, respectively, for open, semi-open, and
closed office environments. An open environment refers
to there being line-of-sight (LoS) connectivity between a
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transmitter and a receiver. Semi-open and closed
environments refer to there being obstructions in the form
of modular office partitions (cubicles) and solid walls,
respectively. In this nomenclature, our testbed
environment would be classified as being open along the
hallways where the base stations are located and closed
elsewhere. The base stations provide overlapping
coverage in portions of the floor, and together cover the
entire floor.

3.2 Data Collection

A key step in our research methodology is the data
collection phase. We record information about the radio
signal as a function of the user’s location. As discussed in
Section 4, we use the signal information to construct and
validate models for signal propagation during off-line
analysis as well as to infer the location of a user in real
time. We refer to the former as theoff-line phaseand the
latter as thereal-time phase.

Among other information, the WaveLAN NIC makes
available thesignal strength(SS) andthe signal-to-noise
ratio (SNR). SS is reported in units of dBm and SNR is
expressed in dB. A signal strength ofs Watts is equivalent
to 10*log10(s/0.001)dBm. A signal strength ofs Watts
and a noise power ofn Watts yields an SNR of
10*log10(s/n)dB. For example, a signal strength of 1 Watt
is equivalent to 30 dBm. Furthermore, if the noise power
is 0.1 Watt, the SNR would be 10 dB.

The FreeBSD 3.0 WaveLAN driver extracts the SS
and the SNR information from the WaveLAN firmware
each time a broadcast packet is received2. It then makes
the information available to user-level applications via
ioctl system calls. We used thewlconfig utility, which
provides a wrapper around theioctl calls, to extract the
signal information.

While Windows also obtains the same information
from the WaveLAN NIC, we were unable to determine a
programmatic way of extracting the information using the
NDIS driver interface. This constrained us to have the
Windows-based mobile host broadcast packets (beacons)
periodically and have the base stations (which run
FreeBSD) record signal strength information3. However,
in a production system with many more mobiles than base
stations, it may be desirable to have the latter transmit the
beacons and the former measure the signal strength.

We wrote a simple application using Tcl/Tk [Ous94]
and Perl [Wal96] to control the entire data collection
process from the mobile host. The process operates as
follows. First, the clocks on the mobile host and the base

2 It is quite easy to modify the driver to record
information for other packets as well, but we found no
reason to do so.
3 While our analysis does not assume symmetry of signal
strength, the few instances where we measured signal
strength at both ends indicate little asymmetry.

stations are synchronized (to within the round-trip latency
of the wireless link, essentially less than 5 ms). The
mobile host then starts broadcasting UDP packets with 6-
byte payloads at a default rate of 4 per second. Each base
station (bs) records the signal strength (ss) measurement4

together with a (synchronized) timestampt, i.e., it records
tuples of the form (t, bs, ss). This information is collected
both during the off-line phase and the real-time phase.

Figure 1 Map of the floor where the experiments were
conducted. The black dots denote locations were
empirical signal strength information was collected.
The large stars show the location of the three base
stations. The orientation is North (up) and East
(right).

4 During the course of our experiments, we discovered
that the signal strength is a stronger function of location
than the signal-to-noise ratio. The latter is impacted by
random fluctuations in the noise process. So we only use
signal strength information in our analysis.
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During the off-line phase alone (and not the real-time
phase), the user indicates his/her current location by
clicking on a map of the floor. The user’s coordinates
(x,y) are recorded together with a timestamp.

During our experiments, we discovered that signal
strength at a given location varies quite significantly (by
up to 5 dBm) depending on the user’s orientation, i.e., the
direction he/she is facing. For instance, in one orientation,
the mobile host’s antenna may have line-of-sight
connectivity to a base station’s antenna while in the
opposite orientation, the user’s body may form an
obstruction. So, in addition to user location (x,y), we also
recorded the direction (d) (one of north, south, east, or
west) that he/she is facing at the time the measurement is
made5. Thus, the mobile host records tuples of the form
(t,x,y,d). We discuss the implications of the user’s
orientation in more detail in Section 4.

In all, during the off-line phase, we collected signal
strength information in each of the 4 directions at 70
distinct physical locations on our floor. For each
combination of location and orientation (i.e., (x,y,d)
tuple), we collected at least 20 signal strength samples.

3.3 Data Processing

We present an overview of the data processing that
we performed as a precursor to the analyses discussed in
Section 4.

3.3.1 Signal Strength Information

Using the synchronized timestamps, we merged all of
the traces collected during the off-line phase into a single,
unified table containing the tuples of the form

(x,y,d,ssi,snri), where { }3,2,1∈i corresponding to the

three base stations. For each(x,y,d) tuple, we computed
the mean, the standard deviation, and the median of the
corresponding signal strength values for each of the base
stations. For much of our analysis, we use this processed
data set (primarily the mean) rather than the original, raw
data set.

We wrote routines to search through the processed
data set to determine exact as well as closest matches.
There is a fair amount of database research literature that
describes efficient data structures and algorithms for such
multi-dimensional searches (e.g.,R-Tree[Gut84], X-Tree
[Ber96], optimal k-nearest neighbor search[Sei98], etc.)
However, we chose a simple linear-time search algorithm
because our relatively small data set and dimensionality
(at most 3, as explained in Section 4) did not warrant the
complexity of the aforementioned algorithms. Moreover,

5 While there are other sources of fluctuation, such as the
movement of other people and objects, these tend to be
random. In contrast, the body of the person carrying the
mobile host introduces a systematic source of error.

the focus of our research is on doing the analysis rather
than developing an optimal implementation.

3.3.2 Building Floor Layout Information

We obtained the layout information for our floor,
which specified the coordinates of each room. We also
obtained the coordinates of the three base stations. Using
these and the Cohen-Sutherland line-clipping algorithm
[Fol90], we computed the number of walls that obstructed
the direct line between the base stations and the locations
where we had collected the empirical signal strength data.
We use this to build an accurate signal propagation model
(Section 4.2).

4 Algorithms and Experimental Analysis

In this section, we discuss several algorithms for user
location and tracking and present an analysis of how well
these perform using our experimental data.

A basic premise of our work is that signal strength
information provides a means of inferring user location.
To demonstrate that this is a reasonable premise, we show
in Figure 2 how the signal strength measured at each base
station varies as the user walks along the outer hallway of
the floor in a counter-clockwise direction. The walk
begins and terminates at the north-west corner (close to
BS1).

From Figure 2, we observe that there is a definite
trend in the signal strength measured at the three base
stations as the user walks around the loop. Not
surprisingly, the signal received at a base station is the
strongest when the user is close to it and weakest when the
user is far away. This strong trend is an indication that
using signal strength to estimate location may be a
promising approach.
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Figure 2 Signal strength recorded at the three base
stations as the user walks around the floor.



5

Our basic approach istriangulation6. Given a set of
signal strength measurements at each of the base stations,
we determine the location that best matches the observed
signal strength data. We then “guess” that to be the
location of the user. There are multiple variations of this
basic idea that arise because of several choices for each of
the following:

• Ways of summarizing the signal strength samples at
the base stations.

• Basis for determining the best match.
• Metric for determining the best match.

We discuss each of these in turn.

First, we summarize multiple signal strength samples
from a base station using the sample mean. In the case of a
static user whose location and orientation are fixed (the
user locationproblem), it is clear which signal strength
measurements should be included in the sample set. In the
case of a mobile user (theuser trackingproblem), it is less
clear what the sample set should be. In the latter case, we
define the sample set to be all samples that lie within a
sliding time window.

Second, to determine the location and orientation that
best match a given (summarized) set of signal strength
measurements, we first need to determine what the signal
strength at each base station should be for a particular
combination of user location and orientation. We use a
couple of alternative approaches for this purpose. The first
is the empirical methodwhere we use the location and
signal strength data measured during the off-line phase
(Section 3.2). The second approach issignal propagation
modeling. Our model accounts for both free-space loss
and loss due to intervening obstructions.

Third, we need a metric and a search methodology to
compare multiple locations and pick the one that best
matches the observed signal strength. We term our general
techniquenearest neighbor(s) in signal space (NNSS).
The idea is to compute thedistancebetween observed set
of signal strength measurements, (ss1,ss2,ss3), and the
expected signal strength, (ss’1,ss’2,ss’3), at a fixed set of
locations and then pick the point that minimizes the
distance. In our analysis, we use theEuclidean distance
measure, i.e.,sqrt((ss1-ss’1)

2+(ss2-ss’2)
2+(ss3-ss’3)

2). It is
possible to use other distance metrics, for example, the
sum of the absolute differences for each base station
(“Manhattan” distance[Cor90]) or a metric weighted by
the signal strength level at each base station. We
experimented briefly with these alternatives, but don’t
present the results here because of space limitations.

In all of our analysis, we characterize the goodness of
our estimate of the user’s location using theerror
distance, which is the Euclidean distance between the

6 It is just coincidental that we have three base station in
our testbed.

actual location and the estimated location (in physical
space).

4.1 Empirical Method

In this case, we use the empirical data discussed in
Section 3.2 to construct the search space for the NNSS
algorithm. We present results of various analyses we
performed on this method. Unless otherwise mentioned,
we assume the user to be stationary.

4.1.1 Basic Analysis

For the basic analysis, we use all the (more than 20)
signal strength samples collected for each of the 70*4 =
280 combinations of user location and orientation. In the
analysis, we pick one of the locations and orientations at
random, and then conduct an NNSS search for the
corresponding signal strength tuple in the space of the
remaining 69 points times 4 orientations. This emulates
the process of tracking a (stationary) user during the real-
time phase.

We compare the empirical method with two other
methods: random selectionand strongest base station
selection [Hod97]. With random selection, we estimate
the user’s location by picking one of the 70 points at
random, regardless of the signal strength information.
With strongest base station selection, we guess the user’s
location to be the same as the location of the base station
which records the strongest signal. A comparison with
these simple methods enables us to evaluate how
worthwhile the effort expended in our more sophisticated
techniques is.

Figure 3 shows the cumulative distribution function
(CDF) of the error distance for the empirical, strongest
base station, and random methods. The empirical method
performs significantly better than both of the other
methods. Table 1 summarizes the information in the figure
in terms of the 25th, 50th (median), and 75th percentile
values of the error distance for each method.
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Figure 3 CDF of the error in location estimation (in
meters) for three different algorithms.

Considering the median (50th percentile), for instance,
the empirical method has a resolution of under 3 meters,
which is about the size of an office room in our building.
In terms of linear resolution, it is 2.8 times better than the
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strongest base station method and 5.5 times better than the
random method. In terms of spatial resolution, the
improvement is even greater: 7.7 and 30.6 times,
respectively. We use the percentile values for the
empirical method in Table 1 as a basis for comparison in
the rest of the analysis.

Method 25th (meter) 50th (meter) 75th (meter)

Empirical 1.92 2.94 4.69

Strongest 4.54 (2.4x) 8.16 (2.8x) 11.5 (2.5x)

Random 10.37 (5.4x) 16.26 (5.5x) 25.63 (5.5x)

Table 1 The 25th, 50th, and 75th percentile values of
the error distance. The numbers in parenthesis
indicate how much worse the strongest BS and
random methods are compared to the empirical
method.

In summary, the empirical method performs
extremely well. Next, we discuss ways of making it
perform even better.

4.1.2 Multiple Nearest Neighbors

Unlike the basic analysis where we only considered
the single nearest neighbor in signal space, we now
considerk nearest neighbors, for various values ofk. The
intuition is that often there are multiple neighbors that are
at roughly the same distance from the point of interest (in
signal space). Given the inherent variability in the
measured signal strength at a point, there is no
fundamental reason to pick only the closest neighbor (in
signal space) and reject others that are almost as close.

A second, and equally important, reason to consider
more neighbors than the single nearest neighbor is that it
is likely that the error vector (in physical space)
corresponding to each neighbor is oriented in a different
direction. So averaging the coordinates of the neighbors
may yield an estimate that is closer to the user’s true
location than any individual neighbor is. Figure 4
illustrates this fork=3 nearest neighbors.

Our analysis of the empirical method with averaging
overk nearest neighbors shows that for smallk, averaging

has some benefit though not very significant. For instance,
for k=5, the 25th percentile of error distance is 1.5 meters
(22% better than the 1.92 meters in Table 1) and the 50th

percentile is 2.75 meters (9% better). For largek,
accuracy degrades rapidly because points that are
physically far from the true location also are included in
the averaging procedure, thereby corrupting the estimate.

The reason why the benefits of averaging are not very
significant even for smallk is that often thek nearest
neighbors in signal space arenot k physically distinct
points. In many instances, multiple nearest neighbors in
signal space correspond to different orientations at the
same point in physical space. So averaging in physical
space does not improve the location estimate by very
much.

4.1.3 Maximum signal strength across orientations

Since the dependence of signal strength on orientation
creates challenges for location estimation, we analyze how
well the empirical method would perform if orientation
were not an issue. For each user location in the trace
collected in the off-line phase, we compute the maximum
signal strength at each base station across the four
possible orientations at that location7. Note that the
maximum for each base station may correspond to a
different orientation. The goal is to emulate the situation
where the signal generated by the mobile host isnot
obstructed by the user’s body. While this may not be
realistic given the antenna design and positioning for
existing wireless LANs, it may be possible to approximate
this “ideal case” with new antenna designs (wearable
antennae akin to wearable computers).
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7 Note that for each base station, we first compute the
mean over samples for each of the four orientations at a
location and then pick the maximum among the four
means.
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(G) that is closer to the user's true location (T) than
any of the neighbors is individually.
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We repeat the analysis of the previous sections with
the smaller “maximum signal strength” data set of 70 data
points (instead of 70*4=280 data points in the original
data set). In Figure 5, we plot the 25th and the 50th

percentile values of the error distance with averaging over
neighbor sets of various sizes.

We make a couple of observations. First, just as
expected, the use of the maximum signal strength data set
improves the accuracy of location estimation slightly
`even when no averaging is done (k=1). The 25th

percentile value of the error distance is 1.8 meters and the
50th percentile 2.67 meters, 6% and 9% better,
respectively, compared to Table 1. Second, averaging
over 2-4 nearest neighbors improves accuracy quite
significantly; the 25th percentile is about 1 meter (48%
better than in Table 1) whereas the 50th percentile is 2.13
meters (28% better). The reason averaging is more
effective in this case is that unlike in Section 4.1.2, the
sets of k nearest neighbors in signal space necessarily
correspond tok physically distinct locations.

4.1.4 Impact of the number of empirical data points

Thus far in our analysis, we have considered signal
strength information collected at all 70 physically distinct
locations. We now investigate how the accuracy of
location estimation is impacted if we only had data from
fewer physical locations.

For each value ofn, the number of physical locations
(ranging between 2 and 70), we conducted 20 runs of our
analysis program. In each run, we pickedn points at
random from the entire data set collected during the off-
line phase and used this subset to construct the search
space for the NNSS algorithm. We collated the error
distance data from all the runs corresponding to the same
value ofn.
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Figure 6 The error distance versus the size of the
empirical data set (on a log scale).

For smalln (5 or less), the error distance is a factor of
2 to 4 worse when the entire empirical set containing 70
physical points is used. But the error distance diminishes

rapidly as n increases. Forn=20, the median error
distance is within 33% of optimal and for n=40, it is
within 10% of optimal. The diminishing returns asn gets
large is due to the inherent uncertainty in the reliability of
the measured signal strength caused by fluctuations. This
translates into inaccuracy in the estimation of physical
location. So there is little benefit in obtaining an empirical
data at a very fine (physical) granularity.

In summary, for our floor, the empirical method
would perform almost as well with an empirical data set of
40 physical points as with a set of 70 points. In practice,
we may be able to make do with even fewer than 40 points
by picking physical locations that are distributed
uniformly over the area of the floor rather than at random.

4.1.5 Impact of number of samples at each location

In the analysis presented so far, we have worked with
the mean of all of the (20 or more) samples recorded for
each combination of location and orientation during the
off-line phase. While it may be reasonable to construct the
empirical data set with a large number of samples (since it
is a one-time task), there may be constraints on the
number of samples that can be obtained in real-time to
determine a user’s location. So we investigate the impact
of a limited number of real-time samples (while retaining
the entire empirical data set for the NNSS search) on the
accuracy of location estimation. Our analysis shows that
only a small number of real-time samples are needed to
approach the accuracy obtained using all of the samples
(Table 1). With just 1 real-time sample, the median of
error distance is about 30% worse than when all samples
were considered. With 2 samples, it is about 11% worse
and with 3 samples it is under 4% worse.

4.1.6 Impact of user orientation

As we have already discussed, the user’s orientation
has a significant impact on the signal strength measured at
the base stations. In Section 4.1.3, we did a best-case
analysis using the maximum signal strength across all four
orientations. We now consider, in some sense, the worst
case where the empirical data set only has data points
corresponding to a particular orientation (say north) while
the real-time samples correspond to the opposite
orientation (i.e., south). We compute the error distance for
all four combinations of opposing directions: north-south,
south-north, east-west, and west-east.

We observe a fairly significant degradation in the
accuracy of location estimation. For instance, for the
north-south case, the 25th percentile of the error distance
was 2.95 meters (54% worse than in Table 1) while the
50th percentile (median) was 4.90 meters (67% worse).
This degradation underscores the importance of obtaining
empirical data for multiple orientations to construct the
NNSS search space. However, even in this worst case, the
empirical method outperforms the strongest base station
and random methods by a factor of 2 to 4.
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4.1.7 Tracking a mobile user

In this sub-section, we analyze the problem of
tracking a mobile user rather thanlocating a stationary
user, as we have done so far. For this analysis, we
collected a new set of data corresponding to random walks
by the user along the hallways of our floor. We collected 4
signal strength samples per second at each of the base
stations. Assuming that the user walked at a uniform pace,
we determine the true location of the user at each time
instant.

We reduce the problem of tracking the mobile user to
a sequence of location determination problems for a
(nearly stationary) user. We use a sliding window of 10
samples to compute the mean signal strength on a
continuous basis. This information is then used with the
empirical method to constantly estimate the user’s
location.

The error distance for tracking the mobile user is only
slightly worse than that for locating a mobile user. The
median error distance is 3.5 meters, about 19% worse than
that for a stationary user.

4.1.8 Summary of Empirical Method

The empirical method is able to estimate user location
with a high degree of accuracy. The median error distance
is only in the range of 2 to 3 meters, which is of the order
of the size of a typical office room. For our experimental
environment, much of the accuracy is achieved with an
empirical data set containing about 40 physical points and
about 3 real-time signal strength samples (at each base
station). It is important, however, to obtain data
corresponding to multiple user orientations.

The main limitation of the empirical method is that
significant effort is needed to construct the signal strength
data set for each physical environment of interest (each
floor, each building, etc.). Furthermore, the data collection
process may need to be repeated in certain circumstances,
for instance, when a base station is relocated.

We now discuss a different technique, based on signal
propagation modeling, that avoids this limitation.

4.2 Radio Propagation Model

Radio propagation modeling provides an alternative
to the empirical method for constructing the search space
for the NNSS algorithm.

4.2.1 Motivation

The primary motivation behind the radio propagation
model is to reduce the dependence of the user location and
tracking algorithm on empirical data. The idea is to
determine a mathematical model that characterizes the
indoor radio channel. This model is then used to generate
a data set of theoretically-computed signal strengths akin

to the empirical data set collected in section 3.2. The
signal strength information is computed at uniformly
spaced pre-determined locations on the floor. The NNSS
algorithm can then estimate the location of the mobile user
by matching the signal strength measured in real-time to
the theoretically calculated signal strengths at these
locations. It is clear that the performance this system is
directly impacted by the "goodness” of the propagation
model and special care is needed in developing this
model. In this section we develop the model and the
results of doing location determination based on the
model.

4.2.2 Determination of the model

For a radio channel, signal propagation in indoor
environment is dominated by reflections, diffraction, and
scattering of radio waves caused by structures inside the
building. The transmitted signal generally reaches the
receiver by more than one path, and results in a
phenomenon known asmultipath. Multipath causes
fluctuations in the received signal envelope and phase,
and the signal components arriving from indirect and
direct paths combine to produce a distorted version of the
transmitted signal. Since multipath within buildings is
strongly influenced by the layout of the building, the
construction material used, the number and type of objects
in the building, characterizing the radio channel in such an
environment is challenging.

We considered three different models and settled on
one. The first model we looked at was the well-accepted
Rayleigh fading model[Has93], which describes small-
scale rapid amplitude fluctuation in the absence of a
strong received component. The Rayleigh distribution is
widely used to describe multipath fading because of its
elegant theoretical explanation and the occasional
empirical justification. However, in deriving this
distribution, a critical assumption made is that all signals
reaching the receivers have equal strengths. In general,
this is an unrealistic assumption. Our empirical data shows
that for a number of sample points (along the hallways),
there exists a dominant line-of-sight component that is
not accounted for by this distribution. For this reason, we
did not use this distribution.

A second model we considered wasthe Rician
distribution model [Ric44]. The Rician distribution
occurs when a strong path exists in addition to the low
level scattered path. This strong component may be the
LoS path or a path that goes through much less attenuation
than the other arriving components. The Rician
distribution contains the Rayleigh distribution as a special
case. When the strong path is eliminated, the amplitude
distribution becomes Rayleigh. While the model is
intuitively appealing, it is very difficult to determine the
model parameters (i.e., the local mean of the scattered
power and the power of the dominant component)
precisely as this requires physically isolating the direct
wave from the scattered components. To keep the system
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simple and easy to deploy, we opted against using this
distribution to model the radio channel.

We found a good compromise between simplicity and
accuracy in theFloor Attenuation Factorpropagation
model (FAF) suggested by [Sei92]. We like this model
because it provides flexibility in accommodating different
building layouts while taking into account large-scale path
loss. Our measurements confirm earlier findings that
signal power decreases exponentially with distance if the
attenuation due to the intervening obstacles is
compensated for. We adapted the original model
proposed by Seidel and Rappaport, which included an
attenuation factor for building floors, to disregard the
effects of the floors and instead consider the effects of
obstacles (walls) between the transmitter and the receiver.
The Wall Attenuation Factor(WAF) model is described
by

wheren is the path loss component that indicates the rate
at which the path loss increases with distance.P(do) is the
signal power at some reference distancedo and d is the
transmitter-receiver (T-R) separation distance.C is the
maximum number of obstructions (walls) up to which the
attenuation factor makes a difference,nW is the number of
obstructions (walls) between the transmitter and the
receiver andWAF is the wall attenuation factor. In general
the value ofn and WAF depends on the building layout,
and construction material and is derived empirically. The
value of P(do) can either be derived empirically or
obtained from the wireless network hardware vendor.

Figure 7 illustrates how the signal strength varies with
distance between the transmitter and the receiver. The
wide difference in signal strengths between points at
similar distances is explained as follows: the layout of the
rooms in the building, the placement of base stations, and
the location of the mobile user all have an effect on the
received signal. Two locations that are at the same
distance from the transmitter are affected by different
amounts of signal attenuation due to the differences in the
number and types of obstructions between them and the
transmitter. For example, looking at Figure 7, we notice
that two measurements taken at a distance of
approximately 36 meters from the transmitter had signal
strengths that were 10 dBm apart. One of these two
measurements was made by the receiver at a location that
had up to 6 walls between it and the transmitter, while the
other location had line-of-sight to the base station. Thus it
is reasonable to conclude that the number of intervening
obstructions effects signal loss at any location and it is
possible to classify indoor channels as either LoS or
obstructed, with varying degree of clutter.

Previous work in indoor radio propagation modeling
has included extensive characterization of signal loss for
various materials and at different frequencies [Rap96].

However, using this information in a practical setting is
difficult and not as useful since the obstructing materials
vary considerably in their physical and electrical
characteristics. For example, water causes signal
attenuation and the human body is made up of water, so
the size of a human body and its orientation can result in
different amounts of signal loss. There is no way to
characterize such loss precisely since the number and
sizes of humans in the building at any particular time is
generally a finite but random number.
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Figure 7 Signal strength as a function of T-R
separation derived from the empirical data collected in
Section 3.2.

The building in which our research was carried out
has a large number of rooms filled with furniture,
electronic equipment and people (see Figure 1). In order
to account for these obstructions while keeping the model
simple, we took the following approach: we combined the
effect of signal attenuation due to various obstructions
into one number which we called thewall attenuation
factor. We took the map of the building, and for every
location where the signal strength was measured, we
determined the number of intersecting walls between the
location and the three base stations. As explained in the
next paragraph, we determined the value of WAF and
applied a correction to the measured signal to compensate
for signal loss due to obstructing structures.

In order to determine a suitable WAF, we carried out
the following experiment: we measured the signal strength
at the receiver when the receiver and the transmitter had
line-of-sight. We then measured the signal strength with
varying but known number of walls between the receiver
and the transmitter. We computed the average of the
difference between these values and determinedWAF.
We observed that the amount of attenuation dropped-off
as the number of walls separating the transmitter and the
receiver increased. This observation is consistent with
[Sei92] where the attenuation between different floors was
considered and shown to drop-off as the number of floors
between the transmitter and the receiver increased. In
general, with larger T-R separation and large number of
intervening walls, free-space path loss dominates over loss
due to obstructions. We choseWAF to be 3.1 dBm and C
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to be 4 (where C represents number of walls that are
factored into the model). Figure 8 shows the result after
the measured signal strength has been compensated for
signal loss due to the intervening walls between the
transmitter and the receiver. We observe that the
resulting plot shows a trend similar to the free-space loss
trend, thus corroborating our intuition that the attenuation
factor propagation model is a good way to proceed.
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Figure 8 Effect of applying correction for intervening
walls between the base station and the mobile user

Once we had taken the effect of walls into account
and had created the “corrected” data for all three base
stations, we proceeded to determine the other two
parameters, (n and Pdo) of our model. Since the
propagation model can be trivially reduced to a form
where it exhibits a linear relationship between the
theoretical signal strength and logarithm of the distance
between the transmitter and the receiver, we applied
simple linear regression to determine the parameters of the
model [Jai91]

Table 2 contains the numerical values of the model
parameters for the three base stations considered
separately and when taken together. We note that the
values for the path loss exponent (n) and the reference
signal strength (Pdo) for all three base stations are similar
despite their different physical locations and surroundings.
This result is encouraging since it indicates that the
parameter values are not tied to the specific location of the
base stations. The slightly higher values ofPdo are
explained on the basis of multipath propagation, which is
not taken into account by the model. We observe that the
values of the path loss exponent are smaller than what has
been reported in previous studies of indoor radio
propagation modeling [Rap96]. However, they are
consistent with our expectations since we compensate the
measured signal strength for attenuation due to
obstructions, and since we do not consider multipath
(which can boost the signal strength at a given location).
R2 represents thecoefficient of determination, which is a
useful measure for indicating the goodness of regression.
The high values ofR2 suggest that there is a strong
correlation between the estimated and measured values of
the signal strength. Another value of interest shown in the

table is the mean squared error. The numbers suggest that
we can be confident that the attenuation factor
propagation model fits the measured data nicely.

The final column in Table 2 shows the values forPdo

andn when the data from all the transmitter-receiver pairs
was combined. The motivation behind this was to
determine a value ofPdo and n that could be used for all
base stations without overly effecting the result. The
advantage of using a common value is that it avoids the
need for individual measurements of each base station as
they are installed in the network, thus greatly reducing the
cost of system setup. We can then use these values to
estimate signal strength values at various points within the
building.

BS1 BS2 BS3 All

Pdo 57.58 56.95 64.94 58.48

n 1.53 1.45 1.76 1.523

R2 0.81 0.65 0.69 0.72

MSE 10.49 13.98 7.34 9.82

Table 2 Model parameter estimates based on linear
regression applied to measured data

Figure 9 illustrates how the predicted values of the
signal strength generated with the propagation model
compared against the actual measurements after they were
corrected for the intersecting walls. We observe a good
match between the two. While this plot is for one of the
three base stations, plots for the other two base stations
exhibit similar results.
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Figure 9 Comparison of predicted versus measured
signal strength.

4.2.3 Results of using the Propagation Model

To determine the performance of location estimation
with the signal propagation modeling method, we
computed the theoretical values of the signal strengths for
several locations on the floor. We then provided this data-
set to the NNSS algorithm.

Considering the median (50th percentile), the
propagation method provides a resolution of about 4.3
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meters, compared to a resolution of 2.94 meters for the
empirical method and 8.16 meters for picking the
strongest base station method (Table 1). For the 25th

percentile the propagation method provides a resolution of
1.86 meters compared to 1.92 meters for the empirical
method and 4.94 meters for the strongest base station
method. While the propagation method is not as good as
the empirical method it is significantly better than the
strongest BS and random methods. So even without any
empirical measurements, our system based on the
propagation model alone would perform significantly
better than the course level base station method adopted in
[Hod97]

4.2.4 Summary of Radio Propagation Method

The radio propagation model is a cost effective way
of doing location tracking in an indoor wireless radio
network. The model is cost effective in the sense that it
does not require detailed empirical measurements for
location tracking and consequently has a low set up cost.
A significant result from Section 4.2.2 is that the
parameters for the wall attenuation propagation model are
similar across base stations despite their being in different
locations. This suggests that the entire system can be
located in a different part of the building and the same
parameter values used to model propagation and thereby
determine location.

5 Discussion

In this section, we discuss some extensions to basic
algorithms presented in this paper. We also discuss some
applications that are enabled by the user location and
tracking algorithms we have developed.

5.1 Self-Adaptive Kalman Filtering

In a previous paper we have shown that continuous
processing of signal strength measurements enables
prediction of a mobile user’s immediate future location
[Anon1]. Our research objective in that paper was to
build a system to predict the speed and trajectory of a
high-speed mobile user in a wide-area cellular network.
The input to that system, instantaneous noisy signal
strength measurements from the neighboring base stations,
is identical to the input to the system described in this
paper. We built a two-level hierarchical location
prediction (HLP) algorithm consisting of approximate
pattern matching and classical stochastic signal processing
techniques. While the pattern-matching component
required historical movement patterns to yield good
results when the user exhibited regular movement
patterns, the signal processing technique required no
historical movement data. We showed that a self-adaptive
extended Kalman filter could take noisy measurements at
the input and still provide an accurate prediction for next
location of the mobile.

The HLP algorithm can be employed in an indoor
local-area wireless network, and we expect that it would
improve the location tracking results. However, the
computational complexity of determining the Kalman gain
matrix with each new sample is high. It is not clear that
the amount of additional accuracy obtained from applying
this computationally complex algorithm would be worth
while. In particular, the additional accuracy might not
enable applications that require precise location
determination and for the ones that don’t depend on such
precise location estimation, the accuracy provided by the
algorithms proposed in this paper may well be enough.

5.2 Applications Enabled

Different location-aware services have varying
requirements for the accuracy of location information. Our
experimental results indicate the feasibility of estimating
user location to within a couple of meters. We believe that
this capability enables a rich class of location-aware
service. For example, our system can be used to locate
nearby network resources such as printers, fax machines,
copy machines etc. The mobile user could expect to get
good result to the request “print this document on the
closest printer”.The system would determine the location
of the user, find a nearby printer with the right attributes,
graphically indicate to the user the location of this printer,
and then print the document on this printer. Similarly a
request like “Show me the map of the area I am in”will
result in the appropriate map being displayed on the
screen. Going in the reverse direction, queries such as
“Where is user A?” would be answered by the system
and the location of the mobile would be returned to within
a certain range of his or her actual location.

6 Conclusions

In this paper, we have addressed the problem of user
location and tracking in an in-building RF network. Our
algorithm is based both on empirical signal strength
measurements and a simple yet effective signal
propagation model. While the empirical method is
superior in terms of accuracy, the signal propagation
method generalizes to a much greater extent.

We have shown the despite the hostile nature of the
radio channels, we are able to locate and track a user with
a high degree of accuracy. Based on experiments using the
WaveLAN network, we determined the median resolution
of location estimation to be in the range of 2 to 3 meters,
which is about the size of a typical office room.

Our results give us confidence that it is possible to
build an interesting class of location-aware services, based
solely on the RF in-building wireless data network, thus
adding value to such a network. This, we believe, is a
significant contribution of our research.
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