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location, is a handicap for providing ubiquitous coverage
Abstract in a building. Also, often the IR network is deployed for
the sole purpose of locating people and does not provide
The proliferation of mobile computing devices and traditional data networking services. For these reason we
local-area wireless networks has fostered a growingfocus on radio-frequency (RF) wireless networks in our
interest in location-aware systems and services. A keyesearch. Our goal is to complement the data networking
requirement for enabling such services is user locationcapabilities provided by RF networks with accurate user
and tracking. In this paper we address this problem inlocation and tracking capabilities, thereby enhancing the
the context of a popular radio-frequency wireless networkvalue of such networks.

technology. Our approach is based on recording and | gcation determination in RF network requires
processing real-time signal strength information gnaiyzing signal characteristics. However, a major
available at multiple base stations positioned to prOV'dechallenge arises due to the significant fluctuations in

overlapping coverage in the area of interest. We emplo)ehanne| characteristics, both in time and space, typical in
techniques that combine empirical measurements Withhr networks.

signal propagation modeling. We present concrete

experimental results that demonstrate the feasibility of, Our V?/pproach_ to Ithe useL I_ofcat|on_problerr]n 'Sd as
estimating user location with a high degree of accuracy. ollows. YWe use signa _strengt n ormation gat er(? at
multiple receiver locations totriangulate the user’s

coordinates. To do the triangulation, we use both
empirically determined and theoretically computed signal
strength information.

The proliferation of mobile computing devices and Our experimental results are very encouraging. With
local-area wireless networks has fostered a growindligh probability we are able to estimate a user’s location
interest in location-aware systems and servickskey  to within a few meters of his/her actual location. This
distinguishing feature of such systems is that thesuggests that it is feasible for fine-grained location-aware
application information and/or interface presented to theservices to be built on top of RF local-area wireless
user is, in general, a function of his or her physicalnetworks.

location. The granularity of location information needed The remainder of this paper is organized as follows.

could vary from one application to another. For example,|n section 2, we survey related work in location

locating a nearby printer requires fairly coarse-grainedyetermination technologies. In Section 3, we discuss our

location information whereas locating a book in a library yesearch methodology. Section 4 contains the core of the

would require fine-grained information. paper where we present and analyze the empirical and the
While much research has focussed on developingignal propagation modeling methods. A discussion of

services architectures for location-aware systems, lessome related issues appears in Section 5. Finally, we

attention has been paid to the fundamental andresentour conclusions in Section 6.

challenging problem of user location and tracking,

especially in in-building environments. The few efforts 2  Related Work

that have addressed this problem have typically done so in

the context of infrared (IR) wireless networks. The Related work in the area of user location and tracking

limited range of IR networks, which facilitates user has been done in the following broad contexts: (1) in-

1 Introduction

1 This is an abridged version of a more detailed paper in preparation. Please contact the authors for additional
information.



building IR networks, (2) wide-area cellular networks fine grained time synchronization between the transmitter
(based on RF), and (3) Global Positioning System (GPS).and receiver, which is not feasible with current off-the-

The Active Badgesystem [Har94] was an early, Shelf mobile devices.

significant contribution to the field of location-aware Some systems based on the Global Positioning
systems. In this system, a badge worn by a person emits 3ystems (GPS) have also been proposed [GPS99].
unique IR signal every 10 seconds. Sensors are placed binfortunately GPS transmissions are blocked by
fixed positions within a building and as they receive thebuildings, so the system does not operate indoors.

unique identifiers, the location manager software is able  The Daedalus project [Hod97] developed a system
provide information about the person's location to thethat provides coarse level location tracking services.
requesting services and applications. While theBeacon signals transmitted by the base station are
performance of this system is quite good, a majoraugmented with location information. The mobile host
drawback is that the range of the IR system is fairly small,estimates its location to be the same as that of the base
and consequently the building has to be wired up with astation with the strongest signal. Given the relatively
significant number of sensors. In the few places wherdarge size of cells, the location information is not likely to
such systems have been deployed, sensors have bebe very accurate.

physically wired in every room of the building. Such a oy york differs from previous work in that we tackle

system scales poorly, and incurs significant installationshe problem of location determination and tracking on a

configuration and maintenance cost. Also, IR tends t9yjqely availableradio frequencybased wireless network

perform poorly in the presence of direct sunlight, which is;, 4 in-building environment. RF networks offer a

common in rooms with windows. significant advantage over IR networks in terms of range,
Another system that is based on IR technology isscalability, deployment, and maintenance. With speeds up

described in [Azu93]. This system requires IR transmitterdo 10 Mbps these systems have gained rapid acceptance

to be located at fixed positions inside the ceiling of theand are being widely deployed in companies, schools,

building. An optical sensor sitting on a head mounted unithomes etc.

senses the IR beacons and system software determines the

position of the person. This system suffers from similar3  Research Methodology

drawbacks as the Active Badge system.

The system described in [ATC97] uses pulsed DC In this section, we describe our research
magnetic fields to determine the position and orientatiormethodology. We begin with a description of our
of the person with a high degree of precision. Multiple experimental testbed. We then discuss the data collection
sensors are placed on body-mounted peripherals, such psocess, including tools we developed for this purpose.
data gloves and the output from the sensors is processdsinally, we describe the processing we performed on the
to determine location and orientation. This technology isdata as a precursor to the analysis described in Section 4.
used extensively in the computer animation industry. It is,
however, quite expensive, and like IR, is severely range3.1  Experimental Testbed
limited. Therefore, it is not suitable for wide-scale

Our experimental testbed is located on one floor of a
deployment.

_ 3-storey building. The layout of the floor is shown in
Recently several location systems have been proposegigure 1. The floor has dimension of 43.5 m by 22.5 m,

for wide-area cellular systems [Tek98]. The technologicalan area of 980 sq. m (10500 sq. ft.), and includes more

alternatives for locating cellular telephones involve than 50 rooms.

measuring signal attenuation, angle of arrival (AOA), We placed three base stations, ;BBS, and BS, at

and/or time difference of arrival (TDOA). Based on initial the locations indicated in Figure 1. Each base station was

studies, the AOA _and TDOA based system have beergi Pentium-based PC running FreeBSD 3.0 quipped with a
found to be promising.

wireless adapter. Our mobile host, which was carried by

A common variant of the angle-of-arrival technique is the user being tracked, was a Pentium-based |aptop
known as small aperture direction finding, which requirescomputer running Microsoft Windows 95.
a complex antenna array at each of the cell site locations. Each base station and the mobile host was equipped
The antenna arrays can in principle work together to

. : . _with a Digital RoamAbout" network interface card
determine the angle (relative to the cell site) from which )
. N\ ) NIC), based on Lucent’s popular WaveLANRF LAN
the cellular signal originated. When several cell sites ca

. . , . echnology. The network operates in the 2.4 GHz license-

determine their respective angles of arrival, the cell phon : o ;
. : . . ree ISM (Industrial, Scientific and Medical) band. It has

location can be estimated from the intersection of

a raw data rate of 2 Mbps and a one-way delay of 1-2 ms.

projected lines drawn out from the cell site at the angle.l_he range of the network, as specified in [Roa96], is 200
corresponding to the signal's origin. Due to the nature of ’ '

) : : m, 50 m, and 25 m, respectively, for open, semi-open, and
indoor environments, the angle of arrival technology : . .
closed office environments. An open environment refers

cannot be used reliably to compute the position of T . L
mobile user. Also, the TDOA technology requires ver;to there being line-of-sight (LoS) connectivity between a
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transmitter and a receiver. Semi-open and closedtations are synchronized (to within the round-trip latency
environments refer to there being obstructions in the fornof the wireless link, essentially less than 5 ms). The
of modular office partitions (cubicles) and solid walls, mobile host then starts broadcasting UDP packets with 6-
respectively. In this nomenclature, our testbedbyte payloads at a default rate of 4 per second. Each base
environment would be classified as being open along thetation ps) records the signal strengtb§ measuremeft
hallways where the base stations are located and closa@gether with a (Synchronized) timestamp.e., it records
elsewhere. The base stations provide overlappinguples of the formt( bs s9. This information is collected

coverage in portions of the floor, and together cover theboth during the off-line phase and the real-time phase.
entire floor.

3.2 Data Collection

A key step in our research methodology is the date
collection phase. We record information about the radic
signal as a function of the user’s location. As discussed ir &
Section 4, we use the signal information to construct anc
validate models for signal propagation during off-line
analysis as well as to infer the location of a user in real
time. We refer to the former as thwf-line phaseand the
latter as theeal-time phase

Among other information, the WaveLAN NIC makes \H . F
available thesignal strength(SS) andthe signal-to-noise i
ratio (SNR). SS is reported in units of dBm and SNR is Eli_“ .
expressed in dB. A signal strength®Watts is equivalent J . I
to 10*log,o(s/0.001)dBm. A signal strength of Watts : . [ 227 | [2zas]| [ 2063
and a noise power ofn Watts yields an SNR of

:i‘=

10*log;o(s/n)dB. For example, a signal strength of 1 Watt
is equivalent to 30 dBm. Furthermore, if the noise power
is 0.1 Watt, the SNR would be 10 dB. 43.5m

The FreeBSD 3.0 WavelLAN driver extracts the SS
and the SNR information from the WavelLAN firmware
each time a broadcast packet is recefvdtithen makes
the information available to user-level applications via
ioctl system calls. We used the&lconfig utility, which

§

o]

1 1 CORF.
p.rowdgs a wrapper around thectl calls, to extract the :3-.: ‘| @z
signal information. Lizs .

While Windows also obtains the same information =] [a g
from the WaveLAN NIC, we were unable to determine a -
programmatic way of extracting the information using the T
NDIS driver interface. This constrained us to have the el Soco
Windows-based mobile host broadcast packbea¢ony jzm B .
periodically and have the base stations (which run N B -

H H 1551 T
FreeBSD) record signal strength informattotdowever, 0 ‘;. [
in a production system with many more mobiles than bast BS2
stations, it may be desirable to have the latter transmit the
beacons and the former measure the signal strength. Figure 1 Map of the floor where the experiments were

We wrote a simple application using Tcl/Tk [Ous94] ¢onducted. The black dots denote locations were
and Perl [Wal96] to control the entire data collection EMPirical signal strength information was collected.
process from the mobile host. The process operates ag'€ 1arge stars show the location of the three base

follows. First, the clocks on the mobile host and the base(srtiztri%ns' The orientation is North (up) and East

2 |t is quite easy to modify the driver to record
information for other packets as well, but we found no4 During the course of our experiments, we discovered
reason to do so. that the signal strength is a stronger function of location
3 While our analysis does not assume symmetry of signathan the signal-to-noise ratio. The latter is impacted by
strength, the few instances where we measured signaandom fluctuations in the noise process. So we only use
strength at both ends indicate little asymmetry. signal strength information in our analysis.



During the off-line phase alone (and not the real-timethe focus of our research is on doing the analysis rather
phase), the user indicates his/her current location byhan developing an optimal implementation.
clicking on a map of the floor. The user's coordinates
(x,y) are recorded together with a timestamp.

During our experiments, we discovered that signal We obtained the | tinf tion f f
strength at a given location varies quite significantly (by € obtane € layout information for our foor,

up to 5 dBm) depending on the user’s orientation, i.e., thé’vgt'ch sgt;c:ﬂed thde_ C(:ordu;e::]estﬁf eagh roo;n.t_ we SIS.O
direction he/she is facing. For instance, in one orientation®° 2in€d the cooradinates of the three base stations. Jsing

the mobile host's antenna may have Iine-of-sightthese and the Cohen-Sutherland line-clipping algorithm
connectivity to a base station’s antenna while in the[F°|9Q]’We_ computed the number ofyvalls that obstruct_ed
opposite orientation, the user's body may form anthe direct line between the base_s_tanor_]s and the locations
obstruction. So, in addition to user locationy), we also where we _had col_lected the empm_cal signal strength data.
recorded the directiondf (one of north, south, east, or We use this to build an accurate signal propagation model

west) that he/she is facing at the time the measurement {S'Sectmn 4.2).

madé. Thus, the mobile host records tuples of the form

(txy,d). We discuss the implications of the user’s . ) )
orientation in more detail in Section 4. 4  Algorithms and Experimental Analysis

3.3.2  Building Floor Layout Information

In all, during the off-line phase, we collected signal _ . . .
strength information in each of the 4 directions at 70  In this section, we discuss several algorithms for user
distinct physical locations on our floor. For each location and tracking and present an analysis of how well
combination of location and orientation (i.e.x).d) these perform using our experimental data.

tuple), we collected at least 20 signal strength samples. A basic premise of our work is that signal strength
i information provides a means of inferring user location.
3.3 Data Processing To demonstrate that this is a reasonable premise, we show

Section 4. the floor in a counter-clockwise direction. The walk

begins and terminates at the north-west corner (close to
| _ BS).
3.3.1  Signal Strength Information From Figure 2, we observe that there is a definite
Using the synchronized timestamps, we merged all otrend in the signal strength measured at the three base
the traces collected during the off-line phase into a Sing'estaﬂons as the user walks around the |Oop_ Not
unified table containing the tuples of the form surprisingly, the signal received at a base station is the
(x,y,d,ss,snr), where | D{ZI.,2,3} corresponding to the strongest when the user is close to it and weakest when the

three base stations. For eaphy,d)tuple, we computed USer is far away. This strong trend is an indication that
the mean, the standard deviation, and the median of theSing signal strength to estimate location may be a
corresponding signal strength values for each of the bageromising approach.

stations. For much of our analysis, we use this processed
data set (primarily the mean) rather than the original, raw

|——BS1—#-BS2 4 BS3]

data set. 40

We wrote routines to search through the processed ;%“35
data set to determine exact as well as closest matches. S ¥
There is a fair amount of database research literature that %25
describes efficient data structures and algorithms for such é io
multi-dimensional searches (e.@R;Tree[Gut84], X-Tree T"; 1(5)
[Ber96], optimal k-nearest neighbor sear¢8ei98], etc.) 5 5
However, we chose a simple linear-time search algorithm ¢ 0

40 60 80 100
Distance along walk (meters)

because our relatively small data set and dimensionality
(at most 3, as explained in Section 4) did not warrant the
complexity of the aforementioned algorithms. Moreover,

o
8

] _ Figure 2 Signal strength recorded at the three base
5 While there are other sources of fluctuation, such as th€ations as the user walks around the floor.

movement of other people and objects, these tend to be
random. In contrast, the body of the person carrying the
mobile host introduces a systematic source of error.



Our basic approach isiangulatiorf. Given a set of actual location and the estimated location (in physical
signal strength measurements at each of the base statiogace).
we determine the location that best matches the observed o
signal strength data. We then “guess” that to be thet.1 Empirical Method
location of the user. There are multiple variations of this In this case, we use the empirical data discussed in

basic idea that arise because of several choices for each gfaction 3.2 to construct the search space for the NNSS

the following: algorithm. We present results of various analyses we
* Ways of summarizing the signal strength samples aperformed on this method. Unless otherwise mentioned,

the base stations. we assume the user to be stationary.
» Basis for determining the best match.
¢ Metric for determining the best match. 411 Basic Analysis

For the basic analysis, we use all the (more than 20)
We discuss each of these in turn. signal strength samples collected for each of the 70*4 =
First, we summarize multiple signal strength samples280 combinations of user location and orientation. In the
from a base station using the sample mean. In the case ofanalysis, we pick one of the locations and orientations at
static user whose location and orientation are fixed (thgandom, and then conduct an NNSS search for the
user locationproblem), it is clear which signal strength corresponding signal strength tuple in the space of the
measurements should be included in the sample set. In tH€maining 69 points times 4 orientations. This emulates
case of a mobile user (theser trackingoroblem), itis less  the process of tracking a (stationary) user during the real-
clear what the sample set should be. In the latter case, wéme phase.

define the sample set to be all samples that lie within a e compare the empirical method with two other
sliding time window. methods:random selectionand strongest base station

Second, to determine the location and orientation thagelection[Hod97]. With random selection, we estimate
best match a given (summarized) set of signal strengtithe user’s location by picking one of the 70 points at
measurements, we first need to determine what the signafindom, regardless of the signal strength information.
strength at each base station should be for a particulafVith strongest base station selection, we guess the user’s
combination of user location and orientation. We use docation to be the same as the location of the base station
couple of alternative approaches for this purpose. The firstvhich records the strongest signal. A comparison with
is the empirical methodwhere we use the location and these simple methods enables us to evaluate how
signal strength data measured during the off-line phas@/OI’thWh”e the effort expended in our more sophisticated
(Section 3.2). The second approactsignal propagation  techniques is.

modeling Our model accounts for both free-space loss  Figure 3 shows the cumulative distribution function
and loss due to intervening obstructions. (CDF) of the error distance for the empirical, strongest
Third, we need a metric and a search methodology tdase station, and random methods. The empirical method
compare multiple locations and pick the one that besperforms significantly better than both of the other
matches the observed signal strength. We term our genergiethods. Table 1 summarizes the information in the figure
techniquenearest neighbor(s) in signal space (NNSS)in terms of the 28, 50" (median), and 75 percentile
The idea is to compute thaistancebetween observed set Vvalues of the error distance for each method.
of signal strength measurementss s,5s), and the
expected signal strengthsg(;,s5%,5S%), at a fixed set of
locations and then pick the point that minimizes the
distance. In our analysis, we use tReclidean distance
measure, i.e.sqrt((ss-ss")*+(S$-58%)*+(s55-55%)7). It is

‘—0— Empirical A Strongest BS —#— Random ‘

1.2

[N
L

o
o

possible to use other distance metrics, for example, the g o6

sum of the absolute differences for each base station £ 04

(“Manhattan” distancgCor90]) or a metric weighted by 02 1

the signal strength level at each base station. We 0 : : ‘ ‘
experimented briefly with these alternatives, but don't 0 10 20 30 40 50
present the results here because of space limitations. Error distance (meters)

In all of our analysis, we characterize the goodness of
our estimate of the users location using theror Figure 3 CDF of the error in location estimation (in
distance which is the Euclidean distance between themeters) for three different algorithms.

Considering the median (8(ercentile), for instance,
the empirical method has a resolution of under 3 meters,
6|t is just coincidental that we have three base station irwhich is about the size of an office room in our building.
our testbed. In terms of linear resolution, it is 2.8 times better than the




strongest base station method and 5.5 times better than ttas some benefit though not very significant. For instance,
random method. In terms of spatial resolution, thefor k=5, the 25" percentile of error distance is 1.5 meters
improvement is even greater: 7.7 and 30.6 times(22% better than the 1.92 meters in Table 1) and tH& 50
respectively. We use the percentile values for thepercentile is 2.75 meters (9% better). For large

empirical method in Table 1 as a basis for comparison imccuracy degrades

the rest of the analysis.

rapidly because points that are
physically far from the true location also are included in
the averaging procedure, thereby corrupting the estimate.

Method 25" (meter) | 50" (meter) | 75" (meter) The reason why the benefits of averaging are not very
— significant even for smalk is that often thek nearest
Empirical | 1.92 2.94 4.69 neighbors in signal space aret k physically distinct
Strongest | 4.54 (2.4x) 8.16 (2.8x) 11.5(2.5x) points. In many instances, multiple nearest neighbors in
Random 10.37 (5.4x) 16.26 (5.5%) 25.63 (5.5) signal space correspond to different orientations at the
same point in physical space. So averaging in physical

Table 1 The 25th, 50th, and 75th percentile values of Space does not improve the location estimate by very

the error distance. The numbers in parenthesis much.
indicate how much worse the strongest BS and
random methods are compared to the empirical 4.1.3 Maximum signal strength across orientations

method. ) ) ) )
Since the dependence of signal strength on orientation

In - summary, the empirical method performs creates challenges for location estimation, we analyze how
extremely well. Next, we discuss ways of making it el the empirical method would perform if orientation
perform even better. were not an issue. For each user location in the trace
collected in the off-line phase, we compute the maximum
signal strength at each base station across the four
possible orientations at that locatfonNote that the
dmaximum for each base station may correspond to a

. _s(;n?il(e neart—ist _ner:ghborf n S|gnal sp}ac; f\?ﬁ NOWitferent orientation. The goal is to emulate the situation
considerk nearest neignors, for various vaiuesonine  pere the signal generated by the mobile hoshat

intuition is that often there are multiple neighbors that are

) . . _obstructed by the user’'s body. While this may not be
at roughly the same distance from the point of interest ('Wealistic given the antenna design and positioning for

signal space). Given the inherent variabilily in the existing wireless LANSs, it may be possible to approximate

measured signal strength at a point, ther_e IS NGpis “ideal case” with new antenna designs (wearable
fundamental reason to pick only the closest neighbor ('nantennae akin to wearable computers)

signal space) and reject others that are almost as close.

4.1.2  Multiple Nearest Neighbors
Unlike the basic analysis where we only considere

A second, and equally important, reason to consider \—0—25th ——50th \
more neighbors than the single nearest neighbor is that i
o : - 35
is likely that the error vector (in physical space) =
corresponding to each neighbor is oriented in a different £ 3
direction. So averaging the coordinates of the neighborg ‘aE‘J 2.5 A.\././l/
may yield an estimate that is closer to the user's true| =~ 2
location than any individual neighbor is. Figure 4 € 15 A /
. . . © .
illustrates this folkk=3 nearest neighbors. 2 \/\//
© Al a4
S 05
oN; w 0
0 2 4 6 8 10
T. Number of neighbors averaged (k)
o
o G
N, N; o Figure 5 The error distance when the empirical

method with averaging is used on the data set
containing the maximum signal strength measurement

Figure 4 An illustration of how averaging multiple g
for each location.

nearest neighbors (N, N,, N3) can lead to a guess
(G) that is closer to the user's true location (T) than
any of the neighbors is individually.

7 Note that for each base station, we first compute the

Our analysis of the empirical method with averagingmean over samples for each of the four orientations at a
overk nearest neighbors shows that for snkalaveraging location and then pick the maximum among the four
means.



We repeat the analysis of the previous sections withrapidly as n increases. Fom=20, the median error
the smaller “maximum signal strength” data set of 70 datadistance is within 33% of optimal and for n=40, it is
points (instead of 70*4=280 data points in the original within 10% of optimal. The diminishing returns asgets
data set). In Figure 5, we plot the 2%and the 58 large is due to the inherent uncertainty in the reliability of
percentile values of the error distance with averaging ovethe measured signal strength caused by fluctuations. This
neighbor sets of various sizes. translates into inaccuracy in the estimation of physical

We make a couple of observations. First, just adocation. So th(_ere is IittI<=T benefit in optaining an empirical
expected, the use of the maximum signal strength data sé@t@ ata very fine (physical) granularity.
improves the accuracy of location estimation slightly In summary, for our floor, the empirical method
‘even when no averaging is don&=(). The 2%"  would perform almost as well with an empirical data set of
percentile value of the error distance is 1.8 meters and thd0 physical points as with a set of 70 points. In practice,
50" percentile 2.67 meters, 6% and 9% better,we may be able to make do with even fewer than 40 points
respectively, compared to Table 1. Second, averagingy picking physical locations that are distributed
over 2-4 nearest neighbors improves accuracy quiteniformly over the area of the floor rather than at random.
significantly; the 2% percentile is about 1 meter (48%
better than in Table 1) whereas the™@ercentile is 2.13 _
meters (28% better). The reason averaging is moré-1.5  Impact of number of samples at each location
effective in this case is that unlike in Section 4.1.2, the  In the analysis presented so far, we have worked with
sets of k nearest neighbors in signal space necessarithe mean of all of the (20 or more) samples recorded for
correspond td physically distinct locations. each combination of location and orientation during the
off-line phase. While it may be reasonable to construct the
. ) empirical data set with a large number of samples (since it
4.1.4  Impact of the number of empirical data points  js 3 one-time task), there may be constraints on the
Thus far in our analysis, we have considered signahumber of samples that can be obtained in real-time to
strength information collected at all 70 physically distinct determine a user’s location. So we investigate the impact
locations. We now investigate how the accuracy ofof a limited number of real-time samples (while retaining
location estimation is impacted if we only had data fromthe entire empirical data set for the NNSS search) on the
fewer physical locations. accuracy of location estimation. Our analysis shows that

For each value of, the number of physical locations only a small nhumber of real—ltime sa_mples are needed to
(ranging between 2 and 70), we conducted 20 runs of ouftPProach the accuracy obtained using all of the samples
analysis program. In each run, we pickedpoints at (Table.l). Wlth just 1 real-time sample, the median of
random from the entire data set collected during the off-£rror distance is about 30% worse than when all samples
line phase and used this subset to construct the seardfre considered. With 2 samples, it is about 11% worse
space for the NNSS algorithm. We collated the errordnd With 3 samples itis under 4% worse.
distance data from all the runs corresponding to the same

value ofn. 4.1.6  Impact of user orientation

| —e—25th —=—50th | As we have already discussed, the user’s orientation

has a significant impact on the signal strength measured at
14 the base stations. In Section 4.1.3, we did a best-case
12 N analysis using the maximum signal strength across all four
10 orientations. We now consider, in some sense, the worst
case where the empirical data set only has data points
corresponding to a particular orientation (say north) while
the real-time samples correspond to the opposite
orientation (i.e., south). We compute the error distance for
all four combinations of opposing directions: north-south,
south-north, east-west, and west-east.

1 10 100

Size of empirical data set (# physical
points, n)

6-6-66
V-oee

Error distance (meters)

O N b O

We observe a fairly significant degradation in the
accuracy of location estimation. For instance, for the
north-south case, the 95ercentile of the error distance
was 2.95 meters (54% worse than in Table 1) while the
Figure 6 The error distance versus the size of the 50{? percentile_ (median) was 4'90. meters (67% WOPS‘?)-
empirical data set (on a log scale). Thls_d_egradatlon under_scores_ the |r_nportance of obtaining

empirical data for multiple orientations to construct the

For smalin (5 or less), the error distance is a factor of NNSS search space. However, even in this worst case, the

2 to 4 worse when the entire empirical set containing 70empirical method outperforms the strongest base station
physical points is used. But the error distance diminishesind random methods by a factor of 2 to 4.
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to the empirical data set collected in section 3.2. The

4.1.7  Tracking a mobile user signal strength information is computed at uniformly
. . spaced pre-determined locations on the floor. The NNSS
".1 this su'b—sectlon, we analyzg the pr(_)blem Ofalgorithm can then estimate the location of the mobile user
tracking a mobile user rather thafocating a stationary by matching the signal strength measured in real-time to

user, as we have done so far. For this analysis, Vehe theoretically calculated signal strengths at these
collected a new set of data corresponding to random Walkﬁ)cations. It is clear that the performance this system is

by the user along the hallways of our floor. We collected 4direct|y impacted by the "goodness” of the propagation
signal strength samples per second at each of the ba odel and special care is needed in developing this
stations. Assuming that the user walked at a uniform PaC& el In this section we develop the model and the

we determine the true location of the user at each tlrn(?esults of doing location determination based on the

instant. model

We reduce the problem of tracking the mobile user to
a sequence of location determination problems for a
(nearly stationary) user. We use a sliding window of 104-2.2  Determination of the model
samples to compute the mean signal strength on a For a radio channel, signal propagation in indoor
continuous basis. This information is then used with theenvironment is dominated by reflections, diffraction, and
empirical method to constantly estimate the user’sscattering of radio waves caused by structures inside the
location. building. The transmitted signal generally reaches the

The error distance for tracking the mobile user is only'€Ceiver by more than one path, and results in a
slightly worse than that for locating a mobile user. ThePhe€nomenon known asnultipath Multipath causes

median error distance is 3.5 meters, about 19% worse thafpctuations in the received signal envelope and phase,
that for a stationary user. and the signal components arriving from indirect and

direct paths combine to produce a distorted version of the
transmitted signal. Since multipath within buildings is
4.1.8  Summary of Empirical Method strongly influenced by the layout of the building, the

The empirical method is able to estimate user locatiorfonstruction material used, the number and type of objects
with a high degree of accuracy. The median error distancd the building, characterizing the radio channel in such an
is only in the range of 2 to 3 meters, which is of the order€nvironment is challenging.

of the size of a typical office room. For our experimental We considered three different models and settled on
environment, much of the accuracy is achieved with arone. The first model we looked at was the well-accepted
empirical data set containing about 40 physical points antRayleigh fading mode]Has93], which describes small-

about 3 real-time signal strength samples (at each bassale rapid amplitude fluctuation in the absence of a
station). It is important, however, to obtain data strong received component. The Rayleigh distribution is
corresponding to multiple user orientations. widely used to describe multipath fading because of its

The main limitation of the empirical method is that €légant theoretical explanation and the occasional
significant effort is needed to construct the signal strengtiempirical justification.  However, in deriving this
data set for each physical environment of interest (eacﬁilstrlb_utlon, a crltlpal assumption made is that all signals
floor, each building, etc.). Furthermore, the data collection®@ching the receivers have equal strengths. In general,
process may need to be repeated in certain circumstancébis is an unrealistic assumption. Our empirical data shows
for instance, when a base station is relocated. that for a number of sample points (along the hallways),

. . . . a:{uere exists a dominant line-of-sight component that is

We now dISCUS.S a dlfferent'techr?lqge! ba}sed on SN, ot accounted for by this distribution. For this reason, we
propagation modeling, that avoids this limitation. did not use this distribution.

4.2 Radio Propagation Model A second model we considered wdbke Rician
) ] ] ) _ distribution model [Ric44]. The Rician distribution
Radio propagation modeling provides an alternativegccyrs when a strong path exists in addition to the low
to the empirical me_thod for constructing the search spacge| scattered path. This strong component may be the
for the NNSS algorithm. LoS path or a path that goes through much less attenuation
than the other arriving components. The Rician
421 Motivation distribution contains the Rayleigh distribution as a special

. L . ) __case. When the strong path is eliminated, the amplitude
The primary motivation behind the radio propagation yisyinytion becomes Rayleigh. While the model is

model is to reduce the dependence of the user location angy isively appealing, it is very difficult to determine the

tracking algorithm on empirical data. The idea is 10 yoqe| parameters (i.e., the local mean of the scattered
determine a mathematical model that characterizes thﬁower and the power of the dominant component)
indoor radio channel. This model is then used to generata

i ) “precisely as this requires physically isolating the direct
a data set of theoretically-computed signal strengths aki ave from the scattered components. To keep the system



simple and easy to deploy, we opted against using thislowever, using this information in a practical setting is
distribution to model the radio channel. difficult and not as useful since the obstructing materials

We found a good compromise between simplicity andVay considerably in their physical and electrical
accuracy in theFloor Attenuation Factorpropagation characteristics. For example, water causes signal
model (FAF) suggested by [Sei92]. We like this model tténuation and the human body is made up of water, so
because it provides flexibility in accommodating different 1€ Size of a human body and its orientation can result in
building layouts while taking into account large-scale pathdifférent amounts of signal loss. There is no way to
loss. Our measurements confirm earlier findings thacharacterize such loss precisely since the number and
signal power decreases exponentially with distance if the2€S of humans in the building at any particular time is
attenuation due to the intervening obstacles isgenerally afinite but random number.
compensated for. We adapted the original model

proposed by Seidel and Rappaport, which included an e
attenuation factor for building floors, to disregard the I
effects of the floors and instead consider the effects of £ ¥ ® 3 o
obstacles (walls) between the transmitter and the receiver. < > R
The Wall Attenuation Facto{WAF) model is described g % "1:‘ M .
2 il
by g15 —’—‘;’ ‘}‘ 3 0’,‘
210
$0o o,
P(d)[dBN = P(d,)[dBN] +10nlog| -3 | + |TWWAR) nW<C 5 et e R
d, ] |CWAF) nw=C o ‘
0 5 10 15 20 25 30 35 40

Distance (m)
wheren is the path loss component that indicates the rate
at which the path loss increases with distanBgd,) is the
signal power at some reference distamgeand d is the
transmitter-receiver (T-R) separation distan€z.is the
maximum number of obstructions (walls) up to which the
attenuation factor makes a differenc&Vis the number of
obstructions (walls) between the transmitter and the 1pe building in which our research was carried out
receiver andVAFis the wall attenuation factor. In general has a large number of rooms filled with furniture,
the value ofn and WAF depends on the building layout, gjectronic equipment and people (see Figure 1). In order
and construction material and is derived empirically. They, aecount for these obstructions while keeping the model
value of P(do) can either be derived empirically or gimple we took the following approach: we combined the
obtained from the wireless network hardware vendor.  gffact of signal attenuation due to various obstructions

Figure 7 illustrates how the signal strength varies withinto one number which we called theall attenuation

distance between the transmitter and the receiver. Thiactor. We took the map of the building, and for every
wide difference in signal strengths between points afocation where the signal strength was measured, we
similar distances is explained as follows: the layout of thedetermined the number of intersecting walls between the
rooms in the building, the placement of base stations, antbcation and the three base stations. As explained in the
the location of the mobile user all have an effect on thenext paragraph, we determined the value of WAF and
received signal. Two locations that are at the samepplied a correction to the measured signal to compensate
distance from the transmitter are affected by differentfor signal loss due to obstructing structures.
amounts of signal attenuation due to the differences inthe |, order to determine a suitable WAF, we carried out

number and types of obstructions between them and thge following experiment: we measured the signal strength
transmitter. For example, looking at Figure 7, we noticeyt the receiver when the receiver and the transmitter had
that two measurements taken at a distance Ofing of.sight. We then measured the signal strength with
approximately 36 meters from the transmitter had signa,arying but known number of walls between the receiver

strengths that were 10 dBm apart. One of these WQynq the transmitter. We computed the average of the
measurements was made by the receiver at a location thgiterence between these values and determivieaF.
had up to 6 walls between it and the transmitter, while theye observed that the amount of attenuation dropped-off
other location had line-of-sight to the base station. Thus itg the number of walls separating the transmitter and the
is reasonable to conclude that the number of interveningeceiver increased. This observation is consistent with
obstructions effects signal loss at any location and it igseig2] where the attenuation between different floors was
possible to classify indoor channels as either LoS olgngidered and shown to drop-off as the number of floors
obstructed, with varying degree of clutter. between the transmitter and the receiver increased. In
Previous work in indoor radio propagation modeling general, with larger T-R separation and large number of
has included extensive characterization of signal loss fomtervening walls, free-space path loss dominates over loss
various materials and at different frequencies [Rap96]due to obstructions. We cho8€AFto be 3.1 dBm and C

Figure 7 Signal strength as a function of T-R
separation derived from the empirical data collected in
Section 3.2.
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to be 4 (where C represents number of walls that argable is the mean squared error. The numbers suggest that
factored into the model). Figure 8 shows the result aftewwve can be confident that the attenuation factor
the measured signal strength has been compensated foropagation model fits the measured data nicely.

signal loss due to the intervening walls between the  Tha final column in Table 2 shows the values Ry,
transmitter and the receiver. ~ We observe that the,nqn when the data from all the transmitter-receiver pairs
resulting plot shows a trend similar to the free-space 10S§,45 combined. The motivation behind this was to
trend, thus corroborating our intuition that the attenuationyetermine a value P, andn that could be used for all

factor propagation model is a good way to proceed. base stations without overly effecting the result. The

40 advantage of using a common value is that it avoids the

N need for individual measurements of each base station as
L A they are installed in the network, thus greatly reducing the
E® ¥ =_; £ cost of system setup. We can then use these values to
=% ey " .a estimate signal strength values at various points within the
g% e building.
S5 a, a e
'us; 10
5 BS, BS; BS; All
0 \ \ \ \ \ \ \ \ Pdo 57.58 56.95 64.94 58.48
0 5 10 15 20 25 30 35 40
Distance (m) n 1.53 1.45 1.76 1.523
R 0.81 0.65 0.69 0.72
Figure 8 Effect of applying correction for intervening MSE 10.49 13.98 7.34 0.82
walls between the base station and the mobile user

Table 2 Model parameter estimates based on linear

) regression applied to measured data
Once we had taken the effect of walls into account

and had created the “corrected” data for all three base Figure 9 illustrates how the predicted values of the
stations, we proceeded to determine the other tweignal strength generated with the propagation model
parameters, n( and Pg,) of our model. Since the compared against the actual measurements after they were
propagation model can be trivially reduced to a formcorrected for the intersecting walls. We observe a good
where it exhibits a linear relationship between thematch between the two. While this plot is for one of the
theoretical signal strength and logarithm of the distancéhree base stations, plots for the other two base stations
between the transmitter and the receiver, we applie@Xhibit similar results.

simple linear regression to determine the parameters of the
model [Jai9l] 5 ]

Table 2 contains the numerical values of the model _ 40
parameters for the three base stations considered g
separately and when taken together. We note that the 22
values for the path loss exponem) (and the reference 20
signal strengthR,,) for all three base stations are similar 15 ] —
despite their different physical locations and surroundings. @ 1o
This result is encouraging since it indicates that the 51
parameter values are not tied to the specific location of the  °
base stations. The slightly higher values Bf, are
explained on the basis of multipath propagation, which is
not taken into account by the model. We observe that the
values of the path loss exponent are smaller than what hdggure 9 Comparison of predicted versus measured
been reported in previous studies of indoor radioSignal strength.
propagation modeling [Rap96]. However, they are
consistent with our expectations since we compensate thg > 3

! - Results of using the Propagation Model
measured signal strength for attenuation due to . . L
i ; . ; To determine the performance of location estimation
obstructions, and since we do not consider multipath

(which can boost the signal strength at a given Iocation)WIth the signal propagation modeling method, we

R represents theoefficient of determinatignwhich is a computed the theoretical values of the signal strengths for

T . several locations on the floor. We then provided this data-
useful measure for indicating the goodness of regression

The high values ofR? suggest that there is a strong setto the-NN-SS algorithm. _ _
correlation between the estimated and measured values of Considering the median (%0 percentile), the
the signal strength. Another value of interest shown in thePropagation method provides a resolution of about 4.3

Signal Strength (dBm)

1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
Sample
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meters, compared to a resolution of 2.94 meters for the The HLP algorithm can be employed in an indoor
empirical method and 8.16 meters for picking thelocal-area wireless network, and we expect that it would
strongest base station method (Table 1). For th& 25improve the location tracking results. However, the
percentile the propagation method provides a resolution ofomputational complexity of determining the Kalman gain
1.86 meters compared to 1.92 meters for the empiricamatrix with each new sample is high. It is not clear that
method and 4.94 meters for the strongest base statioiine amount of additional accuracy obtained from applying
method. While the propagation method is not as good athis computationally complex algorithm would be worth
the empirical method it is significantly better than the while. In particular, the additional accuracy might not
strongest BS and random methods. So even without angnable applications that require precise location
empirical measurements, our system based on thdetermination and for the ones that don’'t depend on such
propagation model alone would perform significantly precise location estimation, the accuracy provided by the
better than the course level base station method adopted algorithms proposed in this paper may well be gt
[Hod97]

5.2 Applications Enabled

4.2.4  Summary of Radio Propagation Method Different location-aware services have varying
The radio propagation model is a cost effective Wayrequwements for the accuracy of location information. Our

of doing location tracking in an indoor wireless radio experlmental resqlts., indicate the feasibility of espmatmg
user location to within a couple of meters. We believe that

network. The model is cost effective in the sense that it},his capability enables a rich class of location-aware
does not require detailed empirical measurements fo cap y
ervice. For example, our system can be used to locate

location tracking and consequently has a low set up cost . .
A significant result from Section 4.2.2 is that the nearby network resources such as printers, fax machines,
parameters for the wall attenuation propagation model ar&°PY machines etc. The mobile user could expect to get

similar across base stations despite their being in differenglz (;gsrtesrl::t;?, Elt]f?ersqsl:gfr: Tonjléhésetg?rﬁ?nrgetﬂte cl)c:]c;rt]i?)n
locations. This suggests that the entire system can be P ' y

ocaied i a ifret par of the bulding and the sanc®! 1, 557 1 & s PIe i e Tt e
parameter values used to model propagation and theret§/ P yi . . 'S P '

. . nd then print the document on this printer. Similarly a
determine location. : .
request like Show me the map of the area | am il
result in the appropriate map being displayed on the
screen. Going in the reverse direction, queries such as
_ _ _ _ “Where is user A?” would be answered by the system
In this section, we discuss some extensions to basignd the location of the mobile would be returned to within

algorithms presented in this paper. We also discuss somgcertain range of his or her actual location.
applications that are enabled by the user location and

tracking algorithms we have developed. 6 Conclusions

5 Discussion

51  Self-Adaptive Kalman Filtering In this paper, we have addressed the problem of user

In a previous paper we have shown that continuousgocation and tracking in an in-building RF network. Our
processing of signal strength measurements enabledgorithm is based both on empirical signal strength
prediction of a mobile user's immediate future location measurements and a simple yet effective signal
[Anonl]. Our research objective in that paper was topropagation model. While the empirical method is
build a system to predict the speed and trajectory of auperior in terms of accuracy, the signal propagation
high-speed mobile user in a wide-area cellular networkmethod generalizes to a much greater extent.

The input to that system, instantaneous noisy signal
strength measurements from the neighboring base Statio”r%di
is identical to the input to the system described in this

papgz'r.t. WIiLF?u”tI a .ttr\:vo—level .Terarc]tucal Iogatltntn WaveLAN network, we determined the median resolution
prediction ( ) algorithm consisting of approximate of location estimation to be in the range of 2 to 3 meters,

pattern matching and classical stochastic signal processirwhich is about the size of a typical office room
techniques.  While the pattern-matching component '

required historical movement patterns to yield good ~ Our results give us confidence that it is possible to

results when the user exhibited regular movemen®Uild an interesting class of location-aware services, based
patterns, the signal processing technique required n80lely on the RF in-building wireless data network, thus

historical movement data. We showed that a self-adaptiv@dding value to such a network. This, we believe, is a

extended Kalman filter could take noisy measurements atignificant contribution of our research.

the input and still provide an accurate prediction for next

location of the mobile.

We have shown the despite the hostile nature of the
o channels, we are able to locate and track a user with
a high degree of accuracy. Based on experiments using the
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