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Abstract

We develop simple methods for constructing parameter priors for model choice among

Directed Acyclic Graphical (DAG) models. In particular, we introduce several assump-

tions that permit the construction of parameter priors for a large number of DAG

models from a small set of assessments. We then present a method for directly com-

puting the marginal likelihood of every DAG model given a random sample with no

missing observations. We apply this methodology to Gaussian DAG models which con-

sist of a recursive set of linear regression models. We show that the only parameter

prior for complete Gaussian DAG models that satis�es our assumptions is the normal-

Wishart distribution. Our analysis is based on the following new characterization of the

Wishart distribution: let W be an n� n, n � 3, positive-de�nite symmetric matrix of

random variables and f(W ) be a pdf ofW . Then, f(W ) is a Wishart distribution if and

only if W11 �W12W
�1

22
W 0

12
is independent of fW12;W22g for every block partitioning

W11;W12;W
0
12
;W22 of W . Similar characterizations of the normal and normal-Wishart

distributions are provided as well.

Keywords: Bayesian network, Directed Acyclic Graphical Model, Dirichlet distri-

bution, Gaussian DAG model, learning, linear regression model, normal distribution,

Wishart distribution.

1 Introduction

Directed Acyclic Graphical (DAG) models have increasing number of applications in Statis-

tics (Cowell, Dawid, Lauritzen, and Spiegelhalter, 1999) as well as in Decision Analysis and

Arti�cial Intelligence (Howard and Matheson, 1981; Heckerman, Mamdani, and Wellman,

1995b; Pearl, 1988). A DAG model m = (s;Fs) for a set of variables X = fX1; : : : ; Xng

each associated with a set of possible values Di, respectively, is a set of joint probability

distributions for D1 � � � � � Dn speci�ed via two components: a structure s and a set of

local distribution families Fs. The structure s for X is a directed graph with no directed

cycles (i.e., a Directed Acyclic Graph) having for every variable Xi in X a node labeled

Xi with parents labeled by Pami . The structure s represents the set of conditional inde-

pendence assertions, and only these conditional independence assertions, which are implied

by a factorization of a joint distribution for X given by p(x) =
Qn

i=1 p(xijpa
m
i ), where

x = (x1; : : : ; xn) is a value for X (an n-tuple) and xi is a value for Xi and where pami is

the value for Pami as in x. When xi has no incoming arcs in m (no parents), p(xijpami )

stands for p(xi). The local distributions are the n conditional and marginal probability

distributions that constitute the factorization of p(x). Each such distribution belongs to

the speci�ed family of allowable probability distributions Fs. A DAG model is often called

a Bayesian network, although the later name sometimes refers to a speci�c joint probability
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distribution that factorizes according to a DAG, and not, as we mean herein, a set of joint

distributions each factorizing according to the same DAG. A DAGmodel is complete if it has

no missing arcs. Note that any two complete DAG models for X encode the same assertions

of conditional independence|namely, none. Also note that a complete DAG determines a

unique ordering of the variables in which Xi precedes Xj if and only if Xi ! Xj is an arc

in this DAG.

In this paper, we assume that each local distribution is selected from a family Fs which

depends on a �nite set of parameters �m 2 �m (a parametric family). The parameters for a

local distribution is a set of real numbers that completely determine the functional form of

p(xijpa
m
i ) when xi has parents and of p(xi) when xi has no parents. We denote by mh the

model hypothesis that the true joint probability distribution of X is perfectly represented

by a structure s of a DAG model m with local distributions from Fs|namely, that the

joint probability distribution satis�es only the conditional independence assertions implied

by this factorization and none other. Consequently, the true joint distribution for a DAG

model m is given by,

p(xj�m; m
h) =

nY
i=1

p(xijpa
m
i ; �i; m

h) (1)

where �1; : : :�n are subsets of �m. Whereas in a general formulation of DAG models, the

subsets f�ig
n
i=1 could possibly overlap allowing several local distributions to have common

parameters, in this paper, we shall shortly exclude this possibility (Assumption 5). Note

that �m denotes the union of �1; : : : ; �n for a DAG model m.

We consider the Bayesian approach when the parameters �m and the model hypothesis

mh are uncertain but the parametric families are known. Given data d = fx1; : : : ;xNg,

a random sample from p(xj�m; m
h) where �m and mh are the true parameters and model

hypothesis, respectively, we can compute the posterior probability of a model hypothesis

mh using

p(mhjd) = c p(mh) p(djmh) = (2)

c p(mh)

Z
p(dj�m; m

h) p(�mjm
h) d�m

where c is a normalization constant. We can then select a DAG model that has a high

posterior probability or average several good models for prediction.

The problem of selecting an appropriate DAG model, or sets of DAG models, given

data, posses a serious computational challenge, because the number of DAG models grows

faster than exponential in n. Methods for searching through the space of model structures

are discussed (e.g.) by Cooper and Herskovits (1992), Heckerman, Geiger, and Chickering

(1995a), and Friedman and Goldszmidt (1997).
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From a statistical viewpoint, an important question which needs to be addressed is how

to specify the quantities p(mh), p(dj�m; m
h), p(�mjm

h), needed for evaluating p(mhjd) for

every DAG model m that could conceivably be considered by a search algorithm. Buntine

(1991) and Heckerman et al. (1995a) discuss methods for specifying the priors p(mh) via a

small number of direct assessments.

Herein, we develop practical methods for assigning parameter priors, p(�mjm
h), to every

candidate DAG model m via a small number of direct assessments. Our method is based

on a set of assumptions the most notable of which is the assumption that complete DAG

models represent the same set of distributions, which implies that data cannot distinguish

between two complete DAG models. Multivariate Gaussian, multinomial, and multivariate

t-distributions satisfy this assumption. Another assumption is likelihood and prior modu-

larity, which says that the local distribution for xi and its parameter priors depend only

on the parents of xi but not on the entire description of the structure. These assumptions,

together with global parameter independence, introduced by Spiegelhalter and Lauritzen

(1990), are the heart of the proposed methodology.

The methodology described herein for setting priors to DAG models and consequently

calculating their marginal likelihoods is an extension of the results by Dawid and Lauritzen

(1993) for decomposable graphical models. For decomposable graphical models, which is

a set of models that can be regarded both as DAG models as well as undirected graphical

models, the twomethodologies are identical. Our speci�cation of a formal set of assumptions

followed by a technical derivation of this methodology provides an easy access to examine

the validity of the approach and devise alternatives when needed.

The contributions of this paper are as follows: A methodology for specifying parameter

priors for many DAG structures using a few direct assessments (Section 2). A formula that

computes the marginal likelihood for every DAG model (Section 3). A specialization of this

formula to an e�cient computation for Gaussian DAG models (Section 4). An analysis of

complete Gaussian DAGmodels which shows that the only parameter prior that satis�es our

assumptions is the normal-Wishart distribution (Section 5). The analysis is based on the

following new characterization of the Wishart, normal, and normal-Wishart distributions.

Theorem Let W be an n � n, n � 3, positive-de�nite symmetric matrix of real random

variables such that no entry in W is zero, � be an n-dimensional vector of random variables,

fW (W ) be a pdf ofW , f�(�) be a pdf of �, and f�;W (�;W ) be a pdf of f�;Wg. Then, fW (W )

is a Wishart distribution, f�(�) is a normal distribution, and f�;W (�;W ) is a normal-

Wishart distribution if and only if global parameter independence holds for unknown W ,

unknown �, or unknown f�;Wg, respectively.

The assumption of global parameter independence is expressed di�erently for each of
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the three cases treated by this theorem and the proof follows from Theorems 7, 9 and 10,

respectively, proven in Section 5. It should be noted that a single principle, global parameter

independence, is used to characterize three di�erent distributions.

A similar characterization for the bivariate Wishart, bivariate normal, and bivariate

normal-Wishart distributions has recently been obtained under the assumption that the pdf

is strictly positive, and assuming also some additional independence constraints|termed

standard local parameter independence (Geiger and Heckerman, 1998). Another related

result is the characterization of the Dirichlet distribution via global and local parameter

independence (Geiger and Heckerman, 1997; J�arai , 1998).

2 The Construction of Parameter Priors

In this section, we present assumptions that simplify the assessment of parameter priors

and a method of assessing these priors. The assumptions are as follows:

Assumption 1 (Complete model equivalence) Let m1 = (s1;Fs1) be a complete DAG

model for X. The family Fs2 of every complete DAG model m2 = (s2;Fs2) for X is such

that m1 and m2 represent the same set of joint probability distributions, namely, that for

every �m1 there exists �m2 such that p(xj�m1; m
h
1) = p(xj�m2; m

h
2) and vice versa.

Two examples where this assumption holds are quite common. One happens when

p(xj�m1; m
h
1) and p(xj�m2; m

h
2) are multivariate normal distributions and the other hap-

pens when X consists of variables with �nite domains and p(xj�m1; m
h
1) and p(xj�m2; m

h
2)

are unrestricted discrete distributions. In these two cases, all the local distributions have

the same functional form in every ordering of the variables. If the joint distribution for X

is a multivariate t-distribution, then too, all local conditional distributions have the same

functional form (e.g., DeGroot, 1970), however, unlike the unrestricted discrete and mul-

tivariate normal distributions, for t-distributions, the parameters of the local distributions

are dependent which violates assumption 5 discussed below.

We now provide an example where this assumption fails. Suppose the set of variables

X = fX1; X2; X3g consists of three variables each with possible values fxi; xig, respectively,

and s1 is the complete structure with arcs X1 ! X2, X1 ! X3, and X2 ! X3. Suppose

further, that the local distributions Fs1 of model m1 are restricted to the logit

p(xijpa
m
i ; �i; m

h) =
1

1 + exp
n
ai +

P
xj2pami

bjixj
o

where �1 = fa1g, �2 = fa2; b12g, and �3 = fa3; b13; b23g.
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Consider now a second complete model m2 for X = fX1; X2; X3g whose structure con-

sists of the arcs X1 ! X2, X1 ! X3, and X3 ! X2. Assumption 1 asserts that the

families of local distributions for m1 and m2 are such that the set of joint distributions

for X represented by these two complete models is the same. In this example, however,

if we specify the local families for m2 by also restricting them to be logit distributions,

then the two models will represent di�erent sets of joint distributions over fX1; X2; X3g.

Hence, Assumption 1 will be violated. Using Bayes rule one can always determine a set

of local distribution families that will satisfy Assumption 1, however, their functional form

will usually involve an integral (and will often violate Assumption 5 below).

Note that whenever two DAG models represent the same set of probability distributions

for X, they must also specify the same set of independence assumptions. The example with

the logit distributions highlights that the converse does not hold because every complete

DAG represents the same independence assumptions, namely none, and yet complete DAG

models can represent di�erent sets of probability distributions.

Our de�nition ofmh, that the true joint pdf of a set of variablesX is perfectly represented

by m, and Assumption 1, which says that two complete models represent the same set of

joint pdfs forX, imply that for two complete models mh
1 = mh

2 . This is a strong assumption.

It implies that p(�m2jm
h
2) = p(�m2jm

h
1) because two complete models represent the same set

of distributions. It also implies p(djmh
1) = p(djmh

2) which says that the marginal likelihood

for two complete DAG models is the same for every data set, or equivalently, that complete

DAG models cannot be distinguished by data. Obviously, in the example with the logit

distributions, the two models can be distinguished by data because they do not represent

the same set of joint distributions.

Assumption 2 (Regularity) For every two complete DAG modelsm1 and m2 for X there

exists a one-to-one mapping k1;2 between the parameters �m1 of m1 and the parameters �m2

of m2 such that the likelihoods satisfy p(xj�m1; m
h
1) = p(xj�m2; m

h
2) where �m2 = k1;2(�m1).

The Jacobian j@�m1=@�m2j exists and is non-zero for all values of �m1.

Assumption 2 implies p(�m2jm
h
1) =

���@�m1

@�m2

��� p(�m1jm
h
1) where �m2 = k1;2(�m1). Furthermore,

due to Assumption 1, p(�m2jm
h
2) = p(�m2jm

h
1), and thus

p(�m2jm
h
2) =

����@�m1

@�m2

���� p(�m1jm
h
1): (3)

For example, suppose x = fx1; x2g have a non-singular Bivariate normal pdf f(x) =

N(xj�;W ) where � is the vector of means and W = (wij) is the inverse of a positive de�nite

covariance matrix. If we write f(x) = fx1(x1)fx2jx1(x2jx1) where fx1(x1) = N(x1je1; 1=v1)
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and fx2jx1(x2jx1) = N(x2je2j1 + b12x1; 1=v2j1), then the following well known relationships

are satis�ed:

w11 =
1

v1
+

b212
v2j1

w12 = �
b12
v2j1

w22 =
1

v2j1
e1 = �1 e2j1 = �2 � b12�1 (4)

Note that the transformation between f�;Wg and fe1; v1; e2j1; v2j1; b12g is one to one and

onto as long asW is the inverse of a covariance matrix and the conditional variances v1; v2j1

are positive. The Jacobian of this transformation is given by,

j
@w11; w12; w22; �1; �2
@v1; v1j2; b12; e1; e2j1

j = v�21 v�32j1 (5)

Symmetric equations hold when f(x) is written as fx2(x2)fx1jx2(x1jx2) and so there is a

one-to-one and onto mapping between fe1; v1; e2j1; v2j1; b12g and fe2; v2; e1j2; v1j2; b21g. Note

that the parameters �;W for the joint space are instrumental for decomposing the needed

mapping into a composition of two mappings.

Assumption 3 (Likelihood Modularity) For every two DAG models m1 and m2 for

X such that Xi has the same parents in m1 and m2, the local distributions for xi in both

models are the same, namely, p(xijpa
m
i ; �i; m

h
1) = p(xijpa

m
i ; �i; m

h
2) for all Xi 2 X.

Assumption 4 (Prior Modularity) For every two DAG models m1 and m2 for X such

that Xi has the same parents in m1 and m2, p(�ijm
h
1) = p(�ijm

h
2).

Assumption 5 (Global Parameter Independence) For every DAG model m for X,

p(�mjm
h) =

Qn
i=1 p(�ijm

h).

The likelihood and prior modularity assumptions have been used implicitly in the work

of (e.g.) Cooper and Herskovits (1992), Spiegelhalter, Dawid, Lauritzen, and Cowell (1993),

and Buntine (1994). Heckerman et al. (1995a) made Assumption 4 explicit in the context

of discrete variables under the name parameter modularity. Spiegelhalter and Lauritzen

(1990) introduced Assumption 5 in the context of DAG models under the name global

independence.

Note that the �rst three assumptions concern the distribution ofX whereas the last two

assumptions concern the distribution of the parameters. Obviously, when the parameters

�1; : : :�n are not variation independent for every complete DAGmodel forX, the assumption

of global parameter independence is inconsistent with the model and can not be true.

Hence, assumption 5 excludes, for example, the possibility that two local distributions

share a common parameter. On the other hand, even when the parameters are variation
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independent, it is possible to specify a prior distribution for � that violates global parameter

independence. Cowell et al. (1999, pp. 191-2) highlight this point.

The assumptions we have made lead to the following signi�cant consequence: When we

specify a parameter prior p(�mcjm
h
c ) for one complete DAG model mc, we also implicitly

specify a prior p(�mjm
h) for any DAG model m among the super exponentially many

possible DAG models. Consequently, we have a framework in which a manageable number

of direct assessments leads to all the priors needed to search the model space. In the rest

of this section, we explicate how all parameter priors are determined by the one elicited

prior. In Section 4, we show how to elicit the one needed prior p(�mcjm
h
c ) under speci�c

distributional assumptions.

Due to the complete model equivalence and regularity assumptions, we can compute

p(�mcjm
h
c ) for one complete model for X from the prior of another complete model for X.

In so doing, we are merely performing coordinate transformations between parameters for

di�erent variable orderings in the factorization of the joint likelihood (Eq. 3). Thus by

specifying parameter prior for one complete model, we have implicitly speci�ed a prior for

every complete model.

It remains to examine how the prior p(�mjmh) is computed for an incomplete DAGmodel

m for X from the prior p(�mcjm
h
c ) for some complete model mc. Due to global parameter

independence we have p(�mjmh) =
Qn

j=1 p(�j jm
h) and therefore it su�ces to examine each

of the n terms separately. To compute p(�ijmh), we identify a complete DAG model mc(i)

such that Pami = Pa
mc(i)

i . The prior p(�mc(i)jm
h
c(i)) is obtained from p(�mcjm

h
c ), as we

have shown for every pair of complete DAG models. Due to global parameter independence

p(�mc(i)jm
h
c(i)) is a product one term of which is p(�ijm

h
c(i)). Finally, due to prior modularity

p(�ijm
h) is equal to p(�ijm

h
c(i)).

This methodology of constructing priors is described by Heckerman et al. (1995a) for

discrete DAG models and in Section 4 for Gaussian DAG models. Our method is equivalent

to the method of compatible priors devised for decomposable graphical models (Dawid

and Lauritzen, 1993). Our arguments, via a set of assumptions, can be regarded as an

axiomatic justi�cation for compatible priors, and as an extension of this method to general

DAG models and to any probability distributions that satisfy Assumptions 1 { 5. We are

currently unaware, however, of additional probability distributions that satisfy these �ve

assumptions.

The following theorem summarizes the general construction which was formulated to

cover both cases|the discrete and the Gaussian.

Theorem 1 Given Assumptions 1 through 5, the parameter prior p(�mjmh) for every DAG

model m is determined by a speci�ed parameter prior p(�mcjm
h
c ) for an arbitrary complete
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DAG model mc.

Theorem 1 shows that once we specify the parameter prior for one complete DAG

model all other priors can be generated automatically and need not be speci�ed manually.

Consequently, together with Eq. 2 and due to the fact that also likelihoods can be generated

automatically in a similar fashion, we have a manageable methodology to automate the

computation of p(djmh) for any DAG model of X which is being considered by a search

algorithm as a candidate model. Next we show how this computation can be done e�ciently.

3 Computation of the Marginal Likelihood for Complete Data

For a given X, consider a DAG model m and a complete random sample d. Assuming global

parameter independence, the parameters remain independent given complete data. That

is,

p(�mjd;m
h) =

nY
i=1

p(�ijd;m
h) (6)

In addition, assuming global parameter independence, likelihood modularity, and prior mod-

ularity, the parameters remain modular given complete data. In particular, if Xi has the

same parents in s1 and s2, then

p(�ijd;m
h
1) = p(�ijd;m

h
2) (7)

Also, for any Y � X, de�ne dY to be the random sample d restricted to observations of

Y. For example, if X = fX1; X2; X3g, Y = fX1; X2g, and d = fx1 = fx11; x21; x31g;x2 =

fx12; x22; x32gg, then we have dY = ffx11; x21g; fx12; x22gg. Let Y be a subset of X, and

sc be a complete structure for any ordering where the variables in Y come �rst. Then,

assuming global parameter independence and likelihood modularity, it is not di�cult to

show that

p(yjd;mh
c) = p(yjdY; mh

c ) (8)

Given these observations, we can compute the marginal likelihood as follows, yielding an

important component for searching DAG models via a Bayesian methodology.

Theorem 2 Given any complete DAG model mc for X, any DAG model m for X, and any

complete random sample d, Assumptions 1 through 5 imply

p(djmh) =
nY
i=1

p(dPai[fXigjmh
c )

p(dPai jmh
c )

(9)
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Proof: From the rules of probability, we have

p(djmh) =
mY
l=1

Z
p(xlj�m; m

h) p(�mjdl; m
h) d�m (10)

where dl = fx1; : : : ;xl�1g. Using Equations 1 and 6 to rewrite the �rst and second terms

in the integral, respectively, we obtain

p(djmh) =
mY
l=1

Z nY
i=1

p(xiljpail; �i; m
h) p(�ijdl; m

h) d�m

where xil is the value of Xi in the l-th data point.

Using likelihood modularity and Equation 7, we get

p(djmh) =
mY
l=1

Z nY
i=1

p(xiljpail; �i; m
h
c(i)) p(�ijdl; m

h
c(i)) d�m (11)

where sc(i) is a complete structure with variable ordering Pai, Xi followed by the remaining

variables. Decomposing the integral over �m into integrals over the individual parameter

sets �i, and performing the integrations, we have

p(djmh) =
mY
l=1

nY
i=1

p(xiljpail; dl; m
h
c(i))

Using Equation 8, we obtain

p(djmh) =
mY
l=1

nY
i=1

p(xil;pailjdl; m
h
c(i))

p(pailjdl; m
h
c(i))

=
mY
l=1

nY
i=1

p(xil;pailjd
Pai[fXig
l ; mh

c(i))

p(pailjd
Pai
l ; mh

c(i))

=
nY
i=1

p(dPai[fXigjmh
c(i))

p(dPai jmh
c(i))

(12)

By the likelihood modularity, complete model equivalence, and regularity assumptions, we

have that p(djmh
c(i)) = p(djmh

c ); i = 1; : : : ; n. Consequently, for any subset Y of X, we

obtain p(dYjmh
c(i)) = p(dYjmh

c ) by summing over the variables in X n Y. Consequently,

using Equation 12, we get Equation 9. 2

An equivalent approach for computing the marginal likelihood (Equation 9) for decom-

posable discrete and Gaussian DAG models has been developed by Dawid and Lauritzen

(1993) using compatible priors.
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An important feature of Equation 9, which we now demonstrate, is that two DAGmodels

that represent the same assertions of conditional independence have the same marginal

likelihood. We say that two structures for X are independence equivalent if they represent

the same assertions of conditional independence. Independence equivalence is an equivalence

relation, and induces a set of equivalence classes over the possible structures for X.

Verma and Pearl (1990) provide a simple characterization of independence equivalent

structures using the concept of a v-structure. Given a structure s, a v-structure in s is

an ordered node triple (Xi; Xj ; Xk) where s contains the arcs Xi ! Xj and Xj  Xk,

and there is no arc between Xi and Xk in either direction. Verma and Pearl show that

two structures for X are independence equivalent if and only if they have identical edges

and identical v-structures. This characterization makes it easy to identify independence

equivalent structures.

An alternative characterization developed by Chickering (1995) and independently by

Andersson, Madigan, and Perlman (1997, Lemma 3.2), is useful for proving our claim that

independence equivalent structures have the same marginal likelihood. An arc reversal is a

transformation from one structure to another, in which a single arc between two nodes is

reversed. An arc between two nodes is said to be covered if those two nodes would have the

same parents if the arc were removed.

Theorem 3 (Chickering, 1995; Andersson, Madigan, and Perlman, 1997) Two struc-

tures for X are independence equivalent if and only if there exists a set of covered arc

reversals that transform one structure into the other.

A proof of this theorem can also be found in Heckerman et al. (1995a).

Theorem 3 implies that if every pair of DAGs that di�er by a single covered arc represent

the same set of distributions, then every two independence equivalent DAGs represent the

same set of distributions. Furthermore, a consequence of the next theorem is that Assump-

tions 1 through 5 imply that indeed every two independence equivalent DAGs represent the

same set of distributions. Without these assumptions, two independence equivalent DAGs

can represent di�erent sets of distributions.

Theorem 4 Given Assumptions 1 through 5, every two independence equivalent DAG mod-

els have the same marginal likelihood.

Proof: Theorem 3 implies that we can restrict the proof to two DAG models that di�er

by a single covered arc. Say the arc is between Xi and Xj and that the joint parents of Xi

and Xj are denoted by �. For these two models, Equation 9 di�ers only in terms i and j.

For both models the product of these terms is p(d�[fXi;Xjgjmh
c )=p(d

�jmh
c ). 2
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The conclusions of Theorem 2, and, consequently, of Theorem 4 are not justi�ed when

our assumptions are violated. In the example of the logit distributions, discussed in the

previous subsection, which violates assumption 1, the structures s1 and s2 di�er by the

reversal of a covered arc between X2 and X3, but, given that all local distribution families

are logit, there are certain joint distributions that can be represented by one structure, but

not the other, and so their marginal likelihood will be di�erent.

The implication of Theorem 4 is quite strong: all models in the same independence

equivalence class are scored equivalently. This severely constrains possible parameter priors

as shown in the next two sections. One possible approach to bypass our assumptions is

to select one representative DAG model from each class of independence equivalent DAG

models, assume global parameter independence only for these representatives, and evaluate

the marginal likelihood only for these representatives. The search can then be conducted

in the space of representative models as suggested in Spirtes and Meek (1995), Chickering

(1996), and Madigan, Andersson, Perlman, and Volinsky (1996). The di�culty with this

approach is that when projecting a prior from a complete DAG model to a DAG model

with missing edges, one needs to perform additional high dimensional integrations before

using the parameter modularity property (see Section 2). Another approach is to modify

the de�nition of mh to allow independence equivalent DAG models to have di�erent param-

eter priors. This alternative is needed when arcs have a causal interpretation. However,

when choosing this alternative, the parameter prior for each model examined by a search

procedure must be provided by a user as the search is being conducted, or a new mechanism

to produce acceptable priors on-the-
y must be devised.

4 Gaussian Directed Acyclic Graphical Models

We now apply the methodology of previous sections to Gaussian DAG models. A Gaussian

DAG model is a DAG model as de�ned by Eq 1, where each variable Xi 2 X is continuous,

and each local likelihood is the linear regression model

p(xijpa
m
i ; �i; m

h) = N(xijmi +
X

xj2pai

bjixj ; 1=vi) (13)

where N(xij�; �) is a normal distribution with mean � and precision � > 0. Given this

form, a missing arc from Xj to Xi is equivalent to bji = 0 in the DAG model. The local

parameters are given by �i = (mi; bi; vi), where bi is the column vector (b1i; : : : ; bi�1;i)

of regression coe�cients. Furthermore, mi is the conditional mean of Xi and vi is the

conditional variance of Xi.
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For Gaussian DAG models, the joint likelihood p(xj�m; m
h) obtained from Eqs 1 and 13

is an n-dimensional multivariate normal distribution with a mean vector � and a symmetric

positive de�nite precision matrix W ,

p(xj�m; m
h) =

nY
i=1

p(xijpa
m
i ; �i; m

h) = N(xj�;W ):

For a complete model mc with ordering (X1; : : : ; Xn) there is a one-to-one mapping

between �mc =
Sn
i=1 �i where �i = (mi; bi; vi) and f�;Wg which has a nowhere singular

Jacobian matrix. Consequently, assigning a prior for the parameters of one complete model

induces a parameter prior, via the change of variables formula, for f�;Wg and in turn,

induces a parameter prior for every complete model. Any such induced parameter prior

must satisfy, according to our assumptions, global parameter independence. Not many

prior distributions satisfy such a requirement. In fact, in the next section we show that the

parameter prior p(�;W jmh
c ) must be a normal-Wishart distribution.

For now we proceed by simply choosing p(�;W jmh
c ) to be a normal-Wishart distribution.

In particular, p(�jW;mh
c ) is a multivariate-normal distribution with mean � and precision

matrix ��W (�� > 0); and p(W jmh
c ) is a Wishart distribution, given by,

p(W jmh
c ) = c(n; �w)jT j

�w=2jW j(�w�n�1)=2e�1=2trfTWg �Wishart(W j�w; T ) (14)

with �w degrees of freedom (�w > n � 1) and a positive-de�nite parametric matrix T and

where c(n; �w) is a normalization constant given by

c(n; �w) =

"
2�wn=2�n(n�1)=4

nY
i=1

�

�
�w + 1� i

2

�#�1
(15)

(DeGroot, 1970, pp. 57). We provide interpretations for ��, �w, �, and T later in this

section. Note that in some expositions of the Wishart distribution, the inverse of T is used

for the parameterization; T�1 is called the scale matrix (e.g., Press 1971, pp. 101).

This choice of a prior satis�es global parameter independence due to the following well

known theorem.

De�ne a block partitioning fW11;W12;W
0
12;W22g of an n by n matrix W to be com-

patible with a partitioning �1; �2 of an n dimensional vector �, if the indices of the rows

that correspond to block W11 are the same as the indices of the terms that constitute �1

and similarly for W22 and �2. Also de�ne W11:2 = W11 � W12W
�1
22 W

0
12 and recall that

((W�1)11)
�1 = W11:2.

Theorem 5 If f(�;W ) is an n dimensional normal-Wishart distribution, n � 2, with

parameters �; ��, �w, and T , then f�1;W11 � W12W
�1
22 W

0
12g is independent of f�2 +

12



W�1
22 W

0
12�1; W12;W22g for every partitioning �1; �2 of � where W11,W12, W

0
12, W22 is a

block partitioning of W compatible with the partitioning �1; �2. Furthermore, the pdf of

f�1;W11:2g is normal-Wishart with parameters �1, ��, T11, and �w � n + l where T11,T12,

T 0
12, T22 is a compatible block partitioning of T , �1; �2 is a compatible partitioning of �, and

l is the size of the vector �1.

The proof of Theorem 5 requires a change of variables from (�;W ) to (�1, �2 +

W�1
22 W

0
12�1) and (W11 � W12W

�1
22 W

0
12; W12;W22). Press (1971, p. 117-119) carries out

these computations for the Wishart distribution. Standard changes are needed to obtain

the claim for the normal-Wishart distribution. A consequence of Theorem 5 is the following.

Corollary 6 Let W be a n � n positive-de�nite matrix of random variables. Let a, b,

and c be three sets of indices of W . If f(Wab:c) = Wishart(Wab:cj�1; T1) and f(Wbc:a) =

Wishart(Wbc:aj�2; T2), then �1 � lab = �2 � lbc where lab is the number of indices in the

block a; b and lbc is the number of indices in the block b; c.

Proof: The pdf for Wb:ac = (Wab:c)b:a = (Wcb:a)b:c is a Wishart distribution, and from the

two alternative ways by which this pdf can be formed, using Theorem 5, it follows that

�1 � lab = �2 � lbc. 2

To see why the independence conditions in Theorem 5 imply global parameter inde-

pendence, consider the partitioning in which the �rst block contains the �rst n � 1 co-

ordinates which correspond to X1; : : : ; Xn�1 while the second block contains the last co-

ordinate which corresponds to Xn. For this partitioning, bn = �W�1
22 W

0
12, vn = W�1

22 ,

and mn = �2 + W�1
22 W

0
12�1. Furthermore, ((W�1)11)

�1 = W11 � W12W
�1
22 W

0
12 = W11:2

is the precision matrix associated with X1; : : : ; Xn�1. Consequently, fmn; bn; vng is inde-

pendent of f�1;W11:2g. We now recursively repeat this argument with f�1;W11:2g instead

of f�;Wg, to obtain global parameter independence. The converse, namely that global

parameter independence implies the independence conditions in Theorem 5, is established

similarly.

Our choice of prior implies that the posterior p(�;W jd;mh
c) is also a normal-Wishart

distribution (DeGroot, 1970, p. 178). In particular, p(�jW; d;mh
c), where d is a sample of

N complete cases, is multivariate normal with mean vector �0 given by

�0 =
��� +N xN
�� +N

(16)

and precision matrix (�� +N)W , where xN is the sample mean of d, and p(W jd;mh
c ) is a

Wishart distribution with �w +N degrees of freedom and parametric matrix R given by

R = T + SN +
��N

�� +N
(� � xN )(� � xN)

0 (17)
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where SN =
PN

i=1(xi � xN )(xi � xN)
0. From these equations, we see that �� and �w can

be thought of as e�ective sample sizes for � and W , respectively.

In order to calculate the marginal likelihood of a Gaussian DAG model, we can work in

the parametric space (�;W ). According to Theorem 5, if p(�;W jmh
c ) is a normal-Wishart

distribution with the parameters given by the theorem, then p(�Y; ((W
�1)YY)

�1jmh
c ) is

also a normal{Wishart distribution with parameters �Y , ��, TY = ((T�1)YY)
�1 and �0w =

�w�n+l, whereY is a subset of l coordinates. Thus, applying standard formulas pertaining

to t-distributions (e.g., DeGroot, 1970, p. 179-180), we obtain the terms in Equation 9:

p(dYjmh
c ) = (2�)�lN=2

 
��

�� +N

!l=2
c(l; �0w)

c(l; �0w +N)
jTYj

�0w
2 jRYj

�
�0w+N

2 (18)

where RY = ((R�1)YY)�1 is the posterior parametric matrix restricted to the Y coordi-

nates. Equations 9 and 18 together provide a way to compute the marginal likelihood for

Gaussian DAG models given the direct assessment of a parameter prior p(�;W jmh
c ) for one

complete model.

The task of assessing a parameter prior for one complete Gaussian DAG model is

equivalent, in general, to assessing priors for the parameters of a set of n linear regres-

sion models (due to Equation 13). However, to satisfy global parameter independence,

the prior for the linear regression model for Xn given X1; : : : ; Xn�1 determines the pri-

ors for the linear coe�cients and variances in all the linear regression models that de-

�ne a complete Gaussian model. In particular, 1=vn has a one dimensional Wishart pdf

Wishart(1=vn j �w + n � 1; T22 � T 0
12T

�1
11 T12) (i.e., a gamma distribution), and bn has a

multivariate normal pdf N(bn j T
�1
11 T12; T22=vn). Consequently, the degrees of freedom

�w and the parametric matrix T , which completely specify the Wishart prior distribution,

are determined by the normal-gamma prior for the parameters of one regression model.

Kadane, Dickey, Winkler, Smith, and Peters, (1980) address in detail the assessment of

such a normal-gamma prior for a linear regression model and their method applies herein

with no needed changes. The relationships between this elicited prior and the priors for the

other n � 1 linear regression models can be used to check consistency of the elicited prior

if these other priors have been elicited separately rather than computed. Finally, a normal

prior for the means of X1; : : : ; Xn is assessed separately and it requires only the assessment

of a vector of means along with an e�ective sample size ��.

An alternative approach uses the observation that when p(�;W jmh
c ) is normal{Wishart

as we have described (with �w > n+ 1), then p(xjmh
c ) is a multivariate-t distribution with


 degrees of freedom, location vector �0, and precision T 0, where


 = �w � n+ 1 �0 = � T 0 =
��


�� + 1
T�1 (19)
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(e.g., DeGroot, 1970, p. 180). Thus, a person can assess the needed quantities by as-

sessing ��, �w , and a multivariate-t distribution for X. Furthermore, rather than assess a

multivariate-t distribution which can be a di�cult task, a person can|as an approximation|

specify a multivariate-normal distribution having the same mean and covariance as the

multivariate-t distribution. Note that the mean and covariance of a multivariate-t distribu-

tion with 
 degrees of freedom, location vector �0, and precision matrix T 0 is

E(x) = �0 Cov(x) =




 � 2
T 0�1 (20)

(e.g., DeGroot, 1970, pp. 60{61). Finally, rather than assess a multivariate-normal dis-

tribution directly, a person can assess a Gaussian DAG structure along with a value for

each parameter. This method for constructing parameter priors for many DAG models has

recently been applied to analyses of data in the domain of image compression (Thiesson,

Meek, Chickering, and Heckerman, 1998). This method also provides a suitable Bayesian

alternative for many of the examples discussed in Spirtes, Glymour, and Scheines (2001).

5 Characterization of Several Probability Distributions

We now characterize the Wishart distribution as the only pdf that satis�es global parameter

independence for an unknown precision matrix W with n � 3 coordinates (Theorem 7).

This theorem is phrased and proven in a terminology that relates to known facts about

the Wishart distribution. We proceed with similar characterizations of the normal and

normal-Wishart distributions (Theorems 9 and 10).

We will use trfA+Bg to denote the sum of traces trfAg+ trfBg even when the dimen-

sions of the square matrices A and B are di�erent.

Theorem 7 Let W be an n � n, n � 3, positive-de�nite symmetric matrix of random

variables and f(W ) be a pdf of W . Then, f(W ) is a Wishart distribution if and only if W11�

W12W
�1
22 W

0
12 is independent of fW12;W22g for every block partitioning W11;W12;W

0
12;W22

of W .

Proof: That W11:2 = W11 �W12W
�1
22 W

0
12 is independent of fW12;W22g whenever f(W ) is

a Wishart distribution is a well known fact (Press 1971, p. 117-119). It is also expressed

by Theorem 5. The other direction is proven by induction on n. The base case n = 3 is

treated at the end.

The pdf of W can be written in n! orderings. In particular, due to the assumed indepen-

dence conditions, and since the transformations from fW11;W12;W22g to fW11:2;W12;W22g
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and to fW22:1;W11;W12g both have a Jacobian determinant of 1, we obtain the following

functional equation:

f(W ) = f1(W11 �W12W
�1

22
W 0

12
)f2jj1(W22;W12) = f2(W22 �W 0

12
W�1

11
W12)f1jj2(W11;W12) (21)

where a subscripted f denotes a pdf.

We divide the indices of W into two blocks, the �rst block (say, block 1) contains

n � 1 indices and the second block (say, block 2) consists of one index. By the induction

hypothesis, and since the independence conditions on W also hold for W11:2 we conclude

that W11:2 is distributed according to Wishart(W11:2j �1; T1). Since this argument holds

for every block of size n � 1 of W , and since if a matrix V is distributed Wishart so does

V11:2 for any block of indices (Theorem 5), it follows that W11:2 is distributed according to

Wishart(W11:2j �1; T1) also for blocks of size smaller than n� 1.

Thus,

c1jW11 �W12W
�1
22 W

0
12j

�1etrfT1(W11�W12W
�1
22 W 0

12)gf2jj1(W22;W12) =

c2jW22 �W 0
12W

�1
11 W12j

�2etrfT2(W22�W 0

12W
�1
11 W12)gf1jj2(W11;W12) (22)

where c1 and c2 are normalizing constants.

We now argue that �1 = �2. Divide the indices of W to three non empty sets a; b; c

such that block 1 consists of the indices in a; b and block 2 consists of the indices in c. The

matrices Wab:c and Wbc:a have a Wishart distribution, with, say, degrees of freedom �1 and

�2 respectively, and so according to Corollary 6, �1 � lab = �2 � lbc. Furthermore, Wc:ab =

(Wbc:a)c:b has a Wishart distribution with �2 � lbc + lc degrees of freedom. Consequently,

�1 = (�1 � lab � 1)=2 is equal to �2 = (�2 � lbc + lc � lc � 1)=2. Let � = �1 = �2.

De�ne

F2jj1(W22;W12) = c1f2jj1(W22;W12)=jW22j
�etrfT2W22+T1(W12W

�1
22 W 0

12)g (23)

F1jj2(W11;W12) = c2f1jj2(W11;W12)=jW11j
�etrfT1W11+T2(W 0

12W
�1
11 W12)g; (24)

substitute into Equation 22, and obtain, using jW11 � W12W
�1
22 W

0
12jjW22j = jW j, that

F2jj1(W22;W12) = F1jj2(W11;W12). Consequently, F2jj1 and F1jj2 are functions only of W12

and thus, using Equation 21, we obtain

f(W ) = jW j�etrfT1W11+T2W22gH(W12) (25)

for some function H .

To show that f(W ) is Wishart we must �nd the form of H and show that it is propor-

tional to e2trfT12W12g for some matrix T12.
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Considering the three possible pairs of blocks formed with the sets of indices a, b, and

c, Equation 25 can be rewritten as follows.

f(W ) = jW j�1etrfTaaWaa+TbbWbb+TccWccge2trfT
0

ab
Wab+T

0

acWac+T 0

bc
WbcgH1(Wac;Wbc) (26)

f(W ) = jW j�2etrfSaaWaa+SbbWbb+SccWccge2trfS
0

ab
Wab+S

0

acWac+S0bcWbcgH2(Wab;Wbc) (27)

f(W ) = jW j�3etrfRaaWaa+RbbWbb+RccWccge2trfR
0

ab
Wab+R

0

acWac+R0

bc
WbcgH3(Wab;Wac) (28)

By setting Wab = Wac = Wbc = 0, we get �1 = �2 = �3 and Tii = Sii = Rii, for i = a; b; c.

By comparing Equations 26 and 27 we obtain

e2trf(T
0

ac�S
0

ac)WacgH1(Wac;Wbc) = e2trf(S
0

ab
�T 0

ab
)Wab+(S

0

bc
�T 0

bc
)WbcgH2(Wab;Wbc) (29)

Each side of this equation must be a function only of Wbc. We denote this function by H12.

Hence,

H1(Wac;Wbc) = H12(Wbc)e
2trf(S0ac�T 0

ac)Wacg

and by symmetric arguments, comparing Equations 26 and 28,

H1(Wac;Wbc) = H13(Wac)e
2trf(R0

bc
�T 0

bc
)Wbcg

Consequently, H12(Wbc) is proportional to e
2trf(R0

bc
�T 0

bc
)Wbcg and so, substituting into Equa-

tion 25, f(W ) is found to be a Wishart distribution, as claimed.

It remains to examine the case n = 3. We �rst assume n = 2 in which case f(W ) is not

necessarily a Wishart distribution. In the appendix we show that given the independence

conditions for two coordinates, f must have the form

f(W ) = cjW j�etrfTWgH(W12) (30)

where H is an arbitrary function, and that the marginal distributions of W11:2 and W22:1

are one dimensional Wishart distributions.

We now treat the case n = 3 using these assertions about the case n = 2. Starting with

Equation 21, and proceeding with blocks a; b; c each containing exactly one coordinate, we

get, due to the given independence conditions for two coordinates, that f1 has the form

given by Equation 30, and that f2 is a one dimensional Wishart distribution. Proceeding

parallel to Equations 22 through 24, we obtain,

H(a12� b1b2=W22)F2jj1(W22;W12) = F1jj2(W11;W12) (31)

where (b1; b2) is the matrix W12, a12 is the o�-diagonal element of W11, a12 � b1b2=W22 is

the o� diagonal element of W11 �W12W
�1
22 W

0
12, and W22 is a 1 � 1 matrix. Note that the
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left hand side depends on W11 only through a12. Thus also the right hand side depends on

W11 only through a12. Let b1 and b2 be �xed, y = b1b2=W22, and x = a12. Also let F (t) =

F2jj1(b1b2=t; (b1; b2)) and G(a12) = F1jj2(W11; (b1; b2)). We can now rewrite Equation 31 as

H(x� y)F (y) = G(x). Now set z = x� y, and obtain for every y and z

H(z)F (y) = G(y + z) (32)

the only measurable solution of which for H is H(z) = cebz (e.g., Acz�el , 1966).

Substituting this form of H into Equation 30, we see that W11:2 has a two dimensional

Wishart distribution. Recall thatW22:1 has a one dimensional Wishart distribution. Conse-

quently, we can apply the induction step starting form Equation 22 and prove the Theorem

for n = 3. 2

We now treat the situation when only the means are unknown, characterizing the normal

distribution. The two dimensional case turns out to be covered by the Skitovich-Darmois

theorem (e.g., Kagan, Linnik, and Rao, 1973).

Theorem 8 (Skitovich-Darmois) Let z1; : : : ; zk be independent random variables and

�i; �i, 1 < i < k, be constant coe�cients. If L1 =
P
�izi is independent of L2 =

P
�izi,

then each zi for which �i�i 6= 0 is normal.

The Skitovich-Darmois theorem is used in the proof of the base case of our next char-

acterization. Several generalizations of the Skitovich-Darmois theorem are described by

Kagan et al. (1973).

Theorem 9 Let W be an n � n, n � 2, positive-de�nite symmetric matrix such that no

entry in W is zero, � be an n-dimensional vector of random variables, and f(�) be a pdf of

�. Then, f(�) is an n dimensional normal distribution N(�j�; 
W ) where 
 > 0 if and only

if �1 is independent of �2 +W�1
22 W

0
12�1 for every partitioning �1; �2 of � where W11,W12,

W 0
12, W22 is a block partitioning of W compatible with the partitioning �1; �2.

Proof: The two independence conditions, �1 independent of �2+W�1
22 W

0
12�1 and �2 inde-

pendent of �1 +W�1
11 W12�2, are equivalent to the following functional equation

f(�) = f1(�1)f2jj1(�2 +W�1
22 W

0
12�1) = f2(�2)f1jj2(�1 +W�1

11 W12�2) (33)

where a subscripted f denotes a pdf. We show that the only solution for f that satis�es

this equation is the normal distribution. Consequently both the if and only if portions of

the theorem will be established.

For n � 3, we can divide the indices of W into three non-empty sets a; b and c. We

group a and b to form a block and b and c to form a block. For each of the two cases, let
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W11 be the block consisting of the indices in fa; bg or fb; cg, respectively, and W22 be the

block consisting of the indices of c or a, respectively. By the induction hypothesis applied

to both cases and marginalization we can assume that f1(�1) is a normal distribution

N(�1j�1; 
1((W
�1)11)

�1) and that f2(�2) = N(�2j�2; 
2((W
�1)22)

�1). Consequently, the

pdf of the block corresponding to the indices in b is a normal distribution, and from the

two alternative ways by which this pdf can be formed, it follows that 
1 = 
2.

Let 
 = 
i, i = 1; 2, and de�ne

F2jj1(x) = f2jj1(x)=N(xj�2+W�1
22 W

0
12�1; 
W22)

F1jj2(x) = f1jj2(x)=N(xj�1+W�1
11 W12�2; 
W11):

By substituting these de�nitions into Equation 33, substituting the normal form for f1(�1)

and f2(�2), and canceling on both sides of the equation the term N(�j�; 
W ) (which is

formed by standard algebra pertaining to quadratic forms (E.g., DeGroot, pp. 55)), we

obtain a new functional equation,

F2jj1(�2 +W�1
22 W

0
12�1) = F1jj2(�1 +W�1

11 W12�2):

By setting �2 = �W
�1
22 W

0
12�1, we obtain F1jj2((I � (W�1

11 W12)(W
�1
22 W

0
12))�1) = F2jj1(0) for

every �1. Hence, the only solution to this functional equation is F1jj2 = F2jj1 � constant.

Consequently, f(�) = N(�j�; 
W ).

It remains to prove the theorem for n = 2. Let z1 = �1, z2 = �2 + w�1
22 w12�1, L1 =

�1 + w�1
11 w12�2, and L2 = �2. By our assumptions z1 and z2 are independent and L1

and L2 are independent. Furthermore, rewriting L1 and L2 in terms of z1 and z2, we get,

L1 = w�1
11 w

�1
22 (w11w22�w

2
12)z1+w�1

11 w12z2 and L2 = z2 �w
�1
22 w12z1. All linear coe�cients

in this transformation are non zero due to the fact that W is positive de�nite and that w12

is not zero. Consequently, due to the Skitovich-Darmois theorem, z1 is normal and z2 is

normal. Furthermore, since z1 and z2 are independent, their joint pdf is normal as well.

Finally, f�1; �2g and fz1; z2g are related through a non-singular linear transformation and

so f�1; �2g also have a joint normal distribution f(�) = N(�j�; A) where A = (aij) is a 2�2

precision matrix. Substituting this solution into Equation 33 and comparing the coe�cients

of �21, �
2
2, and �1�2, we obtain a12=a11 = w12=w11 and a12=a22 = w12=w22. Thus A = 
W

where 
 > 0. 2

The proofs of Theorems 7 and 9 can be combined to form the following characterization

of the normal-Wishart distribution.

Theorem 10 Let W be an n � n, n � 3, positive-de�nite symmetric matrix of real ran-

dom variables such that no entry in W is zero, � be an n-dimensional vector of ran-
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dom variables, and f(�;W ) be a joint pdf of f�;Wg. Then, f(�;W ) is an n dimen-

sional normal-Wishart distribution if and only if f�1;W11 �W12W
�1
22 W

0
12g is independent

of f�2+W�1
22 W

0
12�1;W12;W22g for every partitioning �1; �2 of � where W11,W12, W

0
12, W22

is a block partitioning of W compatible the partitioning �1; �2.

Proof sketch: The two independence conditions, f�1;W11�W12W
�1
22 W

0
12g independent of

f�2+W
�1
22 W

0
12�1; W12;W22g and f�2;W22�W

0
12W

�1
11 W12g independent of f�1+W

�1
11 W12�2;

W 0
12;W11g, are equivalent to the following functional equation

f(�;W ) = f1(�1;W11�W12W
�1
22 W

0
12)f2jj1(�2 +W�1

22 W
0
12�1;W22;W12)

= f2(�2;W22�W 0
12W

�1
11 W12)f1jj2(�1 +W�1

11 W12�2;W11;W12) (34)

where a subscripted f denotes a pdf. We show that the only solution for f that satis�es this

functional equation is the normal-Wishart distribution. Setting W to a �xed value yields

Equation 33 the solution of which is

f(�;W ) / N(�j�(W ); 
(W ) �W ) (35)

= N(�2j�2(W ); 
(W ) � [W22 �W 0
12W

�1
11 W12])

�N(�1j�1(W ) + �2(W ) �W�1
11 W12 �W�1

11 W12�2; 
(W ) �W11)

where both 
 and � = (�1; �2) potentially can be functions ofW . To see that these quantities

in fact do not depend on W , �rst note that the normal distributions for �2 and �1 in Eq. 35

must be proportional to the functions f2 and f1jj2 in Eq. 34, respectively. Comparing the

form of f2 with the normal distribution for �2, we see that 
(W ) and �2(W ) can only

depend on W22 �W 0
12W

�1
11 W12. Comparing the form of f1jj2 with the normal distribution

for �1, we see that 
(W ) and �2(W ) can only depend on fW11;W12g. Consequently, 
(W )

and �2(W ) must be constant. Similarly, �1(W ) must be a constant. Substituting these

solutions into Equation 34 and dividing by the common terms which are equal to f(�jW )

yields Equation 21, the solution of which for f is a Wishart pdf. 2

Note that the conditions set onW in Theorem 10, namely, a positive-de�nite symmetric

matrix of real random variables such that no entry in W is zero, are necessary and su�cient

in order for W to be a precision matrix of a complete Gaussian DAG model.

6 Local versus Global Parameter Independence

We have shown that the only pdf for f�;Wg which satis�es global parameter independence,

when the number of coordinates is greater than two, is the normal-Wishart distribution.

20



We now discuss additional independence assertions implied by the assumption of global

parameter independence.

Consider the parameter prior for fmn; bn; vng when the prior for f�;Wg is a normal-

Wishart as speci�ed by Equations 14 and 15. By a change of variables, we get

fn(mn; bn; vn) =

Wishart(1=vn j � + n� 1; T22� T 0
12T

�1
11 T12) �N(bn j T

�1
11 T12; T22=vn) �N(mn j �n; ��=vn)

where the �rst block (T11) corresponds to X1; : : : ; Xn�1 and the second one-dimensional

block (T22) corresponds to Xn. We note that the only independence assumption expressed

by this product is that mn and bn are independent given vn. However, by standardizing mn

and bn, namely de�ning, m�
n = (mn � �n)=(��=vn)

1=2 and b�n = (T22=vn)
1=2(bn � T�1

11 T12),

which is well de�ned because T22 is positive de�nite and vn > 0, we obtain a set of parame-

ters (m�
n; b

�
n; vn) which are mutually independent. Furthermore, this mutual independence

property holds for every local family and for every Gaussian DAG model over X1; : : : ; Xn.

We call this property the standard local independence for Gaussian DAG models.

This observation leads to the following corollary of our characterization theorems.

Corollary 11 If global parameter independence holds for every complete Gaussian DAG

model over X1; : : : ; Xn (n � 3), then standard local parameter independence also holds for

every complete Gaussian DAG model over X1; : : : ; Xn.

This corollary follows from the fact that global parameter independence implies that,

due to Theorem 10, the parameter prior is a normal-Wishart, and for this prior, we have

shown that standard local parameter independence must hold.

It is interesting to note that when n = 2, there are distributions that satisfy global pa-

rameter independence but do not satisfy standard local parameter independence. In particu-

lar, a prior for a 2�2 positive de�nite matrixW which has the formWishart(W j�; T )H(w12),

where H is some real function and w12 is the o�-diagonal element of W , satis�es global

parameter independence (as shown in the appendix) but need not satisfy standard local pa-

rameter independence. Furthermore, if standard local parameter independence is assumed,

then H(w12) must be proportional to eaw12 , which means that, for n = 2, the only pdf for

W that satis�es global and standard local parameter independence is the bivariate Wishart

distribution. In contrast, for n > 2, global parameter independence alone implies a Wishart

prior.
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7 Discussion

The formula for the marginal likelihood applies whenever Assumptions 1 through 5 are

satis�ed, not only for Gaussian DAG models. Another important special case is when all

variables in X are discrete and all local distributions are multinomial. This case has been

treated in Heckerman et al. (1995) and Geiger and Heckerman (1997) under the additional

assumption of local parameter independence which was introduced by Spiegelhalter and

Lauritzen (1990). Our generalized derivation herein dispenses this assumption and uni�es

the derivation in the discrete case with the derivation needed for Gaussian DAG models.

Our characterization means that the assumption of global parameter independence when

combined with the de�nition of mh, the assumption of complete model equivalence, and the

regularity assumption, may be too restrictive. One common remedy for this problem is to

use a hierarchical prior p(�j�)p(�) with hyperparameters �. When such a prior is used for

Gaussian DAG models, our results show that for every value of � for which global parameter

independence holds, p(�j�) must be a normal-Wishart distribution. The di�culty with this

approach is that the marginal likelihood no longer has closed form and therefore approximate

methods such as MCMC are usually employed to compute the marginal likelihood. Also the

elicitation of hierarchical priors is often di�cult. Other alternative approaches have been

discussed at the end of Section 3.

We conclude with a technical comment. Equation 21, which encodes global parameter

independence for an unknown covariance matrix, is an interesting example of a matrix

functional equation. The domain of each unknown function is a non-singular matrix and

the range is R. A well known functional equation of this sort is the equation

f(XY ) = f(X)f(Y ) (36)

where X and Y are non-singular matrices. The general solution of this equation is f(X) =

jX j� or f(X) = jX j�sgn(jX j) (e.g., Acz�el , 1966). When the domain of f is the set of

positive de�nite matrices, the solution is simply f(X) = jX j�.

We note that the solution of Equation 36 is obtained for matrices over arbitrary �elds.

Only algebraic manipulations are used in its proof. It seems reasonable to believe and

interesting to investigate, whether a solution to Equation 21 can be obtained via purely

algebraic manipulations. The proof technique that we have employed, however, especially

for the base case of the induction, uses the fact that the matrices are over the real numbers.
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Appendix

We now characterize the pdfs of an unknown 2 � 2 precision matrix that satisfy global

parameter independence. This result has been obtained in (Geiger and Heckerman, 1998)

under additional regularity conditions.

Theorem 12 Let W be a 2 � 2 positive-de�nite symmetric matrix with random entries

w11; w12, and w22 and let f(W ) be a pdf of W . Then, f(W ) = jW j�etrfTWgH(w12) where H

is a real function if and only if w11�w
2
12=w22 is independent of fw12; w22g and w22�w

2
12=w11

is independent of fw12; w11g.

Proof: That w11 � w2
12=w22 is independent of fw12; w22g whenever f(W ) is a Wishart

distribution (e.g., when H(x) = constant) is a well known fact (Press 1971, p. 117-119).

Consequently, this claim holds for any real function H . We prove the other direction by

solving the functional equation, which is implied by the given independence assumptions,

f(W ) = f1(w11 � w2
12=w22)f2jj1(w22; w12) = f2(w22 � w2

12=w11)f1jj2(w11; w12) (37)

where a subscripted f denotes a pdf. To solve this functional equation, namely to �nd

all pdfs that satisfy it, we use techniques described in [Acz�el, 1966] and results from

[J�arai, 1986, J�arai, 1998].

Let w12 be a value such that the integral of f2jj1(x; w12) over the domain of x is not

identically zero. Such a value for w12 exists because f2jj1(x; w12) integrates to 1 over its

domain. Without loss of generality, suppose this value of w12 is 1, lest we can modify the

scale using the transformations w11 w12w11 and w22  w12w22. We rewrite Equation 37

as

f1(w11� 1=w22)f2jj1(w22; 1) = f2(w22 � 1=w11)f1jj2(w11; 1): (38)
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We claim that all density functions satisfying Equation 38 must be positive everywhere

and smooth. This is shown in Lemmas 14 and 16 at the end of the proof. Consequently,

we can take the logarithm of Equation 37 and then take derivatives. First we take the

logarithm and rename the functions. We get

g1(w11 � 1=w22) + g2jj1(w22) = g2(w22� 1=w11) + g1jj2(w11) (39)

where g1(x) = ln f1(x), g2jj1(x) = ln f2jj1(x; 1), and where g2 and g1jj2 are de�ned analogously.

We take a mixed second derivative with respect to w11 and w22 of Equation 39. We get

g001(w11 � 1=w22)=w
2
22 = g002(w22 � 1=w11)=w

2
11 (40)

By substituting w11 = w22 we obtain g001 = g002 . We denote this function by h and so,

w2
11h(w11 � 1=w22) = w2

22h(w22 � 1=w11) (41)

It is easy to show, using this functional equation for h, that if h were zero at some point

then h must be identically zero, if h is positive at one point then h is positive everywhere,

and if h is negative at one point then h is negative everywhere. We now take a derivative

wrt w11 and a derivative with respect to w22

2w11h(w11 � 1=w22) + w2
11h

0(w11 � 1=w22) = fw22=w11g
2h0(w22 � 1=w11)

2w22h(w22 � 1=w11) + w2
22h

0(w22� 1=w11) = fw11=w22g
2h0(w11 � 1=w22):

From these equations, and using Equation 41, we get

2(w22 + 1=w11)h(w22� 1=w11) = �(w
2
22 � 1=w2

11)h
0(w22� 1=w11)

Consequently,

h0(x)=h(x) = �2=x

where x = w22 � 1=w11. This equation holds for every x 2 R+. Assuming h is positive

everywhere, we have (ln h(x))0 = �2=x and so ln h(x) = ln x�2 + c0 where c0 is a constant.

If h is negative everywhere, we have (ln�h(x))0 = �2=x and so ln(�h(x)) = ln x�2 + c0.

Consequently, whether h is positive everywhere, negative everywhere, or identically zero, it

has the form h(x) = c=x2 where c is a constant. Recall that h = (ln f1)
00. Hence, f1(x) =

c1x
�cec2x and similarly f2(x) = c01x

�cec
0

2x (i.e., one-dimensional Wishart distributions with

the same degrees of freedom). We conclude by substituting f1 and f2 into Equation 37 and

proceeding as in Equations 22 through 25. 2

The next lemma shows that every positive everywhere pdf that satis�es Equation 38

must be smooth. Our lemma is an immediate consequence of J�arai's Theorem which we

now state.
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Theorem 13 (J�arai , 1986,1998) Let Xi be an open subset of Rri (i = 1; 2; : : : ; n), T

be an open subset of Rs, Y be an open subset of Rk, Zi be an open subset of Rmi (i =

1; 2; : : : ; n), D be an open subset of T � Y and let Z be an Euclidean space. Consider the

functions f : T ! Z, gi : D ! Xi, fi : Xi ! Zi, hi : D � Zi ! Z, (i=1,2,: : : ,n). Suppose

that 0 � p � 1 and

(i) for each (t; y) 2 D,

f(t) =
nX
i=1

hi(t; y; fi(gi(t; y)));

(ii) hi is p+ 1 times continuously di�erentiable (1 � i � n);

(iii) gi is p + 2 times continuously di�erentiable and for each t 2 T there exists a y 2 Y

such that (t; y) 2 D and @gi
@y (t; y) has rank ri, 1 � i � n.

Then

(iv) if fi (i = 1; 2; : : : ; n) is Lebesgue measurable and (ii),(iii) are satis�ed with p = 0 then

f is continuous on T ;

(v) if fi (i = 1; 2; : : : ; n) is continuous and (ii),(iii) are satis�ed with p = 0 then f is

continuously di�erentiable on T ;

(vi) if fi (i = 1; 2; : : : ; n) is p times continuously di�erentiable and (ii),(iii) are satis�ed

then f is p+ 1 continuously di�erentiable on T .

This theorem is stated in [J�arai, 1998] and its proof is based on Theorems 3.3, 5.2, and

7.2 of [J�arai, 1986]. A simple corollary of J�arai 's theorem is the following.

Lemma 14 Every Lebesgue measurable real functions l1; l2; l1jj2 and l2jj1 de�ned on R+

which satisfy

l1(y � 1=t) + l2jj1(t) = l2(t� 1=y) + l1jj2(y) (42)

for every y; t > 0 such that yt > 1, are p times continuously di�erentiable where p is

arbitrary large.

Proof: The proof follows closely the lines of reasoning that J�arai (1998) applied to another

functional equation.

Using statement (iv) of Theorem 13 we show that l2jj1 is continuous. To match J�arai

's theorem notation we de�ne f = l2jj1, f1 = �l1, f2 = l2, f3 = l1jj2, hi(t; y; w) = w for

i = 1; 2; 3, g1(t; y) = (y � 1=t), g2(t; y) = (t � 1=y), and g3(t; y) = y. The only non obvious

condition to check is that for each t 2 R+ there exists a y 2 R+ such that ty > 1 and
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@gi
@y (t; y) has rank ri, 1 � i � n. But here the rank is 1 and so we just need to observe that

there exists a y such that @gi
@y (t; y) is not zero.

To show that l1 is continuous rewrite Equation 42 as

l1(t) + l2jj1(y) = l2(
ty2

ty + 1
) + l1jj2(t+ 1=y) (43)

where t; y > 0. Now de�ne f = l1, f1 = �l2jj1, f2 = l2, f3 = l1jj2, hi(t; y; w) = w for

i = 1; 2; 3, g1(t; y) = y, g2(t; y) =
ty2

ty+1 , and g3(t; y) = t + 1=y. Observe that the conditions

of J�arai 's theorem hold and so f = l1 is continuous. By the symmetry of the equation, l2

and l1jj2 are also continuous on R+.

Now we can apply statement (v) of J�arai 's Theorem. We obtain, in the same way as

above, that all four functions are continuously di�erentiable. Finally, applying statement

(vi) of J�arai 's Theorem in the same way, we get that all four functions are twice continuously

di�erentiable. Repeating this process shows that all four functions are p times continuously

di�erentiable for every p > 0. 2

The next Theorem and lemma show that every pdf that satis�es Equation 38 must

be positive everywhere and so taking the logarithm of this equation, as we have done,

is legitimate. We denote by �s the s-dimensional Lebesgue measure and by � the one

dimensional Lebesgue measure.

Theorem 15 (J�arai , 1995, 1998) Let X1; : : : ; Xn be orthogonal subspaces of Rr of di-

mensions r1; : : :rn, respectively. Suppose that ri � 1 (1 � i � n) and
Pn

i=1 ri = r. Let U be

an open subset of Rr and F : U ! Rm be a continuously di�erentiable function. For each

x 2 U , let Nx denote the nullspace of F 0(x). Let pi denote the orthogonal projection of X

onto Xi. Suppose that dimNx = r � m and pi(Nx) = Xi (i = 1; : : : ; n) for all x 2 U . Let

Ai be a subset of Xi (i = 1; : : : ; n). If A1 � A2 � : : :� An � U , and Ai is �
ri measurable

with �ri(Ai) > 0 (1 � i � n), then F (A1 � A2 � : : :� An) contains a non-empty open set.

Recall that if X1; : : : ; Xn are the standard orthogonal axis of R
n, then pi(X1; : : : ; Xn) =

Xi, and Pi(Nx) = fxj(X1; : : : ; Xi�1; x;Xi+1; : : : ; Xn) 2 Nxg.

Lemma 16 Let f; g; h; k be non-negative real functions that are Lebesgue integrable with

integral c > 0. If these functions satisfy

f(s� 1=t)g(t) = h(t � 1=s)k(s) (44)

for every s; t > 0 such that st > 1, then they are everywhere positive.
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Proof: The proof follows closely the lines of reasoning that J�arai (1998) applied to another

functional equation.

Let ff = 0g denote the set of points in the domain of f for which f is zero and let

ff 6= 0g denote the complementary set of all points in the domain for which f is not zero|

namely, the set of points for which f is positive. Similar notation is used for the functions

g; h and k. The idea of the proof is to show that the set ff = 0g and the set ff 6= 0g

are both open and therefore, since the domain of f is connected, one of these sets must

be empty. The set ff 6= 0g cannot be empty because f is non-negative and integrates to

a positive constant and so ff = 0g must be empty as claimed by the Theorem. Similar

arguments show that g; h and k are also positive everywhere.

The proof proceeds in three steps. First we use Theorem 15 to establish that the set

fg 6= 0g contains a non-empty open set (i.e., it contains an inner point). Then we show

that every point in ff 6= 0g is an inner point and so ff 6= 0g is open. Finally we show that

every point in ff = 0g is an inner point and so ff = 0g is open as well. Similar arguments

work for g; h and k.

We start by rewriting Equation 44 in two symmetric ways. First as

f(y)g(z) = h(x(y; z))k(w(y; z)) (45)

for all y > 0, and z > 0 where x(y; z) = yz2=(yz + 1) and w(y; z) = y + 1=z. Second as

f(y(x; w))g(z(x;w)) = h(x)k(w) (46)

for all x > 0, and w > 0 where y(x; w) = xw2=(xw+ 1) and z(x; w) = x+ 1=w.

Step I. We show that fg 6= 0g contains an inner point. Since both h and k integrate to a

positive constant, there must exist two � measurable sets Ah in fh 6= 0g and Ak in fk 6= 0g

such that �(Ah) > 0 and �(Ak) > 0. The image of these sets under z(x; w) = x + 1=w

contains an inner point z according to Theorem 15. This theorem is applicable because the

nullspace of z0 is fa(1=w2; 1))ja > 0g and its projection on either of the two coordinates is

R+. Due to Equation 46, and because the right hand side is not zero for any x 2 Ah and

w 2 Ak, each term on the left hand side is also not zero. Consequently, their image under

z(x; w), which includes an inner point, belongs to fg 6= 0g.

Step II. Let y be an arbitrary point in ff 6= 0g. We now show that y is an inner

point and so ff 6= 0g is open. Let z be an inner point in fg 6= 0g. It follows that the

image of a su�ciently small open set containing z under x(y; z) = yz2=(yz + 1) and under

w(y; z) = y+1=z are open sets. These images belong to fh 6= 0g and fk 6= 0g, respectively,

because the left hand side of Equation 45 is positive. Now we �x x in the image and vary

w in a small open neighborhood. Then y is varied in a small open neighborhood. Since the
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right hand side of Equation 45 is positive, the neighborhood of y belongs to ff 6= 0g and so

y is an inner point. Similar arguments show that fg 6= 0g is open as well. By the symmetry

of Equation 44 the same claim holds for h and k.

Step III. Let y be an arbitrary point in ff = 0g. We now show that y is an inner

point and so ff = 0g is open. Let z be an inner point in fg 6= 0g. It follows that the

image of a su�ciently small open set containing z under x(y; z) = yz2=(yz + 1) and under

w(y; z) = y + 1=z are open sets. Since the left hand side of Equation 45 is zero, at least

one term in the right hand side must be zero. If x is in fh = 0g, then �x x. As we vary

w in a small open neighborhood in the image, g remains positive due to continuity. Also y

is varied in a small open neighborhood. Since the right hand side of Equation 45 is zero,

the neighborhood of y belongs to ff = 0g and so y is an inner point. The other case is

when w is in fk = 0g, in which case we �x w and vary x in a small neighborhood. Similar

arguments show that fg = 0g is open as well. By the symmetry of Equation 44, the same

claim holds for h and k. 2

Note that Theorems 14 and 16 together imply that every pdf that solves Equation 44

must be positive everywhere and smooth.
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