

Draft Sequential IO Paper 1 07/04/99

A Performance Study of Sequential IO on WindowsNT™ 4.0

Erik Riedel (CMU)
Catharine Van Ingen

Jim Gray

September 1997

Technical Report
MSR-TR-97-34

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Draft Sequential IO Paper 2 07/04/99

A Performance Study of Sequential I/O on Windows NT™ 4.0

Erik Riedel, Catharine van Ingen, Jim Gray

Microsoft Research
301 Howard Street

San Francisco, California, 94105
http://www.research.microsoft.com/barc

vanIngen@Microsoft.com, Gray@Microsoft.com, riedel+@cmu.edu

Abstract
This paper investigates the most efficient way to read and write large sequential files using the Windows NT™ 4.0 File
System. The study explores the performance of Intel Pentium Pro™ based memory and IO subsystems, including the
processor bus, the PCI bus, the SCSI bus, the disk controllers, and the disk media. We provide details of the overhead
costs at various levels of the system and examine a variety of the available tuning knobs. The report shows that NTFS
out-of-the box read and write performance is quite good, but overheads for small requests can be quite high. The best
performance is achieved by using large requests, bypassing the file system cache, spreading the data across many disks
and controllers, and using deep-asynchronous requests.

Draft Sequential IO Paper 3 07/04/99

1. Introduction

This paper discusses how to do high-speed sequential file access using the Windows NT™ File System (NTFS). High-
speed sequential file access is important for bulk data operations typically found in utility, multimedia, data mining,
and scientific applications. High-speed sequential IO is also important in the startup of interactive applications.
Minimizing IO overhead and maximizing bandwidth frees power to process the data.

Figure 1 shows how data flows in a typical storage sub-system doing sequential IO. Application requests are passed to
the file system. If the file system cannot service the request from its main memory buffers, it passes requests to a host
bus adapter (HBA) over a PCI peripheral bus. The HBA passes requests across the SCSI (Small Computer System
Interconnect) bus to the disk drive controller. The controller reads or writes the disk and returns data via the reverse
route.

The large-bold numbers of Figure 1 indicate the advertised throughputs listed on the boxes of the various system
components. These are the figures quoted in hardware reviews and specifications. Several factors prevent you from
achieving this PAP (peak advertised performance.) The media-transfer speed and the processing power of the on-drive
controller limit disk bandwidth. The wire’s transfer rate, the actual disk transfer rate, and SCSI protocol overheads ALL
limit the throughput. The efficiency of a bus is the fraction of the bus cycles available for data transfer; in addition to
data, bus cycles are consumed by contention, control transfers, device speed matching delays, and other device
response delays. Similarly, PCI bus throughput is limited by its absolute speed, its protocol efficiency, and actual
adapter performance. IO request processing overheads can also saturate the processor and limit the request rate.

In the case diagrammed in Figure 1, the disk media is the bottleneck, limiting aggregate throughput to 7.2 MBps at
each step of the IO pipeline. There is a significant gap between the advertised performance and this out-of-box
performance. Moreover, the out-of-box application consumes between 25% and 50% of the processor. The processor
would saturate before it reached the advertised SCSI throughput or PCI throughput.

The goal of this study is to do better cheaply - to increase sequential IO throughput and decrease processor overhead
while making as few application changes as possible.

We define goodness as getting the real application performance (RAP) to the half-power point - the point at which the
system delivers half of the theoretical maximum performance. More succinctly: the goal is RAP > PAP/2. Such
improvements often represent significant (2x to 10x) gains over the out-of-box performance.

System Bus
422 MBps

7.2 MB/s

133 MBps
7.2 MB/s

10-15 MBps
7.2 MB/s

SCSIFile System
 Buffers

Application
Data

Disk
PCI

40 MBps
7.2 MB/s

Figure 1 – The storage sub-system – An application makes requests of the file system, which transfers them
across the PCI bus to a SCSI host-bus adapter that sends them across the SCSI bus to the disks(s). For each
component, the upper numbers give the advertised speed, the lower number gives the actual speed in this
application reading a single disk.

Draft Sequential IO Paper 4 07/04/99

The half-power point can be achieved without heroic effort. The following techniques used independently or in
combination can improve sequential IO performance.
Make larger requests: 8KB and 64KB IO requests give significantly higher throughput than smaller requests, and

larger requests consume significantly less per-byte overhead at each point in the system.
Use file system buffers for small (<8KB) requests: The file system coalesces small sequential requests into large

ones. It pipelines these requests to the IO subsystem in 64KB units. File system buffering consumes more
processor overhead, but for small requests it can actually save processor time by reducing interrupts and
reducing disk traffic.

Preallocate files to their eventual maximum size. Preallocation ensures that the file can be written with multiple
requests outstanding (NT synchronously zeros newly allocated files). Preallocation also allows positioning the
file on the media.

Write-Cache-Enable (WCE): Disks support write buffering in the controller. WCE allows the disk drive to coalesce
and optimally schedule disk media writes, making bigger writes out of small write requests and giving the
application pipeline-parallelism.

Stripe across multiple SCSI disks and buses: Adding disks increases bandwidth. Three disks can saturate the SCSI
bus. To maximize sequential bandwidth, a SCSI host-bus adapter should be added for each three disks.

Unless otherwise noted, the system used for this study is the configuration described in Table 1:

Table 1 suggests that the processor has a 422 MBps memory bus (66Mhz and 64-bit wide.) As shown later, this
aggregate throughput is significantly more than that accessible to a single requestor (processor or PCI bus adapter). The
study used SCSI-2 Fast-Wide (20MBps) and Ultra-Wide (40MBps) disks. As the paper is being written, Ultra2
(80MBps) and Fiber Channel (100/200 MBps) disks are appearing.

The benchmark program is a simple application that uses the NT file system. It sequentially reads or writes a 100-MB
file and times the result. ReadFileEx()and IO completion routines were used to keep n asynchronous requests in
flight until the end of the file was reached; see the Appendix for more details on the program. Measurements were
repeated three times. Unless otherwise noted, all the data obtained were quite repeatable (within 3%). All multiple disk
data were obtained by using NT ftdisk to build striped logical volumes; ftdisk uses a stripe chunk, or step, size of 64KB.
The program and the raw test results are available at http://www.research.microsoft.com/barc/Sequential_IO/.

The next section discusses our out-of-box measurements. Section 3 explores the basic capabilities of the hardware
storage sub-system. Ways to improve performance by increasing parallelism are presented in Section 4. Section 5
provides more detailed discussion of performance limits at various points in the system and discusses some additional
software considerations. Finally, we summarize and suggest steps for additional study.

Table 1 –All the measurements were done on the following hardware base (unless otherwise noted).
Processor Gateway 2000 G6-200, 200 MHz Pentium Pro

64-bit wide 66Mhz memory interconnect
64MB DRAM 4-way interleave
1 32bit PCI bus

Host bus adapter 1 or 2 Adaptec 2940UW Ultra-Wide SCSI adapters (40MBps)
Seagate Barracuda 4 Interface Capacity RPM Seek Transfer cache

External internal Fast-Wide
(ST15150W)

 SCSI-2
Fast wide
ASA II

4.3GB

7200

Avg
4.2ms
range
1-17

20 MBps 5.9 MBps
to

8.8 MBps

1 MB

Disk

Ultra-Wide
(ST34371W)

 SCSI-2
Ultra wide

ASA II

4.3GB

7200 Avg
4.2ms
range
1-17

40MBps 10 MBps
to

15 MBps

0.5MB

Software Microsoft Windows NT 4.0 SP3
NT file system and NT's ftdisk for striping experiments.

Draft Sequential IO Paper 5 07/04/99

2. Out-of-the-Box Performance

The first measurements examine the out-of-the-box performance of a program that synchronously reads or writes a
sequential file using the NTFS defaults. In this experiment, the reading program requests data from the NT file system.
The NT file system copies the data to the application request buffer from the main-memory file cache. If the requested
data is not already in the buffer cache, the file system first fetches the data into cache from disk. When doing sequential
scans, NT makes 64KB prefetch requests. Similarly, when writing, the program's data is copied to the NT file cache. A
separate thread asynchronously flushes the cache to disk in 64KB transfer units. In the out-of the-box experiments, the
file being written was already allocated but not truncated. The program specified the FILE_FLAG_SEQUENTIAL_SCAN
attribute when opening the file with CreateFile(). The total user and system processor time was measured via
GetProcessTimes() . Figure 2 shows the results.

Buffered-sequential read throughput is nearly constant for request sizes up to 64KB. The NT file system prefetches
reads by issuing 64KB requests to the disk. The disk controller also prefetches data from the media to its internal
controller cache. Depending on the firmware, the drive may prefetch only small requests by reading full media tracks or
may perform more aggressive prefetch across tracks. Controller prefetching allows the disk to approach the media-
transfer limit, and hides the disk's rotational delay. Figure 2 shows a sharp drop in read throughput for request sizes
larger than 64KB; the NT file system and disk prefetch mechanisms are no longer working together.

Figure 2 indicates that buffered-sequential writes are substantially slower than reads. The NT file system assumes
write-back caching by default; the file system copies the contents of the application write buffer into one or more file
system buffers. The application considers the buffered write completed when the copy is made. The file system
coalesces small sequential writes into larger 64KB writes passed to the SCSI host bus adapter. The throughput is
relatively constant above 4KB. The writeback occurs nearly synchronous – with one request outstanding at the disk
drive. This ensures data integrity within the file. In the event of an error the file data are known to be good up to the
failed request.

Write requests of 2KB present a particularly heavy load on the system. In this case, the filesystem reads the file prior to
the write-back and those read requests are 4KB. This more than doubles the load on the system components. This pre-
read can be avoided by (1) issuing write requests that are at least 4KB, or (2) truncating the file at open by specifying
TRUNCATE_EXISTING rather than OPEN_EXISTING as the file creation parameter to CreateFile(). When we opened
the test file with TRUNCATE_EXISTING, the write throughput of 2KB writes was about 3.7 MBps or just less than that of

Out of the Box Throughput

0

2

4

6

8

10

2 4 8 16 32 64 128 192
Request Size (K-Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Write

Read

Write +WCE

Out of the Box Overhead

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 192
Request Size (K Bytes)

O
ve

rh
ea

d
(c

pu
 m

se
c/

M
B

) Read

Write

Write + WCE

Read

Write

Figure 2 – Out-of-box Throughput of Ultra drives – File system pre-fetching causes reads to reach full media
bandwidth at small request sizes, although there are difficulties at very large request sizes. Disk Write Cache Enable
(WCE) approximately doubles sequential write throughput. Processor cost (milliseconds per megabyte) is graphed
at the right. Writes are more expensive than reads, overhead is minimal for requests in the 16KB to 64KB range.

Draft Sequential IO Paper 6 07/04/99

4KB and above. TRUNCATE_EXISTING should be used with tiny, less than 4KB, buffered requests. With 4KB or larger
requests, extending the file after truncation incurs overheads which lower throughput up to 20%.

The FILE_FLAG_SEQUENTIAL_SCAN flag had no visible affect on read performance, but improved write throughput by
about 10%. Without the attribute, the write-back request size was no longer a constant 64KB, but rather varied between
16KB and 64KB. The smaller requests increased system load and decreased throughput.

The FILE_FLAG_WRITE_THROUGH flag has a catastrophic affect on write performance. The file system copies the
application write buffer into the file system cache, but does not complete the request until the data have been written to
media. Requests are not coalesced, the application request size is the SCSI bus request size. Moreover, the disk requests
are completely synchronous – fewer writes complete per second. This causes almost a 10x reduction in throughput –
with WCE and requests less than 64KB, we saw less than 1 MBps.

Disk controllers also implement write-through and write-back caching. This option is controlled by the Write-Cache-
Enable (WCE) option [SCSI]. If WCE is disabled, the disk controller announces IO completion only after the media
write is complete. If WCE is enabled, the disk announces write IO completion as soon as the data are stored in its cache
which may be before the actual write onto the magnetic disk media. WCE allows the disk to hide the rotational seek
and media transfer. WCE improves write performance by giving pipeline parallelism – the write of the media overlaps
the transfer of the next write on the SCSI even if the file system requests are synchronous.

There is no standard default for WCE – the drive may come
out of the box with WCE enabled or disabled.

The effect of WCE is dramatic. As shown in Figure 2 – WCE
approximately doubles buffered-sequential write throughput.
When combined with WCE, NT file-system write buffering
allows small application request sizes to attain throughput
comparable to large request sizes and comparable to read
performance. In particular, it allows requests of 4KB or
more to reach the half-power point.

Small requests involve many more NT calls and many more
protection domain crossings per megabyte of data processed.
With 2KB requests, the 200 MHz Intel Pentium processor
saturates when reading writing 16 MBps. With 64KB
requests, the same processor can generate about 50 MBps of
buffered file IO – exceeding the Ultra-Wide SCSI PAP. As
shown later, this processor can generate about 480 MBps of
unbuffered disk traffic.

Figure 2 indicates that buffered reads consume less
processing than buffered writes. Buffered writes were
associated with more IO to the system disk, but we don’t
know how to interpret this observation.

The system behavior under reads and writes is very different. During the read tests, the processor load is fairly uniform.
The file system prefetches data to be read into the cache. It then copies the data from the file system cache to the
application request buffer. The file cache buffer can be reused as soon as the data are copied to the application buffer.
The elapsed time is about eleven seconds. During the write tests, the processor load goes through three phases. In the
first phase, the application writes at memory copy speed, saturating the processor as it fills all available file system
buffers. During the second phase, the file system must free buffers by initiating SCSI transfers. New application writes
are admitted when buffers become available. The processor is about 30% busy during this phase. At the end of this
phase the application closes the file. The close operation forces the file system to synchronously flush all remaining
writes - one SCSI transfer at any time. During this third phase the processor load is negligible.

To WCE or not to WCE?
Write caching improves performance but risks losing
data if the caches are volatile. If the host or the disk
controller fails while uncommitted data is in a non-
volatile cache, that data will be lost. Also, controller
caches may be lost by SCSI bus resets [SCSI].
Battery-backed RAM can be used to preserve a cache
across power fails; some controllers commit pending
data in their cache prior to responding to a SCSI
reset. Typical UNIX semantics promise that a file
writes will be written to non-volatile storage within
30 seconds. NT flushes its cache within 12 seconds
or when the file is closed (unless it is a temporary
file). The file system buffering risks are much higher
than the disk cache risks since disk cache sector
lifetimes are generally very short. Still, file systems
and database systems assume that once a disk write
completes, the data is safe. For that reason, it is
dangerous to use WCE for database log files or for
the NTFS directory space (both depend upon a write-
ahead-logging scheme). There is always a risk of
corrupting the volume if NTFS metadata is lost from
the WCE cache. As shown in Figure 6, large
asynchronous requests can match the throughput of
WCE.

Draft Sequential IO Paper 7 07/04/99

Not all processing overhead is charged to the process that caused it in Figure 2. Despite some uncertainty in the
measurements, the trend remains. Moving data with many small requests costs significantly more than moving the
same data with fewer-larger requests. We will return to the cost question in more detail in the next section.

In summary, the performance of a single-disk configuration is limited by the media transfer rate.
? ? Reads are easy. For all request sizes, the out-of-box sequential-buffered-read performance achieves close to the

media limit.
? ? By default, small buffered-writes (less than 4KB) achieve 25% of the bandwidth. Buffered-sequential writes of

4KB or larger nearly achieve the half-power point.
? ? By enabling WCE, all but the smallest sequential buffered-write requests achieve 80% of the media-transfer limit.
? ? For both reads and writes, larger request sizes have substantially less processor overhead per byte read or written.

Minimal overhead occurs with requests between 16KB and 64KB.

Draft Sequential IO Paper 8 07/04/99

3. Improving Performance - Bypassing the File System Cache for Large Requests

We next bypass file system buffering to examine the hardware performance. This section compares Fast-Wide
(20MBps) and Ultra-Wide (40MBps) disks. Figure 3 shows that the devices are capable of 30% of the PAP speeds.
The Ultra-Wide disk is the current generation of the Barracuda 4LP-product line (ST34371W). The Fast-Wide disk is
the previous generation (ST15150W).

The 100MB file is opened with CreateFile(,… FILE_FLAG_NO_BUFFERING | FILE_FLAG_SEQUENTIAL_SCAN,…) to
suppress file system buffering. The file system performs no prefetch, no caching, no coalescing, and no extra copies.
The data moves directly into the application via the SCSI adapter using DMA (direct memory access). Application
requests are presented directly to the SCSI adapter without first being copied to the file system buffer pool. On large
(64KB) requests, bypassing the file system copy cuts the processor overhead by a factor of ten: from 2 instructions per
byte to 0.2 instructions per byte.

Unbuffered-sequential reads reach the media limit for all requests larger than 8KB. The older Fast-Wide disk requires
read requests of 8KB to reach its maximum efficiency of approximately 6.5 MBps. The newer Ultra-Wide drive
plateaus at 8.5 MBps with 4KB requests. Prefetching by the controller gives pipeline parallelism allowing the drive to
read at the media limit. Very large requests remain at the media limit (in contrast to the problems seen in Figure 2 with
large buffered read transfers).

Without WCE, unbuffered-sequential writes are significantly slower. The left chart of Figure 3 shows that unbuffered-
sequential write performance increases only gradually with request size. The differences between the two drives are
primarily due to the difference in media density and drive electronics and not the SCSI bus speed. No write throughput
plateau was observed even at 1MB request sizes. The storage subsystem is completely synchronous -- first it writes to
device cache, then it writes to disk. Device overhead and latency dominate. Application requests above 64KB are still
broken into multiple 64KB requests within the IO subsystem, but those requests can be simultaneously outstanding in
the storage subsystem. Without WCE, the half-power write rate is achieved with a request size of 128KB.

The right graph of Figure 3 shows that WCE compensates for the lack of file system coalescing. The WCE sequential
write rates look similar to the read rates and the media limit is reached at about 8KB for the newer disk and 64KB for

Unbuffered Throughput

0

2

4

6

8

10

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Ultra Read

Fast Read

Ultra Write

Fast Write

0

2

4

6

8

10

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)
Fast Write WCE

Ultra Write WCE

WCE Unbuffered Write Throughput

Figure 3 – Single Disk Throughput of Unbuffered IO for Fast-Wide and Ultra disks – The larger the request
size, the higher the throughput. Requests above 8K achieve the maximum read throughput for a single disk. Write
throughput is dramatically worse (left chart). Write throughput increases gradually because writes do not benefit from
prefetching. The chart on the right shows that if disk-controller write caching is enabled (WCE), write throughput is
comparable to read throughput, but the Fast-Wide drive requires larger requests to achieve full bandwidth. The newer
Ultra drive has over a 100% advantage for small transfers, and a 50% advantage for large transfers due to the higher
media transfer rate. Without WCE, sequential write behavior is horrible below 64KB requests.

Draft Sequential IO Paper 9 07/04/99

the older drive. The media-transfer time and rotational seek latency costs are hidden by the pipeline-parallelism of the
WCE controller. WCE also allows the drive to perform fewer larger media writes, reducing the total rotational latency.

Figure 4 shows the processor overhead corresponding to the unbuffered sequential writes. Times are based on the total
user and system time as reported by GetProcessTimes() . In all cases processor overheads decrease with request
sizes. Requests less than 64KB appear to cost about 120? . As requests become larger, the file system has to do extra
work to fragment them into 64KB requests to the device.

The first chart of Figure 4 shows the processor time to transfer a megabyte. Issuing many small read requests places a
heavy load on the processor. Larger requests amortize the fixed overhead over many more bytes. The time is very
similar for both reads and writes regardless of the generation of the disk and disk caching. The drive response time
makes little difference to the host. With 2KB requests, this system can only generate a request rate of about 16 MBps.

The middle chart of Figure 4 shows the host processor utilization as a function of request size. At small requests, reads
place a heavier load on the processor because the read throughput is higher than that of writes. The processor is doing
the same work per byte moved, but the bytes are moving faster so the imposed load is higher. Without WCE, write
requests appear to place a much smaller load on the processor because sequential writes run much more slowly.

Finally, the chart on the right of Figure 4 shows the processor time per request. Requests up to 16KB consume
approximately the same amount of processor time. Since the 16KB request moves eight times as much data as the 2KB
request, we see the corresponding 8x change in the center chart. Until the request sizes exceed 64KB, larger requests
consume comparable processor time. Beyond 64KB, the processor time increases because the file subsystem does extra
work, breaking the request into multiple 64KB transfers, and dynamically allocating control structures. Note, however,
that while the cost of a single request increases with request size, the processor cost per megabyte always decreases.

As a rule of thumb, requests cost about 120? seconds, or about 10,000 instructions. Buffered requests have an additional
cost of about 2 instructions per byte while unbuffered transfers have almost no marginal cost per byte.

Recall that buffered IO saturates the processor at about 50 MBps for 64KB requests. Unbuffered IO consumes about
2.1 milliseconds per megabyte, so unbuffered IO will saturate this processor at about 480 MBps. On the systems
discussed here, the two PCI buses would have become saturated long before that point and the memory bus would be
near saturation leaving no ability for the processor to process data.

CPU milliseconds per MB

1

10

100

2 4 8 16 32 64 128 192
Request Size (K bytes)

C
os

t (
m

s/
M

B
)

CPU Utilization

0%

5%

10%

15%

20%

25%

30%

35%

2 4 8 16 32 64 128 192
Request Size (K bytes)

C
os

t (
C

P
U

%
)

cpu idle because
non-WCE writes so
slow

CPU milliseconds per Request

0.10

0.15

0.20

0.25

0.30

2 4 8 16 32 64 128 192
Request Size (K bytes)

C
os

t (
m

s/
re

qu
es

t)

Fast Read
Ultra Read
Fast Write
Ultra Write

Ultra Write WCE
Fast write WCE

Figure 4 – Processing Cost of Unbuffered Sequential IO – The larger the request size, the more the cost of the request
can be amortized. Requests of 64KB are necessary to reduce the load to less than 5%. Three drives running independent
sequential streams of 2KB requests would consume 96% of a 200 MHz Pentium Pro system.

Draft Sequential IO Paper 10 07/04/99

Figure 5 summarizes the performance of an Ultra-Wide SCSI for Figures 2, 3, and 4 – a very busy graph. Buffered
requests give significantly better performance below 4KB. Processing many small requests not only incurs more
processor overhead but also reduces the efficiency of the disk controller. Above 16KB, the overhead of unbuffered
reads is significantly (2-10x) less than buffered reads. Above 64KB, unbuffered reads are definitely better in both
throughput and overhead.

Either WCE or file system buffering is necessary to achieve good sequential-write throughput. The best write
performance occurs with large request sizes, WCE, and no file system buffering. Only with WCE or very large
(128KB) requests can the disk reach the half-power point while writing.

To summarize:
? ? Disk read prefetch makes it easy to achieve good sequential read performance.
? ? Without WCE writes are much slower than reads.
? ? Disk write-cache-enable (WCE) has performance benefits ranging from 10x (small-unbuffered writes) to 2x (large-

buffered writes).
? ? File system buffering gives a clear benefit for sequential write requests smaller than 64KB and for sequential reads

smaller than 8KB.
? ? Bypassing file system buffering for requests larger than 32KB dramatically reduces processor overheads.
? ? A read or write request consumes about 10,000 instructions.
? ? File system buffering consumes about 2 instructions per byte while unbuffered requests have almost no marginal

cost per byte.

Out of the Box Overhead

0

10

20

30

40

50

60

2 4 8 16 32 64 128 192
Request Size (K Bytes)

O
ve

rh
ea

d
(c

pu
 m

se
c/

M
B

)

Read Buffered
Write Buffered
Write Buffered + WCE
Read
Write
Write+WCE

Out of the Box Throughput

0

2

4

6

8

10

2 4 8 16 32 64 128 192
Request Size (K-Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

) Un-Buffered
Read & Write

FS Buffered
Read & Write

WCE Out of the Box Throughput

0

2

4

6

8

10

2 4 8 16 32 64 128 192
R e q u e s t S i z e (K - B y t e s)

Un-Buffered Write

Buffered Write

Figure 5 – Ultra drive performance – These charts combine Figures 2, 3 and 4 for an Ultra-SCSI drive. Small buffered reads
show a double benefit: greatly increased throughput and slightly less processor cost. Large buffered reads have significant
processor cost and no performance benefit. Without WCE, buffered writes have superior performance until 64KB, but incur large
processor costs due to data copying for filesystem caching. Enabling WCE always improves throughput. The Overhead graph
shows that buffering has high processor overhead for writes and for large reads.

Draft Sequential IO Paper 11 07/04/99

4. Improving Performance via Parallelism

The previous sections examined the performance of synchronous requests to a single disk. Any parallelism in the
system was due to caching by the file system or disk controller. This section examines two throughput improvements:
(1) using asynchronous IO to pipeline requests and (2) striping files across multiple disks and busses to allow media-
transfer parallelism.

Asynchronous IO increases throughput by providing the IO subsystem with more work to do at any instant. The disk
and busses can overlap or pipeline the presented load. This reduces idle time. As seen before, there is not much
advantage to be gained by read parallelism on a single disk. The disk is already pipelining requests by prefetching;
additional outstanding requests create a little additional overlap on the SCSI transfer. On the other hand, WCE's
pipeline parallelism dramatically improves single-disk write performance. As you might expect, by issuing many
unbuffered IO requests in parallel, the application can approximate the single-disk performance of WCE.

Figure 21 has the program details, but the idea is that the application issues multiple sequential IOs. When one IO
completes, the application asynchronously issues another IO as part of the IO completion routine. The application
attempts to keep n requests active at all times.

Figure 6 shows the read throughput of a single disk as the number of outstanding requests (request depth) grows from 1
to 8; the second chart shows write throughput. The results are as expected, read throughput is not much improved, write
throughput improved dramatically. Read throughput always reaches the half-power point for 4KB requests. Writes need
3-deep 16KB requests or 8-deep 8KB requests to reach the half-power point. This is a 4x-performance improvement for
8KB writes. For request sizes of 16KB or more, 3-deep write throughput compares to the throughput of WCE.

Deep asynchronous IO performs as well as WCE - in both cases the disk can overlap and pipeline work. At sizes less
than 16KB, WCE is more effective than asynchronous IO because the disk more effectively coalesces writes prior to
media access and so performs fewer, larger writes. Without WCE, the disk must perform each write operation prior to
retiring the command. This causes larger overhead in all parts of the IO pipeline and incurs more rotational delays. At
sizes of 16KB and above, the media becomes the limit and WCE is no longer important. For these larger request sizes
the WCE curve is comparable to the others.

 Read Throughput - 1 Fast Disk,
Various Request Depths

0

2

4

6

8

10

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Write Throughput - 1 Fast Disk,
Various Request Depths

0

2

4

6

8

10

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

WCE
1 Buffer
3 Buffers
8 Buffers

Figure 6 –Throughput of a Fast-Wide SCSI disk using request pipelining and no file system buffering. The
graphs show sequential disk throughput for 1, 3, and 8 outstanding requests. Asynchronous requests do not improve
read performance because the disk controller is already prefetching. Asynchronous requests do improve write
performance. Indeed, at large request sizes, asynchronous requests match the performance of WCE.

Draft Sequential IO Paper 12 07/04/99

Asynchronous IO gives significant benefit for reads and large transfers as well as smaller writes when more disks are
added to the system. Figure 7 shows the results when the file is striped across four Fast-Wide SCSI disks on one host-
bus adapter (one SCSI bus). NT ftdisk was used to bind the drives into a stripe set. . Each successive disk gets the next
64KB file chunk in round-robin fashion.

With 4KB and 8KB requests, increasing request depth increases throughput. This is because requests are being spread
across multiple disks. Since the stripe chunk size is 64KB, 8-deep 8KB requests will have requests outstanding to more
than one drive about 7/8 of the time. That almost evenly distributes requests across pairs of drives, approximately
doubling the throughput. Smaller request depths distribute the load less effectively; with only two requests outstanding,
requests are outstanding to more than one drive only about 1/4 of the time. Similarly, smaller request size distributes
the load less effectively since more requests are required for each stripe chunk. With 4KB requests and 8 deep requests,
at most two drives are used, and that only happens about 3/8 of the time.

Striping large requests improves the throughput of both reads and writes. At larger request sizes, the bottleneck moves
from the disk media to the SCSI bus. Each disk can deliver about 6MBps, so four disks might deliver 24MBps. The
experiments all saturated at about 16MBps. The RAP bandwidth of our Fast-Wide subsystem is 80% of the 20MBps
PAP. Ultra-Wide SCSI (not shown) also delivers 75% of PAP or about 30 MBps.

Write 4 Disk Stripes
Throughput vs Request Depth

0

5

10

15

20

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

WCE

1 Buffer

3 Buffers

8 Buffers

Read 4 Disk Stripes
Throughput vs Request Depth

0

5

10

15

20

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 7 –Throughput of reads and writes striped across four Fast-Wide SCSI disks on one controller using
request pipelining and no file system caching. The graphs show sequential disk throughput for 1, 3, and 8
outstanding requests. Asynchronous requests do improve read performance SCSI bus is better utilized. Writes are
still substantially slower than reads. At large request sizes multiple outstanding requests has throughput
comparable to WCE.

Draft Sequential IO Paper 13 07/04/99

Figure 8 examines the SCSI bus throughput as disks are added to a single bus and adapter. A request depth of three was
used to access stripe sets of two, three, and four disks on a single bus. The rightmost chart shows the Ultra-SCSI write
behavior. All write data were taken with WCE enabled. The processor overhead is not shown because the extra cost of
stripping was negligible.

Adding a second disk nearly doubles throughput. Adding a third disk gives slightly less than linear scaling, while
adding a fourth disk makes little improvement. In fact, with Ultra-Wide SCSI, adding the third disk makes no
difference when writing; reads (not shown) show linear scaling up to three disks. Increasing the request depth (also not
shown) causes the scaling to occur at slightly smaller request size, but the net effect is the same.

The observed limiting throughput for the Fast-Wide SCSI is about 16MBps. Ultra-Wide shows different limits:
30MBps for reads but only 20MBps for writes (see Figure 13). Three disks at 6MBps Fast-Wide or 10MBps Ultra-
Wide reach the limit in both cases. (Again, note that the single disk performance varies somewhat between the two due
to changes to the disk internals across drive generations as seen in Figure 3.)

Both large request size and multiple disks are required to reach the SCSI bus half-power point. The Fast-Wide SCSI
can reach half-power points with two disks – the media speed is only half the bus speed. Read requests of 8KB and
write requests of 16KB are needed. Using 64KB or larger requests, transfer rates of 75% of the advertised bus
bandwidth can be observed with three disks. The Ultra-Wide SCSI reaches the half-power point with three disks and
16KB read requests or 64KB write requests. Only with very large reads can we reach 75% of the advertised bandwidth.
The bus protocol overheads and actual data transfer rates do not scale with advertised bus speed.

Read Throughput vs Stripes -
3 deep Fast

0

5

10

15

20

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

WriteThroughput vs Stripes -
3 deep Fast

0

5

10

15

20

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

1 Disk
2 Disks
3 Disks
4 Disks

CPU miliseconds per MB

1

10

100

2 4 8 16 32 64 128 192

Request Size (bytes)

C
os

t (
C

P
U

 m
s/

M
B

)

Figure 8 –Throughput vs. disk striping for a three-deep Fast-Wide SCSI array. As disks are added to the strip set,
throughput increases until the SCSI bus saturates. Fast Wide is advertised at 20MBps but delivers about 16MBps. Ultra-
Wide is advertised at 40MBps but saturates at about 30MBps for reads (not shown) and 20MBps for writes (see Figures
10, 13). WCE is enabled in this experiment, but even so, writes have consistently lower throughput than reads.

Draft Sequential IO Paper 14 07/04/99

To benefit from extra disks, additional SCSI bus and host-bus adapters must be added. Figure 9 compares the
throughput of four disks distributed across two buses (2 disks on each of 2 adapters) to that of four disks on a single
bus. The two-bus two-adapter configuration continues to gain throughput with the fourth disk. For larger request sizes,
the distributed 2+2 configuration gives nearly 24 MBps or double the 2 disk throughput. Adding the second adapter
allows simultaneous transfers on both SCSI buses and allows more efficient use of the disks.

The additional parallelism across the SCSI buses may be limited by the stripe chunk size. To benefit from multiple
buses, requests must be outstanding to drives on them.1 The throughput with 2KB and 4KB requests is almost
unchanged across the two configurations. Most of the time, only one disk has pending requests. With 8KB requests,
requests are outstanding to two drives between 1/3 and 1/4 of the time. Whenever those drives are on different SCSI
buses the resulting data transfers can occur simultaneously. That occurs half of the time with the 2+2 configuration. In
other words, SCSI bus transfers could occur on both buses in parallel about 15% the time. To get the full benefit from
the parallel buses, the application should have multiples of 64KB of IO outstanding on each bus.

Three Ultra-Wide SCSI disks saturate a single Ultra-Wide SCSI bus and adapter. Two buses support a total of six disks
and a maximum read throughput of about 60 MBps. When a third Ultra-Wide SCSI adapter and three more disks were
added to the system, the PCI bus limit was reached. This configuration achieved a total of 72 MBps – just over the half-
power point of the PCI bus. Adding a fourth adapter showed no additional throughput, although the combined SCSI bus
bandwidth of 120MBps would seem to be well within the advertised 133 MBps. While the practical limit is likely to be
limited by the exact hardware configuration, the PCI half-power point appears to be a good goal.

1 By default, ftdisk binds volume sets in increasing device order. This caused the first and second stripe chunks to be
on the first SCSI bus and the third and fourth steps to be on the second SCSI bus.

One or Two SCSI Busses

0

5

10

15

20

25

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Read
Write
WCE
Read
Write
WCE

2 busses

1 Bus

Figure 9 –Four fast disks on one or two SCSI busses.
Parallel busses add bandwidth and so avoid bus saturation.
Each disk can run at full speed when they are spread across
two busses. Reading and writing is done with three-deep
asynchronous requests. WCE is enabled on the drives. Each
disk can deliver about 6 MBps, so four disks should be able
to deliver 24MBps. One Fast-Wide SCSI bus saturates at
16MBps. When the disks are split between two busses,
throughput approaches the expected 24MBps. If one more
disk is added to each controller, peak throughput increases
to 32MBps. Ultra-SCSI busses show similar behavior,
except that each bus can carry twice the bandwidth
(30MBps) and the newer drives have 50% greater media
transfer rates.

Draft Sequential IO Paper 15 07/04/99

Putting everything together, the combination of asynchronous IO, disk striping, and the NT file system are shown in
Figure 10. The throughput with and without file system buffering is compared for a three-disk Ultra-Wide stripe set.

Striping and asynchronous IO can dramatically increase performance of smaller read requests. As with the single disk
results shown in Figure 5, file system prefetching increases throughput for requests smaller than 64KB. At 64KB the
application request size matches the file system prefetch size. Because this is also the stripe set chunk size, each
prefetch request accesses the next disk in the volume set. File system prefetching effectively distributes the load across
the disks more. With 8-deep requesting, non-cached access gets better distribution with at least 8KB requests. Above
64KB request size, it is always better to avoid the file system cache copy. The half-power point is reached at smaller
request sizes with file system prefetching, but large requests combined with non-buffered asynchronous IO gives better
total performance and sustains at least the half-power performance above request sizes of 64KB.

Striping writes gives good scalability, but reaching the half-power point remains difficult. With 2KB or 4KB requests,
write coalescing by the file system gives the same performance gain as WCE at the drive. At 8KB or above, the
throughput is better with only WCE. The file system write-back is not as effective at distributing the load across the
disks when caching is active within the drive. The effect of asynchronous requesting is also small due to WCE.

Three Disks, 1 Deep

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 192
Request Size (K Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

FS Read
Read
FS Write WCE
Write WCE

Three Disks, 3 Deep

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 192
Request Size (K Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 10 – Effect of file system caching – File system caching provides extra parallelism to a three-disk array
by coalescing smaller writes into 64KB transfers. The graphs show the throughput of a three-drive array using
unbuffered IO (WCE is enabled) and 1 to 3 deep application request depths. Read throughput is increased until
64KB.

Draft Sequential IO Paper 16 07/04/99

To summarize, issuing large and deep asynchronous requests combines to saturate a single disk. Using three-deep
asynchronous requests more than doubles write throughput, even on a single disk. Using this technique, write requests
in the 16KB range get performance comparable to WCE. By striping the file across 3 disks on a single controller, the
bandwidth rises about 3x. The controller saturates at three disks: Fast-Wide SCSI saturates at 15MBps, Ultra-Wide
saturates at about 30MBps. By adding controllers in three-disk groups to a single PCI bus, the PCI bus saturates at
about 70MBps. By adding multiple PCI busses, the processor or memory bus can saturate. Figure 11 summarizes these
bottlenecks. To reach the half-power point, use large transfers and either three-deep requests or WCE.

422 MBps
142 MBps

133 MBps
72 MBps

10-15 MBps
9 MBps

SCSI

File System

Application
Data

PCI SCSI Disks

Disks40 MBps
31 MBps

Figure 11 – Summary of Bottlenecks - PAP (peak advertised performance) vs. RAP (real
application performance) – Ultra disks saturate at the media limit of 9MBps. Additional disks
may be added to take advantage of request parallelism on a SCSI bus. Three drives saturate the
bus and adapter. By adding busses and adapters, and three drives, throughput can grow to saturate
a PCI bus. High-end systems support multiple PCI busses, and so can saturate the memory bus.
Using memory resident files, our platform saturates at about 142 (read) or 93 (write) MBps due to
main memory copy speeds.

Draft Sequential IO Paper 17 07/04/99

5. Measurements of Device and File System Internals Performance

The previous sections provided an overview of a typical storage system and discussed a number of parameters affecting
sequential I/O throughput. This section investigates the hardware components in order to explain the observed
behavior.

5.1 System Memory

To understand memory copy overhead associated with file system buffering, we made a number of measurements. In
all cases, we moved 4MB and timed the operations using the Pentium cycle counters. Target arrays were allocated on
page boundaries and we repeated the measurements varying both alignment on a page and page allocated.

We coded a number of simple data assigns and a memcopy(). Each data assign loop contains four double assigns.
Floating point doubles achieved slightly better performance than integers or single precision floating point. We
unrolled the loops to take advantage of the 4-deep Pentium Pro pipelining and saw a few percent gain over the tightly
coded loop. We coded both true copies, moving all data in a cache line, and cache line accesses, assigning only the first
double in a 32B line.

We also used temporary files. The NT file system attempts to hold all temporary file storage within the file cache, so
accesses to these files are performed by memory copy. Temporary files are opened by including
FILE_ATTRIBUTE_TEMPORARY when calling CreateFile(). Temporary file accesses are a “best case” IO performance
limit for file system buffered requests with no PCI or other IO subsystem hardware bottleneck.

Table 2 summarizes the results for our test machine and a nominally identical Gateway 2000 G6-200. Both machines
are 200 Mhz Pentium Pros with 64MB of 4x4 60nsec DRAM. The system memory bus is 64-bits wide and cycles at 66
Mhz (422 MBps). While both machines have identical part numbers, the machines actually differ in that the test
machine has fast page mode DRAM while the “identical” machine has EDO DRAM. This difference accounts for only
a difference of 10-15%. We believe the “identical” memory may have more banks as well, since greater interleaving
would explain the larger variations.

Table 2 – Processor to Memory Bandwidth – Temporary file reads and writes are the “best case” limits
for file system buffered IO; the data is copied from or to an application buffer but not read from or
written to disk media. Memcopy loads the system more than the file system because it does not reuse
cacheable destination buffers. While the two machines have identical product codes, the memory
subsystem performance is considerably different.
Memory bandwidth (MBps) Test Machine (MBps) “Identical” Machine (MBps)
Unrolled DOUBLE load to single destination 88 81
Unrolled cache line read miss 164 230
Temporary file read 142 148
Unrolled DOUBLE store to single destination 47 82
Unrolled cache line write miss 50 84
Temporary file write 93 136
Memcopy (assembly code double load unroll) 47 54

Processor reads are limited both by the response of the memory subsystem and by the ability of the processor to pend
requests. The factor of two difference in bandwidth between one-double-per-cash-line and read-whole-cash-line implies
that the first is not memory limited – we were not able to get enough requests in flight to benefit from memory request
pipelining. The interesting result is that temporary file reads are better than our unrolled double access, This is
probably due to better (assembly tuned) coding within NT.

On our test system, write bandwidth is significantly less than read bandwidth. Writes also do not show a difference
between full and partial cache line access. Since writes are asynchronous, the processor does not stall until the
maximum number of pending writes has been reached. Again, temporary file writes are substantially faster than our
coding.

Draft Sequential IO Paper 18 07/04/99

On our “identical” system, the read and write bandwidths are comparable. We don’t believe this is experimental error ,
we varied the physical page layout between tests. The two systems are different.

Memcopy is not a good model for estimating file system buffer copy overheads. While both use hand-tuned code to
move data between buffers, the memory access patterns are significantly different - memcopy sweeps the processor
board cache generating substantially more traffic per byte moved. Temporary file writes repeatedly copy from a 64KB
buffer to 4MB of file buffers; memcopy moves 4MB to 4MB.

The underlying details are both complex and poorly documented. The behavior depends not only on memory
bandwidth, but also memory latency and cache coherency protocol. At best, the maximum delivered data rates for a
pure server in which the processor does not handle the delivered data is one half the main memory bandwidth (read
once, write once).

We believe that our system is primarily limited by memory and not by the memory bus. A processor cache read misses
require two bus transactions: a short read request and the longer cache line read returned data. A processor cache
writeback can require up to four transactions: the two transactions for a read of the line, a short intention to write, and
the cache line write to memory. If the memory bus were the bottleneck, write bandwidth would be about half read
bandwidth in the limit. The different results from the different machines indicate that the memory subsystem
characteristics are key.

The advertised PAP of the system bus is 422 MBps. Temporary file reads achieve about 140 MBps; temporary file
writes between 93 and 136 MBps. With only one PCI on the system, we observed DMA rates of 72 MBps. Whether or
not these represent the half-power point of the memory, we do not know. To do better, we would have to distribute our
application across processor boxes.

5.2. Disk Controller Caching and Prefetching

A simple model for the cost of a single disk read assumes no pipelining and separates the contributing factors:

The fixed overhead term includes time for the application to issue and complete the IO, the time to arbitrate and
transfer control information on the SCSI bus, converting the target logical block to physical media location. The fixed
time also includes the disk controller SCSI command handling, and any other processing common to any data transfer
request. The next two terms are the time required to locate and move the data from the physical media into the drive
cache. The final term the time required to transfer data from the disk cache over the SCSI bus.

The actual disk behavior is more complicated because controllers prefetch and cache data. The media-transfer and seek
times can overlap the SCSI transfer time. When a SCSI request is satisfied from the disk cache, the seek time and some
part of the fixed overhead is eliminated. Even without buffering, sequential transfers incur only short seek times. Large
transfers can minimize rotational latency by reading the entire track – full-track transfers can start with the next sector
to come under the read-write head.

At the extremes, some simplifications should occur. For small (2KB) requests, the fixed overhead dominates the
transfer times (>0.5ms). For large >32KB) requests, the media-transfer time (> 8ms) dominates. The fixed overhead is
amortized over a larger number of bytes and the SCSI transfer rate is faster (>2x) than the media-transfer rate. We
measured the fixed overhead component for three generations of Seagate drives: the Narrow 15150N, the Fast-Wide
15150W, and the Ultra-Wide 34371W. Table 3 shows the results. The cache hit column data were obtained by reading
the same disk blocks repeatedly. The prefetch hit column was obtained using the benchmark program to sequentially
read a 100 MB file. To ensure that the prefetched data would be in the drive cache at all times, a delay was inserted
between SCSI requests for those transfers marked with asterisks (*).

ferRateSCSI_Trans
zeRequest_Si

sfer_RateMedia_Tran
izeTransfer_S

TimeDisk_Seek_ice_TimeFixed_Servime_Service_TRequest ????

Draft Sequential IO Paper 19 07/04/99

Table 3 – Variation across disk generation - The elapsed time in ms for a cache
hit and prefetch hit of varying request sizes directly. Times are measured from an
ASPI driver program issuing SCSI commands and bypassing the NT file system.
For the large request sizes, the drive is given sufficient time between requests to
ensure that the request is always satisfied from prefetch buffers and not limited by
media transfer rates. Surprisingly, the cache-hit times are always larger than the
prefetch hit times.

 Narrow-ST15150N Fast-Wide-ST15150W Ultra-Wide-ST34371W
Size Cache

 Hit
Prefetch

Hit
Cache

Hit
Prefetch

Hit
Cache

Hit
Prefetch

Hit
.5K 0.96 .56 0.93 0.59 8.14 0.30
1K 1.01 .63 0.97 0.59 8.14 0.32
2K 1.11 .75 1.02 0.58 8.14 0.34
4K 1.33 .93 1.13 0.61 8.13 0.40
8K 1.75 1.38 1.36 0.86 8.13 0.51

16K 2.63 2.25 1.81 1.31* 8.13 0.74*
32K 4.35 3.93* 2.75 2.25* 8.13 1.22*
64K 16.50 7.30* 16.50 4.05* 8.15 2.15*

We expected that the cache hit case would be a simple way to measure fixed overhead. The data are already in the drive
cache so no media operation is necessary. The results, however, tell a different story. The prefetch hit times are
uniformly smaller than the cache hit times. The firmware appears to be optimized for prefetching – it takes longer to
recognize the reread as a cache hit. In fact, the constant high cache hit times of the 34371W imply that this drive does
not recognize the reread as a cache hit and rereads the same full track at each request. At 64KB, the request spans
tracks; the jump in the 15150 drive times may also be due to media rereads.

The prefetch hit data follow a simple fixed cost plus SCSI transfer model up through 8KB request sizes. The SCSI
transfer time was computed using the advertised bus rate. The 15150 drives (both Narrow and Fast-Wide) have fixed
overhead of about 0.58 milliseconds; the 34371W drive (Ultra-Wide) has overhead of about 0.3 milliseconds.

At larger requests, no simple model applies. At 64KB, the computed SCSI transfer times do not account for the full
prefetch hit time and the remainder is greater than the observed fixed overhead times. The media-transfer rate is not the
limit because of the delay between requests. Without the delay, the measurements showed larger variation and the total
time was not fully accountable to media transfer. The total time appears to be due to a combination of prefetch hit and
new prefetch. A 64KB request may span up to three disk tracks and at least that many prefetch buffers. Whether or not
the disk prefetches beyond the track necessary to satisfy the current request is unclear and likely to be implementation
specific. Whether or not the disk can respond promptly to a new SCSI request when queuing a new prefetch is also
unclear.

Intelligence and caching in the drive allows overlap and parallelism across requests so simple behavioral models no
longer capture the behavior. Moreover, drive behavior changes significantly across implementations [Worthington, et
al]. While the media-transfer limit remains a valid half-power point target for bulk file transfers, understanding smaller
scale or smaller data set disk behavior seems difficult at best.

0.1

1

10

100

0 10 20 30 40 50 60 70

Request Size (K bytes)

E
la

ps
ed

 T
im

e
(m

s)

Ultra Cached
Fast Cached
Narrow Cached
Narrow Prefetch
Fast Prefetch
Ultra Prefetch

Elapsed time vs Request Size
Controller Cache vs Controller

Prefetch

Draft Sequential IO Paper 20 07/04/99

5.3. SCSI Bus Activity

We used a bus analyzer to measure SCSI bus activity. Table 4 summarizes the contribution of each protocol cycle type
to the total bus utilization while reading the standard 100 MB file.

Table 4 – SCSI Activity by Phase - For 8KB requests, only 45% of the SCSI bus is data transfer (column 2). The
balance goes to SELECT/RESELECT activity and parameter messaging. Larger requests make much more efficient use of
the bus - for 64KB requests, utilization drops by half and data transfer makes up almost 90% of that time (column 3).
When more disks are added, this efficiency drops somewhat in favor of more message traffic and SELECT activity. The
three-disk system reaches over 99% bus utilization and consumes significantly more time in SELECT (column 4).

Phase 8KB Requests 64KB Requests
 1 Disk 1 Disk 2 Disks 3 Disks

Arbitrate 1.1% 0.4% 0.6% 0.4%
Arbitrate Win 0.6% 0.2% 0.3% 0.2%

Reselect 0.2% 0.1% 0.1% 0.1%
Select 25.2% 0.2% 0.8% 4.4%

(Re)Select End 0.3% 0.1% 0.1% 0.1%
Message In 18.5% 7.4% 11.4% 9.1%

Message Out 5.5% 1.4% 2.8% 3.6%
Command 2.1% 0.5% 1.0% 1.1%

Data In 44.9% 89.3% 82.2% 80.4%
Data In End 0.7% 0.3% 0.4% 0.2%

Data Out - - - -
Data Out End - - - -

Status 0.7% 0.2% 0.3% 0.4%

Bus Utilization 59.8% 30.1% 67.8% 99.3%

Comparing the first two columns, small requests suffer from two disadvantages:
? ? Small requests spend a lot of time on overhead. Half the bus utilization (30% of 60%) goes to setting up the

transfer. There are eight individual 8KB requests for each 64KB request. This causes the increased arbitration,
message, command and select phase times.

? ? Small requests spend little time transferring user data. At 64KB, 90% of the bus utilization is due to
application data transfer. At 8KB, only 45% of the bus time is spent transferring application data..

The last two columns of Table 4 show the effects of SCSI bus contention. Adding a second disk doubles throughput but
bus utilization increases 125%. The extra 25% is spent on increased handshaking (SELECT activity and parameter
passing). The SCSI adapter is pending requests to the drives and must reSELECT the drive when the request can be
satisfied by the drive. More of the bus is consumed coordinating communication among the disks. Adding a third disk
increases throughput and fully consumes the SCSI bus, as discussed in Section 3. The SELECT activity increases
again, further reducing the time available for data transfer. The overall bus efficiency decreases as disks are added
because more bus cycles are required coordinate among the drives.

Draft Sequential IO Paper 21 07/04/99

5.4. Allocate

Unbuffered file writes have a
serious performance pitfall. The
NT file system forces unbuffered
writes to be synchronous
whenever a file is newly created,
or the file is being extended
either explicitly or by writing
beyond the end of file. This
synchronous write behavior also
happens for files that are
truncated (specifying the
TRUNCATE_EXISTING attribute at
CreateFile()or after open with
SetEndOfFile()).
As illustrated in Figure 12,
allocation severely impacts
asynchronous IO performance.
The file system allows only one
request outstanding to the
volume. If the access pattern is
not sequential, the file system
may actually zero any new
blocks between requests in the
extended region.

Buffered sequential writes are not as severely affected, but still benefit from preallocation. Extending a file incurs at
most about a 20% throughput penalty with small file system buffered writes. There is one notable exception. If you use
tiny 2KB requests, allowing the file system to allocate storage dynamically actually improves performance. The file
system does not pre-read the data prior to attempting to coalesce writes.

To maximize unbuffered asynchronous write performance, you should preallocate the file storage. If the space is not
pre-allocated, the NT file system will first zero it before letting your program read it.

Allocate/Extend While Writing

0

5

10

15

20

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

4-disk write-
8 deep
no-extend

1-disk write
 8-deep
no extend

1 deep equals
8-deep extend

Figure 12 – File
Allocate/Extend Behavior –
When a file is being extended
(new space allocated at the end),
NT forces synchronous write
behavior to prevent requests
from arriving at the disk out-of-
order. C2 security mandates that
the value zero be returned to a
reader of any byte which is
allocated in a file but has not
been previously written. The file
system must balance
performance against the need to
prevent programs from
allocating files and then reading
data from files deallocated by
other users. The extra
allocate/extend writes
dramatically slow file write
performance.

.

Draft Sequential IO Paper 22 07/04/99

5.5. Alignment

The NT 4.0 file system (using the ftdisk mechanism) supports host-based software RAID 0, 1, and 5. A fixed stripe
chunk size of 64K is used to build RAID0 stripe sets. Each successive disk gets the next 64KB chunk in round-robin
fashion. The chunk size is not user-settable and is independent of the number or size of the stripe set components. The
NT file system allocates file blocks in multiples of the file system allocation unit chosen when the volume is formatted.
The allocation unit defaults to a value in the range of 512B to 4KB depending on the volume size. The stripe chunk and
file system allocation unit are totally independent; NT does not take the chunk size into account when allocating file
blocks. Thus, files on a multiple-disk stripe set will almost always be misaligned with respect to stripe chunk.

Figure 13 shows the effect of this
misalignment. Alignment with the
stripe chunk improves performance by
15-20% at 64KB request sizes. A
misaligned 64KB application request
causes in two disk requests (one of
12KB and another of 52KB) that must
both be serviced before the application
request can complete. As shown
earlier, splitting application requests
into smaller units reduces drive
efficiency. The drive array and host-
bus adapter sees twice the number of
requests and some of those requests
are small. As the SCSI bus becomes
loaded, the performance degradation

becomes more noticeable. When requests are issued 8-deep, there are eight 64KB requests active at any given time. In
the misaligned case, there are 16 requests of mixed 12KB and 52KB sizes to be coordinated.

Misalignment can be avoided by using the NT file system format command at the command prompt rather than the
Disk Administrator application. 2 Disk Administrator limits the allocation size to 512, 1024, 2048, or 4096 bytes. The
format command allows allocation size to be set in increments up to 64KB. The cost of using a 64KB allocation unit is
the potential of wasting disk space if the volume is used to contain many small files; the file system always rounds the
file size to the allocation unit.

2 The command is of the form ‘format e: /fs:ntfs / a:64k ’ to create an NTFS 4.0 file system with 64KB
allocation.

Alignment, 4-disk(ultra), 3-deep

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 192Request Size (bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Unaligned Read
Aligned Read

Aligned Write
Unaligned Write

Figure 13 – Alignment Across
Disks in a Stripe Set – The
performance of a file aligned to
the stripe chunk is compared to
a file that is mis-aligned by
12KB. If requests split across
stripe set step boundaries, read
performance can be reduced by
nearly 20% and writes by 15%.
The effect is more pronounced
with 8 requests outstanding
because there is more activity
on the SCSI bus and more
contention.

Draft Sequential IO Paper 23 07/04/99

5.6. Location on the disk

Modern disks are zoned: outer tracks have more sectors
than inner tracks and the bit rate on the outer tracks is
higher. This is a natural consequence of having constant
aerial density and constant angular velocity: an outer
track may be 50% longer than an inner track. The bytes
arrive faster and there are more bytes per seek. Figure
14 shows the throughput (MBps) when sequentially
reading at different radial positions. For the Ultra-Wide
drive, the PAP media transfer rate varies from 15 to 10
MBps and the synchronous RAP is about 65% of that.
The PAP media-transfer rate on the Fast-Wide disk
media rate varies from 8.8 MBps to 5.9 MBps; the
synchronous RAP is about 75% of that. This variation
across the surface is similar on other drives.

File placement can help attain a disk's the half-power point. Files allocated near the outer edge of the disk will have
higher throughput than files allocated near the inner zone. This also means that the throughput of a sequential scan of
the entire disk decreases as it progresses across the disk surface.

Variation Across Disk Surface

0

2

4

6

8

10

0% 25% 50% 75% 100%
Radial Distance

Th
ro

ug
hp

ut
 (M

B
/s

)

Fast Wide SCSI

Ultra SCSI

.

Figure 14–
Variation Across
Disk Surface – The
media bandwidth at
the inner disk tracks
is up to 30% lower
than the bandwidth
at the outer zone.
The experiment
shows read rate for
64KB synchronous
unbuffered reads.

Draft Sequential IO Paper 24 07/04/99

5.7. Striping in Host, Host-Bus Adapter, or RAID Controller

There are several possible arrangements for doing multiple-disk striping. Figure 15 shows three possible combinations
that locate cache memory in different places and provide different underlying "plumbing". These different

combinations exhibit significantly different properties across different workloads as shown in Figure 16. Note that the
hardware striping controllers were not necessarily optimally tuned for large sequential accesses. Caching in the
controller acts like file system caching to present the drive with larger requests, but without incurring the processor
overhead within the host processor.

Host-Based Striping – Three disks on a
single SCSI bus attached to a single
adapter.

Controller Based Striping – Cache
memory and striping logic reside on the
host side of the SCSI bus. Adapter and
array controller are combined in a single
PCI expansion card.

Array-Based Striping – Cache memory and
striping logic
reside
in a
unit at
the device on the
SCSI bus. This
unit provides a
second set of
buses to which
disks are connected .

Cache

Figure 15 – Variety of
Adapter/Controller
Configurations –
Striping can be performed
in the host or within a
dedicated controller. That
controller can be located
on the SCSI adapter or
located with the disk drive
array and connected
through a normal SCSI
adapter.

Striping Read Throughput

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128Request Size (Kbytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Controller-Based Striping

Host-Based Striping

Array-Based Striping

Striping WriteThroughput

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128Request Size (Kbytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 16 – Comparison of Controller-Based, Array-Based, and Host-Based Striping. The array-based
solution performs significantly better. The controller-based configuration gave good performance only for
small (2KB and 4KB) writes. Host-based striping gives good performance at significantly less hardware cost.
Note that the array and controller solutions may not have been optimally tuned for large accesses.

Draft Sequential IO Paper 25 07/04/99

5.8. RAID
In addition to simple striping, RAID 5 functionality can also be provided either on the host, or by a separate controller.
The issues of host-based or controller-based RAID5 are very complex. Controller-based RAID often provides superior
failover and reconstruction in case of faults. This section only considers the failure-free performance of two
approaches. The purpose is just to assess the relative cost of the host-based RAID5 logic.

 Figure 17 compares the performance of a four-disk RAID5 stripe set using host-based striping and a hardware disk
array. We see that the array performs slightly better on writes, while reads are about equal, with host-based performing
somewhat better at medium request sizes. More importantly, the chart on the right shows the impact on the host
processor of the two options. Using the disk array to manage RAID5 allows the parity calculations on writes to be
offloaded from the host processor, greatly reducing the cost per write requests of 32KB and beyond. We would see a
similar effect for reads if we caused on of the disks to fail and reach read request had to reconstruct the original data
from the parity.

RAID5 Throughput vs Request Depth

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Read

Write

RAID5 CPU milliseconds per MB

1

10

100

2 4 8 16 32 64 128 192
Request Size (K bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Array Read
Array Write
Host Read
Host Write

Figure 17 – Host-based vs. Controller-based RAID5 read and write. 4-Ultra disks with WCE disabled were
configured as a RAID5 stripe set both using host-based NT fault-tolerant RAID and using a RAID5 array. The
read performance of the NT file system compares to the controller's performance. For writes, host-based solution
is competitive on small requests, but for requests of 32KB and beyond, the host-based solution consumes more
processor doing software checksums and consequently has lower overall throughput.

Draft Sequential IO Paper 26 07/04/99

6. Summary and Conclusions

The NT 4.0 file system out-of-the-box sequential IO performance for 4KB requests is good: reads are close to the
media limit, writes are near the half-power point. This good performance comes at some cost; the file system is copying
every byte, and coalescing disk requests into 64KB units. Write throughput can be nearly doubled by enabling WCE,
although using WCE does risk volume corruption if the disk cache is lost. Another alternative is to use large requests
and make three-deep asynchronous requests.

NT file striping across multiple disks is an excellent way to increase throughput. The file striping must be combined
with large and deep asynchronous requests to keep enough data in the pipeline for the disks. Data is striped in 64KB
chunks, so one needs approximately N+1 outstanding sequential IOs to keep N drives busy. That is 250KB of
outstanding IO to drive an array of 3 disks at speed.

An application can saturate a SCSI bus with three drives. By using multiple SCSI busses (and disks), the application
can saturate a PCI bus. By using multiple PCI buses, the application could saturate the processor bus and memory
subsystem. With current (mid 1997) Intel platforms, the processor can access temporary files at about 140 MBps. All
this was summarized in Figure 11. For unbuffered IO, these processors and the software is capable of driving 480
MBps.

If the system configuration is balanced (disks do not saturate busses, busses do not saturate one another), the NT file
system can be programmed to reach the half-power point. Indeed, applications can reach the sum of the device media
limits by using a combination of (1) large request sizes, (2) deep asynchronous requests, (3) WCE, (4) file striping, and
(5) unbuffered IO.

Write performance is often worse than read performance. The main pitfalls in writing files are: (1) If a file is not
already allocated, NT will force sequential writing in order to prevent applications from reading data left on disk by the
previous file using that disk space. (2) If a file is allocated but not truncated, then 2KB buffered writes will first read a
4KB unit and then overwrite. (3) If the RAID chunk size is not aligned with the file system allocation size, the
misalignment causes large requests to be broken into two smaller requests split across two drives. This doubles the
number of requests to the drive array.

The measurements suggest a number of ways of doing efficient sequential file access:
? ? Larger requests are faster. Requests should be at least 8KB, 64KB if possible.
? ? Small requests consume significantly more processor time per byte than larger ones. Doing 2KB sequential IO

requests consumes more than 30% of the processor. Using 64KB requests goes faster and consumes less than 3%
of the processor.

? ? If you absolutely must make small requests, double buffering is not enough parallelism. There are noticeable gains
through 8-deep requests;

? ? Write-Cache-Enable at disk drives provides significant benefits for small requests. Issuing three-deep
asynchronous requests comes close to WCE performance for larger requests. WCE risks data loss and/or volume
corruption; asynchronous requests do not.

? ? Three disks can saturate a SCSI bus, whether Fast-Wide (15 MBps max) or Ultra-Wide (31 MBps max). Adding
more disks than this to a single bus does not improve performance.

? ? File system buffering coalesces small requests into 64KB disk requests for both reads and writes. This provides
significant performance improvement for requests smaller than 64KB.

? ? At 64KB and larger requests, file system buffering degrades performance significantly from the non-buffered case.
? ? When possible, files should be preallocated to their eventual maximum size.
? ? Extending a file while writing forces synchronization of the requests and significantly degrades performance if

requests are issued asynchronously. Consequently, files should be truncated before they are re-written or they
should be re-written in multiples of 4KB.

? ? Array controllers improve performance by varying the location of the caching and read-ahead logic. The benefit
varies with workload.

Draft Sequential IO Paper 27 07/04/99

This paper gave a basic tour of the parameters that affect sequential I/O performance in NT. Many areas are not
discussed here and merit further attention. As discussed in Section 5, programs using asynchronous I/O have several
options for managing asynchronous requests, including completion routines, events, completion ports, and multi-
threading. The benchmark used completion routines in an otherwise single-threaded program. We have not explored
the tradeoffs of using the other methods.

The analysis focused on a single benchmark application issuing a single stream of sequential requests. A production
system is likely to have several applications competing for storage resources. This complicates the model since the
device array no longer sees a single sequential request stream. The impact of competing application streams is an active
research topic.

The RAID5 discussion was superficial. It ignored failure and reconstruction behavior. There are an enormous number
of options in configuring and tuning RAID systems that we have not explored. Particular applications may use of
different RAID levels, different striping parameters, and a greater variety of hardware options. We have only shown the
simplest comparisons to give a basic idea of the variety available to system designs.

Draft Sequential IO Paper 28 07/04/99

8. Acknowledgements
Tom Barclay did the initial development of iostress benchmark used in all these studies. Barry Nolte and Mike
Parkes pointed out the importance of the allocate issue. Doug Treuting, Steve Mattos and others at Adaptec helped us
understand SCSI details and the how the Adaptec device drivers work. Bill Courtright, Stan Skelton, Richard
Vanderbilt, Mark Regester of Symbios Logic generously loaned us an array, host adapters, and their expertise. Brad
Waters, Wael Bahaa-El-Din, and Maurice Franklin shared their experience, results, tools, and hardware laboratory.
They helped us understand NT performance issues, gave us feedback on our preliminary measurements. Will Dahli
helped us understand NT configuration and measurement. Don Slutz and Joe Barrera gave us valuable comments,
feedback and helped in understanding NT internals.

9. References
[Custer1] Helen Custer, Inside the WindowsNT™ File System, ISBN 1-55615-481, Microsoft Press, Redmond, WA.

1992.
[Custer2] Helen Custer, Inside the WindowsNT™ File System, ISBN 1-55615-660, Microsoft Press, Redmond, WA.

1994.
[Nagar] Rajeev Nagar, Windows NT File System Internals: A Developer’s Guide, ISBN: 1-565922-492, O’Reilly &

Associates, 1997.
[Richter] Jeffrey Richter, Advanced Windows: The Developers Guide to the Win32™ API for WindowsNT™ 3.5 and

Windows 95. ISBN 1-55615-677-4, Microsoft Press, Redmond, WA. 1995.
[Schwaderer & Wilson] W. David Schwaderer, Andrew W. Wilson Jr. Understanding I/O Subsystems, First Edition,

ISBN 0-9651911-0-9, Adaptec Press, Milpitas, CA, 1996.
[SCSI] ANSI X3T9.2 Rev 10L, 7-SEP-93. aka: the SCSI-2 Spec. American National Standards Institute (now called

NIST), http://www.ansi.org.
[Worthington] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. “On-Line Extraction of SCSI

Disk Drive Parameters”, Proceedings of ACM Sigmetrics, May 1995, pp. 146-156.

Draft Sequential IO Paper 29 07/04/99

#include <stdio.h>
#include <windows.h>

int main()
{ const int iREQUEST_SIZE = 65536;
 char cRequest[iREQUEST_SIZE];
 unsigned long ibytes;

 HANDLE hFile = CreateFile("C:\\input.dat", // name
 GENERIC_READ, // desired access
 0, // share mode (none)
 NULL, // security attributes
 OPEN_EXISTING, // pre-existing file
 FILE_ATTRIBUTE_NORMAL // flags & attributes
 | FILE_FLAG_SEQUENTIAL_SCAN,
 NULL); // file template

 while(ReadFile(hFile,cRequest,iREQUEST_SIZE,&ibytes,NULL)) // do the read
 { if (ibytes == 0) break; // break on end of file
 /* do something with the data */ };

 CloseHandle(hFile);
 return 0;
 }

Figure 18 –Basic Sequential Read Code: Read all of a file synchronously using the file system and a single 64KB
request buffer. To optimize disk request coalescing and minimize cache pollution, the program requests the
FILE_FLAG_SEQUENTIAL_SCAN attribute. To bypass the file system cache entirely and save the extra memory copy,
the program might add the FILE_FLAG_NO_BUFFERING (in which case the cRequest would have to be aligned to the
disk sector size.)

Appendix: Benchmark program structure

NT supports several mechanisms for asynchronous IO. The benchmark application used in this study uses
ReadFileEx(), WriteFileEx(), and IO completion routines. The code is very similar to the sample in Figure 21. That
program keeps eight asynchronous requests outstanding at any given time. When an IO completes, the completion
routine simply issues another request into the same buffer until the end of file is reached.

Rather than start with that complicated program, we first show the simpler routines to do synchronous reads,
unbuffered IO, and event-based asynchronous reads. Richter's book has an excellent tutorial on these issues [Richter].

The simplest code to sequentially read a file is shown in Figure 18. Code that includes error handling is on the web site
at http://www.research.microsoft.com/barc/Sequential_IO/. The code in Figure 18 issues a series of 64KB requests
and refills the single buffer, cBuffer, until reaching the end of file. The file system prefetches and buffers all data.
When requests arrive, they are serviced by copying the data from the file system cache. All application requests are
synchronous. The ReadFile() call does not return until all the necessary data has been read from disk into the file
system cache and then copied to the application buffer. File system and disk controller prefetching creates pipeline
parallelism. If the application request size were smaller, the file system would coalesce the sequential requests into
64KB requests to the disk subsystem. The FILE_FLAG_SEQUENTIAL_SCAN tells the file system that it can aggressively
age these pages from the buffer pool.

Draft Sequential IO Paper 30 07/04/99

#include <stdio.h>
#include <windows.h>

int main()
{ const int iREQUEST_SIZE = 65536;
 LPVOID lpRequest = VirtualAlloc(NULL,iREQUEST_SIZE,MEM_COMMIT,PAGE_READWRITE);
 unsigned long ibytes;
 int i=0;

 DWORD FileFlags = FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN |

 FILE_FLAG_NO_BUFFERING;

 HANDLE hFile = CreateFile("C:\\output.dat", // name
 GENERIC_WRITE, // desired access
 0, // share mode (none)
 NULL, // security attributes
 OPEN_ALWAYS, // create disposition
 FileFlags, // unbuffered access requested
 NULL); // file template

 do // write 100 64KB blocks
 {/* fill buffer with data */

 WriteFile(hFile, lpRequest, iREQUEST_SIZE, &ibytes, NULL);
 } while(i++ < 100);

 CloseHandle(hFile);
 VirtualFree(lpRequest, iREQUEST_SIZE, MEM_COMMIT);
 return 0;
 }

Figure 19 –Basic Sequential Unbuffered Write Code: This program synchronously writes ten 64KB blocks to a file.
Opening the file with the FILE_FLAG_NO_BUFFERING flag requests that buffering be suppressed. This bypasses the file
cache entirely and so avoids polluting it and saves the extra memory copy. All application write requests are
synchronous. The WriteFile() call does not return until all the necessary data has been written to disk. Unbuffered

The simplest code to do unbuffered sequential file writes is shown in Figure 19. Code that includes error handling is on
the web site at http://www.research.microsoft.com/barc/Sequential_IO/. VirtualAlloc() creates storage that is page
aligned and so is disk sector aligned.

Draft Sequential IO Paper 31 07/04/99

#include <stdio.h>
#include <windows.h>
#include <winerror.h>

// 64-bit move – allows compiler to optimize coding
#define Move64(Destination, Source) \
 *((PULONGLONG) &(Destination)) = *((PULONGLONG) &(Source))

int main()
{ const int iDEPTH = 8;
 const int iREQUEST_SIZE = 1 << 16;
 unsigned long ibytes;
 DWORD FileFlags = FILE_ATTRIBUTE_NORMAL |
 FILE_FLAG_NO_BUFFERING | FILE_FLAG_OVERLAPPED;
 ULONGLONG HighWaterMark = 0;
 struct { // array of request buffers and overlap structs
 LPVOID lpRequest;
 OVERLAPPED Overlap;
 } Req[iDEPTH];

 for (int i = 0; i < iDEPTH; i++) {
 memset(&Req[i].Overlap, 0, sizeof(Req[i].Overlap));
 Req[i].Overlap.hEvent = CreateEvent(NULL,FALSE,FALSE,FALSE);
 Req[i].lpRequest= VirtualAlloc(NULL, iREQUEST_SIZE, MEM_COMMIT, PAGE_READWRITE);}

 HANDLE hFile = CreateFile("C:\\output.dat", // name
 GENERIC_WRITE, // desired access
 0, // share mode (none)
 NULL, // security attributes
 OPEN_EXISTING, // preallocated file
 FileFlags, // overlapped async
 NULL); // file template

 for (i = 0; i < 100; i++){ // Do 100 writes of 64KB each
 int j = i % iDEPTH; // j is the request modulus (0…8
 if (i >= iDEPTH) // if past startup stage, wait for previous
 {WaitForSingleObject(Req[j].Overlap.hEvent, INFINITE);} // request to complete
 memset(Req[j]. lpRequest , i, iREQUEST_SIZE); // use the buffer, eg. Fill it
 Move64(Req[j].Overlap.Offset, HighWaterMark); // set file offset to write
 WriteFile(hFile, Req[j]. lpRequest , iREQUEST_SIZE, &ibytes, &Req [j].Overlap);
 HighWaterMark += iREQUEST_SIZE; //
 }

 CloseHandle(hFile); // should also free buffers and event handles
 return 0;
 }

Draft Sequential IO Paper 32 07/04/99

There are two disadvantages to completion routines. First, there is only one execution thread. The completion routine
executes only when the primary thread waits. This is not a concern for the uni-processor system used in this study, but
the benchmark will not take best advantage of additional processors on a multi-processor system. Second, invoking

#include <windows.h>
#include <winerror.h>
// 64-bit increment
#define IncrementOffset64(Offset,Increment) *((PULONGLONG) &(Offset)) += (LONGLONG) (Increment)
//-------------------GLOBALS--
const int iDEPTH = 8; // max depth of IO pipeline
const int iREQUEST_SIZE = 1 << 16; // request size is 64KB
HANDLE hFile = NULL; // the file
HANDLE hDoneEvent = NULL; // mainline waits for this event once pipe is full
int iOutstandingIOs = 0; // how many IOs are in progress?
LPVOID lpData[iDEPTH]; // Pointers to request buffers
OVERLAPPED Overlap[iDEPTH]; // Overlap structure for each buffer
//-------------------HELPER ROUTINE---
VOID WINAPI IoCompletionRoutine(// Complete an asynch I/O
 DWORD dwError, // I/O completion status
 DWORD dwTransferred, // Bytes read/written
 LPOVERLAPPED pOverlap) // Overlapped I/O structure
 {
 int i = (int) pOverlap->hEvent; // index is in unused (overloaded) event cell
 //---
 // If =not at end-of-file, issue the next IO.
 // Note that by issuing an IO from within the routine, we ris k recursion.
 // This may overflow the stack. The paper's benchmark program had this feature.
 // This is a common error. It appears in several online and reference examples.
 // A better design posts an event for the parent routine and lets th e parent issue
 // the next IO.

 IncrementOffset64(Overlap[i].Offset,(iREQUEST_SIZE*iDEPTH)); // set next address
 if (ReadFileEx(hFile, lpData[i], iREQUEST_SIZE ,&Overlap[i],IoCompletionRoutine))
 return;
 // Else,if at EOF or error, start sh utdown.
 iOutstandingIOs -=1; // decrement count of IOs
 if (iOutstandingIOs == 0) // if all complete
 SetEvent(hDoneEvent); // signal main line waiter
 return; //
 }; //-----------END OF HELPER ROUTINE --------------

//-------------------MAIN ROUTINE--
void main (void){
 hDoneEvent = CreateEvent(NULL, FALSE, FALSE, NULL); // event parent waits on

 DWORD FileFlags = FILE_FLAG_SEQUENTIAL_SCAN | FILE_FLAG_NO_BUFFERING | FILE_FLAG_OVERLAPPED;
 hFile = CreateFile("C:\\output.dat", // name
 GENERIC_READ, // desired access
 0, // share mode (none)
 NULL, // security attributes
 OPEN_ALWAYS, // create if not already there
 FileFlags, // flags & attributes
 NULL); // file template

 for (int i = 0; i < iDEPTH; i++) { // launch an IO for each request buffer
 memset(&Overlap[i], 0, sizeof(Overlap[i])); // zero the structure
 Overlap[i].hEvent = (void *) i; //readx, writex ignores hEvent, overload it.
 lpData[i] = VirtualAlloc(NULL, iREQUEST_SIZE, MEM_COMMIT,PAGE_READWRITE);
 IncrementOffset64(Overlap[i].Offset ,(iREQUEST_SIZE*i)); // set next address
 if (! ReadFileEx(hFile,lpData[i], iREQUEST_SIZE, &Overlap[i],IoCompletionRoutine))
 break; // break if read past eof
 iOutstandingIOs +=1; //
 }

 WaitForSingleObjectEx(hDoneEvent,TRUE, INFINITE); // wait for all IO to complete

 CloseHandle(hFile); // also free events and buffers
 return;
 };

Draft Sequential IO Paper 33 07/04/99

some system calls from within the completion routine can cause stack overruns. In particular, invoking ReadFileEx()
from within the completion routine can cause the completion routine to be re-invoked whenever other previous IO
request have completed. This intermittent load-related failure can occur with large buffer depths and relatively short IO
requests. Alternative better design uses either events or IO completion ports. On a multi-processor, it may be
appropriate to use multiple threads.

Deep application buffering with very large buffer sizes can also cause system-tuning problems. During the time that an
IO request is pending, the system locks down the physical memory comprising the buffer. This can cause memory
pressure on other applications. In the extreme, IO requests will fail with reported error of
WORKING_SET_QUOTA_EXCEEDED . The failure is not actually a process working set limitation. Rather it indicates that the
memory allocated to the kernel and locked down for in-progress IO requests has exceeded an NT threshold.

The online samples at the web site contain extended programs that include error handling.

