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Summary

We provide a new characterization of the Bivariate normal-Wishart distribution. Let

~x = fx1; x2g have a non-singular Bivariate normal pdf f(~x) = N(~�;W ) with unknown

mean vector ~� and unknown precision matrix W . Let f(~x) = f(x1)f(x2jx1) where f(x1) =
N(m1; 1=v1) and f(x2jx1) = N(m2j1+b12x1; 1=v2j1). Similarly, de�ne fv2; v1j2; b21; m2; m1j2g
using the factorization f(~x) = f(x2)f(x1jx2). Assume ~� andW have a strictly positive joint

pdf f~�;W (~�;W ). Then f~�;W is a normal-Wishart pdf if and only if global independence

holds, namely, fv1; m1g?fv2j1; b12; m2j1g and fv2; m2g?fv1j2; b21; m1j2g and local indepen-

dence holds, namely, ?fv�1 ; m�
1g, ?fv�2j1; b�12; m�

2j1g and ?fv�2 ; m�
2g, ?fv�1j2; b�21; m�

1j2g (where
x� denotes the standardized r.v x and ? stands for independence). We also characterize the

Bivariate pdfs that satisfy global independence alone. Such pdfs are termed Hyper-Markov

laws and they are used for a decomposable prior-to-posterior analysis of Bayesian networks.

Abbreviated title. The normal-Wishart Distribution

Key words and phrases. Bayesian network, Characterization, Functional equation,

Graphical model, Hyper-Markov law, Wishart distribution.

AMS Subject Classi�cations. Primary 62E10, 60E05; Secondary 62A15, 62C10, 39B99.
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1 Introduction

Suppose ~x = fx1; x2g has a non-singular Bivariate normal distribution N(~�;W ) given by

f(~x) = (2�)�n=2jW j1=2e�1=2(~x�~�)0W (~x�~�) (1)

where ~� = (�1; �2) is a two dimensional mean vector and W = (wij) is an 2 � 2 precision

matrix, namely, the inverse of a covariance matrix. We wish to determine ~� and W from a

sample of values of ~x.

The standard Bayesian approach to this statistical inference problem is to consider

~� and W as parameters, assign them a prior joint pdf and compute the posterior joint

pdf of these parameters given the observed set of values. The usual prior to select is the

normal-Wishart distribution, that is, the joint prior of the precision matrix W is a Wishart

distribution W (�; T ) given by

fW (W ) = C(�; T )jW j(��3)=2e�1=2trfTWg (2)

where C(�; T ) is a normalization constant, T is a symmetric matrix, and � > 1 can be

interpreted as the e�ective sample size (e.g., DeGroot, p. 55). The distribution f~�jW (~�jW )

is the normal distribution N(~�0; �W ) where � > 0 is another e�ective sample size. The

joint pdf,

f~�;W (~�;W ) = fW (W )f~�jW (~�jW ) (3)

is called the normal-Wishart distribution and it is selected as a prior mostly due to the

fact that it is a conjugate distribution for normal distributions with unknown mean and

unknown precision matrix.

A closely related variant of this approach is based on the fact that a Bivariate non-

singular normal distribution f(~x) can be written as f(~x) = f1(x1)f2j1(x2jx1) where each

factor is a normal distribution. More speci�cally, f(x1) = N(m1; 1=v1) and

f2j1(x2jx1) = N(m2j1 + b12x1; 1=v2j1) (4)

where m1 = �1, m2j1 = �2 � b12�1, and where �i is the unconditional mean of xi, v1 is

the variance of x1, v2j1 is the conditional variance of x2 given a value for x1 and b12 is the

regression coe�cient of x2 on x1. The parameters fm1; v1g are said to be associated with f1

and the parameters fm2j1; v2j1; b12g are associated with f2j1. Of course, the roles of x1 and

x2 can be reversed in which case, f(~x) = f2(x2)f1j2(x1jx2) and the parameters, fm2; v2g
are associated with f2 and fm1j2; v1j2; b21g are associated with f1j2.

The �rst question we pose is as follows. Suppose fm1; v1g are independent of fm2j1; v2j1; b12g
and that fm2; v2g are independent of fm1j2; v1j2; b21g. These statements of independence
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are termed global (parameter) independence by [DL93] and a pdf that satis�es global inde-

pendence is said to be a Hyper-Markov law. The term law is used to emphasize that the pdfs

under study are quantifying beliefs regarding parameters; that is, a law is a \subjective"

pdf regarding the parameters of an \objective" distribution. What can be said about a joint

pdf of ~�;W that generates such independence statements. We show, under the assumption

of a positive pdf for ~�;W , that every pdf that satis�es global independence must have the

form

f(~�;W ) = W (�; T ) �H(w12)

where W (�; T ) is a Wishart pdf and H is an arbitrary function such that f is a positive pdf.

This result characterizes the class of positive Bivariate Hyper-Markov laws. The importance

of Hyper-Markov laws for a manageable prior-to-posterior analysis of decomposable graph-

ical models is established in [DL93]. Geiger and Heckerman extend the prior-to-posterior

analysis to any directed acyclic graphical model (called, a Bayesian network) [GH94, HG95].

In Section 4 we discuss a conjecture regarding the characterization of the n-variate Hyper-

Markov laws along with its implication to the analysis of graphical models.

The second question we address is to �nd additional natural independence assertions

that would leave the normal-Wishart distribution as the only possible prior for f~�;Wg.
Clearly, m1 and v1 are not independent, when a normal-Wishart prior is selected for f~�;Wg,
because the variance of m1 depends on v1. However, the standardized mean of x1, denoted

by m�
1, is independent of v1. We say that local (parameter) independence holds for the order

x1; x2 if the standardized parameters associate with f1 are mutually independent, namely

m�
1 is independent of v

�
1 and the standardized parameters associated with f2j1 are mutually

independent, i.e., fm�
2; v

�
2j1; b

�
12g are mutually independent. Local independence holds if it

holds for the order x1; x2 and for the order x2; x1. The main result of this article is that if

local and global independence hold, and assuming a positive pdf f(~�;W ), then f(~�;W ) must

be a normal-Wishart distribution. Therefore, local and global independence characterize the

positive Bivariate normal-Wishart distribution. We believe that the positivity assumption

is actually redundant.

The mathematical tool we use for the proof of the normal-Wishart characterization is

the theory of functional equations [Ac66]. In section 2 we develop the needed functional

equation and use results of [Ja86] to prove that every positive measurable solution of it

has in�nitely many derivatives. In sections 3 through 5 we gradually solve this equation

and in Section 6 we outline a related work [GH95] and possible extensions along with their

statistical application.

3



2 The functional equation

Let ~x = fx1; x2g have a non-singular Bivariate normal pdf f(~x) = N(~�;W ). If we write

f(~x) = f(x1)f(x2jx1) where f(x1) = N(m1; 1=v1) and f(x2jx1) = N(m2j1 + b12x1; 1=v2j1),

then the following well known relationships are satis�ed:

w11 =
1

v1
+

b212
v2j1

w12 = � b12
v2j1

w22 =
1

v2j1
m1 = �1 m2j1 = �2 � b12�1 (5)

Similar equalities hold when f(~x) is written as f2(x2)f1j2(x1jx2). Note that the transfor-

mation between f~�;Wg and fm1; v1; m2j1; v2j1; b12g is one to one and onto as long as W is

the inverse of a covariance matrix and the variances v1; v2j1 are positive. The Jacobian of

this transformation is given by,

j @w11; w12; w22; �1; �2
@v1; v1j2; b12; m1; m2j1

j = v�21 v�32j1 (6)

The statement x?y denotes that x and y are independent and ?fx; y; zg denotes that
x; y and z are mutually independent. For a random variable x, let x� denote its correspond-

ing standardized random variable, i.e., the centralized x divided by its standard deviation.

We can now state the characterization theorem.

Theorem 1 Let ~x = fx1; x2g have a non-singular Bivariate normal pdf f(~x) = N(~�;W )

where ~� andW are unknown. Assume ~� and W have a strictly positive joint pdf f~�;W (~�;W ).

Then f~�;W is a normal-Wishart pdf if and only if global independence holds, namely,

fv1; m1g?fv2j1; b12; m2j1g and fv2; m2g?fv1j2; b21; m1j2g and local independence holds, namely,

?fv�1; m�
1g, ?fv�2j1; b�12; m�

2j1g and ?fv�2 ; m�
2g, ?fv�1j2; b�21; m�

1j2g.

The pdf f~�;W can be written, by a change of variables, in terms of v1; v2j1; b12; m1; m2j1

as well as in terms of v2; v1j2; b21; m2; m1j2, using the Jacobian given by Equation 6. Con-

sequently, it is immediate to verify that global and local independence are satis�ed. For

the converse, since both representations must be equal, and using the global independence

assumption made by Theorem 1, we get the following equality each side of which is equal

to f~�;W ,

1

v21v
3
2j1

f1(m1; v1) f2j1(m2j1; b12; v2j1) =
1

v22v
3
1j2

f2(m2; v2) f1j2(m1j2; b21; v1j2) (7)

where f1, f2j1, f2, and f1j2 are arbitrary pdfs, and, from Equation 5,

v2 = v2j1+v1b
2
12 b21 =

b12v1
v2

v1j2 =
v2j1v1

v2
m2 = m2j1+b12m1 m1j2 = m1�b21m2

(8)

4



This equality is in fact a functional equation that encodes the assumption of global

independence. By solving it, we obtain all pdfs that satisfy global independence. At the

second step we incorporate the assumption of local independence into the solutions obtained

to show that f~�;W must be a normal-Wishart pdf. Note that we may regard v1 > 0; v2j1 >

0; b12 6= 0; m1; m2j1 as free variables and all other variables are de�ned by Equation 8.

Methods for solving functional equations such as Eq. 7, that is, �nding all functions that

satisfy them under di�erent regularity assumptions, are discussed in [Ac66]. We use the

following technique. We take repeated derivatives of a logarithmic transformation of Eq. 7

and obtain a di�erential equation the solution of which after appropriate specialization is

the general solution of Eq. 7 (Acz�el, 66, Section 4.2, \Reduction to di�erential equations").

The reduction to di�erential equations is justi�ed by the results in [Ja86]. J�arai has

extensively investigated the following type of functional equations:

f(t) =
nX
i=1

hi(t; y; fi(gi(t; y))) (9)

where f; f1; : : : ; fn are unknown functions, h1; : : : ; hn; g1; : : : ; gn are known functions satis-

fying some regularity conditions and all variable and function values may be vectors. By

taking the logarithm of Equation 7, which is justi�ed since we assume all pdfs are positive,

we obtain a functional equation of the form given by Equation 9. J�arai showed, among other

results, that every measurable solution of Equation 9 must have in�nitely many derivatives

(Theorems 3.3, 5.2, 7.2 in [Ja86]). Since Equation 7 satis�es the needed regularity con-

ditions, we may conclude that any positive pdf that solves it must have inde�nitely many

derivatives (since a pdf is Lebesgue integrable and thus measurable). We conjecture, though,

that every measurable solution of Equation 7 which is positive on a measurable subset of

a positive measure (i.e., any pdf), must be positive and so we believe the assumption of

positiveness is actually redundant. The importance of J�arai's results is that in the process of

solving Equation 7 one may take as many derivatives as is found needed. Further examples

of the applicability of J�arai's results to characterization problems in statistics are discussed

in [GH95] along with an example where they fail.

3 The Bivariate equation with a �xed precision matrix

We shall �rst assume that the variances v1 and v2j1 in Equation 7 are �xed and that b12 is

�xed and is not zero. Thus, by renaming variables and functions, Equation 7 can be stated

as follows:

~f(m)~g(n) = ~h(n+ wm)~k(m� yw

x
(n+ wm)) (10)
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where x = z + yw2; w 6= 0; y > 0, and z > 0. The free variables are m and n which

correspond to m1 and m2j1 while x, y, z and w are �xed constants which correspond to

v2, v1, v2j1 and b12, respectively. Let u = m � yw
x (n + wm). Let a(t) = log ~a(t) for every

function ~a.

Taking the logarithm and then a derivative once wrt (with respect to) m and once wrt

n yields the following two equations, respectively:

f 0(m) = wh0(n+ wm) +
z

x
k0(u) ; g0(n) = h0(n+ wm)� yw

x
k0(u)

By taking a derivative wrt n and m of these equations, we get, f 00(m) = w2h00(n+ wm) +
z2

x2
k00(u) and

g00(n) = h00(n+ wm) +
y2w2

x2
k00(u) ; 0 = wh00(n+ wm)� zyw

x2
k00(u)

Consequently, using x = z + yw2, we obtain,

f 00(m) =
z

y
g00(n) (11)

for every m and n. Since z and y are held �xed, f 00(m) and g00(n) must both be constant

functions and therefore by integrating twice and then taking the exponent we get,

~f(m) = ec1m
2+c2m+c3

which implies that ~f is a normal pdf. Similarly ~g is normal and by symmetric arguments ~h

and ~k are normal pdfs as well. Thus, we may conclude that for a �xed objective precision

matrix, global parameter independence implies that fm1; m2j1g have independent normal

pdfs and so do fm2; m1j2g have. It follows that fm1; m2g have a joint normal pdf.

One may regard this result as a characterization of a normal pdf, however, this result

is by no means new since a more general characterization of a normal pdf is well known as

the Skitovich-Darmois theorem; Suppose X1; : : :Xn are independent random variables and

let L1 =
P
�iXi and L2 =

P
�iXi be two linear statistics where �i and �i are constant

coe�cients. If L1 and L2 are independent, then the random variables Xj for which �j�j 6= 0

are all normal. (This result is described in [KLR73, Theorem 3.1.1]) along with its history).

This theorem is applicable by choosing X1 = m1, X2 = m2j1, L1 = m2 and L2 = m1j2 (See

Eq. 8).

The new twist emphasized herein is that global parameter independence implies a joint

subjective normal pdf for the unknown means of an objective normal pdf with a �xed preci-

sion matrix. Furthermore, we demonstrate the powerful and elementary tools of functional

equations. J�arai's results can now be called upon to prove that any positive measurable

function that satis�es Equation 7 must have in�nitely many derivatives and therefore the

steps we have taken to solve this equation are justi�ed.
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4 The �xed means Bivariate equation

We shall now assume that the means m1 and m2j1 in Equation 7 are �xed. Consequently,

we obtain the following weaker version of Theorem 1 which characterizes the Wishart dis-

tribution.

Theorem 2 Let ~x = fx1; x2g have a non-singular Bivariate normal pdf f(~x) = N(~�;W )

where ~� is known and W is unknown. Assume W has a strictly positive joint pdf fW (W ).

Then fW is a Wishart pdf if and only if global independence holds, namely, fv1g?fv2j1; b12g
and fv2g?fv1j2; b21g and local independence holds, namely, ?fv�2j1; b�12g and ?fv�1j2; b�21g.

For known ~� Equation 7 can be stated as follows:

~f(y)~g(z; w) = ~h(x)~k(
yz

x
;
yw

x
) (12)

where x = z + yw2; w 6= 0; y > 0, and z > 0. Recall that a(y) = log ~a(y) for every function

~a. Also let gi(z; w) denote the �rst derivative wrt argument i of log ~g(z; w) and let gij(z; w)

denote the mixed derivative.

Taking the logarithm Eq. 12 and then a derivative once wrt z, once wrt w, and once

wrt y yields the following three equations, respectively:

g1(z; w)� h0(x) =
y2w2

x2
k1(

yz

x
;
yw

x
)� yw

x2
k2(

yz

x
;
yw

x
) (13)

g2(z; w)� 2ywh0(x) = �2y2zw

x2
k1(

yz

x
;
yw

x
) +

z � yw2

x2
yk2(

yz

x
;
yw

x
) (14)

f 0(y)� w2h0(x) =
z2

x2
k1(

yz

x
;
yw

x
) +

zw

x2
k2(

yz

x
;
yw

x
) (15)

Solving for k1(
yz
x ;

yw
x ) and k2(

yz
x ;

yw
x ) using Eqs. 13 and 14, plugging the result into Equa-

tion 15 and simplifying using x = z + yw2, yields,

z2g1(z; w) + wzg2(z; w) = y2w2f 0(y)� x2h0(x) (16)

Taking a derivative wrt z yields

d

dz

h
z2g1(z; w) + wzg2(z; w)

i
= 2xh0(x) + x2h00(x) (17)

Consequently, since the right hand side of Equation 17 is a function of y + zw2 while the

left hand side is not a function of y, it follows that both the right and left hand sides of this

equation are equal to a constant, say c1. We are left with the following di�erential equation:

x2h00(x) + 2xh0(x) = c1 ;
h
x2h0(x)

i0
= c1 (18)
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Consequently, and due to the symmetric roles of f and h, we have,

h0(x) =
c1
x
+

c2
x2

; f 0(y) =
c3
y
+
c4
y2

(19)

Now from Equation 19 we get, after integration and exponentiation,

~h(x) / x�c1e�
c2
x ; ~f(y) / y�c1e

�
c4
y (20)

Recall that x and y correspond to the unconditional variances v2 and v1. Consequently,

we have shown that global parameter independence alone implies that v1 and v2 have an

inverse Gamma distribution given by Equation 20. One may in fact consider this result as

a characterization of the Gamma distribution. Of course, given a Wishart distribution, it

is well known that the marginal distribution for v1 and v2 are inverse Gamma, but there

are possibly many other pdfs with such marginal distributions. We proceed to show that

there are further restrictions implied by Equation 12. To do so we �nd the general solution

for g(z; w).

The solution for g(z; w) is determined by the partial di�erential equation obtained by

plugging Equation 19 into Equation 16, which yields,

z2g1(z; w) + wzg2(z; w) = �c1x� c2 + c3yw
2 + c4w

2

and, since y must cancel on the right hand side, c1 = c3, it �nally reduces to,

z2g1(z; w) + wzg2(z; w) = �c1z � c2 + c4w
2 (21)

The corresponding homogeneous di�erential equation, after a change of variables s = z

and t = w=z, becomes, s2gs(s; t) = 0 (s > 0), which yields by integration wrt s that

g(s; t) = ~H(t) where ~H is an arbitrary di�erentiable function. One solution to this di�er-

ential equation, which can be veri�ed by substituting it into this equation, is given by,

gp(z; w) = c1 log
1

z
+
c2
z
+
c4w

2

z
+ c8

Consequently, the general solution after exponentiating is given by

~g(z; w) / z�c1e�
c2
z e

c4w
2

z ~H(w=z) (22)

We can further rewrite Equation 22 as follows,

~g(z; w) / z�c1e
�c5
z e

�
(w�w0)

2

2c6z Ĥ(w=z) (23)

where w0 is the expectation of w. Thus the general solution for fW (W ) is given by,

fW (W ) / y�c1e
�
c4
y z�c1e

�c5
z e

�
(w�w0)

2

2c6z Ĥ(w=z) (24)
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Rewriting y; z and w in terms of W and using the fact that v2 is independent of fv1j2; b21g
yield fW (W ) = W (�; T ) � H(w12). where H(w12) = Ĥ(�w12). This is the most general

type of pdf that satis�es global independence. When H is constant, the resulting pdf is a

Wishart. We are not aware of other known Bivariate pdfs that can be written in this form.

We shall now show that if local independence holds H must be constant and the Wishart

pdf characterization is completed.

Let v =
p
z and t = (w � w0)=v. That is, t is the standardized regression coe�cient.

Using this notation, Equation 23 has the following functional form,

~g(v; t) = a(v)b(t2)H(
w0+ vt

v2
) (25)

Local independence implies ~g(v; t) = d(v)e(t), and therefore, Equation 25 reduces to

H(
w0 + vt

v2
) = ~G(v) ~K(t) (26)

Taking the logarithm yields,

L(
w0 + vt

v2
) = G(v) +K(t) (27)

Taking a derivative once wrt t and once wrt v yields

1

v
L0(

w0 + vt

v2
) = K0(t) ; �(2w0

v3
+

t

v2
)L0(

w0 + vt

v2
) = G0(v); (28)

and therefore,

� (
2w0

v2
+

t

v
)K0(t) = G0(v) (29)

By setting two distinct values t1 and t2, we get,

(
2w0

v2
+
t1
v
)K0(t1) = (

2w0

v2
+
t2
v
)K0(t2) (30)

Thus either K0(t1) = K0(t2) = 0 or w0 = 0 in which case t1K
0(t1) = t2K

0(t2). In the �rst

case, due to Equation 28, L0(t) = 0. Consequently, L(t) is constant and so is H(t). In

the second case, K0(t) = c=t for some constant c, thus, from Equation 28 (with w0 = 0),

L0(x) = c=x and so H(x) = c2x
c.

Recalling the probabilistic interpretation of Equation 24 where z = v2j1 and w = b12 we

observe that the conditional pdf of w given v2j1 is a generalized normal pdf given by,

f(wjv2j1) / wce
�

(w�w0)
2

2c6v2j1

Thus, for w0 to be the expectation of w, c must equal zero, implying that H(x) is constant.

9



5 The full Bivariate equation

In this section we prove Theorem 1 in its full extent. By renaming variables and functions,

Equation 7 can be stated as follows:

~f(m; y)~g(n; z; w) = ~h(n + wm; x)~k(u;
yz

x
;
yw

x
) (31)

where x = z + yw2; y > 0, and z > 0 and where u = z
xm� yw

x n. Using the same technique

as in Section 4 we obtain the following equality between the second partial derivatives of f

and g wrt their �rst argument,

yf11(m; y) = zg11(n; z; w) (32)

(As in Equation 11). Thus each side must equal a constant and by integration, we get

yf1(m; y) = 2cm+ a(y) ; zg1(n; z; w) = 2cn+ b(z; w) (33)

Similarly,

xh1(n + wm; x) = 2e � (n+ wm) + r(x) ;
yz

x
k1(u;

yz

x
;
yw

x
) = 2eu+ q(

yz

x
;
yw

x
)

Taking the logarithm and then a derivative wrt m of Equation 31 yields

f1(m; y) = wh1(n+ wm; x) +
z

x
k1(u;

yz

x
;
yw

x
) (34)

Plugging the expressions for f1, h1 and k1 and grouping all terms that contain m yield

that e = c, and, using x = z + yw2, we get,

a(y) = ywR(x) + q(
yz

x
;
yw

x
) (35)

where R(x) = r(x)=x. Taking a derivative once wrt y, once wrt z once wrt w yields the

following three equations:

a0(y) = wR(x) + yw3R0(x) +
z2

x2
q1(

yz

x
;
yw

x
) +

wz

x2
q2(

yz

x
;
yw

x
) (36)

0 = yR0(x)w+
y2w2

x2
q1(

yz

x
;
yw

x
)� yw

x2
q2(

yz

x
;
yw

x
)

0 = yR(x) + 2y2w2R0(x)� 2y2wz

x2
q1(

yz

x
;
yw

x
) + y

z � yw2

x2
q2(

yz

x
;
yw

x
)

The last two equations yield,

wq2(
yz

x
;
yw

x
) = 2wx2R0(x) + xwR(x) (37)
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yw2q1(
yz

x
;
yw

x
) = wx2R0(x) + wxR(x) (38)

Plugging these equations back into Equation 36 yields, using x = z + yw2, w 6= 0,

ya0(y) =
x

w
R(x) +

x2

w
R0(x) (39)

Setting w = 1 yields that both sides of Equation 39 must equal a constant, say C. Thus

ya0(y) = C and

Cw = xR(x) + x2R0(x) (40)

Now setting y = 1 in Equation 40 yields that C = 0. Thus a(y) = a where a is a constant.

Consequently, from Equation 40 we get R0(x)=R(x) = �1=x and therefore, R(x) = r=x

where r is a constant. Thus, from Equation 35, q(s; t) = a� rt.

Plugging these solutions into Equation 31 yields an equation where m and n cancel

out, and y; z and w as free variables. This is precisely the functional equation given by

Equation 12. Thus, the joint distribution for the precision matrix is given by Equation 24

and it is a Wishart pdf if local independence is assumed. By integrating Equation 33,

using a(y) = a we immediately obtain that the conditional distribution of m is normal, and

similarly for n.

Concluding Remarks

The notion of local and global parameter independence has also been studied in the context

of Bayesian estimation of a joint pdf p(s; t) from a sample of pairs of values when s and t

are two discrete random variables. An analogous result to Theorem 1 has been established

in [GH95] which characterizes the Dirichlet distribution. Let �ij , 1 � i � k; 1 � j � n,

be positive random variables that sum to unity. De�ne �i� =
Pn

j=1 �ij , �I� = f�i�gk�1i=1 ,

�jji = �ij=
P

j �ij , and �Jji = f�jjign�1j=1 . Geiger and Heckerman (1995) show that if and

only if f�I �; �Jj1; : : : ; �Jjkg are mutually independent and f��J ; �Ij1; : : : ; �Ijng are mutually

independent (where ��J and �Ijj are de�ned analogously), and assuming strictly positive

pdfs, the pdf of �ij is Dirichlet.

It is interesting to observe that local and global parameter independence characterize

many known conjugate sampling distributions including, the Dirichlet, the Bivariate normal

(Section 3), the Gamma distribution (Section 4) and the Bivariate Wishart distribution. We

conjecture that global and local parameter independence also characterize the n-dimensional

Wishart distribution. In the case of Dirichlet distributions, the n-variate characterization

follows from the Bivariate characterization without solving additional functional equations

[GH95, HGC94]. However, for the normal-Wishart characterization the situation looks more

complex since new functional equations are introduced as the dimensionality increases.

11



In the study of decomposable graphical models and other Bayesian networks the as-

sumption of local independence can be bypassed without serious complications, however

the assumption of global independence is indispensable for achieving a manageable prior-

to-posterior analysis [DL93, GH94]. Thus it is important to characterize the set distributions

that satisfy global independence alone and to provide speci�c examples of such distributions

that can be used as prior distributions for model selection of graphical models. This article

provides a step towards this goal.
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