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Abstract: ANSI SQL-92 [MS, ANSI] defines Isolation Levels in terms of phenomena:  Dirty Reads, Non-Re​peatable Reads, and Phantoms.  This paper shows that these phe​nomena and the ANSI SQL definitions fail to charac​terize several popular isolation levels, in​cluding the standard locking implementations of the levels.  Investigating the ambiguities of the phenomena leads to clearer definitions;  in addition new phenomena that bet​ter characterize isolation types are introduced. An important multiversion isola​tion type, Snapshot Isolation, is defined.

1.
Introduction

Running concurrent transactions at different isolation lev​els allows application designers to trade throughput for correctness.  Lower isolation levels in​crease transaction con​currency but risk showing transactions a fuzzy or incorrect database.  Surprisingly, some transactions can execute at the highest isolation level (perfect serializability) while concurrent trans​ac​tions running at a lower isolation level can access states that are not yet committed or that post​date states the trans​ac​tion read earlier [GLPT].  Of course, transactions run​ning at lower isolation levels may produce invalid data.  Application designers must prevent later transactions running at higher isolation levels from access​ing this invalid data and propa​gating errors.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association of Computing Machinery.  To copy otherwise, or to republish, requires a fee and/or specific permission.
The ANSI/ISO SQL-92 specifications [MS, ANSI] define four isolation levels: (1) READ UNCOMMITTED, (2) READ COMMITTED, (3) REPEATABLE READ, (4) SERIALIZABLE.  These levels are defined with the classi​cal serializability def​inition, plus three pro​hibited action sub​se​quences, called phenomena: Dirty Read, Non-re​peatable Read, and Phantom.  The concept of a phe​nomenon is not explicitly defined in the ANSI specifica​tions, but the specifications suggest that phenomena are action sub​sequences that may lead to anomalous (perhaps non-serializable) be​havior.  We refer to anomalies in what follows when sug​gesting addi​tions to the set of ANSI phenomena.  As shown later, there is a tech​nical distinction between anomalies and phenom​ena, but this dis​tinction is not crucial for a general under​standing.

The ANSI isolation levels are related to the behavior of lock schedulers.  Some lock schedulers allow transactions to vary the scope and duration of their lock re​quests, thus de​parting from pure two-phase locking.  This idea was in​tro​duced by [GLPT], which defined Degrees of Consistency in three ways: locking, data-flow graphs, and anomalies.  Defining isolation levels by phe​nomena (anomalies) was intended to allow non-lock-based implemen​tations of the SQL standard.

This paper shows a number of weaknesses in the anomaly ap​proach to defining isolation levels.  The three ANSI phe​nomena are ambiguous.  Even their broadest interpre​ta​tions do not exclude anomalous behavior.  This leads to some counter-in​tuitive re​sults.  In particular, lock-based isolation levels have different characteristics than their ANSI equivalents.  This is disconcerting because commercial database sys​tems typically use locking.  Additionally, the ANSI phenomena do not distinguish among several isolation levels popular in com​mercial systems.

Section 2 introduces basic isolation lev​el terminology.  It defines the ANSI SQL and locking isolation lev​els.  Section 3 examines some drawbacks of the ANSI iso​lation levels and proposes a new phenomenon.  Other popular iso​lation levels are also defined.  The various def​initions map between ANSI SQL isolation levels and the degrees of con​sis​tency de​fined in 1977 in [GLPT].  They also encompass Date’s definitions of Cursor Stability and Repeatable Read [DAT].  Discussing the iso​lation levels in a uniform frame​work reduces confusion.

Section 4 introduces a multiversion concurrency control mechanism, called Snapshot Isolation, that avoids the ANSI SQL phenomena, but is not serializable.  Snapshot Isolation is interesting in its own right, since it provides a reduced-isola​tion level ap​proach that lies between READ COM​MITTED and REPEATABLE READ.  A new for​malism (available in the longer version of this paper [OOBBGM]) connects reduced isolation levels for multi​ver​sioned data to the classical single-version locking seri​aliz​ability theory.

Section 5 explores some new anomalies to differentiate the isolation levels introduced in Sections 3 and 4.  The ex​tended ANSI SQL phenomena proposed here lack the power to characterize Snapshot isolation and Cursor Stability.  Section 6 presents a Summary and Conclusions.

2.
Isolation Definitions

2.1
Serializability Concepts

Transactional and locking concepts are well documented in the literature [BHG, PAP, PON, GR].  The next few para​graphs review the terminology used here.

A transaction groups a set of actions that transform the database from one consistent state to another.  A history models the interleaved execution of a set of transactions as a linear ordering of their actions, such as Reads and Writes (i.e., inserts, updates, and deletes) of specific data items.  Two actions in a history are said to conflict if they are performed by distinct transactions on the same data item and at least one of is a Write action.  Following [EGLT], this definition takes a broad interpreta​tion of “data item”:  it could be a table row, a page, an entire table, or a message on a queue.  Conflicting actions can also occur on a set of data items, covered by a predicate lock, as well as on a single data item.

A particular history gives rise to a dependency graph defin​ing the tempo​ral data flow among transactions.  The actions of committed transac​tions in the history are repre​sented as graph nodes.  If action op1 of transaction T1 conflicts with and precedes action op2 of transaction T2 in the history, then the pair <op1, op2> becomes an edge in the dependency graph.  Two histo​ries are equivalent if they have the same committed transactions and the same depen​dency graph.  A history is se​rializable if it is equiva​lent to a serial history — that is, if it has the same depen​dency graph (inter-transaction temporal data flow) as some history that executes transactions one at a time in se​quence.

2.2
ANSI SQL Isolation Levels

ANSI SQL Isolation designers sought a definition that would admit many different implementations, not just lock​ing.  They defined isolation with the following three phe​nomena:
P1 (Dirty Read): Transaction T1 modifies a data item.  Another transaction T2 then reads that data item before T1 performs a COMMIT or ROLLBACK.  If T1 then performs a ROLLBACK, T2 has read a data item that was never commit​ted and so never really existed.  

P2 (Non-repeatable or Fuzzy Read): Transaction T1 reads a data item.  Another transaction T2 then modi​fies or deletes that data item and commits.  If T1 then at​tempts to reread the data item, it receives a modified value or discovers that the data item has been deleted.

P3 (Phantom): Transaction T1 reads a set of data items satisfying some <search condition>.  Transaction T2 then creates data items that satisfy T1’s <search condi​tion> and commits.  If T1 then repeats its read with the same <search condition>, it gets a set of data items dif​ferent from the first read.

None of these phenomena could occur in a serial history.  Therefore by the Serializability Theorem they cannot oc​cur in a serializable history [EGLT, BHG Theorem 3.6, GR Section 7.5.8.2, PON Theorem 9.4.2].

Histories consisting of reads, writes, commits, and aborts can be written in a shorthand notation:  “w1[x]” means a write by transaction 1 on data item x (which is how a data item is “modified’), and “r2[x]” represents a read of x by transaction 2.  Transaction 1 read​ing and writing a set of records satisfying predicate P is de​noted by r1[P] and w1[P] respectively.  Transaction 1’s com​mit and abort (ROLLBACK) are written “c1” and “a1”, respec​tively.  

Phenomenon P1 might be re​stated as disal​lowing the fol​lowing scenario:

(2.1)
w1[x] . . . r2[x] . . . (a1 and c2 in either order)

The English statement of P1 is ambiguous.  It does not ac​tually insist that T1 abort; it simply states that if this hap​pens something unfortunate might occur.  Some peo​ple reading P1 interpret it to mean:

(2.2)
w1[x]...r2[x]...((c1 or a1) and (c2 or a2) in any or​der)

Forbidding the (2.2) variant of P1 disallows any history where T1 modifies a data item x, then T2 reads the data item before T1 commits or aborts.  It does not insist that T1 aborts or that T2 com​mits.
Definition (2.2) is a much broader interpre​tation of P1 than (2.1), since it prohibits all four possible commit-abort pairs by transactions T1 and T2, while (2.1) only pro​hibits two of the four.  Interpreting (2.2) as the meaning of P1 pro​hibits an execution sequence if something anomalous might in the future.  We call (2.2) the broad in​terpretation of P1, and (2.1) the strict interpreta​tion of P1. Interpretation (2.2) speci​fies a phe​nomenon that might lead to an anomaly, while (2.1) specifies an actual anomaly. Denote them as P1 and A1 re​spectively.  Thus:

P1:
w1[x]...r2[x]...((c1 or a1) and (c2 or a2) in any or​der)

A1:
w1[x]...r2[x]...(a1 and c2 in any order)

Similarly, the English language phenomena P2 and P3 have strict and broad interpretations, and are denoted P2 and P3 for broad, and A2 and A3 for strict:

P2:
r1[x]...w2[x]...((c1 or a1) and (c2 or a2) in any or​der)

A2:
r1[x]...w2[x]...c2...r1[x]...c1

P3:
r1[P]...w2[y in P]...((c1 or a1) and (c2 or a2) any or​der)

A3:
r1[P]...w2[y in P]...c2...r1[P]...c1

Section 3 analyzes these alternative interpretations after more conceptual machinery has been developed.  It argues that the broad in​terpretation of the phenomena is required.  Note that the English statement of ANSI SQL P3 just prohibits inserts to a predicate, but P3 above intentionally pro​hibits any write (insert, update, delete) affecting a tuple sat​isfying the predicate once the predicate has been read.

This paper later deals with the concept of a multi-valued history (MV-history for short — see [BHG], Chapter 5).  Without going into details now, multiple versions of a data item may exist at one time in a multi-version sys​tem.  Any read must be explicit about which version is being read.  There have been at​tempts to relate ANSI Isolation defini​tions to multi-version systems as well as more common single-version systems of a standard locking scheduler.  The English lan​guage statements of the phenomena P1, P2, and P3 im​ply single-version histories.  This is how we inter​pret them in the next section.

ANSI SQL defines four levels of isolation by the matrix of Table 1.  Each isolation level is characterized by the phe​nomena that a transaction is forbidden to ex​pe​rience (broad or strict interpretations).  However, the ANSI SQL specifi​ca​tions do not de​fine the SERIALIZABLE isolation level solely in terms of these phenomena.  Subclause 4.28, “SQL-transactions”, in [ANSI] notes that the SERIALIZABLE isolation level must provide what is “commonly known as fully serializable ex​ecution.”  The prominence of the table compared to this ex​tra proviso leads to a common misconception that disallow​ing the three phe​nom​ena implies serializability. Table 1 calls histories that disallow the three phenomena  ANOMALY SERIALIZABLE.
The isolation levels are defined by the phenomena they are for​bidden to experience. Picking a broad interpretation of a phenomenon excludes a larger set of histories than the strict interpretation.  This means we are arguing for more restrictive isolation levels (more histories will be disal​lowed).  Section 3 shows that even tak​ing the broad in​terpretations of P1, P2, and P3, forbid​ding these phenom​ena does not guarantee true serializ​abil​ity.  It would have been simpler in [ANSI] to drop P3 and just use Subclause 4.28 to define ANSI SERIALIZABLE.  Note that Table 1 is not a final result;  Table 3  will superseded it.

	Table 1.  ANSI SQL Isolation Levels Defined in terms of the Three Original Phenomena

	Isolation Level
	P1 (or A1)
Dirty Read
	P2 (or A2)
Fuzzy Read
	P3 (or A3)
Phantom

	 ANSI READ UNCOMMITTED 
	Possible
	Possible
	Possible

	ANSI READ COMMITTED
	Not Possible
	Possible
	Possible

	ANSI REPEATABLE READ
	Not Possible
	Not Possible
	Possible

	ANOMALY SERIALIZABLE
	Not Possible
	Not Possible
	Not Possible


2.3
Locking

Most SQL products use lock-based isolation.  Consequently, it is useful to characterize the ANSI SQL isolation levels in terms of locking, although certain problems arise.

Transactions exe​cut​ing under a locking scheduler request Read (Share) and Write (Exclusive) locks on data items or sets of data items they read and write.  Two locks by dif​fer​ent transactions on the same item con​flict if at least one of them is a Write lock.

A Read (resp.  Write) predicate lock on a given <search condition> is effec​tively a lock on all data items satisfying the <search condi​tion>.  This may be an infi​nite set.  It includes data pre​sent in the database and also any phantom data items not cur​rently in the database but that would satisfy the predicate if they were inserted or if current data items were updated to satisfy the <search condi​tion>.  In SQL terms, a predi​cate lock covers all tuples that sat​isfy the predicate and any that an INSERT, UPDATE, or DELETE statement would cause to satisfy the predicate.  Two predicate locks by dif​ferent transactions conflict if one is a Write lock and if there is a (possibly phantom) data item covered by both locks. An item lock (record lock) is a predi​cate lock where the predi​cate names the specific record.

A transaction has well-formed writes (reads) if it requests a Write (Read) lock on each data item or predicate be​fore writing (reading) that data item, or set of data items defined by a predicate.  The transaction is well-formed  if it has well-formed writes and  reads.  A trans​ac​tion has two-phase writes (reads) if it does not set a new Write (Read) lock on a data item after releasing a Write (Read) lock.  A transaction exhibits two-phase locking if it does not request any new locks af​ter re​leas​ing some lock.

The locks requested by a transaction are of long duration if they are held until after the transaction commits or aborts.  Otherwise, they are of short duration.  Typically, short locks are released immediately after the action completes.

If a transaction holds a lock, and another transaction re​quests a conflicting lock, then the new lock request is not granted until the former transaction’s conflicting lock has been re​leased.

The fundamental serialization theorem is that well-formed two-phase locking  guarantees serializability — each his​tory arising under two-phase locking is equivalent to some serial history.  Conversely, if a transaction is not well-formed or two-phased then, except in degenerate cases, non-serializable execution histories are possible [EGLT].

The  [GLPT] paper defined four degrees of consistency, at​tempting to show the equivalence of locking, dependency, and anomaly-based characterizations. The anomaly defini​tions (see Definition 1) were too vague.  The authors con​tinue to get criticism for that aspect of the definitions [GR].  Only the more mathematical definitions in terms of histories and dependency graphs or locking have stood the test of time.  

	Table 2.  Degrees of Consistency   and Locking Isolation Levels defined in terms of locks.

	Consistency
Level = Locking
Isolation Level
	Read Locks on
Data Items and Predicates
(the same unless noted)
	Write Locks on
Data Items and Predicates
(always the same)

	Degree 0  
	none required
	Well-formed Writes

	Degree 1 = Locking 
READ UNCOMMITTED 
	none required
	Well-formed Writes
Long duration Write locks

	Degree 2 = Locking
READ COMMITTED 
	Well-formed Reads
Short duration Read locks (both)
	Well-formed Writes, 
Long duration Write locks

	Cursor Stability 
  (see Section 4.1)
	Well-formed Reads
Read locks held on current of cursor
Short duration Read Predicate locks
	Well-formed Writes, 
Long duration Write locks

	Locking
REPEATABLE READ 
	Well-formed Reads
Long duration data-item Read locks
Short duration Read Predicate locks
	Well-formed Writes, 
Long duration Write locks

	Degree 3 = Locking
SERIALIZABLE
	Well-formed Reads
Long duration Read locks (both)
	Well-formed Writes, 
Long duration Write locks


Table 2 defines a number of isolation types in terms of lock scopes (items or predicates), modes (read or write), and their durations (short or long).  We believe the isola​tion levels called Locking READ UNCOMMITTED, Locking READ COMMITTED, Locking REPEATABLE READ, and Locking SERIALIZABLE are the locking definitions in​tended by ANSI SQL Isolation levels — but as shown next they are quite dif​ferent from those of Table 1.  Consequently, it is necessary to differentiate isolation lev​els defined in terms of locks from the ANSI SQL phenom​ena-based isolation lev​els.  To make this distinction, the levels in Table 2 are la​beled with the “Locking” prefix, as opposed to the “ANSI” prefix of Table 1.

 [GLPT] defined Degree 0 consistency to allow both dirty reads and writes:  it only required action atomicity.  Degrees 1, 2, and 3 correspond to Locking READ UN​COMMITTED, READ COMMITTED, and SERIALIZABLE, re​spectively.  No isolation degree matches the Locking REPEATABLE READ isolation level.

Date and IBM origi​nally used the name “Repeatable Reads” [DAT, DB2] to mean serializable or Locking SERIALIZABLE.  This seemed like a more comprehensible name than the [GLPT] term “Degree 3 isolation."  The ANSI SQL meaning of REPEATABLE READ is dif​ferent from Date’s original defini​tion, and we feel the ter​minology is un​for​tunate.  Since anomaly P3 is specifically not ruled out by the ANSI SQL REPEATABLE READ isolation level, it is clear from the definition of P3 that reads are NOT re​peatable!  We repeat this misuse of the term with Locking REPEATABLE READ in Table 2, in order to paral​lel the ANSI defini​tion.  Similarly, Date coined the term Cursor Stability as a more comprehensible name for Degree 2 isolation aug​mented with protection from lost cursor updates as ex​plained in Section 4.1 below.

Definition. Isolation level L1 is weaker than isolation level L2 (or L2 is stronger than L1), denoted L1 « L2, if all non-serializable histories that obey the criteria of L2 also satisfy L1 and there is at least one non-serializable history that can occur at level L1 but not at level L2.  Two isola​tion levels L1 and L2 are equivalent, denoted L1 == L2, if the sets of non-serializable histories satisfying L1 and L2 are identical.  L1 is no stronger than L2, denoted L1 « L2 if ei​ther L1 « L2 or L1 == L2.  Two isolation levels are incom​pa​rable, denoted L1 »« L2, when each isolation level allows a non-serializable history that is disallowed by the other. 

In comparing isolation levels we differentiate them only in terms of the non-serializable histories that can occur in one but not the other.  Two isolation levels can also dif​fer in terms of the serializable histories they permit, but we say Locking SERIALIZABLE == Serializable even though it is well known that a locking scheduler does not admit all pos​sible Serializable histories.  It is possible for an isolation level to be impractical because of disallowing too many se​rializable histories, but we do not deal with this here.

These definitions yield the following remark.

Remark 1: Locking READ UNCOMMITTED 



« Locking READ COMMITTED 




« Locking REPEATABLE READ 





« Locking SERIALIZABLE
In the following section, we’ll focus on comparing the ANSI and Locking definitions.

3. Analyzing ANSI SQL Isolation Levels

To start on a positive note, the locking isolation levels comply with the ANSI SQL requirements.

Remark 2.  The locking protocols of Table 2 define lock​ing isolation levels that are at least as strong as the corre​sponding phenomena-based isolation levels of Table 1.  See [OOBBGM] for proof.

Hence, locking isolation levels are at least as isolated as the same-named ANSI levels.  Are they more isolated? The an​swer is yes, even at the lowest level.  Locking READ UNCOMMITTED provides long duration write lock​ing to avoid a phenomenon called "Dirty Writes," but ANSI SQL does not exclude this anomalous behavior other than ANSI SERIALIZABLE.  Dirty writes are defined as follows:

P0 (Dirty Write): Transaction T1 modifies a data item.  Another transaction T2 then further modifies that data item before T1 performs a COMMIT or ROLLBACK.  If T1 or T2 then performs a ROLLBACK, it is unclear what the correct data value should be.  The broad interpretation of this is:

P0:
w1[x]...w2[x]...((c1 or a1) and (c2 or a2) in any order)

One reason why Dirty Writes are bad is that they can vio​late database consistency.  Assume there is a constraint be​tween x and y (e.g., x = y), and T1 and T2 each maintain the consis​tency of the constraint if run alone.  However, the constraint can easily be violated if the two transac​tions write x and y in different orders, which can only happen if there are Dirty writes. For example consider the history w1[x] w2[x] w2[y] c2 w1[y] c1. T1's changes to y and T2's to x both “survive”.  If T1 writes 1 in both x and y  while T2 writes 2, the result will be x=2, y =1 violat​ing x = y.

As discussed in [GLPT, BHG] and elsewhere, automatic transaction rollback is another pressing reason why P0 is important.  Without protection from P0, the system can’t undo updates by restoring before images.  Consider the his​tory: w1[x] w2[x] a1.  You don’t want to undo w1[x] by restoring its before-image of x, because that would wipe out w2’s update.  But if you don’t restore its before-image, and transaction T2 later aborts, you can’t undo w2[x] by restoring its before-image either! Even the weakest lock​ing systems hold long duration write locks.  Otherwise, their re​covery systems would fail. So we conclude Remark 3:

Remark 3: ANSI SQL isolation should be modified to re​quire P0 for all isolation levels.

We now argue that a broad interpretation of the three ANSI phenomena is required.  Recall the strict interpreta​tions are:

A1:
w1[x]...r2[x]...(a1 and c2 in either order)
(Dirty Read)

A2:
r1[x]...w2[x]...c2...r1[x]...c1
(Fuzzy or




Non-Repeatable Read)

A3:
r1[P]...w2[y in P]...c2....r1[P]...c1
(Phantom)

By Table 1, histories under READ COMMITTED isolation forbid anomaly A1,  REPEATABLE READ isolation  for​bids anomalies A1 and A2, and SERIALIZABLE isola​tion for​bids anomalies A1, A2, and A3.  Consider history H1, in​volving a $40 transfer between bank balance rows x and y:

H1: r1[x=50]w1[x=10]r2[x=10]r2[y=50]c2 r1[y=50]w1[y=90]c1

H1 is non-serializable, the classical inconsistent analysis problem where transaction T1 is transferring a quantity 40 from x to y, maintaining a total balance of 100, but T2 reads an inconsistent state where the total balance is 60.  The history H1 does not violate any of the anomalies A1, A2, or A3.  In the case of A1, one of the two transactions would have to abort;  for A2, a data item would have to be read by the same transaction for a second time;  A3 re​quires a phantom value.  None of these things happen in H1.  Consider instead tak​ing the broad in​terpretation of A1, the phenomenon P1:

P1:
w1[x]...r2[x]...((c1 or a1) and (c2 or a2) in any or​der)

H1 indeed violates P1.  Thus, we should take the interpre​ta​tion P1 for what was intended by ANSI rather than A1.  The Broad interpretation is the correct one.

Similar arguments show that P2 should be taken as the ANSI intention rather than A2.  A history that discrimi​nates these two interpretations is:

H2: r1[x=50]r2[x=50]w2[x=10]r2[y=50]w2[y=90]c2r1[y=90]c1

H2 is non-serializable — it is another inconsistent analy​sis, where T1 sees a total balance of 140.  This time nei​ther transaction reads dirty (i.e. uncommitted) data.  Thus P1 is satisfied.  Once again, no data item is read twice nor is any relevant predi​cate evaluation changed.  The problem with H2 is that by the time T1 reads y, the value for x is out of date.  If T2 were to read x again, it would have been changed; but since T2 doesn't do that, A2 doesn't ap​ply.  Replacing A2 with P2, the broader interpretation, solves this problem.

P2:
r1[x]...w2[x]...((c1 or a1) and (c2 or a2) any order)

H2 would now be disqualified when w2[x=20] occurs to overwrite r1[x=50].  Finally, consider A3 and history H3:

A3:
r1[P]...w2[y in P]...c2...r1[P]...c1
(Phantom)

H3:  
r1[P] w2[insert y to P] r2[z] w2[z] c2 r1[z] c1

Here T1 performs a <search condition> to find the list of active employees.  Then T2 performs an insert of a new ac​tive employee and then updates z, the count of em​ployees in the company.  Following this, T1 reads the count of ac​tive employees as a check and sees a discrep​ancy.  This his​tory is clearly not serializable, but is al​lowed by A3 since no predi​cate is evaluated twice.  Again, the Broad interpre​tation solves the problem.

P3:
r1[P]...w2[y in P]...((c1 or a1) and (c2 or a2) any or​der)

If P3 is forbidden, history H3 is invalid.  This is clearly what ANSI intended.  The foregoing discussion demon​strates the following results.

Remark 4.  Strict interpretations A1, A2, and A3 have unintended weaknesses.  The correct interpretations are the Broad ones.  We assume in what follows that ANSI meant to define P1, P2, and P3.

Remark 5.   ANSI SQL isolation phenomena are in​com​plete.  There are a number of anomalies that still can arise. New phenomena must be defined to complete the definition of locking.  Also, P3 must be restated.  In the following definitions, we drop references to (c2 or a2) that do not  re​strict histories.

P0:
w1[x]...w2[x]...(c1 or a1)
(Dirty Write)

P1:
w1[x]...r2[x]...(c1 or a1)
(Dirty Read)

P2:
r1[x]...w2[x]...(c1 or a1)
(Fuzzy or



Non-Repeatable Read)

P3:
r1[P]...w2[y in P]...(c1 or a1)
(Phantom)

One important note is that ANSI SQL P3 only pro​hibits inserts (and updates, according to some interpreta​tions) to a predicate whereas the definition of P3 above pro​hibits any  write satisfying the predicate once the pred​icate has been read — the write could be an insert, up​date, or delete.

The definition of proposed ANSI isolation levels in terms of these phenomena is given in Table 3.

For single version histories, it turns out that the P0, P1, P2, P3 phe​nomena are disguised versions of locking.  For example, prohibiting P0 precludes a second transaction writ​ing an item after the first transaction has written it, equiva​lent to saying that long-term Write locks are held on data items (and predicates).  Thus Dirty Writes are im​possi​ble at all levels.  Similarly, prohibit​ing P1 is equiv​alent to hav​ing well-formed reads on data items. Prohibiting P2 means long-term Read locks on data items.  Finally, Prohibiting P3 means long-term Read pred​icate locks.  Thus the isola​tion levels of Table 3  de​fined by these phe​nomena  provide the same behavior as the Locking isola​tion levels of Table 2.

Remark 6.  The locking isolation levels of Table 2 and the phenomenological definitions of Table 3 are equiva​lent.  Put another way, P0, P1, P2, and P3 are disguised redefini​tion’s of  locking behavior.

In what follows, we will refer to the isolation levels listed in Table 3 by the names in Table 3, equivalent to the Locking versions of these isolation levels of Table 2.  When we refer to ANSI READ UNCOMMITTED, ANSI READ COMMITTED, ANSI REPEATABLE READ, and ANOMALY SERIALIZABLE, we are referring to the ANSI definition of Table 1 (inadequate, since it did not include P0).  

The next section shows that a number of commercially available iso​lation implementations provide isolation lev​els that fall between READ COMMITTED and REPEATABLE READ.  To achieve mean​ingful isolation levels that distin​guish these implementa​tions, we will as​sume P0 and P1 as a basis and then add dis​tinguishing new phenomena.
4.
 Other Isolation Types

4.1
 Cursor Stability

Cursor Stability is designed to prevent the lost update phe​nomenon.

	Table 3.  ANSI SQL Isolation Levels Defined in terms of the four phenomena

	Isolation Level
	P0
Dirty Write
	P1
Dirty Read
	P2
Fuzzy Read
	P3
Phantom

	READ UNCOMMITTED 
	Not Possible
	Possible
	Possible
	Possible

	READ COMMITTED
	Not Possible
	Not  Possible
	Possible
	Possible

	REPEATABLE READ
	Not Possible
	Not  Possible
	Not  Possible
	Possible

	SERIALIZABLE
	Not Possible
	Not  Possible
	Not  Possible
	Not Possible


P4 (Lost Update): The lost update anomaly occurs when transaction T1 reads a data item and then T2 updates the data item (possibly based on a previous read), then T1 (based on its earlier read value) updates the data item and commits.  In terms of histories, this is:

P4:
r1[x]...w2[x]...w1[x]...c1
(Lost Update)

The problem, as illustrated in history H4, is that even if T2 commits, T2's up​date will be lost.

H4:
r1[x=100] r2[x=100] w2[x=120] c2 w1[x=130] c1

The final value of x contains only the increment of 30 added by T1.  P4 is pos​sible at the READ COMMITTED isolation level, since H4 is al​lowed when forbidding P0 (a commit of the transaction performing the first write action precedes the second write) or P1 (which would require a read after a write).  However, for​bidding P2 also precludes P4, since w2[x] comes after r1[x] and before T1 commits or aborts.  Therefore the anomaly P4 is useful in distinguishing isola​tion levels in​termediate in strength be​tween READ COMMITTED and REPEATABLE READ.

The Cursor Stability isolation level extends READ COMMITTED locking behavior for SQL cursors by adding a new read action for fetch from a cursor and requiring that a lock be held on the cur​rent item of the cursor. The lock is held un​til the cursor moves or is closed, possibly by a commit.  Naturally, the Fetching trans​action can update the row, and in that case a write lock will be held on the row until the trans​ac​tion commits, even af​ter the cursor moves on with a sub​sequent Fetch. The notation is extended to include, rc, meaning read cursor, and wc, meaning write the current record of the cursor. A rc1[x] and a later wc1[x] precludes an in​ter​vening w2[x].  Phenomenon P4, renamed P4C, is prevented in this case.

P4C:
rc1[x]...w2[x]...w1[x]...c1
(Lost Update)

Remark 7:
READ COMMITTED « Cursor Stability « REPEATABLE READ
Cursor Stability is widely implemented by SQL systems to prevent lost updates for rows read via a cursor.  READ COMMITTED, in some systems, is actually the stronger Cursor Stability.  The ANSI standard allows this.

The technique of putting a cursor on an item to hold its value stable can be used for multiple items, at the cost of using multiple cursors.  Thus the programmer can parlay Cursor Stability to effective Locking REPEATABLE READ isolation for any transaction accessing a small, fixed num​ber of data items.  However this method is inconve​nient and not at all general.  Thus there are always histo​ries fitting the P4 (and of course the more general P2) phenomenon that are not precluded by Cursor Stability.


4.2
Snapshot Isolation

These discussions naturally suggest an isolation level, called Snapshot Isolation, in which each transaction reads reads data from a snapshot of the (committed) data as of the time the transac​tion started, called its Start-Timestamp.  This time may be any time before the trans​action’s first Read.  A transaction running in Snapshot Isolation is never blocked attempting a read as long as the snapshot data from its Start-Timestamp can be main​tained.  The transaction's writes (updates, inserts, and deletes) will also be reflected in this snapshot, to be read again if the transac​tion accesses (i.e., reads or updates) the data a second time.  Updates by other transactions active af​ter the transaction Start-Timestamp are invisible to the transaction.

Snapshot Isolation is a type of multiversion concurrency control.  It extends the Multiversion Mixed Method de​scribed in [BHG], which allowed snapshot reads by read-only trans​actions.
When the transaction T1 is ready to commit, it gets a Commit-Timestamp, which is larger than any existing Start-Timestamp or Commit-Timestamp.  The transaction suc​cessfully commits only if no other transaction T2 with a Commit-Timestamp in T1’s execution interval [Start-Timestamp, Commit-Timestamp] wrote data that T1 also wrote.  Otherwise, T1 will abort.  This feature, called First-com​mit​ter-wins prevents lost updates (phenomenon P4).  When T1 commits, its changes become visible to all transactions whose Start-Timestamps are larger than T1‘s Commit-Timestamp.

Snapshot Isolation is a multi-version (MV) method, so sin​gle-valued (SV) histories do not properly reflect the tempo​ral action sequences.  At any time, each data item  might have multiple versions, created by active and committed transactions. Reads by a transaction must choose the appro​priate version.  Consider history H1 at the beginning of Section 3, which shows the need for P1 in a single valued execution.  Under Snapshot Isolation, the same sequence of actions would lead to the multi-valued history:

H1.SI:
r1[x0=50] w1[x1=10] r2[x0=50] r2[y0=50] c2 

r1[y0=50] w1[y1=90] c1

H1.SI has the dataflows of a serializable execution.  In [OOBBGM], we show that all Snapshot Isolation histo​ries can be mapped to single-valued histories while pre​serving dataflow dependencies (the MV histories are said to be View Equivalent with the SV histories, an ap​proach covered in [BHG], Chapter 5).  For example the MV his​tory H1.SI would map to the serializable SV history:

H1.SI.SV:
r1[x=50] r1[y=50] r2[x=50] r2[y=50] c2

w1[x=10] w1[y=90] c1

Mapping of MV histories to SV histories is the only rig​or​ous touchstone needed to place Snapshot Isolation in the Isolation Hierarchy.

Snapshot Isolation is non-serializable because a transac​tion’s Reads come at one instant and the Writes at an​other.  For ex​ample, consider the single-value history:

H5:
r1[x=50] r1[y=50] r2[x=50] r2[y=50] w1[y=-40]
w2[x=-40] c1 c2

H5 is non-serializable and has the same inter-transactional dataflows as could occur under Snapshot Isolation (there is no choice of versions read by the transactions).  Here we as​sume that each transaction that writes a new value for x and y is expected to maintain the constraint that x + y should be positive, and while T1 and T2 both act properly in isola​tion, the constraint fails to hold in H5.

Constraint violation is a generic and important type of con​currency anomaly.  Individual databases satisfy con​straints over mul​tiple data items (e.g., uniqueness of keys, referen​tial in​tegrity, replication of rows in two ta​bles, etc.).  Together they form the database invariant con​straint predi​cate, C(DB).  The invariant is true if the database state DB is consis​tent with the constraints and is false otherwise.  Transactions must pre​serve the con​straint predicate to main​tain consis​tency: if the database is consistent when the transaction starts, the database will be consistent when the transaction commits.  If a transaction reads a database state that violates the con​straint predicate, then the transaction suffers from a constraint violation concur​rency anomaly.  Such constraint violations are called incon​sistent analysis in [DAT].
A5 (Data Item Constraint Violation).  Suppose C() is a database constraint between two data items x and y in the database.  Here are two anomalies arising from con​straint viola​tion.

A5A Read Skew Suppose transaction T1 reads x, and then a second transaction T2 updates x and y to new val​ues and commits.  If now T1 reads y, it may see an incon​sistent state, and therefore produce an inconsistent state as output.  In terms of histories, we have the anomaly: 

A5A:
r1[x]...w2[x]...w2[y]...c2...r1[y]...(c1 or a1)

(Read Skew)

A5B Write Skew Suppose T1 reads x and y, which are consistent with C(), and then a T2 reads x and y, writes x, and commits.  Then T1 writes y.  If there were a constraint between x and y, it might be violated.  In terms of histo​ries: 

A5B:
r1[x]...r2[y]...w1[y]...w2[x]...(c1 and c2 occur)

(Write Skew)

Fuzzy Reads (P2) is a degenerate form of Read Skew where x=y.  More typically, a transaction reads two dif​ferent but related items (e.g., referential integrity).  Write Skew (A5B) could arise from a constraint at a bank, where account bal​ances are allowed to go negative as long as the sum of commonly held balances remains non-nega​tive, with an anomaly arising as in his​tory H5.

Clearly neither A5A nor A5B could arise in histories where P2 is precluded, since both A5A and A5B have T2 write a data item that has been previously read by an un​committed T1.  Thus, phenomena A5A and A5B are only useful for distinguishing isolation levels that are below REPEATABLE READ in strength.

The ANSI SQL definition of REPEATABLE READ, in its strict interpretation, captures a degenerate form of row con​straints, but misses the gen​eral concept.  To be specific, Locking REPEATABLE READ of Table 2 pro​vides protection from Row Constraint Violations but the ANSI SQL defini​tion of Table 1, forbidding anomalies A1 and A2, does not. 

Returning now to Snapshot Isolation, it is surpris​ingly strong, even stronger than READ COMMITTED.

Remark 8. READ COMMITTED « Snapshot Isolation
Proof. In Snapshot Isolation, first-committer-wins pre​cludes P0 (dirty writes), and the timestamp mechanism pre​vents P1 (dirty reads), so Snapshot Isolation is no weaker than READ COMMITTED.  In addition, A5A is possible under READ COMMITTED, but not under the Snapshot Isolation timestamp mechanism.  Therefore READ COMMITTED « Snapshot Isolation. 

Note that it is difficult to picture how Snapshot Isolation histories can disobey phenomenon P2 in the single-valued interpretation.  Anomaly A2 cannot occur, since a transac​tion under Snapshot Isolation will read the same value of a data item even after a temporally intervening up​date by an​other transaction.  However, Write Skew (A5B) obviously can occur in a Snapshot Isolation his​tory (e.g., H5), and in the Single Valued history interpre​tation we've been reason​ing about, forbidding P2 also pre​cludes A5B.  Therefore Snapshot Isolation admits history anomalies that REPEATABLE READ does not.

Snapshot Isolation cannot experience the A3 anomaly.  A transaction rereading a predicate af​ter an update by another will always see the same old set of data items.  But the REPEATABLE READ isolation level can experience A3 anomalies. Snapshot Isolation histories prohibit histo​ries with anomaly A3, but allow A5B, while REPEATABLE READ does the opposite.  Therefore:

Remark 9.  REPEATABLE READ  »« Snapshot Isolation.

However, Snapshot Isolation does not pre​clude P3.  Consider a constraint that says a set of job tasks deter​mined by a predicate cannot have a sum of hours greater than 8.  T1 reads this predicate, determines the sum is only 7 hours and adds a new task of 1 hour duration, while a concurrent transaction T2 does the same thing.  Since the two transac​tions are inserting different data items (and different index entries as well, if any), this sce​nario is not precluded by First-Committer-Wins and can occur in Snapshot Isolation.  But in any equivalent serial history, the phe​nomenon P3 would arise under this sce​nario.

Perhaps most remarkable of all, Snapshot Isolation has no phantoms (in the strict sense of the ANSI defini​tions A3).  Each transaction never sees the updates of concurrent trans​actions.  So, one can state the following surprising re​sult (recall that section Table 1 defined ANOMALY SE​RIALIZABLE as  ANSI SQL definition of SERIALIZABLE) without the extra restriction in Subclause 4.28 in [ANSI]:

Remark 10.  Snapshot Isolation histories preclude anomalies A1, A2 and A3.  Therefore, in the anomaly in​terpretation of ANOMALY SERIALIZABLE of Table 1:


ANOMALY SERIALIZABLE « SNAPSHOT ISOLATION.

Snapshot Isolation gives the freedom to run transac​tions with very old timestamps, thereby allowing them to do time travel — taking a historical perspective of the database — while never blocking or being blocked by writes.  Of course, update transactions with very old timestamps would abort if they tried to update any data item that had been up​dated by more recent transactions.

Snapshot Isolation admits a simple implementation mod​eled on the work of Reed [REE]. There are several com​mer​cial implementations of such multi-version databases.  Borland’s InterBase 4 [THA] and the engine underlying Microsoft’s Exchange System both provide Snapshot Isolation with the First-committer-wins feature.  First-committer-wins requires the system to remember all up​dates (write locks) belonging to any transaction that commits af​ter the Start-Timestamp of each active transac​tion.  It aborts the transac​tion if its updates conflict with remembered up​dates by oth​ers.  

Snapshot Isolation’s "optimistic" approach to concur​rency control has a clear concurrency advantage for read-only trans​actions, but its benefits for update transactions is still de​bated.  It probably isn’t good for long-running update trans​actions competing with high-contention short transac​tions, since the long-running transactions are un​likely to be the first writer of everything they write, and so will proba​bly be aborted.  (Note that this scenario would cause a real problem in locking implementations as well, and if the so​lution is to not allow long-running up​date transactions that would hold up short transaction locks, Snapshot Isolation would also be acceptable.)  Certainly in cases where short update transactions conflict minimally and long-running transactions are likely to be read only, Snapshot Isolation should give good results.  In regimes where there is high contention among transac​tions of comparable length, Snapshot Isolation offers a classical optimistic ap​proach, and there are differences of opinion as to the value of this.

4.3
Other Multi-Version Systems

There are other models of multi-versio99ning.  Some com​mer​cial products maintain versions of objects but restrict Snapshot Isolation to read-only transactions (e.g., SQL-92, 

Rdb, and SET TRANSACTION READ ONLY in some other databases [MS, HOB, ORA];  Postgres and Illustra  [STO, ILL] maintain such versions long-term and provide time-travel queries).  Others allow update transactions but do not pro​vide first-committer-wins protection (e.g., Oracle Read Consistency isolation [ORA]).

Oracle Read Consistency isolation gives each SQL state​ment the most recent committed database value at the time the statement began.  It is as if the start-timestamp of the trans​ac​tion is advanced at each SQL statement.   The members of a cursor set are as of the time of the Open Cursor.  The un​der​lying mechanism recomputes the ap​propriate version of the row as of the statement times​tamp.  Row inserts, up​dates, and deletes are covered by Write locks to give a first-writer-wins rather than a first-committer-wins policy.  Read Consistency is stronger than READ COMMITTED (it disal​lows cursor lost updates (P4C)) but allows non-repeatable reads (P3), general lost updates (P4), and read skew (A5A).  Snapshot Isolation does not permit P4 or A5A.

If one looks carefully at the SQL standard, it defines each statement as atomic.  It has a seri​alizable sub-transaction (or timestamp) at the start of each statement.  One can imagine a hierarchy of isolation levels defined by as​sign​ing times​tamps to statements in interesting ways (e.g., in Oracle, a cursor fetch has the timestamp of the cursor open).  

5.
Summary and Conclusions

In summary, there are serious problems with the original ANSI SQL definition of isolation levels (as explained in Section 3).  The English language definitions are ambigu​ous and incomplete.  Dirty Writes (P0) are not precluded.  Remark 5 is our recommendation for cleaning up the ANSI Isolation levels to equate to the locking isolation levels of [GLPT]. 

ANSI SQL intended to define REPEATABLE READ isolation to exclude all anomalies except Phantom.  The anomaly def​inition of Table 1 does not achieve this goal, but the lock​ing definition of Table 2 does.  ANSI’s choice of the term Repeatable Read is doubly unfortunate: (1) repeatable reads do not give repeatable results, and (2) the industry had al​ready used the term to mean exactly that: repeatable reads mean serializable in several products.  We recom​mend that another term be found for this.




Figure 2: A diagram of the isolation levels and their rela​tionships.  It assume that the ANSI SQL isolation levels have been strengthened to match the recommendation of Remark 5 and Table 3.  The edges are annotated with the phenomena that differentiate the isolation lev​els.  Not shown is a potential multi-ver​sion hierarchy extending Snapshot Isolation to lower degrees of isola​tion by picking read timestamps on a per-statement ba​sis.  Nor does it show the original ANSI SQL isolation levels  based on the strict interpretation of the phenomenon P1, P2, and P3. 

A number of commercially-popular isolation levels, falling between the REPEATABLE READ and SERIALIZABLE levels of Table 3 in strength, have been characterized with some new phenomena and anomalies in Section 4.  All the isolation levels named here have been characterized as shown in Figure 2 and Table 4.  Isolation levels at higher levels in Figure 2 are higher in strength (see the Definition at the be​ginning of Section 4.1) and the connect​ing lines are labeled with the phenom​ena and anomalies that differentiate them.

On a positive note, reduced isolation levels for multi-ver​sion systems have never been characterized before — de​spite be​ing implemented in several products.  Many appli​cations avoid lock contention by using Cursor Stability or Oracle's Read Consistency isolation.  Such applications will find Snapshot Isolation better behaved than either: it avoids the lost update anomaly, some phantom anomalies (e.g., the one defined by ANSI SQL), it never blocks read-only transac​tions, and readers do not block updates.[[Pat 2/12/95: A few changes here:  Named Cursor Lost Update P4C, said Write Skew Sometimes Possible for Cursor Stability, since can show Cursor Stability and Snapshot different on basis of such a history, as Jim originally pointed out.]]
	Table 4.  Isolation Types Characterized by Possible Anomalies Allowed. 

	Isolation
level
	P0
Dirty Write
	P1
Dirty Read
	P4C

Cursor Lost 
Update
	P4
Lost 
Update
	P2
Fuzzy 
Read
	P3
Phantom
	A5A
Read Skew
	A5B
Write Skew

	READ UNCOMMITTED
== Degree 1
	Not Possible
	Possible
	Possible
	Possible
	Possible
	Possible
	Possible
	Possible

	READ COMMITTED
== Degree 2
	Not Possible
	Not Possible
	Possible
	Possible
	Possible
	Possible
	Possible
	Possible

	Cursor Stability
	Not Possible
	Not Possible
	Not Possible
	Sometimes Possible
	Sometimes Possible
	Possible
	Possible
	Sometimes

Possible

	REPEATABLE READ
	Not  Possible
	Not  Possible
	Not  Possible
	Not Possible
	Not Possible
	Possible
	Not Possible
	Not  Possible

	Snapshot
	Not Possible
	Not Possible
	Not Possible
	Not Possible
	Not  Possible
	Sometimes Possible
	Not Possible
	Possible

	ANSI SQL SERIALIZABLE
== Degree 3
== Repeatable Read 
        Date,  IBM,
        Tandem, ... 
	Not
Possible
	Not Possible
	Not Possible
	Not Possible
	Not Possible
	Not Possible
	Not Possible
	Not Possible
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