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ABSTRACT
In this paper, we first review SPHINX-II, a speaker-independent continuous speech recognition system developed at Carnegie Mellon University. We summarize techniques that helped SPHINX-II achieve state-of-the-art continuous speech recognition performance.  We then discuss issues related to not only speech recognition accuracy but also recognition efficiency and usability. Finally, we review WHISPER (Windows Highly Intelligent Speech Recognizer), a system we developed here at Microsoft. WHISPER offers significantly improved efficiency and usability in comparison with SPHINX-II for speech interaction in the PC platform.

1. INTRODUCTION

Speech recognition research community has made significant progress in large-vocabulary speaker-independent continuous speech recognition in recent years [1]. This progress is best exemplified in the SPHINX-II system [2], which offers not only significantly better speaker-independent continuous speech recognition accuracy but also the capability to handle a much larger vocabulary size. For 5,000 and 20,000-word speaker-independent continuous speech recognition, the recognition error rate has been reduced to 5% and 13% respectively. This system achieved the lowest error rate among all of the systems tested in the November 1992 ARPA spoken language technology evaluations [1,2]. Since January 1993, we have been refining and extending  SPHINX-II technologies for practical speech recognition at Microsoft Corporation. We have developed WHISPER (Windows Highly Intelligent Speech Recognizer) that significantly improved efficiency and usability in comparison with SPHINX-II. 

One of the most important contributions to our system development has been the availability of large amounts of training data. In the SPHINX-II system, for acoustic model training, we used about 7200 utterances of read Wall Street Journal (WSJ) text, collected from 84 speakers (half male and half female speakers) and for language model training we used 45-million words of text published by the WSJ. On the technology side, we have contributed in the areas of feature representation, detailed acoustic modeling through parameter sharing, search architecture, and language modeling. Recently, we are primarily focused on developing WHISPER that offers speech input capabilities for Microsoft Windows(. WHISPER offers many features such as continuous speech recognition; speaker-independence with online adaptation; and dynamic vocabulary. Although Whisper can be configured for continuous dictation, it nevertheless requires high-end work stations. For typical Windows( command-and-control applications, WHISPER is currently capable of providing software only solutions supporting 486DX class machines. Whisper can be scaled  to meet different PC platform requirements.

The way to achieve natural conversational interface is not easy. Our research mission  is to deliver useful technologies while pushing the frontier of spoken language interfaces. It  is conceivable that with reduced functionality and constraints, we can deliver commercial speech products to the masses before we solve all the problems. It is also obvious that speech recognition alone is insufficient, and it has to be enhanced with spoken language understanding and intelligent speech-aware applications.

This paper is organized as follows. We will first review and summarize SPHINX-II technologies. We provide ample references for readers who are interested in detailed technical descriptions and implementations.  In section 3, we discuss issues related to three most important factors in real applications, namely, recognition accuracy, efficiency and usability. We discuss our strategies used in WHISPER to tackle these three problems.

2. SPHINX-II Technology Overview

Our contributions in SPHINX-II system development include normalized feature representations, multiple-codebook semi-continuous hidden Markov models [3], senone models derived from inter- and intra-word triphones [4-5], multi-pass search architecture [6],  and unified acoustic and language modeling [7]. The SPHINX-II system block diagram is illustrated in Figure 1, where feature codebooks, dictionary, senones, and language models are iteratively re-estimated with the semi-continuous hidden Markov model (SCHMM).




Figure 1: Sphinx-II System Diagram


In this section, we will characterize our progress by percent error rate reduction. Most of these experiments were performed on a development test set for the 5000-word (WSJ) speaker-independent continuous dictation task. This set consists of 410 utterances from 10 new speakers. The extraction of reliable features is one of the most important issues in speech recognition. However the curse of dimensionality reminds us that the amount of training data will always be limited. Therefore incorporation of additional features may not lead to any measurable error reduction. This does not necessarily mean that the additional features are poor ones, but rather that we may have insufficient data to reliably model those features. Many systems that incorporate environmentally-robust [8-9] and speaker-robust [10] models face similar constraints. 

2.1 Feature Representations

Temporal changes in the spectra are believed to play an important role in human perception.  One way to capture this information is to use delta coefficients that measure the change in coefficients over time. Temporal information is particularly suitable for HMMs, since HMMs assume each frame is independent of the past, and these dynamic features broaden the scope of a frame. Since we are using a multiple-codebook hidden Markov model, it is easy to incorporate new features by using an additional codebook. We experimented with a number of new measures of spectral dynamics such as second order differential cepstrum and third order differential cepstrum. The first set of coefficients is incorporated into a new codebook, whose parameters are second order differences of the cepstrum. The second order difference for frame t,  xt (k), where t is in units of 10ms, is the difference between  t+1  and  t-1  first order differential coefficients, or  xt (k) = xt-1 (k) -xt+1(k) . We also incorporated both 40 msec. and 80 msec. differences, which represent short-term and long-term spectral dynamics, respectively.  The 80 msec. differenced cepstrum   x’t (k)  is computed as:   x’t (k) = xt-4(k) - xt+4(k) . We believe that these two sources of information are more complementary than redundant.  We incorporated both into one codebook (combining the two into one feature vector), weighted by their variances. We attempted to compute optimal linear combination of cepstral segment, where weights are computed from linear discriminants. But we found that performance deteriorated slightly.  This may be due to limited training data or there may be little information beyond second-order differences. Finally, we compared mel-frequency cepstral coefficients (MFCC) with our bilinear transformed LPC cepstral coefficients. Here we observed a significant improvement for the SCHMM model, but nothing for the discrete model. This supported our early findings about problems with modeling assumptions [12]. Our final configuration involves 51 features distributed among four codebooks, each with 256 entries. The codebooks are:

12 mel-scale cepstrum coefficients;

12 40-msec differenced MFCC and 12 80-msec differenced MFCC; 

12 second-order differenced MFCC; 

power, 40-msec differenced power, second-order differenced power.

The new feature set reduced errors by more than 25% over the baseline SPHINX [11].

2.2 Detailed Modeling Though Parameter Sharing

We need to model a wide range of acoustic-phonetic phenomena, but this requires a large amount of  training data. Since the amount of available training data will always be finite one of the central issues becomes that of how to achieve the most detailed modeling possible by means of parameter sharing. Our successful examples include SCHMMs and senones.

2.2.1 Semi-Continuous HMMs

The semi-continuous hidden Markov model (SCHMM) [3] has provided us with an excellent tool for achieving detailed modeling through parameter sharing. Intuitively, from the continuous mixture HMM point of view, SCHMMs employ a shared mixture of continuous output probability densities for each individual HMM. Shared mixtures substantially reduce the number of free parameters and computational complexity in comparison with the continuous mixture HMM, while maintaining, reasonably, its modeling power. From the discrete HMM point of view, SCHMMs integrate quantization accuracy into the HMM, and robustly estimate the discrete output probabilities by considering multiple codeword candidates in the VQ procedure. It mutually optimizes the VQ codebook and HMM parameters under a unified probabilistic framework, where each VQ codeword is regarded as a continuous probability density function.

For the SCHMM, an appropriate acoustic representation for the diagonal Gaussian density function is crucial to the recognition accuracy. We first performed exploratory semi-continuous experiments on our three-codebook system.  The SCHMM was extended to accommodate a multiple feature front-end. All codebook means and covariance matrices were re-estimated together with the HMM parameters except the power covariance matrices, which were fixed. When three codebooks were used, the diagonal SCHMM reduced the error rate of the discrete HMM by 10-15% for the RM task [12]. When we used our improved 4-codebook MFCC front-end,  the error rate reduction is more than 20% over the discrete HMM.

Another advantage of using the SCHMM is that it requires less training data in comparison with the discrete HMM. Therefore, given the current limitations on the size of the training data set, more detailed models can be employed to improve the recognition accuracy.  One way to increase the number of parameters is to use speaker-clustered models. Due to the smoothing abilities of the SCHMM, we were able to train multiple sets of models for different speakers. We investigated automatic speaker clustering as well as explicit male, female, and generic models. By using sex dependent models with the SCHMM, the error rate is further reduced by 10% on the WSJ task. 

2.2.2 Senones

To share parameters among different word models, context-dependent sub-word models have been used successfully in many state-of-the-art speech recognition systems. The principle of parameter sharing can also be extended to subphonetic models. We treat the state in phonetic hidden Markov models as the basic subphonetic unit. We cluster the state-dependent output distributions across different phonetic models according to an entropy-based distance measure [4].  Each cluster represents a set of similar Markov states and is named a senone [5].  A sub-word model is thus composed of a sequence of senones after the clustering is finished.  Following the senone sharing structure, the sub-word HMM parameters can be re-trained.  The optimal number of senones for a system is mainly determined by the available training corpus and can be tuned on a development set.

Under the senonic modeling framework, we could also use a senonic decision tree to predict unseen triphones.  A decision tree is a binary tree to classify target objects by asking binary questions in a hierarchical manner [13]. Modeling unseen triphones is particularly important for vocabulary-independence [14], as it is difficult to collect a training corpus which covers enough occurrences of every possible sub-word unit.  We need to find models which are detailed, consistent, trainable and especially generalizable.  Recently we have developed the senonic decision-tree to model triphones not covered in the training set [15].  The senonic decision tree classifies Markov states of triphones represented in the training corpus by asking linguistic questions composed of conjunctions, disjunctions, and/or negations of a set of pre-determined simple categorical linguistic questions.  Examples of these simple categorical questions are “is the left-context phone a fricative?” ,“is the right-context phone a front vowel” , etc..  The tree was automatically constructed by searching, for each node, for the best composite question which renders the maximum entropy decrease.  Finally, the tree was pruned using cross validation [14].  When the algorithm terminated, the leaf nodes of the tree represented the senones to be used.  Figure 2 shows an example tree we built to classify the second state of all K-triphones seen in a training corpus.  Note after the tree is built, it can be applied to the second state of any K-triphone due to the generalizability of the binary tree and the linguistic question.  For example, Figure 2 shows that  the second state of the K-triphone in welcome is mapped to the second senone, no matter if this triphone occurs in the training corpus.

Clustering at the granularity of the state rather than the entire model (like generalized triphones did [16]) can keep the dissimilar states of two models apart while the other corresponding states are merged, and thus lead to better parameter sharing. In addition, senones give us the freedom to use a larger number of states for each phonetic model to provide more detailed modeling. Although an increase in the number of states will increase the total number of free parameters, with senone sharing  redundant states can be clustered while others are uniquely maintained.  In particular, we replaced the SPHINX phonetic topology with the 5-state Bakis topology.  For the WSJ task, our overall senone models gave us 35% error reduction in comparison with the baseline SPHINX results.

The advantages of senones include not only better parameter sharing but also improved pronunciation optimization.  For pronunciation optimization, we use the forward-backward algorithm to iteratively optimize a senone sequence appropriate for modeling  multiple utterances of a word.  To explore the idea,  given the multiple examples, we train a word HMM whose number of states is proportional to the average duration.  When the Baum-Welch re-estimation reaches its optimum, each estimated state is quantized with the senone codebook.  That is, each state of the word model is labeled by its most similar senone. This sequence of senones becomes the senonic base-form of the word. Here arbitrary sequences of senones are allowed to provide the flexibility for the automatically learned pronunciation. When the senone sequence of every word in a lexicon is determined, the parameters (senones) may be re-trained to reflect the new parameter sharing structure. Although each word model generally has more states than the traditional phoneme-concatenated word model, the number of parameters remains the same since the size of the senone codebook is unchanged. When senones were used for pronunciation optimization in a preliminary experiment, we achieved 10-15% error reduction in a speaker-independent continuous spelling task [5].



Figure 2: A decision tree for classifying the second state of K-triphone HMMs.

2.3 Multi-Pass Search Architecture




Figure 3: Percent Error vs. number of alternatives for SPHINX-II with and without using cross word acoustic models 

Recent work on search algorithms for continuous speech recognition has focused on the problems related to large vocabularies, long distance language models and detailed acoustic modeling. A variety of approaches based on Viterbi beam search [17-18,33] or stack decoding [19] form the basis for most of this work. In comparison with stack decoding, Viterbi beam search is more efficient but less optimal in the sense of MAP. For stack decoding, a fast-match is necessary to reduce a prohibitively large search space. A reliable fast-match should make full use of detailed acoustic and language models to avoid the introduction of possibly unrecoverable errors. Recently, several systems have been proposed that use Viterbi beam search as a fast-match [20-21], for stack decoding or the N-best paradigm [22]. In these systems,  N-best hypotheses are produced with very simple acoustic and language models. A multi-pass rescoring is subsequently applied to these hypotheses to produce the final recognition output. One problem in this paradigm is that decisions made by the initial phase are based on simplified models. This results in errors that the N-best hypothesis list cannot recover. Another problem is that the rescoring procedure could be very expensive per se as many  hypotheses may have to be rescored. The challenge here is to design a search that makes the appropriate compromises among memory bandwidth, memory size, and computational power [6].

To meet this challenge we incrementally apply all available acoustic and linguistic information in three search phases. Phase one is a left to right Viterbi Beam search which produces word end times and scores using right context between-word models with a bigram language model.

In our first phase search, we effectively used acoustic equivalence classes to improve efficiency. As can be easily seen in Figure 3 the largest portion of  the search effort is spent on the first phone of a word. As the search proceeds sufficient evidence is accumulated that allows the beam search to prune the unpromising candidates. To reduce the amount of effort spent on the first phone of each word we have introduced the idea of an acoustic equivalence class. This is a simplified form of dictionary trees [25] but without the copying of trees. We form our equivalence classes by defining one class for each pseudo diphone on the lexicon. For the 20,000 word Wall Street Journal task we obtained 568 acoustic equivalence classes. The application of acoustic equivalence classes decreased runtime by a factor of four while increasing error by only 15%. It should be noted that any lost accuracy can be recovered in later passes of the search.




Figure 3: Search effort vs. position from word start.

Phase two, guided by the results from phase one, is a right to left Viterbi Beam search which produces word beginning times and scores based on left context between-word models. Phase three is an A* search which combines the results of phases one and two with a long distance language model. Our objective is to maximize the recognition accuracy with a minimal increase in computational complexity. With our decomposed, incremental, semi-between-word-triphones search, we observed that early use of detailed acoustic models can significantly reduce the recognition error rate with a negligible increase computational complexity as shown in  Figure 3.

By incrementally applying knowledge we have been able to decompose the search so that we can efficiently apply detailed acoustic or linguistic knowledge in each phase. Further more, each phase defers decisions that are better made by a subsequent phase that will apply the appropriate acoustic or linguistic information. For example, by deferring the application of the trigram language model until the third pass where the A* is performed we can more efficiently prune the large trigram state space and still achieve a 22% reduction in error rate.

2.4 Unified Stochastic Engine

Acoustic and language models are usually constructed separately, where language models are derived from a large text corpus without consideration for acoustic data, and acoustic models are constructed from the acoustic data without exploiting the existing text corpus used for language training. We recently have developed a unified stochastic engine (USE) that jointly optimizes both acoustic and language models. As the true probability distribution of both the acoustic and language models can not be accurately estimated, they can not be considered as real probabilities but scores from two different sources. Since they are scores instead of probabilities, the straightforward implementation of the Bayes equation will generally not lead to a satisfactory recognition performance. To integrate language and acoustic probabilities for decoding, we are forced to weight acoustic and language probabilities with a so called language weight [23]. The constant language weight is usually tuned to balance the acoustic probabilities and the language probabilities such that the recognition error rate can be minimized.  Most HMM-based speech recognition systems have one single constant language weight  that is independent of any specific acoustic or language information, and that is determined using a hill-climbing procedure on development data. It is often necessary to make many runs with different language weights  on the development data in order to determine the best value. In the unified stochastic engine (USE), not only can we iteratively adjust language probabilities to fit our given acoustic representations but also acoustic models. Our multi-pass search algorithm generates N-best hypotheses which are used to optimize language weights or implement many discriminative training methods, where recognition errors can be used as the objective  function [24]. With the progress of new database construction such as  DARPA’s CSR Phase II, we believe acoustically-driven language modeling will eventually provide us with dramatic performance improvements.

As outlined in [7], we can have language probabilities directly estimated from the acoustic training data. The proposed approach is fundamentally different from traditional stochastic language modeling. Firstly, conventional language modeling uses a text corpus only. Any acoustical confusable words will not be reflected in language probabilities. Secondly, maximum likelihood estimation is usually used, which is only loosely related to minimum sentence error. The reason for us to keep the estimated language weight separate from the language probability is that we may not have sufficient acoustic data to estimate the language parameters at present. Thus, we are forced to have the language weight shared across different words so we may have acoustic confidence-dependent, word-dependent or even word-count-dependent language  weights.  We can use the gradient decent method to optimize all of the parameters in the USE. When we jointly optimize  L() , we not only obtain our unified acoustic models but also the unified language models. A preliminary experiment reduced error rate by 5% on the WSJ task [7]. We will extend the USE paradigm for joint acoustic and language model optimization. It is likely that we need to use confidence measures to balance two different sources as illustrated in the following section..

3. From SPHINX-II to WHISPER
3.1 Challenges

Although SPHINX-II reduced the error rate dramatically, there remains a large gap  between real applications and research systems. We need to tackle recognition accuracy, efficiency, and usability simultaneously.  

For example, SPHINX-II requires extraordinary working memory and high-end working station, which is unrealistic for today’s popular PC environments where low-cost implementations are critical. There are always a small number of speakers who will speak quite differently due to differences like dialect, accent, culture background, or vocal tract shape. In addition to the need of having speaker adaptation, how to appropriately reject noises is also crucial to the success of commercial speech applications. Unfortunately, SPHINX-II lacks online speaker adaptation and noise rejection mechanism, which imposes a severe usability challenge to real users. Noises include not only environmental noises such as phone rings etc. but also vocal noises such as cough; ungrammatical utterances, and out of vocabulary (OOV) words. Even for a 20000-word dictation system, on average more than 3% of the words in a free-style test set are not covered by the dictionary. When we increase the vocabulary to 64,000 words, the OOV rate remains to be more than 1.5%. 

Lastly, recognition accuracy remains one of the most important challenges. Even if we exclude utterances containing OOV words, the error rate is still more than 9% for the 20000-word task due to the limitations of current technology. One good illustration is  the November 1992 ARPA stress test evaluation, where testing data comprises both spontaneous speech with many OOV words but also speech recorded using several different microphones. Even though SPHINX-II was augmented with more than 20,000 utterances in the training set and a noise normalization component, our augmented system only reduced the error rate of the 20000-word baseline result from 12.8% to 12.4%, and the error rate for the stress test (18.0%) was even worse when compared with the baseline. SPHINX-II’s  word error rates under different testing conditions are listed in Table 1.

WHISPER supports Windows NT( and Windows 4.0(. It offers speaker-independent continuous speech recognition for typical Windows command and control applications. WHISPER not only inherited  all the major features of SPHINX-II but also incorporated context-free grammar decoding, noise rejection, improved channel normalization, and online speaker adaptation into the system. In this section, we will mainly describe the strategies we used in WHISPER to tackle efficiency and usability problems for command and control applications.
Table 1 SPHINX-II in real applications

Systems 
 Vocabulary 
 Test Set 
 Error Rate

Baseline 
 5000 
 330 utt. 
 5.3%

Baseline 
 20000 
 333 utt. 
 12.4%

Stress Test 
 20000 
 320 utt.
 18.0%

3.2 Efficiency Issues

We have dramatically improved Whisper’s computational complexity. In comparison with SPHINX-II (under the same accuracy constraints), the working memory was reduced by a factor of 20, and the speed was improved by a factor of 5. Efficiency issues are largely related to the size of models  and search architecture, which is closely related data structure and algorithm design as well as appropriate acoustic and language modeling technologies. In this section we discuss two most important improvements, namely acoustic model compression and context-free grammar search architecture.

3.2.1 Acoustic model compression

The acoustic model in the SPHINX-II system takes large amount of memory space. In addition, acoustic evaluation is a major factor in determining the efficiency of the system. The compression scheme used in Whisper gives us a decent compression ratio without the overhead of model decompression, which also helped to speed up Whisper’s overall search performance without sacrificing accuracy.

Like discrete HMMs, SCHMMs use a common codebook for every output distribution. The size of codebook is typically 256, and there are 7000 senones used in the Whisper system. Since the common codebook is used for every senone output distribution, the output probability value for the same codeword entry is often identical for similar senones. For example, for context-independent phone AA, there are about 260 senones associated with it. These senones describe different context variations for the phone AA. We grouped the output probabilities together according to the codeword index instead of senones, as conventionally arranged. We observed very strong output probability correlation within similar context-dependent senones, which suggested to compress different output probabilities  based on the same codeword index across different senones. We used run-length encoding to compress all the output probabilities, which is loseless and extremely efficient for decoding. To illustrate the basic idea, we display the output probabilities of  senone 1 to senone 260 for phone AA.

Table 2 Uncompressed acoustic output probabilities


Senone 1
Senone 2
Senone 3
Senone 4
Senone 5
.
Senone 260

Codeword 1
0.020
0.020
0.020
0.0
0.1

0.0

Codeword 2
0.28
0.30
0.020
0.0
0.0

0.0

Codeword 3
0.035
0.035
0.035
0.035
0.0

0.0

Codeword 4
0.0
0.0
0.0
0.0
0.018

0.0

Codeword 5
0.0
0.0
0.0
0.0
0.028

0.0

Codeword 6
0.0
0.0
0.0
0.076
0.033

0.0

Codeword 7
0.0
0.0
0.0
0.070
0.0

0.0

Codeword 8
0.057
0.051
0.055
0.054
0.0

0.0

Codeword 9
0.057
0.051
0.054
0.051
0.0

0.3

...








Codeword 256
0.0
0.0
0.0
0.080
0.0

0.1

In Table 2, the sum of each column equals 1.0, which corresponds to the senone-dependent output probability distribution. For the run-length encoding, we choose to compress each  row instead of each column.  This enables to make full use of correlation among different senones. The compressed form is illustrated in Table 4, where multiple identical probabilities are encoded with only one value and needed  repetitive length. For example, codeword 1 probability 0.020 appears in senone 1, 2, and 3 continuously, we encoded them with <0.020, 3>. as illustrated  in Table 3.

Table 3 Compressed acoustic output probabilities

  
Codeword 1 = <0.020,3>, 0.0, 0.1, ..., 0.0


Codeword 2 = 0.28, 0.30, 0.020, <0.0,257>


Codeword 3 = <0.035, 4>, 0.0, ..., 0.0


Codeword 4 = <0.0,4>, 0.018, ..., 0.0

 
Codeword 5 = <0.0,4>, 0.028, ..., 0.0


...


Codeword 256 = <0.0,3>, 0.08, <0.0,25>, ..., 0.0

The proposed compression scheme reduced the acoustic model by more than 35% in comparison with the baseline [26]. It is not only loseless compression but also enables us to speed up acoustic model evaluation in the decoder measurably. This is because that identical output probabilities no longer need to be evaluated in computing semi-continuous output probabilities, and they can be precomputed before evaluating Viterbi paths.

3.2.2 Search architecture

Although context-free grammar (CFG) has the disadvantage of being too restrictive and unforgiving particularly with novice users, we used it as our preferred language model because of  following advantages:

· Compact representation.

· Efficient operation during.

· Ease of grammar creation and modification for new tasks.

We will mainly discuss CFG search architecture in this section, although Whisper can be configured to use bigram or trigram language models in a slightly different manner. In practice, a regular expression grammar would be sufficient for most tasks.  However, when such a grammar is made to satisfy the constraints of sharing of different sub-grammars for compactness and support for dynamic modifications, the resulting non-deterministic FSG is very similar to CFG in terms of implementation.

The CFG grammar consists of a set of productions or rules which expand non-terminals into a sequence of terminals and non-terminals.  Non-terminals in the grammar would tend to refer to high-level task specific concepts such as dates,  font-names, commands.  The terminals would be words in the vocabulary.  A grammar also has a non-terminal designated as its start state.  We also allow some regular expression operators on the right hand side of the production as a notational convenience.  We disallow left recursion for ease of implementation. The grammar is compiled into a binary linked list format.  Binary format currently has direct one to one correspondence with the text grammar components, but is more compact.  The compiled format is used by the search engine during decoding.  The grammar format achieves sharing of sub-grammars through the use of shared non-terminal definition rules.

During decoding, the search engine pursues several paths through the CFG at the same time.  Associated with each of the paths is a grammar state which describes completely how the path can be extended further.  When the decoder hypothesizes end of the current word of  a path, it asks the grammar module to extend the path further by one word.  There may be several alternative successor words for the given path.  All the successor word possibilities are considered by the decoder.  This may cause the path to be extended to generate several more paths to be considered each with its own grammar state.  Also note that, the same word might be under consideration by the decoder in the context of different paths and grammar states at the same time.

The grammar state consists of a stack of production rules.  Each element of the stack also contains the position within the production rule of the symbol which is currently being explored. The grammar state stack starts with the production rule for the grammar start non-terminal at its first symbol.  When the path needs to be extended, we look at the next symbol in the production.   If it is a terminal, the path gets extended with the terminal and the search engine tries to match it against the acoustic data.  If it is a non-terminal, the production rule which defines it, is pushed on the stack and we start scanning the new rule from its first symbol instead.  When we reach the end of the production rule, we pop the ending rule off the stack and advance the rule below it by one position, over the non-terminal symbol, which we have just completed exploring.  When we reach the end of the production rule at the very bottom of the stack, we have reached an accepting state in which we have seen a complete grammatical sentence.

In the interests of efficiency, the decoder does not really pursue all possible paths.  When a particular path stops looking promising, it gets pruned. Pruning is a source of additional errors since the correct path which looks unpromising now may prove to be the best when all the data is considered. The strategy we used in pruning is the Rich Get Richer (RGR)  RGR enables us to focus on most promising paths and treat them with detailed acoustic evaluations and relaxed path pruning thresholds. On the contrary, the poor (less promising paths) will be extended but probably with less expensive acoustic evaluations and less forgiving path pruning thresholds. In this way locally optimal candidates continue to receive the maximum attention while less optimal candidates are retained but evaluated using less precise (computationally expensive) acoustic and/or linguistic models. The RGR strategy gives us finer control on the creation of new paths which has potential to grow exponentially, and enables us to control the working size memory efficiently for our relatively small PC platforms.

One of our RGR examples is to control the level of acoustic details used in the search. Our goal is to reduce the number of context dependent senone probability computations required. The context dependent senones associated with p would be evaluated according to the following conditions:

· ci search (p) * ( + ci acoustic(p) > threshold

· ci search (p) = max (likelihood(s) | ci_phone(s) ( ci_phone(p), s ( state_space)

· ci acoustic(p) = look_ahead estimate of ci(p)

These conditions state that the context dependent senones associated with p should be evaluated if there exists a state s corresponding to p in linear combination with a look-ahead score corresponding to p that falls with in a threshold. In the event that p does not fall with in the threshold the senone probabilities corresponding to p are estimated using the context independent senones corresponding to  p. The following table gives the results for 20,000 word dictation applications.

Table 4  Reduction in senone computation vs error rate increase

Reduction in Senone computation 
 80%
95%

Error Rate Increase 
 1% 
15%

3.3 Usability Issues
To deal with real speech, we face the problems such as environmental and speaker variations, ill-formed grammatical speech input, and sounds not intended for the system. In this section, we selectively discuss hoe we addressed channel distortion, noise rejection, and speaker adaptation in Whisper, three of many practical issues that we must deal with  to make Whisper usable. 

3.3.1 Improved channel normalization


Mean normalization plays an important role in robust speech recognition due to variations of channel, microphone, and speaker. However, mean normalization does not discriminate silence and voice in computing utterance mean. For improved speech recognition accuracy, we invent a new efficient normalization procedure that differentiates silence and voice during normalization.

The proposed technique consists of adding a correction vector to each cepstrum frame. This correction factor depends on the instantaneous SNR of the input frame (That is the logarithm of the ratio between the input frame power and the background noise power). The input vector x is compensated as follows




where the correction vector r is given by:




where n is the average noise cepstrum vector, s is the average speech cepstral vector and p (x) is the a posterior probability of the current frame being noise. Assuming that noise and speech follow a Gaussian distribution, the probability p(x)  is obtained as follows:




where we have Gaussian distributions for noise and speech. p (x) can be expressed as a sigmoid function




with d(x) given by




If the covariance matrices for noise and speech are chosen to be diagonal, d(x) can be expressed as




where p is the dimension of the vector. In fact, since the dominant term in the previous sum occurs for p=0, (the power term), an approximation could be used as:




The only thing that remains is how to estimate the noise and speech means n and s, and corresponding variances. We estimate them from the input signal dynamically as an average of past noise and speech frames respectively:













where wk is a window function. To weight the recent history more, we used an exponential window:




with ( being a constant that controls the adaptation rate. In fact, one could use different rates for noise and speech. It is advantageous to use a smaller time constant for noise than for speech.

We dynamically estimated mean vectors for silence and voice data respectively. The same normalization scheme is applied on an utterance-basis in both training and recognition. The new normalization procedure reduced error rate for both the same- cross-environment testing. It significantly reduced error rate by 25% when environment change exists [27].

3.3.2 Noise rejection

The  ability to detect and notify the user of (a) utterances containing out-of-vocabulary words, (b) otherwise ungrammatical utterances, and (c) non-utterances such as phone rings, is essential to the usability of a  recognizer.  This is particularly true when the language model is a tight context free grammar, as users may initially have difficulty confining their speech to such a model.  We have added rejection functionality to Whisper that assigns a confidence level to each segment in a recognition result, as well as to the whole utterance, and then classifies each component as “accepted”, “need clarification through dialogue” or “rejected” for the purposes of the user interface. 

Previous work on detecting noise words include an all-phone representation of the input [29], and use of noise-specific models [30,31]. We have observed for continuous small-vocabulary tasks that the path determined by the best senone score per frame (chosen from the entire pool of senones) is a poorer rejection path than if only context-independent senones are considered.  Using context information to guide the path (by adding left and right context constraints to the all-senone path, for example) improves rejection accuracy but is computationally expensive. We decided to use the output of a fully-connected network of  context-independent phoneme models and one background noise model for the rejection path. Evaluation of the network is essentially a Viterbi beam search at the phoneme level pruned with a separate beam width that may be adjusted to trade off speed for rejection accuracy.

We measure the rejection accuracy using a multiple-speaker data set with a mixture of grammatical and ungrammatical utterances as well as noise.   Using a single confidence threshold tuned for this data set, we have found that Whisper rejects 76% of utterances that are ungrammatical or noise and 20% of misrecognized grammatical utterances, while falsely rejecting fewer than 3% of correctly recognized grammatical utterances.  Feedback supplied by the user is used to train the confidence threshold;  this increases per-speaker rejection accuracy, especially for non-native speakers.

We have found that the confidence measures used for noise rejection can also be used to improve recognition accuracy. Here, word transitions are penalized by a fraction f of the confidence measure. So the less confident theories in the search beam would be penalized more than theories that have higher confidence intervals, which provides us with different information other than the accumulated probability for each path in the beam. This is in the same spirit of our general RGR strategy used throughout the system. We found that the error rate was reduced by more than 20% [28].

3.3.3 Speaker adaptation

To bridge the gap between speaker-dependent and speaker-independent speech recognition, we incorporated speaker adaptation as part of the Whisper system. In the same manner as suggested in [32, 33], we modify the two most important parameter sets for each speaker, i.e. the vector quantization codebooks (or the SCHMM mixture components) and the output distributions (or the SCHMM mixing coefficients) in the framework of semi-continuous models. We are interested in developing adaptation algorithms that are consistent with the estimation criterion used in either speaker-independent or speaker-dependent systems. We observed in general 15-30% error reduction when a small amount of enrollment data is used. The adaptation is particularly important for non-native English speakers.

4. Summary

In summary, the system architecture of Whisper is illustrated in Figure 4. We have significantly improved Whisper’s efficiency and usaibility over the past year. Users can easily modify CFG and add new words to the system. Whenever a new word is added for a non-terminal node in the CFG, a  spelling-to-pronunciation component is activiated to augment the lexicon. Table 5 summarizes the word recognition error rate on a 260-word Windows continuous command-and-control task, all test speakers used here were without pre-training. With 800KB working size memory configuration, the average speaker-independent word recognition error rate was 1.8%.



                    Figure 4 Whisper system architecture


Table 5 Whisper performance

working size memory
800KB

word error rate
1.8%

The emergence of advanced speech interface is a significant event that will change today’s dominating GUI-based computing paradigm. It is obvious that the paradigm shift would require not only accurate speech recognition, but also integrated natural language understanding with a new programming model. The speech interface would not be considered intelligent until we make it transparent, natural, and easy to use. With our ongoing research effort, we believe that we could make Whisper engine work indeed as its acronym promised -- Windows Highly Intelligent Speech Recognition.

5. ACKNOWLEDGMENTS

The authors would like to express their gratitude to Jack McLaughlin, Rick Rashid, Raj Reddy, Roni Rosenfeld, and Shenzhi Zhang for their help in WHISPER development.

REFERENCES

[1] Pallett, Fiscus, Fisher, and Garofolo, Benchmark Tests for the DARPA Spoken Language Program, Proceeding of ARPA Human Language Technology Workshop, March 1993

[2] Huang, Alleva, Hwang, and Rosenfeld, An Overview of SPHINX-II Speech Recognition System, Proceeding of ARPA Human Language Technology Workshop, March 1993

[3]  Huang, Phoneme Classification Using Semicontinuous Hidden Markov Models,  IEEE Transactions on Signal Processing, vol. 40 (1992), pp. 1062--1067.

[4] Hwang and Huang, Shared-Distribution Hidden Markov Models for Speech Recognition, IEEE Transactions on Speech and Audio Processing, vol. 1 (1993).

[5] Hwang, and Huang,  Subphonetic Modeling with Markov States --- Senone, IEEE International Conference on Acoustics, Speech, and Signal  Processing, 1992.

[6] Alleva, Huang,  and Hwang, An Improved Search Algorithm for Continuous Speech Recognition, IEEE International Conference on Acoustics, Speech, and Signal  Processing, 1993.

[7] Huang, Belin, Alleva, and Hwang, Unified Stochastic Engine (USE) for Speech Recognition, IEEE International Conference on Acoustics, Speech, and Signal Processing, 1993.

[8]  Acero, A. Acoustical and Environmental Robustness in Automatic Speech Recognition, Department of Electrical Engineering, Carnegie-Mellon University, September 1990.

[9]  Liu, Stern, Huang, and Acero, Efficient Cepstral Normalization for Robust Speech Recognition, Proceeding of ARPA Human Language Technology Workshop, March 1993

[10] Huang,  Minimizing Speaker Variations Effects for Speaker-Independent Speech Recognition, DARPA Speech and Language Workshop, Morgan Kaufmann Publishers, San Mateo, CA,1992.

[11] Lee, Hon, and Reddy, An Overview of the SPHINX Speech Recognition System, IEEE Transactions on Acoustics, Speech, and Signal Processing, January 1990, pp. 35--45.

[12] Huang, Hon, Hwang, and Lee, A Comparative Study of Discrete, Semicontinuous, and Continuous Hidden  Markov Models, Computer Speech and Language, vol. 7, 1993. pp. 359-368.

[13] Breiman, Friedman, Olshen, and Stone, Classification and Regression Trees, Wadsworth, Inc.,Belmont, CA.,1984.

[14] Hon, CMU Vocabulary-Independent Speech Recognition System, PhD Thesis, School of Computer Science, Carnegie Mellon University, 1992

[15] Hwang, Huang, and Alleva, Predicting Unseen Triphones with Senones, IEEE International Conference on Acoustics, Speech, and Signal  Processing, 1993.

[16] Lee, Context-Dependent Phonetic Hidden Markov Models for Continuous Speech  Recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, April 1990, pp. 599--609

[17] Viterbi, Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm, IEEE Transactions on Information Theory, vol. IT-13 (1967), pp. 260--269.

[18] Lowerre,  and Reddy,  The Harpy Speech Understanding System, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[19] Bahl, Jelinek,  and Mercer, A Maximum Likelihood Approach to Continuous Speech Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-5 (1983), pp. 179--190.

[20] Soong,   and Huang,  A Tree-Trellis Based Fast Search for Finding the N-Best Sentence  Hypothesis, DARPA Speech and Language Workshop. 1990.

[21] Zue, Glass, Goodine, Leung, McCandless, Philips, M., Polifroni, and  Seneff, Recent Progress on the Voyager System, DARPA Speech and Language Workshop, 1990.

[22] Schwartz,  Austin,   Kubala,   and Makhoul, New Uses for the N-Best Sentence Hypotheses Within the Byblos Speech  Recognition System, IEEE International Conference on Acoustics, Speech, and Signal  Processing,1992

[23] Bahl,  Bakis,  Jelinek,  and Mercer,  Language-Model/Acoustic Channel Balance Mechanism, IBM Technical Disclosure Bulletin, vol. 23 (1980), pp. 3464--3465.

[24] Juang, and Katagiri, Discriminative Learning for Minimum Error Classification, IEEE Trans on Signal Processing, to appear

[25] Ney, H. Haeb-Umbach, R., Tran, B.-H. and Oerder, M. Improvements in beam search for 10000 word continuos speech recognition. IEEE International Conference on Acoustics, Speech, and  Signal Processing, March 1992.

[26] Huang, X and Zhang, S. Data Compression for Speech Recognition, US Patent pending, 1993

[27] Acero, A. and Huang, X. Robust Mean Normalization for Speech Recognition, US Patent pending, 1994

[28] Beeferman, D. and Huang, X. Confidence Measure and Its Applications to Speech Recognition, US Patent pending, 1994

[29] Asadi, Schwartz, and Markhoul, J. Automatic Modeling of Adding New Words to a Large-Vocabulary Continuous Speech Recognition System, IEEE International Conference on Acoustics, Speech, and  Signal Processing, 1991

[30] Ward, W. Modeling Non-Verbal Sounds for Speech Recognition, DARPA Speech and Language Workshop, October 1989.

[31] Wilpon, Rabiner, Lee, and Goldman, Automatic Recognition of Keywords in Unconstrained Speech using Hidden Markov Models, IEEE Trans on Acoustics, Speech, and Signal Processing, Vol- ASSP-38, pp 1870-1878, 1990

[32] Huang and Lee, On Speaker-Independent, Speaker-Dependent, and Speaker-Adaptive Speech Recognition, IEEE Transaction on Speech and Audio Processing, Vol. 1, pp. 150-157, 1993

[33] Gauvain and Lee, Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains, IEEE Trans on Speech and Audio Processing, Vol 2, pp 291-298, 1994

_835099650

_835511921.doc
����������������������������������������



Feature



Codebook







Language



Model &



Weights







Feature analysis



and quantization







Training



Data







Reestimation







Training







Testing



Data







Lexicon







 Senone







Senonic SCHMM







Unified stochastic engine







Search
















_835540668

_835626689.xls
Sheet: DOE1.XLC

9062618.0

4834954.0

3443152.0

1359658.0

654677.0

269810.0

96026.0

47225.0

10884.0

1933.0

630.0

208.0

0.0

0.0

0.0

0.0

0.0


_835514121

_835099653.doc
�



senone 2







welcome







senone 5







senone 6







Is left phone a sonorant or nasal?







Is right phone a back-R?







Is left phone S,Z,SH,or ZH?







Is right phone voiced?







Is left phone a back-L or 



(is left phone neither a nasal nor a Y-glide and right phone a LAX-vowel)?























































senone 1







senone 3







senone 4







yes







yes







yes







no
















_835186049

_835099646

_835099648

_835099649

_835099647

_835099644

_835099645

_835099642

_835099643

_835099639

_835099641

_835099638

