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1 Introduction

In this paper, we show a relation between well-known machine learning tech-
niques and program verification techniques. In particular, we show how inter-
polants [4,15,10] that are useful heuristics for computing “simple” proofs in pro-
gram verification can be looked upon as classifiers in supervised machine learn-
ing. Informally, an interpolant is a predicate that separates good program or
positive states from bad or negative program states and a program proof can be
looked upon as a set of appropriately chosen interpolants. Our main technical
insight is to view interpolants as classifiers which distinguish positive examples
from negative examples. This view allows us to make the following contributions:

– We are able to use state-of-the-art classification algorithms for the purpose
of computing invariants. Specifically, we show how support vector machines
(SVMs) [19] for binary classification can be used to compute interpolants.

– Since classification algorithms are predictive, the interpolants we compute
are generalized predicates useful for program proofs. We show that we can
discover inductive invariants for a number of benchmarks. Moreover, since
SVMs are routinely used in large scale data processing, we believe that our
approach can scale to verification of large software.

– Classification based interpolation also has the ability to detect superficial
non-linearities. As shown in Section 4, even if the underlying problem struc-
ture is linear, the constraints can give an impression that we are solving
a non-linear problem. Since our algorithm mines the underlying structure
directly, we can discover the linear structure for such problems.

The rest of the paper is organized as follows. We informally introduce our
technique by way of an example in Section 1.1. In Section 2, we describe nec-
essary background material including a primer on SVMs. Section 3 describes
the main results of our work. We first introduce a simple algorithm Basic that
uses an SVM as a black box to compute a candidate interpolant and we for-
mally characterize its output. SVMs rely on the assumption that the input is
linearly separable. Hence, we provide an algorithm SVM-I (which makes multi-
ple queries to an SVM) that does not rely on the linear separability assumption
and prove correctness of SVM-I. We augment Basic with a call to SVM-I; the
output of the resulting algorithm is still not guaranteed to be an interpolant.
This algorithms fails to output an interpolant when we do not have a sufficient
number of positive and negative examples. Finally, we describe an algorithm In-
terpolant that generates a sufficient number of positive and negative examples
by calling Basic iteratively. The output of Interpolant is guaranteed to be
an interpolant and we formally prove its soundness. In Section 4, we show how
our technique can handle superficial non-linearities via an example that previous
techniques are not capable of handling. Section 5 describes our implementation
and experiments over a number of benchmarks. Section 6 places our work in the
context of existing work on interpolants and machine learning. Finally, Section 7
concludes the paper with some directions for future work.
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1.1 An Overview of the Technique

We show an example of how our technique for interpolation discovers relevant
predicates for program verification. Consider the program in Fig. 1. This program
executes the loop at line 2 a non-deterministic number of times. Upon exiting
this loop, the program decrements x and y until x becomes zero. At line 6, if
y is not 0 then we go to an error state. To prove that the error() statement

foo( )

{

1: x = y = 0;

2: while (*)

3: { x++; y++; }

4: while ( x != 0 )

5: { x--; y--; }

6: if ( y != 0 )

7: error() ;

}

Fig. 1. Motivating example for our technique.

is unreachable, we will need to discover invariants for the two loops. We will
follow the standard interpolation based verification recipe and try to find relevant
predicates by finding interpolants for finite infeasible traces of the program. The
hope is that the interpolants thus obtained will give us predicates that generalize
well. In particular, we aim to obtain an inductive loop invariant. E.g. x = y is a
sufficiently strong loop invariant for proving the correctness of Fig. 1.

Suppose we unroll all the loops once. Then we get an infeasible trace (1, 2, 3,
4, 5, 6,7). We will decompose this trace into two parts A and B and thereby find
interpolants for this infeasible trace. A represents the values of x and y obtained
after executing lines 1, 2, and 3. B represents the values of x and y such that
if we were to execute lines 4, 5, 6, and 7 then the program reaches the error()

statement. Now, we have (A,B) where A ∧B ≡ ⊥:

A ≡ x1 = 0 ∧ y1 = 0 ∧ ite(b, x = x1 ∧ y = y1, x = x1 + 1 ∧ y = y1 + 1)
B ≡ ite(x = 0, x2 = x ∧ y2 = y, x2 = x− 1 ∧ y2 = y − 1) ∧ x2 = 0 ∧ ¬(y2 = 0)

Here ite stands for if-then-else. As is evident from this example, A is typically the
set of reachable states and B is the set of bad states at a given program point.
An interpolant is a proof that shows A and B are disjoint and is expressed using
the common variables of A and B. In this example, x and y are the variables
common to A and B. Our technique for finding the interpolant between A and B
operates as follows: First, we compute samples of values for (x, y) that satisfy the
predicates A and B. Figure 2 plots satisfying assignments of A as +’s (points
(0, 0) and (1, 1)) and of B as ◦’s (points (1, 0) and (0, 1)). Now we will use
machine learning technology; we will use an SVM to find lines which separate
the ◦’s from the +’s.
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Fig. 2. Finding interpolants using an SVM.

We consider the ◦ points one by one and ask an SVM to find a line which
separates the chosen ◦ point from the +’s. On considering (0, 1), we get the
line 2y = 2x + 1 and from (1,0) we obtain 2y = 2x − 1. Using these two lines,
we obtain the interpolant, 2y ≤ 2x + 1 ∧ 2y ≥ 2x − 1. It can be checked that
this predicate is an inductive invariant and is sufficient to prove the error()

statement of Fig. 1 unreachable.
We will see in Section 2.1 that we can easily obtain the stronger predicate

x = y. Intuitively, we just have to translate the separating lines as close to the
+’s as possible while ensuring that they still separate the +’s from the ◦’s.

2 Preliminaries

Let A and B be two formulas in the theory of linear arithmetic:

φ ::= wTx+ d ≥ 0 | true | false | φ ∧ φ | φ ∨ φ | ¬φ

w ∈ Rn is an n-dimensional vector of constants: (w1, . . . , wn)T . We refer to such
vectors of constants by the term points. x = (x1, . . . , xn)T is an n-dimensional
vector of variables. The inner product 〈w, x〉 of w and x is wTx = w1x1 +
. . .+ wnxn. The equation wTx+ d = 0 is a hyperplane in n-1 dimensions. Each
hyperplane corresponds to two half-spaces: wTx+d ≥ 0 and wTx+d ≤ 0. A half-
spaces divides Rn into two parts: variable values which satisfy the half-space and
those which do not. E.g. x−y = 0 is a 1-dimensional hyperplane, x−y+2z = 0 is
a 2-dimensional hyperplane, and x ≥ y and x ≤ y are half-spaces corresponding
to the hyperplane x = y.

Suppose A ∧ B ≡ ⊥, i.e. there is no assignment to variables present in the
formula A∧B which makes it true. Informally, an interpolant is a simple expla-
nation as to why A and B are disjoint. Formally it is defined as follows:

Definition 1 (Interpolant [15]). An interpolant for a pair of formulas (A,B)
such that A ∧ B ≡ ⊥ is a formula I satisfying A ⇒ I, I ∧ B ≡ ⊥, and I refers
only to variables common to both A and B.

Let Vars(A,B) denote the common variables of A and B. We refer to the val-
ues assigned to Vars(A,B) by satisfying assignments of A as positive examples.
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Dually, negative examples are values assigned to Vars(A,B) by satisfying assign-
ments of B. Sampling is the process of obtaining positive and negative examples
given A and B. For instance, sampling from (A ≡ y < x) and (B ≡ y > x) with
common variables x and y, can give us a positive example (1, 0) and a negative
example (0, 1).

A well studied problem in machine learning is binary classification. The input
to the binary classification problem are points with associated labels. By stan-
dard convention, these labels are l ∈{+1,-1}. The goal of the binary classification
problem given points with labels is to find a classifier C : point → {true, false}
s.t. C(a) = true for all points a with label +1, and C(b) = false for all points b
with label −1. This process is called training a classifier and the set of labeled
points is called the training data. The goal is to find classifiers which are predic-
tive in nature, i.e., even if we are given a new labeled point w with label l not
contained in the training data then it should be very likely that C(w) is true iff
l = +1.

Our goal in this paper is to apply well known binary classification algorithms
to positive and negative examples to obtain interpolants. We will assign positive
examples the label +1 and the negative examples the label -1 to obtain the
training data. We are interested in classifiers, in the theory of linear arithmetic,
that classify correctly.

Definition 2 (Correct Classification). A classifier C classifies correctly on
a given training data X if for all positive examples a ∈ X, C(a) = true, and for
all negative examples b ∈ X, C(b) = false. If there exists a positive example a
such that C(a) = false (or a negative example b such that C(b) = true), then C
is said to have misclassified a (or b).

There are classification algorithms that need not classify correctly on training
data [9]. These are useful because typically the data in machine learning is
noisy. A classifier which misclassifies on the training data is definitely not an
interpolant. Hence we focus on classifiers which classify correctly on training
data. In particular, we use optimal margin classifiers generated by support vector
machines (SVMs).

2.1 SVM Primer

We provide some basic background on SVMs in the context of binary classifica-
tion using half-spaces. Let us denote the training data by X, the set of positive
examples by X+, and the set of negative examples by X−.

Let us assume that the training data X is linearly separable: there exists
a hyperplane, called a separating hyperplane, wTx + d = 0 such that ∀a ∈
X+. wTa + d > 0 and ∀b ∈ X−. wT b + d < 0. For linearly separable training
data, an SVM is guaranteed to terminate with a separating hyperplane. To use
a separating hyperplane to predict the label of a new point z we simply compute
sign(wT z + d). In other words, if wT z + d ≥ 0 then we predict the label to be
+1 and -1 otherwise.
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An interesting question to consider is the following: If there are multiple
separating hyperplanes then which one is the best? If a point is away from
the separating hyperplane, say wTx + d >> 0, then our prediction that x is a
positive example is reasonably confident. On the other hand, if x is very near to
the separating hyperplane then our prediction is no longer confident as a minor
perturbation can change the predicted label. We say such points have a very
low margin. The optimal margin classifier is the separating hyperplane which
maximizes the distance from the points which are nearest to it. The points
which are closest to the optimal margin classifier are called support vectors1.
An SVM will find the optimal margin classifier and the support vectors given
linearly separable training data efficiently [19] by solving a convex optimization
problem.
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Fig. 3. Line 2 and line 4 are separating hyperplanes. The support vectors for optimal
margin classifier (line 2) lie on dotted lines.

An example of SVM in action is shown in Fig. 3. The positive examples are
shown by +’s and negative examples by ◦’s. Line 4 is a separating hyperplane
and we can observe that several points of training data lie very close to it and
hence its predictions are not so confident. Line 2 is the optimal margin classifier.
The points on the dotted lines are closest to the optimal margin classifier and
hence are the support vectors.

We observe that using SVMs provide us with a choice of half-spaces for the
classifier. We can return the half-space above line 2 as a classifier. All positive
examples are contained in it and all negative examples are outside it. Or we can
return the half-space above line 1 and that will be a stronger predicate. Or we

1 Note that a support vector is a point and not a vector. This is the standard termi-
nology in machine learning.
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can return the negation of the half-space below line 3 and that will be a weaker
predicate. Or any line parallel to line 2 and lying between line 1 and line 3
will work. The choice of predicate depends on the application (i.e., the program
verification tool that consumes these predicates) and all these predicates can be
easily generated by taking a linear combinations of the support vectors.

3 Classification Based Algorithms for Interpolation

We now discuss an algorithm for computing interpolants using an SVM as a black
box. We start with a basic version as described in Figure 4. Basic takes as input
two predicates A and B over the theory of linear arithmetic and generates as
output a half-space h over the common variables of A and B. Basic also has
access to (possibly empty) sets of already known positive examples X+ and
negative examples X−.

Basic(A, B)
Vars := Common variables of A and B
Add Samples(A,X+) to X+

Add Samples(B,X−) to X−

SV := SVM(X+, X−)
h := Process(SV , X+, X−);
return h

Fig. 4. The basic algorithm for computing a separating hyperplane.

Basic first computes the variables which are common to both A and B and
stores them in the set Vars. It then computes the positive examples X+ by
repeatedly asking a theorem prover for the satisfying assignments of A which
are not already present in X+(call to procedure Samples(A, X+)). The values
assigned to variables in Vars by these satisfying assignments are stored in X+.
The negative examples X− are computed from B in a similar fashion (call to
procedure Samples(B, X−)). Let us assume that X+ and X− are linearly sep-
arable. Next, we compute the support vectors (SV of Fig. 4) for X+ and X−

by calling an off-the-shelf SVM to generate the optimal margin classifier. The
result is then processed via the call to procedure Process which takes a linear
combination of support vectors in SV to obtain the classifier h = wTx + d ≥ 0
s.t. wTx + d = 0 is the optimal margin classifier between X+ and X−, and
∀a ∈ X+. h(a) > 0 and ∀b ∈ X−. h(b) < 0. This half-space h is returned as
output after correction for minor numerical artifacts (say rounding 4.9996 to 5).
Process can be modified to produce stronger or weaker predicates (Sect. 2.1).
The output of Basic is characterized by the following lemma:

Lemma 1 (Correctness of SVM). Given positive examples X+ which are
linearly separable from negative examples X−, SVM and Process compute a half-
space h s.t. ∀a ∈ X+. h(a) > 0 and ∀a ∈ X−. h(x) < 0.

6



Proof. The lemma follows from the fact that SVM returns an optimal margin
classifier under the assumption that X+ and X− are linearly separable, and
that rounding performed by Process does not affect the predicted label of any
example in X+ or X−.

However, the algorithm Basic has two major problems:

1. SVM will produce a sound output only when X+ and X− are linearly sep-
arable.

2. Basic computes a separator for X+ and X− which might or might not
separate all possible models of A from all possible models of B.

We will now provide partial solutions for both of these concerns.

3.1 Algorithm for Intersection of Half-spaces

Suppose Basic samples X+ and X− which are not linearly separable. If we
denote x1, . . . , xn as the variables contained in Vars then there is an obvious
(albeit not very useful) separator between X+ and X− given by the following
predicate:

P =
∨

(a1,...,an)∈X+ x1 = a1 ∧ . . . ∧ xn = an

Observe that ∀a ∈ X+. P (a) = true and ∀b ∈ X−. P (b) = false. The predicate P
is a union (or disjunction) of intersection (or conjunction) of half-spaces. To avoid
the discovery of such specific predicates, we restrict ourselves to the case where
the classifier is either a union or an intersection of half-spaces. This means that
we will not be able to find classifiers in all cases even if they exist in the theory
of linear arithmetic. We will now give an algorithm which is only guaranteed
to succeed if there exists a classifier which is an intersection of half-spaces. We
only discuss the case of intersection here as finding union of half-spaces can be
reduced to finding intersection of half-spaces by solving the dual problem.

Definition 3 (Problem Statement). Given X+ and X− such that there exist
a set of half-spaces H = {h1, . . . , hn} classifying X+ and X− correctly (i.e.,
∀a ∈ X+.

∧n
i=1 hi(a) and ∀b ∈ X−. ¬

∧n
i=1 hi(a)) find H.

We find such a classifier using the algorithm of Figure 5. We initialize the clas-
sifier H to true or 0 ≤ 0. Next we compute the set of examples misclassified by
H. ∀a ∈ X+.H(a) = true and hence all positive examples have been classified
correctly. ∀b ∈ X−.H(b) = true and hence all negative examples have been mis-
classified. Therefore we initialize the set of misclassified points, Misclassified, by
X−. We consider a misclassified element b and find the support vectors between
b and X+. Using the assumption that a classifier using intersection of half-spaces
exists for X+ and X−, we can show that b is linearly separable from X+. Using
Lemma 1, we will obtain a half-space h = wTx + d ≥ 0 for which h(b) < 0.
We will add h to our classifier and remove the points which h classifies correctly
from the set of misclassified points. In particular, b is no longer misclassified and
we repeat until all examples have been classified correctly. A formal proof of the
following theorem can be developed along the lines of the argument above:
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SVM-I(X+,X−)
H := true
Misclassified := X−

while |Misclassified |6= 0
Arbitrarily choose b from Misclassified
h := Process(SVM(X+, {b}), X+, X−)
∀b′ ∈Misclassified s.t. h(b′) < 0 : remove b′ from Misclassified
H := H ∧ h

end while

return H

Fig. 5. Algorithm for classifying by intersection of half-spaces

Theorem 1 (Correctness of SVM-I). If there exists an intersection of half-
spaces, H, that can correctly classify X+ and X− then SVM-I is a sound and
complete procedure for finding H.

We should note that in the worst case it is possible that SVM-I will find as
many half-spaces as the number of negative examples. But since optimal margin
classifiers generalize well, the worst case behavior does not usually happen in
practice. Also the classifier found depends on the way in which the misclassified
element b is chosen and different choices can lead to different classifiers.

SVM-I can be incorporated into Basic by replacing the call to SVM with
SVM-I in Fig. 4. Now Basic with SVM-I can find classifiers when X+ and X−

are not linearly separable but can be separated by an intersection of half-spaces.

3.2 A Sound Algorithm

We observe that Basic, with or without SVM-I, only finds classifiers between
X+ and X−. The way Basic is defined, these classifiers are over the common
variables of A and B. But if we do not have enough positive and negative ex-
amples then a classifier between X+ and X− is not necessarily an interpolant.
When this happens, we need to add more positive and negative examples from
A and B.

The algorithm Interpolant computes a classifier H which classifies X+ and
X− correctly i.e., ∀a ∈ X+. H(a) = true and ∀b ∈ X−. H(b) = false by calling
Basic with SVM-I. If H is implied by A and is unsatisfiable in conjunction
with B then we have found an interpolant and we exit the loop. Otherwise we
update X+ and X− and try again. We have the following theorem:

Theorem 2 (Soundness of Interpolant). Interpolant(A,B) terminates
if and only if the output H is an interpolant between A and B.

Proof. The output H is defined over the common variables of A and B (follows
from the output of Basic.
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Interpolant(A, B)
X+, X−:= ∅
while true

H := Basic(A, B) // Basic with SVM-I
if SAT(A ∧ ¬H)

Add satisfying assignment to X+ and continue

if SAT(B ∧H)
Add satisfying assignment to X− and continue

break

return H

Fig. 6. A sound algorithm for interpolation

only if : Let Interpolant(A, B) terminate. This means that both conditions
B ∧ H ≡ ⊥ and A ∧ ¬H ≡ ⊥ must be satisfied (these are conditions for
reaching break statement), which in turn implies that A ⇒ H holds and
therefore H is an interpolant of A and B.

if : Let H be an interpolant of A and B. This means that A ⇒ H and hence
A ∧ ¬H ≡ ⊥. B ∧H ≡ ⊥ holds because H is an interpolant and therefore,
the break statement is reachable and Interpolant(A, B) terminates.

4 Handling Superficial Non-linearities

Most program verification engines do not reason about non-linear arithmetic
directly. They try to over-approximate non-linear functions, say by using unin-
terpreted function symbols. In this section, we discuss how to use our technique
to over-approximate non-linear arithmetic by linear functions.

Suppose A∧B ≡ ⊥ and A is a non-linear predicate. If we can find a linear in-
terpolant I between A and B then A⇒ I. Hence I is a linear over-approximation
of the non-linear predicate A. We discuss, using an example, how such a predicate
I can be useful for program verification.

Suppose we want to prove that line 5 is unreachable in Fig. 7. There are
some lines which are commented. These will be considered later. This program
assigns z non-deterministically and does some non-linear computations. If we
can show that an over-approximation of reachable states after line 3 is disjoint
from x = 2 ∧ y 6= 2 then have a proof that error() is unreachable.
We use our technique for computing interpolants over the non-linear predicates
to construct an easy to analyze over-approximation of this program. We want to
find an interpolant of the following predicates (corresponding to the infeasible
trace (1, 2, 3, 4, 5)):

A ≡ x = 4sin2(z) ∧ y = 4cos2(z)
B ≡ x = 2 ∧ y 6= 2

Such an interpolant is a simple proof of infeasibility of A ∧B over the common
variables x and y. We obtain positive examples by randomly substituting val-
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foo()

{

// do{

1: z = nondet();

2: x = 4 * sin(z) * sin(z);

3: y = 4 * cos(z) * cos(z);

// } while (*);

4: if ( x == 2 && y != 2 )

5: error() ;

}

Fig. 7. An example with superficial non-linearities

ues for z in A and recording the values of x and y. Since B is linear, we can
ask an SMT solver [17] for satisfying assignments of B to obtain the negative
examples. We have plotted one possible situation in Figure 8 – the positive and
negative examples are represented by +’s and ◦’s respectively. Running SVM-I
and choosing the stronger predicate from the available choices (Section 2.1) gen-
erates the predicate P ≡ (x+ y = 4). We remark that to obtain this predicate,
we only need one negative example above (2, 2), one negative example below
(2, 2), one positive example to the left of (2, 2), and one positive example to the
right of (2, 2). Adding more examples will leave P unaffected, due to the way
optimal margin classifier is defined (Section 2.1). This shows the robustness of
the classifier. That is, once a sufficient number of samples have been obtained
then the classifier is not easily perturbed by changes in the training data.

Now we need to verify that P is actually an interpolant. We use an SMT
solver to show that P ∧B ≡ ⊥. To show A⇒ P can be hard. For this example,
any theorem prover with access to the axiom sin2(x) + cos2(x) = 1 will succeed.
But we would like to warn the reader that the verification step, where we check
A⇒ I, can become very expensive for arbitrary non-linear formulas; the problem
is still decidable though [5].

Using the interpolant P , we can replace Figure 7 by its over-approximation
given in Figure 9 for verification. A predicate abstraction engine using predicates
{x+ y = 4, x = 2, y = 2} can easily show the correctness of the program of Fig-
ure 9. Moreover, suppose we uncomment the lines which have been commented
out in Figure 7. To verify the resulting program we need a sufficiently strong loop
invariant. To find it we unroll the loop once and try to find the interpolant. We
do the exact same analysis we did above and obtain the interpolant (x+ y = 4).
This predicate is an invariant and is sufficient to prove the unreachability of
error().

Other techniques for interpolation fail on this example because either they
replace sin and cos by uninterpreted functions [12,21] or because of the re-
stricted expressivity of the range of interpolants computed (e.g. combination
of boxes [14]). We succeed on this example because of two reasons:

1. We are working with examples and hence we are not over-approximating the
original constraints.
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2. SVM succeeds in computing a predicate which generalizes well.
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Fig. 8. Positive and negative examples for Figure 7. The lines show the separating
hyperplanes.

foo()

{

assume ( x + y == 4 );

if ( x == 2 && y != 2)

error() ;

}

Fig. 9. An over-approximation of Figure 7.

5 Experiments

We have implemented a prototype version of the algorithm described in this pa-
per in 1000 lines of C++ using libsvm [3] for SVM queries and the Z3 theorem
prover [17]. Specifically, we used the C-SVC algorithm with a linear kernel for
finding the optimal margin classifier. C-SVC is parametrized by a cost parameter
c. A low value of c allows the generated classifier to make errors on the training
data. While useful for other applications, since we are interested in classifiers
that classify correctly, we assigned a very high value to c (1000 in our experi-
ments). The input to our implementation is two SMT-LIB [1] formulas and the
output is also obtained as an SMT-LIB formula. We tried to sample for at most
ten distinct positive and negative examples each before Basic made a call to
libsvm. In these experiments, the classifier is described by the hyperplane which
is parallel to the optimal margin classifier and passes through the positive sup-
port vectors. We consider the half-space, corresponding to this hyperplane, such
that the negative examples lie outside the half-space. Hence we are considering
the strongest predicates from the options provided to us by SVM (Section 2.1).

11



Table 1. File is the name of the benchmark, LOC is lines of code, Interpolant is the
computed interpolant, Total Ex is the sum of the number of positive and negative ex-
amples generated for the first iteration of Interpolant. For the second part, Iterations
represents the number of iterations of Interpolant.

File LOC Interpolant Total Ex Time (s) Interpolant Iterations Time (s)

f1a 20 x == y 12 0.017 x==y & y >= 0 4 0.017

ex1 22 xa + 2*ya >= 0 13 0.019 xa + 2*ya >= 0 4 0.02

f2 18 3*x >= y 13 0.021 3*x >= y 12 0.022

nec1 17 x <= 8 19 0.015 x <= 8 9 0.02

nec2 22 x < y 12 0.014 x < y 2 0.019

nec3 15 y <= 9 11 0.014 y <= 9 1 0.012

nec4 22 x == y 20 0.019 x == y 4 0.017

nec5 9 s >= 0 11 0.013 s >= 0 1 0.016

pldi08 10 x < 0 | y > 0 17 0.02 6*x < y 1 0.013

fse06 8 y >= 0 & x >= 0 11 0.014 y >= 0 & x >= 0 2 0.015

We have tried our technique on small programs and our results are quite
encouraging (see Table 1). The goal of our experiments was to verify the im-
plementability of our approach. We unrolled all the loops once and manually
generated A and B in SMT-LIB format for input to our tool.

First, let us consider the left half of the table. The programs f1a, ex1, and f2

are adapted from the benchmarks used in [6]. The programs nec1 to nec5 have
been adapted from NECLA static analysis benchmarks [11]. The program fse06

is from [7] and is an example on which Yogi [7] does not terminate because it
cannot find the inductive invariant x ≥ 0 ∧ y ≥ 0.

The program pldi08, adapted from [8], requires a disjunction of half-spaces
as an invariant. We obtain that by solving the dual problem: we interchange
the labels of positive and negative examples and output the negation of the
interpolant obtained. For these examples, we were generating at most ten positive
and negative examples before invoking the SVM. Hence we expect the column
“Total Ex” to have entries less than or equal to 20. Most entries are strictly
less than twenty because several predicates have strictly less than ten satisfying
assignments. This is expected for A as it represents reachable states and we have
unrolled the loops only once. So very few states are reachable and hence A has
very few satisfying assignments. Nevertheless, 11 to 20 examples were sufficient
to terminate Interpolant in a single iteration for all the benchmarks.

To get more intuition about Interpolant, we generated the second part of
the table. Here we started with one positive and one negative example. If the
classifier was not an interpolant then we added one new point which the classifier
misclassifies. The general trend is that we are able to find the same classifier with
a smaller number of samples and few iterations. In f1a we generated a predicate
with more conjuncts. This demonstrates that the generated classifier from SVM-
I might be sensitive to the order in which misclassified examples are traversed
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(Fig. 5). For pldi08, when we found the classifier between the first positive and
negative example generated by Z3 then we found that it was an interpolant. Since
the classifier has been generated using only two examples, the training data is
insufficient to reflect the full structure of the problem, and unsurprisingly we
obtain a predicate that does not generalize well. These experiments suggest that
the convergence of Interpolants is faster and the results are better if we start
with a reasonable number of samples.

6 Related Work

In this section, we place our work in the context of existing work on interpolation
and machine learning. We have considered interpolation only over the quantifier
free theory of linear arithmetic. Although other techniques [15,12,21] for inter-
polation handle richer theories, this is not a limitation for our technique since
interpolation in combinations of linear arithmetic, uninterpreted function sym-
bols, lists, and sets with cardinality constraints can be reduced to computation
of interpolants in the theory of linear arithmetic [13,21].

McMillan [15] showed how to compute interpolants of (A,B), where A and B
are in the quantifier free theory of linear arithmetic, in a linear scan of the proof
of unsatisfiablity of A ∧ B. This requires an explicit construction of the proof
of unsatisfiability. In a recent work, Kupferschmid et al. [14] gave a proof based
method for finding Craig interpolants for non-linear predicates. The proof based
methods like these are generally not scalable: Rybalchenko et al. [21] remark
that “Explicit construction of such proofs is a difficult task, which hinders the
practical applicability of interpolants for verification.” Like our approach, their
method for interpolation is also not proof based. They apply linear programming
to find separating hyperplanes between A and B. In contrast to their approach,
we are working with samples and not symbolic constraints. This allows us to use
mature machine learning techniques like SVMs as well as gives us the ability to
handle superficial non-linearities.

Our algorithm for classification using half-spaces seems to be related to the
problem of “learning intersection of half-spaces”. In the latter problem, given
positive and negative examples, the goal of the learner is to output an intersection
of half-spaces which classifies any new example correctly with high probability.
There are several negative results about learning intersection of half-spaces. If
no assumptions are made regarding the distribution from which examples come
from, we cannot learn intersection of even 2 half-spaces in polynomial time unless
RP=NP [2,16].

We selected SVM for classification as they are one of the simplest and most
widely used machine learning algorithms. There are some classification tech-
niques which are even simpler than SVM [9]. We discuss them here and give
the reasons behind not using them for classification. In linear regression, we
construct a quadratic penalty term for misclassification and find the hyperplane
which minimizes the penalty. Unfortunately the classifiers obtained might err
on the training data even if it is linearly separable. Another widespread tech-
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nique, logistic regression, is guaranteed to find a separating hyperplane if one
exists. But the output of logistic regression depends on all examples and hence
the output keeps changing even if we add redundant examples. The output of
SVMs, on the other hand, is entirely governed by the support vectors and is not
affected by other points at all. This results in a robust classifier which is not
easily perturbed and leads to better predictability in results.

There has been research on finding non-linear invariants [22,18,20]. These
techniques aim at finding invariants which are restricted to polynomials of vari-
ables. On the other hand, we are not generating non-linear predicates. We are
finding linear over-approximations of non-linear constraints and hence our tech-
nique only generates linear predicates. On the other hand, unlike [22,18,20] we
are not restricted to non-linearities resulting only from polynomials and have
demonstrated our technique on an example with transcendental functions.

7 Conclusion

We have shown that classification based machine learning algorithms such as
SVMs can be profitably used to compute interpolants and therefore are useful in
the context of program verification. In particular, we have given a step-by-step
account of how off-the-shelf SVM algorithms can be used to compute inter-
polants in a sound way. We have also demonstrated the feasibility of applying
our approach via experiments over small programs from the literature. Moreover,
we are also able to compute interpolants for programs that are not analyzable
by existing approaches – specifically, our technique can handle superficial non-
linearities.

As future work, we would like to extend our algorithms to compute inter-
polants for non-linear formulas. We believe that SVMs are a natural tool for
this generalization as they have been extensively used to find non-linear clas-
sifiers. We would also like to integrate our SVM-based interpolation algorithm
with a program verification tool and perform more extensive evaluation of our
approach.
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