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1. INTRODUCTION
The surge of interest in traffic measurements and

characterization over the last decade has lead to a plethora
of studies in various aspects of network traffic in the
wide-area Internet (e.g., [21]), tier-1 ISPs (e.g., [7]) or
university campuses (e.g., [9]). However, despite their
significance, enterprise networks have not been the sub-
ject of many such analyses ([20] constitutes one of the
few exceptions); knowledge of their dynamics is still
poor, as limitations such as data sensitivity and access
restrictions have inhibited similar progress. Yet, under-
standing enterprise network traffic patterns is a prereq-
uisite of proper provisioning by network operators, of
network dimensioning and network modeling, and can
also provide the baseline for anomaly detection. It also
opens up the possibility of real-time reaction to on line
measurements for network management related actions,
such as service migration or load balancing.

This paper is a step towards this direction. Our work
provides an extensive description of the address and
traffic dynamics of a site that is part of Microsoft’s Cor-
porate Network. Through the analysis of a data corpus
that spans 3.5 weeks of continuous collection, and con-
tains 13 billion packets (section 2), we address a series
of questions pertinent to understanding the aforemen-
tioned aspects of today’s enterprise networks.

Specifically, we first examine traffic dynamics along
three perspectives: a) traffic spread within the enter-
prise network and its geographical dispersion, b) the
relevance of layer-4 port numbers to identify specific
applications, and c) the validity of the client-server dis-
tinction in terms of traffic volumes. Then, taking into
advantage routing configuration files and address allo-
cation information we examine address dynamics along
two dimensions: a) the meaning of IP addresses as
host identifiers and vice versa, i.e., the interpretation
of name to IP mappings, and b) host mobility patterns
within the larger enterprise network.

Addressing these questions constitutes the main con-
tribution of this paper. To study traffic dynamics we
first divide the observed traffic flows in four classes sep-
arating data center, local (intra-site), corporate-wide,
and Internet traffic. We then further examine the ge-
ographical spread of traffic by mapping data flows to
remote enterprise sites. We find that a) temporal pat-
terns depend on the actual traffic classes, b) the major-
ity of the traffic stays within the boundaries of the local
site and traffic in the Internet class corresponds to the
smallest fraction of all classes, and c) the distribution of
the byte contributions per remote site appears heavy-
tailed (section 3). We further show how the relevance
of layer-4 TCP and UDP port numbers as application
discriminators diminishes as we move our observation
point away from the local site, to the corporate net-
work, or the public Internet (section 4).

We highlight that defining categories of machines,
such as clients, servers or proxies, to account for their
traffic contributions seems meaningless within the en-
terprise. We find that there is a high spatial variability
amongst hosts, which naturally suggests the identifica-
tion of a set of “heavy” users, which contribute most to
the overall traffic. This is consistent with characterizing
host-behavior as drawn from a sub-exponential distri-
bution (section 5). However, we note that the compo-
sition of this set changes with time – a consequence of
spatial variability of hosts – and is in general applica-
tion specific. On the contrary, we show that defining
the set of the most “connected” hosts provides a more
indicative feature of the functional role of each host in
the network.

With respect to address dynamics our findings in-
clude the following: a) We observe that approximately
one third of IP address to host name, and host name to
IP address mappings do not provide a unique identifi-
cation of hosts or IPs respectively (section 6.1). b) By
analyzing DNS responses and distinguishing hosts that
appear in various enterprise sites over time, we pro-
vide evidence that trip durations (from one remote site
to another within the enterprise) follow an exponential
distribution. On the contrary, the number of trips be-
tween specific site-pairs shows evidence of heavy-tailed
distributions (section 6.2).

Practical significance. We believe that the impli-
cations of our observations are multifaceted. We high-
light here the more direct ones: First, whereas intu-
itively a distinction of client and server machines may
make sense for a single application, we observe that it
does not for individual hosts within an enterprise net-
work. Second, the observed extreme variability in the
per-host load dictates that any system that attempts to
reconstruct network-wide traffic load by sampling must
track a very dynamic set of heavy users using a possibly
nontrivial set of features. Third, a significant fraction
of the traffic stays within the enterprise network, and
while it will be opaque to the underlying providers of the
network connectivity, it is still distributed far and wide
through the network and around the globe. Fourth, ad-
dress mappings reveal that identification of a host in
an enterprise network might be challenging from a net-
work trace alone. Finally, we show that recent findings
in opportunistic communication settings [2, 12] seem to
also apply when describing mobility within an enter-
prise network.

2. MEASUREMENT METHODOLOGY AND
DATA TRACES

The results presented in this paper are based princi-
pally on a single corpus of packet data collected from
the network at Microsoft Research Cambridge (MSRC ).
Fig. 1 presents an overall picture of the MSRC network,
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Figure 1: A view of the MSRC network.

and how it fits within the world-wide Microsoft Corpo-
rate network (henceforth, CorpNet), containing roughly
300,000 hosts connected by approximately 200 routers
spread across 100 countries and 6 continents. The MSRC
site contains roughly 400 hosts. Hosts run Microsoft op-
erating systems and software suites, and the site con-
tains a mixture of researchers, admin staff, human re-
sources, and developers. The network runs the OSPF
and BGP protocols for internal routing, connecting to
the Internet through proxies in a small number of places
predominantly in the USA.

In the remainder of this section, we will provide a
brief description of the measurement methodology and
the basic characteristics of the collected data.

2.1 Methodology
The corpus was collected over a period of 3.5 weeks

beginning on Saturday August 27, 2005, and stored in
3.4TB of disk. Packets were captured using custom
tools written against the WinPCap [24] packet capture
library. After a short testing period we settled on a
snaplen of 152 B, as a compromise between total stor-
age required and useful higher-layer header information
captured, which was used for the duration of the cap-
ture. Our site network is configured with each IP subnet
corresponding roughly to a wing of a floor mapped to
a single VLAN, and so packets were tapped from the
network using VLAN-spanning [3] on our site router.
Each VLAN was mapped to one of two ports for load
balancing reasons, resulting in two trace sets of roughly
5200 and 3200 0.5GB files (or chunks) respectively.

VLAN spanning applies to all ports on the router
and copies each packet that matches against the given
VLAN tags to a further designated port. Because of
the particular configuration of VLANs in our building
we collected duplicate packets both within and between
chunks, since many packets travel between two VLANs

that either span to the same collection port, or span
to both collection ports. Note that as the “duplicated”
packet has been routed in the interim, it is not a byte-
for-byte duplicate: for example, its IP time-to-live will
have been decremented and its header checksum ad-
justed. As a result, two further processing stages were
applied to remove duplicates within chunks, and then to
merge these de-duplicated chunks. The process of merg-
ing the two traces also synchronized the timestamps
from the two traces, using TCP SYN packets with the
same 5-tuple and with equal sequence numbers as syn-
chronization points.

CorpNet uses IPSEC for authentication [11] and so
there is a substantial amount of ESP traffic (∼ 85%
by packet) in the captures. As a result, the capture
tool manipulated captured packets to remove the ESP
encapsulation, replacing the IP protocol value of 0x32
(ESP) with the IP protocol value stored in the next proto
field of the ESP trailer, before writing the packet to
disk. For each packet so manipulated, the IP header
checksum was zeroed to signify that the packet was orig-
inally ESP.

This process only captures packets observed at the
site router, i.e., that enter or exit the site, or that are
routed between subnets. To estimate how much traffic
we could not observe as a result (i.e., intra-subnet traf-
fic), we configured port spanning on one of the Ethernet
switches servicing one wing of one floor of our building,
producing a third trace. Comparing the data in this
trace with the data observed from that subnet in the
main corpus, we observe that <0.1% of both packets
and bytes from that part of the site were not seen at
the main site router. As such, we conjecture that our
measurement methodology allows us to observe roughly
99% of all bytes and packets transmitted or received by
each end host within MSRC. The bulk of the traffic
missed corresponds to local file-sharing traffic and doc-
uments being transmitted to local printers, with the re-
mainder made up from remote desktop protocol (RDP,
used for remote machine access in Windows), name res-
olution (particularly NetBIOS name lookup), and ISA
Key Management (a necessary component of our IPSEC
deployment).

Overall, the end result of the all of the aforementioned
steps is a trace containing packets forming a data corpus
of 13 billion unique packets covering 12.5 TB of data.

Finally, we further extended the analysis of the main
corpus by using address allocation information and router
configuration files. In particular, we inferred geographic
information by extracting the OSPF configuration blocks
from the router configuration files. Each such configura-
tion block contains the IP subnets that are originated by
the OSPF process at that router. Note that all routers
in CorpNet are named according to a convention which
encodes their location by city and country and thus traf-
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Figure 2: Overall traffic over time and the number of active IPs estimated over 15-minute intervals. The x-axis

presents the day of week, with the ticks corresponding to 10am local time (GMT). Diurnal patterns and regular

backups are evident in the time-series. The drops observed are due to network maintenance. The first Monday in the

trace was a local public holiday.

fic sources and destinations can be straightforwardly
mapped to cities.

Although the corpus and the tools cannot be made
publicly available at this point, we are happy to con-
sider requests to do so in the future, and we welcome
applications from interns and other requests for research
collaboration analyzing the corpus. Details of the cor-
pus will be posted in the Internet Measurement Data
Catalog (IMDC) http://www.datcat.org/ in the near
future.

2.2 Data corpus
To analyze the collected trace, we constructed flow

tables corresponding to 5-minute time intervals, with
one record per uni-directional 5-tuple (source IP, desti-
nation IP, protocol, source port, destination port) flow
observed in each 5-minute period. Each record contains
the 5-tuple, the time of the first and last packets in
the period, the number of bytes and packets observed,
and the application inferred to have generated the traf-
fic. Application was inferred by deep packet inspection,
with care taken to track and account for MSRPC in-
vocations appropriately (see section 4 for discussion of
MSRPC traffic). Overall, less than 3.5% of the packets
in the trace could not be assigned to an application.

We observed 34,397 unique IP addresses in the trace,
591 of which were local to the capture site, MSRC.
Of the observed addresses, 23,696 were sources (514 of
which were local to MSRC) and 33,885 were destina-
tions (582 of which were local to MSRC). The 77 local
addresses that received but never transmitted appear
to be the result of automated security tools probing for
active addresses; similarly, we observed that 9 addresses
only transmitted but never received, and appear to all
be single-packet aberrations.

Fig. 2 shows the total traffic volume observed over the
3.5 weeks, as well as the number of active MSRC IPs
calculated every 15-minutes. The ticks at the x-axis cor-
respond to 10am GMT (i.e., local time). As expected,
the traffic pattern observed at the collectors roughly
follows the expected diurnal patterns. The large spikes
during the early morning hours of each day correspond
to backups in the Data Center (henceforth, DC, see
Fig. 1), where the vast majority of the MSRC servers
reside. The low bandwidth observed on the first Mon-
day occurs due to it being a local public holiday.

The diurnal patterns are more evident in the num-
ber of active IPs over time. We observe a “baseline”
of roughly 270 IPs that are always active (mostly desk-
tops and servers), with the number of active IPs almost
reaching 350 during the working hours. The four sud-
den short drops in the number of active IPs correspond
to network maintenance windows in our local site.

In all, the corpus used in the remainder of this paper
is a large, coherent set of data providing a useful window
into the behavior of a type of network rarely studied
previously.

3. TRAFFIC SPREAD
A distinguishing feature of enterprise networks, when

compared to campus networks for example, is that they
are both large in size and typically geographically dis-
tributed. Furthermore, their configuration, security con-
cerns and the restrictions that these impose, dictate
that only a small fraction of enterprise IPs are publicly
routable.

Similarly, the configuration of the MSRC network is
such that all traffic to the external Internet must be
routed via a hierarchy of one or more proxies (Fig. 1).
On the other hand, traffic internal to CorpNet, whether
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Figure 3: Traffic over time divided in 4 categories: Data center (DC), local traffic (MSRC), traffic to other enterprise

sites (CORP) and traffic from and to the public Internet.

it remains within the MSRC site or it goes offsite to
other Microsoft installations is routed directly. Thus,
in this section we address the question of traffic spread,
namely, what is the network and geographical spread of
traffic observed at a site in the enterprise network?.

To this end, we formulate four different classes of ob-
served traffic:

1. DC : Traffic that stays within the data center, and
accounts mostly for the large overnight backups.

2. MSRC : Traffic that stays local within MSRC, ex-
cluding the DC traffic.

3. CorpNet : Traffic between MSRC and CorpNet,
i.e., intra-enterprise traffic.

4. Internet : Traffic destined for or received from the
public Internet.

The classes of traffic are separated based on subnet
and proxy information. First, isolating DC traffic is
straightforward since the data center corresponds to a
separate subnet. Second, the use of subnets also denotes
CorpNet traffic, while traffic that is received from or is
destined to specific proxies reveals Internet traffic.

Fig. 3 presents what fraction of the traffic shown in
Fig. 2 corresponds to each of the four traffic classes.
Excluding DC traffic, we observe that on the average
79% of the overall traffic stays within MSRC, while
CorpNet and Internet amount to only 14.5% and 6.5%
of the total traffic respectively. The fact that traffic
stays mostly within the enterprise has been observed
before [20]. However, we provide here a further break-
down, by showing that the majority of the traffic is local

100 102 104 106 10810-2
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C
C
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Figure 5: CCDF of traffic sourced at or destined to Mi-

crosoft enterprise sites. The distribution shows evidence

of a heavy-tailed distribution with a few sites being the

largest volume contributors.

within a site of the enterprise, with “intra-enterprise”
traffic representing roughly one sixth of the total.

Comparing to Fig. 2, diurnal patterns are observed
only for the MSRC and the Internet classes, while they
are not as clear in the CorpNet traffic. Absence of such
patterns in CorpNet traffic is due to the fact that this
traffic class mostly reflects a set of applications that do
not require user action (e.g., receiving email). The large
occasional spikes in all classes correspond to large file
transfers.

Similarly, Fig. 4 presents a breakdown with respect
to the number of local IPs active for each class (i.e., for
how many local IPs we observe flows from each traffic
class). Here, diurnal patterns are evident in all classes
except for DC where the set of active IPs is roughly
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Figure 4: Number of active local IP over time divided in the 4 categories. DC IPs are constant over time representing

always-on server machines.

constant over time. Note that the number of IPs in
the CorpNet class is higher on the average when com-
pared to the MSRC class. This occurs because of ap-
proximately 50 internal IPs that only communicate with
other corporate non-local machines and represent net-
working equipment such as routers.

We further examined the spread of the traffic across
the various sites of the enterprise using geographic in-
formation derived from router configuration files (see
section 2.1). Specifically, we examined the fraction of
the traffic sourced at or destined to a particular en-
terprise site, thus dividing the overall traffic to origin
and destination flow pairs between MSRC and remote
enterprise sites. Fig. 5 presents the Complementary Cu-
mulative Distribution Function (CCDF) of traffic vol-
umes across all sites observed distinguishing source and
destination. Roughly 95% of the traffic is destined to
or originating from our local Cambridge site, while the
other largest contributors are two US sites, two sites
within the UK and one within Europe. The empirical
distributions appear heavy-tailed for a range of values
(straight line in log-log scale), suggesting a few number
of “heavy sites” with respect to their traffic contribu-
tions. Fitting however reveals that they are most likely
a mixture of distributions since neither Pareto nor Log-
normal fitting captures the tail of the distributions.

4. THE RELEVANCE OF PORT NUMBERS
Are port numbers relevant to identify the applications

generating traffic within an enterprise network?
Lately, there has been extensive evidence that port num-
bers alone appear insufficient to reveal the various Inter-

net applications [13, 19], especially due to the increasing
usage of peer-to-peer applications. However, we expect
that due to the centrally-managed nature of enterprise
networks, port numbers should allow for a clearer pic-
ture of application usage.

Indeed, the majority of bytes and packets in our cor-
pus can be identified using port numbers. Fig. 6 presents
the fraction of traffic that cannot be accounted for us-
ing port-number analysis. This fraction refers to flows
which feature port numbers that do not correspond to
any “known” services within the Microsoft enterprise
network 1. With the exception of DC traffic which can-
not be characterized by port numbers, we observe a
trend in that moving away from the local MSRC net-
work obfuscates port based analysis. The reason for the
unaccounted traffic is twofold: First, Windows does not
use port numbers consistently in all cases with stan-
dard IANA port allocations [10]. Second, Windows
makes extensive use of RPC invocation on COM ob-
jects for data transfers that results in dynamically allo-
cated ports by the RPC endpoint mapper on the remote
machine. This is particularly common for desktop ap-
plications such as Outlook.

To have a more complete picture of application usage,
we extract the UUID naming of the target service from
the MSRPC BIND packet fragments, and maintain a
mapping from RPC service UUIDs to flows. In this
way we can identify applications such as Microsoft Ex-
1Note that using “known” enterprise ports does not guar-
antee a correct measure of unknown traffic, since users may
change the port of a known service. However, in contrast to
typical Internet traffic, this would rarely be the case within
the enterprise network.

5



DC MSRC CORP Internet0

20

40

50

80

100
%

 o
f u

nk
no

w
n 

tr
af

fic

Figure 6: Fraction of unknown traffic according to

port-based analysis. Almost all DC traffic cannot be

categorized based on port numbers, while the unknown

percentage increases as we move away from the local

MSRC network.
% Bytes % Packets % Flows

Category On Off On Off On Off

Backup 24.3 0.01 19.9 0.01 0.50 0.01

Directory 11.9 6.16 9.92 4.77 17.5 9.14

Email 0.08 4.10 0.08 3.90 0.01 10.6

File 24.4 42.4 31.9 50.5 18.6 11.6

Management 0.62 0.95 1.30 2.11 42.4 24.9

Messenger 0.00 0.27 0.00 0.36 0.01 2.66

RemoteDesktop 0.02 0.24 0.14 0.70 0.06 0.03

RPC 0.01 0.32 0.05 0.43 1.94 2.36

SourceDepot 36.4 13.5 32.4 9.36 0.23 0.58

Web 1.47 20.8 2.36 20.0 12.5 19.8

Table 1: Application mix for on- and off-site traffic.

Amounts ≥10% are shown in bold.

change email, Active Directory services, and the backup
application (as suggested in section 2.1 only 3% of the
total traffic cannot be classified to an application). Ta-
ble 1 presents the volume of bytes, packets and flows of
10 application classes that cover over 98% of the overall
byte volume. The on-site traffic refers to the DC and
MSRC classes, while the off-site to the CorpNet and
the Internet ones. The File category refers to applica-
tions such as SMB or Netbios, the Directory category to
services like Active Directory or DNS, and the Manage-
ment one to SMS, IGMP, BGP, NTP, etc. We observe
that the heaviest on-site categories consist of File, and
SourceDepot (source code control system), while File
and Web are the off-site heaviest ones. Regarding offsite
Internet traffic, it is dominated by HTTP (63%) while
one third of the traffic cannot be classified as Fig. 6 also
highlights.

5. DISTINGUISHING CLIENTS FROM
SERVERS

Since the bulk of the traffic in the network belongs to
client-server style applications, the assignation of par-
ticular hosts to either “clients” or “servers”, i.e., iden-
tifying a hosts’ functional role in the network, should
be straightforward based on observing the byte contri-

butions of the various hosts in the overall traffic. In
our network, machines that are physically located in-
side data center tend to act predominantly as servers
for one particular application. Intuitively, such main
site servers (e.g., file servers, proxies, etc) should ac-
count for the majority of the traffic in the four classes.

To examine this hypothesis we examine the byte con-
tributions per IP over time. To avoid aggregating over
the whole trace hiding this way shorter time-scale ef-
fects, we limit the analysis in hourly intervals of the
third week (which contains no network maintenance in-
tervals). Fig. 7 shows the CDFs of the hourly average
of downloaded and uploaded bytes per IP during week
three of our trace for the MSRC, CorpNet and the In-
ternet traffic classes (since DC is mostly server-to-server
communications and backup traffic we do not examine
this class further). Fig. 7(a) and Fig. 7(b) present the
download and upload CDFs for the Internet class, along
with the CDFs of the 5th and 95th percentiles per IP to
provide some evidence of the overall variability across
time, which appears nontrivial. Fig. 7(c) and Fig. 7(d)
show the uploaded vs. downloaded contributions for
the remaining two traffic classes (the percentiles ap-
pear similar to the Internet class and were omitted due
to space limitations). Indeed, the figures reveal that a
small subset of machines contributes most of the traf-
fic overall both downstream and upstream in all traffic
classes.

The existence of a small-number of “heavy” hosts in
terms of their traffic contributions appears more evident
if we plot the corresponding CCDFs in log-log scale,
where a straight line would point towards a heavy-tailed
distribution. Heavy-tailed as well as sub-exponential
distributions decay more slowly than any exponential
distribution. A sub-exponential distribution [8] is by
definition one where the probability that the sum of
independent random variables sampled from this distri-
bution exceeds a threshold is equivalent to the proba-
bility that the maximum of these variables exceed the
same threshold, when the threshold is large. Examples
of such distributions include the Pareto and Lognormal
distributions.

The CCDFs for the hourly average of uploaded and
downloaded bytes per IP are shown in Fig. 8. Inter-
estingly, while the MSRC and the Internet classes show
signs of heavy-tailed distributions (i.e., the tails appear
to follow a straight line), the CCDF of the CorpNet class
shows less such evidence suggesting that traffic may be
distributed more evenly among the local hosts in this
class. This observation is especially evident in the up-
load case, where an exponential distribution appears a
better fit for the data.

Intuitively, the set of heavy hosts should consist of
the various server machines. Thus, tracking the specific
servers over time should allow for a comprehensive view
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(c) & (d) CDFs of downloaded and uploaded hourly byte contributions per IP for MSRC and CorpNet.
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Figure 8: CCDFs of hourly averages for downloaded and uploaded bytes for MSRC, CorpNet and the Internet

classes. The distributions appear heavy-tailed, with the exception of the CorpNet traffic which appears closer to the

exponential distribution, especially for the upload case.

of the overall traffic volume across the various classes.
Surprisingly, this hypothesis does not hold in our data.
Examining the set of heavy hosts across time reveals
that not only the set comprises both server and client
machines, but it is also highly dynamic with its mem-
bers significantly varying over time. For example, Fig. 9
describes the number of heaviest hosts required to ac-
count for 80% and 95% of the total traffic across time
for the three classes; that is, tracking the cardinality of
the set of heaviest hosts, where this set is defined as the
machines required to capture x% of the overall traffic.
In all cases, the set varies significantly over time, with
diurnal patterns appearing only in the Internet traffic
class. Fig. 9 suggests that attempting to predict the
overall traffic volumes using a potentially static set of
servers will not produce accurate estimates.

The above discussion suggests that categorizing hosts

as either clients or servers in terms of traffic volumes is
not straightforward. While intuitively such a distinc-
tion makes sense for a single application, it does not
for individual hosts. There are two principle reasons
for this: First, hosts invariably behave as both clients
and servers in different applications, e.g., a web server
will be a client to the directory and management ser-
vices. Second, other applications may not strongly dis-
tinguish between clients and servers, e.g., in an enter-
prise network many machines may be clients of a cen-
tral file-server while at the same time themselves acting
as file-servers to other hosts. The conjecture that the
characteristics of the distributions depend both on the
traffic class and the various applications is also sup-
ported by Fig. 10, where the distributions for a num-
ber of applications for different classes are displayed
(the applications were chosen to represent a significant
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fraction of the traffic for each class). Note that even
within the same class, the distribution of per host byte-
contributions presents nontrivial variability (e.g., FILE
and Directory application categories in MSRC).

While traffic volume is not an efficient distinctive fea-
ture to distinguish client from server hosts, activity of
hosts appears more stable over time (see for example
Fig. 4). In particular, connectivity information (i.e.,
which hosts communicate with one another) might al-
low for such a distinction, as intuitively servers should
communicate with most of the local active clients. Thus,
we define the out-degree of each host to be the number
of other hosts it communicates with, and plot the cor-
responding CDFs in Fig. 11. This is a similar metric as
the fan-out used in [20], where the authors observe that
most hosts communicate with local hosts rather than
non-enterprise ones. Fig. 11 reinforces this observa-

tion by using the three classes of traffic (e.g., out-degree
of local hosts to other MSRC hosts, to CorpNet hosts
and Internet hosts) and introduces a further separa-
tion of local to other enterprise offsite hosts, for which
the out-degree appears similar as the local MSRC one.
Fig. 11 also highlights the effect of the time-scale of
observation by presenting the average out-degree mea-
sured at hourly and daily intervals. We observe that
while the MSRC out-degree remains roughly the same
across the two timescales, the CorpNet and Internet
ones increase significantly especially for smaller values
of the x-axis. This observation suggests that most inter-
nal hosts will show a roughly constant out-degree across
time-scales for the MSRC class since the number of in-
ternal MSRC hosts that a host can communicate with is
limited. Indeed, analysis across timescales reveals that
within a busy hour, hosts will have an out-degree very
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Figure 12: Prevalence of individual hosts in the most

connected set and the heaviest hosts set in terms of bytes

for hourly intervals during week 3. Connectivity pro-

duces a more stable set over time.

close to their maximum out-degree when considering
the whole trace.

Close examination of Fig.11 reveals additionally a
plateau in the distribution of the out-degree especially
for the case of MSRC for larger values of the x-axis. This
plateau points towards a set of hosts with comparable
out-degrees that communicate with most of the internal
hosts. Indeed, the IPs comprising this specific compo-
nent of the distribution correspond to MSRC servers
(e.g., proxies, domain controller, etc.) and is stable
over time. We can further test this claim by looking
at the prevalence of individual hosts in the set of most
connected hosts. The prevalence is defined in a similar
manner as in [21], and describes the number of intervals
a host appears in the most connected set. We define this
set as a percentage, x, of the most connected hosts and
compare with the same percentage of the heaviest hosts

in terms of bytes in Fig.12 (the two sets were calculated
in hourly intervals for week three of the trace). We ob-
serve that connectivity provides a more stable set of the
top hosts across time compared to the set of “heaviest”
hosts. For x = 30, we observe that roughly 50% of nodes
are never in the top-connected set (20% for bytes), while
approximately 10% (less than 2% for bytes) of nodes are
members of that set for all 168 hourly intervals of week
three. Thus, most hosts in the connectivity case are
either in or out of the “most-connected” set for all time
intervals offering a clear distinction between client and
server machines.

Summarizing the discussion throughout the section,
we observe considerable spatial and temporal variabil-
ity, that is, both across time and across hosts with re-
spect to individual hosts’ traffic contributions. While
it seems intuitive to categorize hosts as either clients
or servers based on the largest traffic contributors, ex-
amination of the data suggests this is not a fruitful ap-
proach to identify the functional role of enterprise net-
work hosts. On the contrary, connectivity information
appears as a more efficient alternative since hosts ap-
pear to essentially communicate with a stable set of
other internal hosts, with server machines being the
most connected ones.

6. ADDRESS AND MOBILITY DYNAMICS
In this section we examine address, host naming and

host mobility dynamics within the enterprise. We first
address the issue of how useful IPs are to uniquely iden-
tify hosts, and then we study host mobility patterns
within the enterprise.

6.1 Name-address characteristics
It is unsurprising that a large enterprise network will

provide wireless connectivity for employees’ machines,
and will usually allocate addresses via DHCP for all
machines, wired and wireless. Thus, a host may be as-
signed multiple IP addresses over time, and also an IP
address may be assigned to multiple hosts. The pres-
ence of services that are provided by clusters of ma-
chines via a single name further complicates matters.
The result is that an IP address does not suffice to
uniquely identify a host in general, although for most
desktop hosts that connect solely to a wired network it
will be a stable identifier. In this section we address
the following questions: What are the characteristics of
the name-address mappings in the network? How often
should an IP be considered as a unique identifier of an
enterprise host?

To answer these questions, we combine examination
of router configuration files and DNS packet informa-
tion. Specifically, we first parse DNS response packets
captured in the corpus and we extract the time-varying
mapping of names to addresses. Then, using the subnet
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Figure 13: Name-Address-Subnet mappings.

allocations obtained from the router configuration files,
we can map the addresses in each response to their sub-
net. We assume that a host’s name tends to change very
infrequently and is thus static for the duration of the
trace, allowing us to use a name as a stable host identi-
fier. The nature of our corpus is such that we will see all
DNS responses to hosts located on the MSRC network;
further most local hosts are configured to utilize the lo-
cal MSRC proxy, and thus we would still observe DNS
packets when these hosts are off the MSRC network in a
remote enterprise site. Hosts that temporarily visit the
MSRC network will also have their details registered in
the local MSRC name server.

Since the name to address mapping is not an one-to-
one mapping, we examine three types of mappings:

1. Name-address mapping, that reveals the number
of unique names per IP address.

2. Address-name mapping, that shows how many dis-
tinct IPs we observe for a unique name.

3. Subnet-name mapping, that describes the num-
ber of subnets a unique name has been associated
with.

Name-address: Fig. 13(a) displays the characteristics
of name-address mappings observed in the corpus. Of
the 1,757 unique addresses that were returned as the re-
sult of some name resolution, 73% mapped to a unique
name, the expected common case. Of the remainder, all
but one mapped to 16 names or less, the outlier appear-
ing to be the address of a machine hosting many services
in a large datacenter which is thus accessed via a vari-
ety of names. The other addresses mapping to roughly 4
names appear to be natural churn due to DHCP. These
cases include addresses belonging to subnets used for
wireless connectivity or guest access, and so naturally
have higher churn and shorter DHCP lease-times.

Address-name: Fig. 13(b) shows the characteristics
of address-name mappings observed in the corpus. Of
the 9,274 unique names observed, 63% map to a single
address, again the expected common case. We cannot
directly observe the purpose or intended use of a host,
so explaining the reason why a third of hosts appear
to have multiple addresses is difficult. From the sub-
nets in question it appears that hosts with multiple ad-
dresses are either laptops with both wired and wireless
addresses, or are in fact names that correspond to a ser-
vice provided by a cluster of hosts (e.g., the web-proxy
service provided for hosts within Europe).

Subnets-name: Fig. 13(c) shows the number of sub-
nets that each name is mapped into, abstracting away
the details of the DHCP assignments. The 63% names
that map to a single address obviously map to only a
single subnet. Of the other names 30% map to just two
subnets, typically one wired and one wireless, which is
common behavior for employees using a laptop as their
main desktop machine. Finally, the rest of the hosts
map to more than two subnets: these are probably lap-
tops moving between sites and they amount to approx-
imately 7% of all names.

The implication of these findings is that proper iden-
tification of a host in an enterprise network might be
challenging from a network trace alone. Hosts can be
accessed via multiple names and single names may map
to multiple addresses concurrently (where the name re-
ally refers to a service rather than a host). Even when a
single name only maps to a single address at any point
in time, that address may change either because the
name refers to a host which leaves the network for suf-
ficiently long time so that DHCP cannot reallocate the
same address, or to a host which moves between subnets
requiring a completely different address.

6.2 Host mobility characteristics
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# Cities # Hosts # Countries # Hosts
1 8782 1 8939
2 467 2 322
3 18 3 6
4 2 4 2

Table 2: The number of hosts appearing in how many

cities and countries.

Following from the previous section, it seems that at
least a number of hosts move around within the en-
terprise network. By mapping IP addresses to subnets
and then to routers, and thus to cities and countries, we
can observe the travel behavior and mobility patterns
of particular hosts. We see that, as suggested by the
majority of hosts having addresses within a single sub-
net, most hosts appear to remain tethered in a single
location. However, roughly 6% of hosts appear to travel
to different cities, and approximately 4% travel to dif-
ferent countries. In this section we ask the question:
how do hosts move around the network geographically?

Lately, there has been an increased interest in human
mobility patterns in the setting of Delay Tolerant Net-
working (DTN) and opportunistic communications [2,
12]. While the timescales of interest here are not com-
parable with these studies and the setting is different,
our findings in this section provide evidence of similar
observations in the context of mobility within an en-
terprise network. Application scenarios in this context
may involve transfers of large volumes of data between
two enterprise sites, where utilizing the actual network
may simply not be as practical (e.g., transferring ter-
abytes of captured network traces!).

To extract the geographical location of hosts, we take
the previously obtained subnet mappings for their ad-
dresses, map them to their home routers and decode
the city and country codes embedded in each router’s
name. Note that we remove from consideration hosts
with names that are known to refer to clustered service
implementations such as our proxies. Overall, we are
left with 712,598 name service responses to examine,
involving 9,269 names in 110 cities across 63 countries.

Table 2 shows the number of hosts that appear in
different numbers of cities and countries. There is no
obvious pattern as to the particular countries that are
visited, although there is a bias towards the USA and
countries in Europe, unsurprising as Microsoft is an
American company and MSRC is one of its larger Euro-
pean sites from which many people interact with others
around Europe. More detailed examination of the sub-
nets involved reveals that while most hosts which move
geographically are doing so on the wireless subnets, this
need not be the case: some hosts do appear on the wired
network in multiple locations.

Going further, we examine the changes in location
(trips) visible from these data. Trips are defined as
subsequent observations of a host in two different enter-
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Figure 14: The CCDF of residence time at a site and

return time to a site in lin-log scale. The straight lines

point towards the exponential distribution with a mean

of 5.5 days for residence and 3.8 days for return time.

prise sites A and B. We can then define the residence
time 2 at site A as t2 − t1, to represent the time a host
spent in A, where t1 is the first observation of a host
in an origin site A, and t2, with t2 > t1, is the first ob-
servation at the destination site B. Similarly, if a host
follows a travel pattern of A → B → A, we regard as
the return time to site A (i.e., how much time a host
was away from A) to be the residence time at site B.
Note that by the definitions above, we will not observe
return times for all trips (e.g., when a host appears in
more than one site before returning to its origin site A,
or if we do not observe the host returning to the origin).

We assume that trips with residence time less than
5 minutes are spurious and due to convergence among
the many name servers in our network. We also deal
with the complication of dual-ported hosts, such as lap-
tops with a wireless and a wired interface and many
server hosts with two wired interfaces. In such cases,
the host may appear in two locations simultaneously,
e.g., if a laptop normally based in Cambridge travels
to Paris then it may connect to the wireless network in
Paris, registering a Parisian address against its name in
DNS. However, at the same time it may retain regis-
tration of its Cambridge address for its wired interface
against its name, which will not change unless the lap-
top is plugged into the Paris wired network, causing it
to receive a local address. Thus, the above situation
may result in Cambridge and Paris addresses registered
against the same laptop.

Since almost all CorpNet wireless addresses are allo-
cated from a single subnet, we resolve this ambiguity
by preferring the wireless address as a better indicator
of the location of a host where there is a choice. In
situations where both or neither addresses are wireless
addresses, we simply prefer the first one we saw. We

2Note that residence time is an approximate metric since
it also encompasses travel times, disconnections from the
enterprise network, etc.
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observed 299 ambiguities due to duplication involving
189 unique names. We resolved 205 of these ambigui-
ties by the wireless address heuristic above; the remain-
ing 94 involved 40 unique names of which 25 appear to
have multiple wired interfaces and 15 multiple wireless
interfaces. The end result is 532 unambiguous observed
trips, involving 344 unique names.

The distributions of residence time and return time
follow the exponential distribution. Fig. 14 shows the
CCDFs of residence and return time in days. The CCDFs
are plotted in lin-log scale where a straight line is a
sign of an exponential distribution as is the case in our
data. We observe plateaus at approximately daily in-
tervals as would be expected if trips are due to people
visiting different sites. Slightly longer plateaus, indi-
cating more trips, are observed at one, two, and three
day boundaries, and at one and two week boundaries.
We hypothesize that these plateaus are the result of
common durations for business trips. Overall, approx-
imately 38% of all residence times are less then three
days, while the mean residence and return times are
approximately 5.5 and 3.8 days respectively.

We further examine how connected the various enter-
prise sites are in a similar fashion to Fig. 5 in section 3.
However, instead of looking at the traffic sourced from
or destined to particular sites, we are interested here in
connectivity between sites in terms of host trips. Thus,
if we consider that the Microsoft enterprise network
forms a graph, where the nodes are the various sites
and links connect sites between which a trip existed,
we can measure the relative importance of the links as
the number of times a link was traversed. These links
might be directed or not, in which case there is no dis-
tinction regarding the direction of travel between two
sites.

The distribution of the number of trips per site-pair
appears heavy-tailed. Fig. 15 presents the CCDF of the
number of trips per site-pair in log-log scale for both
the directed and the undirected case of the graph. The
distribution follows a straight line in log-log scale sug-
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gesting that while most links are traversed only a few
times, some routes do appear very frequent. While ex-
amination of the most popular routes reveals that dis-
tance might play some role in the frequency of trips
per site-pair, Fig. 16 illustrates that no obvious corre-
lation between distance and trip frequency appears in
our data. Fig. 16 presents a scatter plot showing the
effect of the actual distance between two sites on the
frequency of trips. Distance is estimated through lon-
gitude and latitude coordinates of the various sites.

Overall, our observations are consistent with [12],
where the authors observe an exponential tail for the
distribution of human inter-contact times and that hu-
man contacts occur in a small number of locations. To
our knowledge our observations offer the first evidence
that mobility within the enterprise network appears to
follow the same patterns, and provide some clues as to
their potential time-scales of operation (e.g., the mean
return time implies roughly three days of inter-contact
time with the origin site).

Summarizing, our DNS packet analysis and router
configuration information highlight a) interesting char-
acteristics of name to address mappings, where approx-
imately one third of all mappings (name to address, ad-
dress to name) is not unique, and b) that host mobility
within the enterprise appears to follow similar patterns
to other DTN settings. Throughout this analysis, we
also have to bear in mind the potential effect of observ-
ing the aforementioned properties for only a local site,
thus having limited view of the global behavior and also
through the specific methodology. With respect to the
latter, examining DNS packets should only present a
limited bias since we observe all DNS responses directed
to hosts within the MSRC site, and a large number of
DNS responses for local hosts when on travel. Esti-
mating the exact fraction of DNS packets observed for
local hosts when not in MSRC is not possible with our
current dataset, since that would require instrumenting
each host machine. Regarding the limited local view
of the network, we believe that the properties observed
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should still hold in the larger scale, assuming that such
patterns in other sites are similar in nature. Confirma-
tion of this hypothesis however is left as future work.

7. RELATED WORK
There have been many detailed studies of large-scale

traffic traces at the packet and flow levels lately. Typi-
cally, they focus on Internet-wide analyses either using
traces gathered from ISP networks [7] or from university
campus networks using, for example, traces gathered at
a university’s border routers [22]. Other research has
looked at characterizing coarse features or structures of
wide-area traffic [1, 6, 14], inferring a traffic matrix from
partial information [18], and predicting traffic [16].

Despite the fact that Leland et al.’s [15] Ethernet
analysis in the early 1990s catalyzed a subsequent resur-
gence of interest in traffic measurement, characteriza-
tion and analysis, relatively little effort has been ex-
pended considering LAN traffic. Similarly, remarkably
few studies have considered modern enterprise network
traffic although there is a large body of work exploring
network behavior of particular application servers, in-
cluding peer-to-peer [13, 22], Internet chat [5], and of
course the Web [1]. Other work [4, 15] has looked at
traffic characteristics of specific applications and net-
work types, such as self-similarity or long-range depen-
dence for Web and for Ethernet traffic.

Thus, although enterprise network configuration [17]
and routing protocol behavior [23] have been examined,
the only recently published work examining enterprise
network traffic that we are aware is by Pang et al., us-
ing a dataset collected from the LBNL network [20].
Our work differs from [20] in various nontrivial aspects.
First, the dataset used in that study differs significantly
from the one we analyze here. Their collection was
taken at a single central point in the LBNL network,
but was restricted to monitoring two router ports at a
time, rotating thus collection through different subnets.
This resulted in 5 separate datasets spanning about
100 hours and covering 160 million packets in total. Our
dataset is substantially larger, generated by continuous
monitoring for over 500 hours from a single location to-
wards the edge of our network, giving 12.8 billion pack-
ets. Our tracing methodology facilitates studying of
almost all packets to and from every host in our lo-
cal network for roughly 3.5 weeks. Second, our router
information allows us to partition the observed traffic
in finer classes than just enterprise and WAN, examin-
ing also the geographical spread and traffic dynamics
to other enterprise sites. Third, we extensively study
name to address and subnet mappings, and human mo-
bility patterns within the enterprise network. Last but
not least, the focus of our analysis here is notably dif-
ferent by studying address and traffic dynamics, rather
than individual application characteristics.

8. CONCLUSIONS
Throughout this paper, we have posed and answered,

through the analysis of a substantial collected trace, a
series of questions with regards to characteristics that
describe the underlying dynamics of modern enterprise
networks. The nature of such typically geographically
distributed networks that offer numerous diverse ser-
vices to several clients worldwide renders them remark-
ably different with specific idiosyncrasies compared to
traditional Internet traffic.

Our empirical evidence suggest that a) the majority
of the observed traffic stays within the enterprise net-
work with approximately one sixth representing inter-
site traffic within the enterprise, b) the meaning of layer-
4 port numbers is less helpful to characterize applica-
tions as we move away from the local site, and c) signif-
icant spatial and temporal variability render valueless
the distinction between clients and servers by traffic
volume. We further observe that even the identifica-
tion of an appreciable fraction of individual hosts is not
straightforward, complicated by extensive use of DHCP,
and that mobility patterns within the enterprise follow
properties observed in settings such as opportunistic
communications. We believe that our observations pro-
vide valuable insights regarding the primary properties
of enterprise networking to the research community, for
whom such data is rarely accessible.
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