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1 Introduction

Isolation is a fundamental ingredient in concurrent programs. A thread T may
read and/or write certain shared variables in a critical section of code and it may
be necessary to ensure that other threads do not interfere with T during this
period — other threads should not observe intermediate values of these shared
variables produced by T and other threads should not update these variables
either. This property is called isolation.

Isolation helps avoid undesirable outcomes arising out of unexpected inter-
actions between different threads and it enables programmers to reason locally
about each thread, without worrying about interactions from other threads.

Today, locking is the most commonly used technique to achieve isolation.
Most often, programmers associate a lock with every shared variable. A locking
discipline requires that every thread hold the corresponding lock while accessing
a shared variable. We say that a thread is well-behaved if it follows such a
discipline. If all threads are well-behaved, then the thread T holding the locks
corresponding to a set of shared variables V will be isolated from any accesses
to V from all other threads.

However, commonly used programming languages provide no mechanism
to ensure that such locking disciplines are indeed followed by all threads in
a program. Thus, even when a thread Twell holds a lock ` corresponding to a
shared variable g , nothing prevents another ill-behaved thread Till from directly
accessing g without acquiring lock `, either due to programmer error or malice.
Such accesses to g violate the isolation property expected by thread Twell and
make it impossible to reason locally about the program. Such interferences
leads to well-known problems such as non-repeatable reads, lost updates, and
dirty reads.

In this paper, we propose a runtime scheme called Isolator that guar-
antees isolation (by detecting and preventing isolation violations) for parts
of a program that follow the locking discipline, even when other parts of the
program fail to follow the locking discipline. One of our underlying assumptions
is that the code for which we wish to provide isolation guarantees is available
(for instrumentation), but the remaining code (which may cause isolation
violations) is unavailable.

Motivating Example. We will use the example program fragment shown
in Figure 1 to elaborate on the goals of our work. This program consists
of a shared list pointed to by a shared variable list, protected by the lock
listlock. The figure illustrates code fragments belonging to two different
threads. The first thread T1 executes function WellBehaved() that returns
the first item from the list, if the list is non-empty. We refer to this thread a
well-behaved thread as it follows the locking discipline. The second thread T2

executes function IllBehaved() that removes all items from the list by setting
it to be empty. We refer to this thread an ill-behaved thread as it does not
follow the locking discipline: specifically, it does not acquire the lock listlock
before updating the list. Because T2 does not follow the locking discipline,
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(a)

(b)

Figure 1: Execution of a program in Isolator. Figure (a) shows an inter-
leaving of threads in which the ill-behaved accesses a shared variable without
acquiring the right lock, causing an isolation violation. Figure (b) shows the
same interleaving with Isolator. Numbers represent the order in which events
occurs. Events with the same number are assumed to execute atomically.
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it may execute statement 4 while T1 is in its critical section (e.g., after the
null check in T1). This can cause T1 to, unexpectedly, dereference a null pointer.

Goal. Our goal is to provide a defense mechanism to protect well-behaved
threads, such as T1, from interference by ill-behaved threads, such as T2. We
would like to guarantee that thread T1 is isolated from any access to the list by
other threads while T1 holds the lock for the list. One contribution of our work
is a precise and formal characterization of our desired goal. The input for our
problem is a concurrent program, a specification of which lock protects which
data, and a set of threads W for which we would like to guarantee isolation.
Abstractly, our goal is a runtime mechanism Θ that alters the execution
behavior of a concurrent program such that it ensures: (1) safety, (2) isolation,
and (3) permissiveness. Safety means that every run of a program with Θ
should indeed be a possible run of the program without Θ. Safety ensures
that the scheme Θ does not introduce new behaviors in the program. Isolation
means that every run of a program with Θ satisfies isolation for all threads in
W. Permissiveness means that every run of the program P (without Θ) that
satisfies isolation (for the threads inW) is allowed by Θ as well. Permissiveness
ensures that concurrency in the program is not unnecessarily restricted in the
pursuit of isolation.

The Basic Idea. Isolator employs a custom memory allocator to associate
every lock with a set of pages that is used only for variables protected by the lock
and exploits page protection to guarantee isolation. For the motivating example
shown in Figure 1, Isolator allocates the list shared variable and the list
objects on the page(s) associated with listlock (which we refer to as the shared
page(s)). When the well behaved thread T1 acquires a listlock, Isolator
makes a copy of the shared page(s), which we refer to as the shadow page(s),
and turns on protection for the shared page(s). We refer to the copy of shared
variables in the shadow page(s) as shadow variables. Isolator also instruments
all accesses to shared variables in T1’s critical section to access the corresponding
shadow variable instead. In the figure, we use the notation [list] to refer to
the shadow variable corresponding to a shared variable list; see Section 5 for
details of Isolator’s instrumentation scheme. If an ill behaved thread T2 now
tries to access the list without acquiring listlock, a page protection exception
is raised, and is caught by a custom exception handler registered by Isolator.
At this point, an isolation violation has been detected.

Upon catching the exception, Isolator’s custom exception handler code
just yields control and retries the offending access later. When T1 releases
the lock listlock, Isolator copies the shadow page(s) back to the shared
page(s) and releases the page protection on the shared page(s). From this point
on, an access by an ill behaved thread to the list will succeed (until some well
behaved thread acquires listlock again). Thus, Isolator essentially delays
any access to a shared variable by an ill-behaved thread until it can occur with
no other thread holding the corresponding lock, thus ensuring isolation. As
we describe in the paper, this basic scheme can be optimized by avoiding the
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copying between successive lock acquisitions by well behaved threads.

Applications. A mechanism such as Isolator is useful in several circum-
stances. It makes a concurrent program more robust, and can keep the program
running even in the presence of concurrency bugs. It may be particularly ap-
propriate in contexts such as debugging and safe-mode execution, and when
third-party plugins may be ill-behaved. In the context of debugging, the abil-
ity of Isolator to identify interference the moment it happens helps identify
locking-discipline violation in the ill-behaved thread. The ability of Isolator
to avoid interference helps continue with program execution to understand other
aspects of the program’s behavior, rather than be distracted by the interference.
By safe-mode execution, we mean execution of a program, which we expect (e.g.,
from prior history) is likely to crash, in a mode that reduces the likelihood of a
crash. This is particularly useful for applications or operating systems that are
extended by third-party plugins that may be ill-behaved.

For example, consider an operating system where the I/O manager is heavily
multi-threaded to deal with latency of I/O devices. Several data structures
are shared between the I/O manager and device drivers in the system. Even
though the OS vendor can ensure that the I/O manager code obeys locking
discipline, there is no way to ensure that device drivers written by third parties
actually follow the locking discipline. Any violation of the locking discipline
can lead to violations of invariants in the I/O manager, and cause the operating
system to crash.

Contributions. To summarize, our paper makes the following contributions:

• We formally define three desiderata for any runtime scheme that ensures
isolation: (1) safety, (2) isolation, and (3) permissiveness.

• We present a scheme Isolator and prove that Isolator satisfies all the
desiderata.

• We present the results of our empirical evaluation of an implementation
of Isolator and demonstrate that Isolator can achieve isolation with
reasonable runtime overheads.

Our work was inspired by Tolerace [10], which has a similar goal of protect-
ing well-behaved threads from ill-behaved threads. However, our work differs in
the provided guarantees and in the underlying implementation mechanism (See
Section 4.4).

2 Background

In this section, we describe a simple concurrent programming language and its
semantics and formalize the concept of isolation.
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A Concurrent Programming Language. A concurrent program is a triple
P = 〈G,L, T 〉 where G is a finite set {g1, g2, . . .} of shared variables, L is a
finite set {`1, `2, . . .} of locks, and T is a finite set {T1,T2, . . .} of threads.
A thread is a triple T = 〈K, I,R〉 where K is a natural number such that
{1, 2, . . . ,K} are the possible values of the program counter of the thread, I
maps each program counter value (i.e., {1, 2, . . . ,K}) to an instruction (defined
below), and R = {r1, r2, . . .} is a finite set of local variables.

A operand v is either a constant or the contents of some variable. An instruc-
tion is one of the following: (1) Acquire(`) acquires the lock `. This instruction
blocks if the lock ` has been already acquired. (2) Release(`) releases the lock `
if the executing thread holds the lock (and blocks otherwise). (3) ri = Read(gj)
reads the value of shared variable gj into local variable ri. (4) Write(gj , v)
writes the value of operand v into shared variable gj . (5) ri = Op(v1, v2, . . . , vk)
performs an operation (such as add, subtract, and, or, xor, or any such arith-
metic or logical operation) on the values of operands v1, v2, . . . , vk and store the
result in the local variable ri. (6) JmpZ(ri, pc) performs a conditional jump to
pc if the value of local variable ri is zero.

We assume a sequentially-consistent execution semantics for a concurrent
program. At any point in execution, any thread that is not blocked may execute
its next instruction. The execution of an instruction by a thread increments the
thread’s program counter by one if the instruction does not explicitly modify
the program counter. We represent the (execution) history of a concurrent
program P by a sequence π = σ0, σ1, . . . of pairs σi = 〈t , x 〉 where t is the
identifier (an integer) of the thread that executes the instruction x . (Even a
truly concurrent execution of multiple instructions on multiple processors can
be represented by an equivalent sequence if there is an ordering on instructions
that access the same shared variable. Thus, our semantics is fairly general.)

Isolation. In concurrent programs, interference freedom is often required while
accessing (reading and/or writing) shared data to prohibit access to inconsis-
tent data. This requirement is satisfied by performing such accesses in isolation.
Most often, programmers achieve isolation by (1) consistently associating a lock
with every shared variable and (2) ensuring that every access to a shared vari-
able occurs only when the accessing thread holds the associated lock. This
methodology is usually referred to as a locking discipline. For a program P ,
its locking discipline is represented as a function LD : G → L. Intuitively, a
thread Tt of P obeys the locking discipline LD if, for every shared variable g ,
Tt always holds the lock LD(g) while accessing g .

More formally, given a history π = σ0, σ1, . . . , σn and a lock `, a `-protected
sub-history π` of π is a contiguous subsequence σi, . . . , σj of π such that σi =
〈t , Acquire(`)〉, σj = 〈t , Release(`)〉 or j = n, and ∀m.i < m < j ⇒ σm 6=
〈t , Release(`)〉. We shall use owner(π`) to denote the identifier of the thread
that owns the lock ` in π`. We say that a thread Tt of P obeys the locking
discipline LD if, for every history π of P , for every σk = 〈t , x 〉 ∈ π where
instruction x accesses shared variable g , there exists a `-protected sub-history
π` such that LD(g) = `, owner(π`) = t , and σk ∈ π`.
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Consider a locking discipline LD . Intuitively, a thread Ti interferes with
thread Tj under LD if Ti accesses a protected shared variable g while Tj holds
the lock LD(g). Formally, a `-protected sub-history π`contains an interference
under the locking discipline LD if it contains an element σi = 〈s, x 〉 such that
x accesses a shared variable g , LD(g)= `, and s 6= owner(π`). Dually, a `-
protected sub-history is isolated under the locking discipline LD if there are no
elements σi = 〈s, x 〉 such that x accesses a shared variable g , LD(g)= `, and
s 6= owner(π`). We say that a thread Tt executes in isolation in a history π if
every `-protected sub-history of π with t as the owner is isolated. A history π is
isolated if each of its `-protected sub-histories is isolated. Similarly, a program
P executes in isolation if each of its histories is isolated.

Proposition 1 Given a concurrent program P = 〈G,L, T 〉 and a locking dis-
cipline LD, program P executes in isolation if every thread Tt ∈ T obeys the
locking discipline LD.

3 Ensuring Isolation

Given a locking discipline LD , suppose the threads T in a program P can be
partitioned into well-behaved threads W that obey LD and ill-behaved threads
T \W that may disobey LD . Even under such circumstances, we wish to come
up with an efficient and non-intrusive technique that ensures every well-behaved
thread executes in isolation (without interference) in every possible history.

The end-goal of the technique is to avoid undesirable interleavings that vi-
olate isolation. The technique works by altering the state representation and
modifying the interpretation of individual instructions in the program.

A technique optimally ensures isolation if the following conditions are satis-
fied:

Safety For any program P , every history π of P permitted by the technique
is also a history of P(under the standard semantics). Furthermore, the
state produced by the execution of π by the technique must be equivalent
to that produced by the execution of π under the standard semantics.

Isolation For any program P and every history π of P permitted by the tech-
nique, every well-behaved thread of P executes in isolation in π.

Permissiveness For any program P , every history π of P (under the standard
semantics) that is isolated with respect to well-behaved threads of P is
also permitted by the technique.

We present a technique for optimally ensuring isolation that relies on alterna-
tive operational semantics for Acquire, Release, Read, and Write instructions
executed by well-behaved threads and Read and Write instructions executed by
ill-behaved thread.

While the requirements of safety and isolation may seem somewhat obvious,
we note that there are fault-tolerance techniques (such as Tolerace [13, 10]) that
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guarantee neither of these properties (see Section 4.4). As for the permissive-
ness criterion, it mandates that the technique should not unnecessarily forbid
interleavings or concurrency that are “good” (i.e., isolated).

4 Isolator

4.1 Basic Algorithm

Input. The input to Isolator consists of a concurrent program, a locking
discipline LD , and a set W of well-behaved threads for which we would like to
provide the isolation guarantee.

Requirements. We assume that the runtime system allows us to enable or
disable memory protection for any variable v. We denote the operation that
enables memory protection for variable v by MemProtect(v) and the operation
that disables protection for the variable by MemUnprotect(v). Once a vari-
able v is protected, any access to the variable generates a memory protection
violation exception. We assume that the runtime system allows us to register
an exception handler that will be triggered (in the context of the thread that
caused the memory protection violation) allowing Isolator to take control of
the execution.

For every shared variable gj , Isolator utilizes a new variable shadowj ,
which we refer to as the shadow variable of gj . The CopyAndProtect operation
copies the value of a shared variable to its corresponding shadow variable, and
enables protection for the shared variable. The UnprotectAndCopy operation
disables protection for the shared variable, and copies the value of the shadow
variable back to the shared variable. We assume that these two operations are
atomic. We describe how to implement these two operations using memory
protection and OS support in Section 5.

Isolator Semantics. During the execution of a thread inW, Isolator works
by interpreting the primitive instructions (namely Acquire, Release, Read, and
Write) differently from the standard semantics. Our implementation realizes
the Isolator semantics by rewriting every occurrence of an instruction x in
a well-behaved thread by the corresponding code-fragment shown in Figure 2.
We use AcquireS(`) and ReleaseS(`) to represent the standard semantics of
Acquire(`) and Release(`). Instructions not shown in the table are interpreted
as usual. Also, all instructions are interpreted as usual when threads in T \W
execute.

Let InvLD : L → ℘(G) be the inverse of the function LD . It maps every lock
to the set of shared variables protected by that lock according to the locking
discipline LD .

In accordance with the Isolator semantics (Figure 2), when a thread in W
acquires a lock `, Isolator copies the value of shared variables protected by `
to the corresponding shadow variables, and enables memory protection for the
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Instruction I Isolator’s semantics for I
Acquire(`) AcquireS(`)

foreach gj ∈ InvLD(`)
CopyAndProtect(gj , shadowj)

end
Release(`) foreach gj ∈ InvLD(`)

UnprotectAndCopy(gj , shadowj)
end
ReleaseS(`)

ri = Read(gj) ri := shadowj ;
Write(gj , v) shadowj := v ;
OnException(gj) yield()
CopyAndProtect(gj , shadowj) atomic{shadowj := gj ;

MemProtect(gj); }
UnprotectAndCopy(gj , shadowj) atomic{MemUnprotect(gj);

gj := shadowj ; }

Figure 2: Isolator Semantics for various operations. AcquireS(`) and
ReleaseS(`) represent lock acquisition and release operations under standard
semantics.

shared variables. Any access to a shared variable in a thread in W is directed
to the corresponding shadow variable. When a thread in W releases a lock
`, memory protection is disabled for the shared variables protected by ` and
the value of the shadow variables are copied back to the corresponding shared
variables.

The final component of the Isolator semantics relates to the treatment
of instructions executed by ill-behaved threads — Isolator does not alter the
semantics of such instructions. However, any such instruction that accesses a
protected shared variable without acquiring the corresponding lock is not en-
abled for execution if one of the well-behaved threads holds the lock. Isolator
ensures this, in the implementation, by installing a custom exception handler
that handles access violation exceptions and forces the ill-behaved thread to
back-off by temporarily yielding control. This is denoted by the instruction
OnException(gj)in Figure 2.

A discerning reader may have noted that although the core Isolator al-
gorithm enforces isolation, it does not provide any progress guarantees to ill-
behaved threads. In some cases, an ill-behaved thread may starve for long
durations while well-behaved threads hold locks on shared variables. But note
that such behavior is identical to what can happen if the ill-behaved thread were
to correctly follow the locking discipline. We discuss this further in Section 7.
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4.2 Properties of ISOLATOR

First, we prove that Acquire(`) and Release(`) can be thought of as atomic
operations even though they execute several CopyAndProtect(gj , shadowj) and
UnprotectAndCopy(gj , shadowj) operations in a loop.

Theorem 2 Consider any execution sequence π produced by a program under
Isolator semantics. We can transform π into an equivalent execution sequence
π′ where all the Acquire(`) and Release(`) operations execute atomically.

Proof Consider any execution sequence π. Suppose thread Tt starts executing
Acquire(`). Any intervening operations by other threads that read or write
any of the shared variables gj ∈ InvLD(`) can be thought of as occurring before
the execution of Acquire(`) by thread Tt . Similarly, suppose thread Tt starts
executing Release(`). Any intervening operations by other threads that read or
write any of the shared variables gj ∈ InvLD(`) can be thought of as occurring
after the execution of Release(`) by thread Tt .

Next, we show that Isolator has the three properties that defined our goal,
namely safety, isolation and permissiveness (see Section 3).

Establishing these properties requires us to compare the normal execution
behavior of a program (the program’s standard semantics) with the execution
behavior of the program under Isolator (which we refer to as the Isolator
semantics). We first define a notion of equivalence between the program states
used by the standard semantics and the program states used by the Isolator
semantics. Note that the only difference in the representation of a state under
the Isolator semantics is that the value of a shared variable gj is stored in the
local copy shadowj when gj is protected, and in gj otherwise. Let σi be a state
in the Isolator semantics. We define lookup(σi, gj) to be the value of shadowj

if the lock corresponding to gj is currently held by some well-behaved thread,
and the value of gj otherwise.

A state σs in the standard semantics is said to be equivalent to a state σi

in the Isolator semantics iff (a) For all threads T , the value of the program
counter of T , the value of local variables of T , and the set of locks held by
thread T are the same in σs and σi, and (b) For every shared variable gj , the
value of gj in σs is equal to lookup(σi, gj).

Consider a sequence π of pairs 〈t , x 〉, consisting of a thread id and an in-
struction. We say that such a sequence is feasible under the standard semantics
if it is the execution history for some (possibly incomplete) program execution
(under the standard semantics). We define the notion of feasibility under the
Isolator semantics similarly.

Theorem 3 (1) A sequence π is feasible under the Isolator semantics iff it
is feasible under the standard semantics and is isolated (with respect to W). (2)
Furthermore, for any isolated feasible sequence π, the final state produced by
the execution of π under the Isolator semantics is equivalent to the final state
produced by the execution of π under the standard semantics.
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Proof We prove the theorem by induction on the length of π. The claim is
trivially true for the empty sequence π. Assume that it is true for some sequence
π. Consider any sequence π′ = π.〈t , x 〉.

Case 1 (Interfering instruction): Consider the case where instruction x ac-
cesses some shared variable gm currently locked by a thread other than Tt . In
this case the memory locations corresponding to gm are protected by Isolator.
As a result, the execution of instruction x will cause a fault. Thus, π′ is not
feasible under the Isolator semantics.

Case 2 (Non-interfering instruction): Consider the case where a thread Tt

executes an instruction x that does not access a shared variable currently locked
by another thread. In this case, the instruction execution does not cause a fault.
Furthermore, all the operands of the instruction have the same values in both
the standard semantics as well as the Isolator semantics (from the inductive
hypothesis that the states are equivalent). As a consequence, the resulting states
are equivalent as well.

Corollary 4 Isolator optimally ensures isolation.

Proof Follows from Theorem 3.

4.3 Optimized Algorithm

The naive implementation of Isolator’s Acquire and Release operations that
copies data and enables/disables memory protection at the beginning and end
of every critical section is inefficient. This is because copying data between the
shared and shadow variables and enabling/disabling memory protection are both
expensive operations (several thousands of cycles depending on the amount of
data). In Figure 3, we show an optimized algorithm that greatly reduces copying
overhead.

The optimized algorithm relies on the observation that for a given lock, as
long as the lock is accessed only by threads inW, the copying and changing pro-
tection done by Release and the subsequent Acquire operations are redundant.
To eliminate this redundancy, we simply do not perform copying or disable pro-
tection during Release (as shown in Figure 3). On Release, threads perform
no additional operations other than releasing the lock. This implies that the
shared variables protected by the lock remains under memory protection even
after the thread releases its lock.

With every lock `, the optimized algorithm maintains a flag IsShadowValid `

which indicates whether the shadow variables contain the most recent version
of the shared state. The flag is initially set to false and set to true on every
Release(`). On Acquire(`), threads check the IsShadowValid ` flag. If the flag
is false, the thread copies the value of the shared variables to the corresponding
shadow variables and enables memory protection. However, if IsShadowValid `

is true, the thread does not update the shadow variables since the shadow copy
contains the most recent version of the shared state.

When a thread in T \W accesses a shared variable (either with or without
acquiring the lock) and the shared variable is in protected mode, an access
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Instruction I Semantics for I in our implementation
Acquire(`) AcquireS(`)

if (!IsShadowValid `)
IsShadowValid ` := true
foreach gj ∈ InvLD(`)
CopyAndProtect(gj , shadowj)

end
Release(`) ReleaseS(`)
ri = Read(gj) ri := shadowj ;
Write(gj , v) shadowj := v ;
OnException(gj) let ` = LD(gj) in

if (TryAcquireS(l))
if (IsShadowValid `)

IsShadowValid ` := false
foreach gj ∈ InvLD(`)
UnprotectAndCopy(gj , shadowj)

end
ReleaseS(`)(l)

else
yield()

Figure 3: Semantics of operations in optimized Isolator

violation is raised. Unlike the exception handler described in Figure 2 that
merely yields control, the exception handler in our implementation first tries
to acquire the lock ` corresponding to the variable using a nonblocking acquire
operation TryAcquireS(`).

This operation returns true if ` is held by the current thread or if ` was
available and it was acquired (without blocking); otherwise, it returns false.
When the operation returns true, we assume that the TryAcquireS operation
is treated as a reentrant acquire. If the lock API does not support reentrancy,
we can modify the code for OnException(gj) in Figure 3 to check explicitly if
the current thread already holds the lock, and handle that case separately.

If TryAcquireS(`) returns true, then the code for OnException(gj) first
checks the value of IsShadowValid `. If IsShadowValid ` is true, then protec-
tion is turned off on the shared variables, the shared variables are updated with
the values of the corresponding shadow variables, and the IsShadowValid ` is
set to false. If the value of IsShadowValid ` is false, then no extra operations
are performed as the shared variables already have the most recent state. This
case happens when two threads from T \W both access a shared variable simul-
taneously, and the exception handler for the first thread has already done the
copying and set IsShadowValid ` to false.

Due to this optimization, copying between shadow and shared variables hap-
pens only when ownership of the shared variable goes from a thread in W to a
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Instruction I Tolerace’s semantics for I
Acquire(`) AcquireS(`)

foreach gj ∈ InvLD(`)
shadowj := gj ;
origj := gj ;

endfor
Release(`) GW = {j ∈ InvLD(`) | gj 6= origj}

LW = {j ∈ InvLD(`) | shadowj 6= origj}
if(LW 6= {})
if(GW 6= {})

report “unfixable race”
else

foreach gj ∈ InvLD(`)
gj := shadowj ;

endif
endif
ReleaseS(`)

ri = Read(gj) ri := shadowj ;
Write(gj , v) shadowj := v ;

Figure 4: Semantics of operations in Tolerace

thread in T \W, or vice-versa. If this transfer is infrequent, the program does
not experience any performance overheads due to Isolator. We evaluate the
overheads of our implementation in more detail in Section 7.

4.4 Comparison with Tolerace

While Isolator satisfies safety, isolation and permissiveness, similar algorithms
that appear in the literature violate these desiderata. In this section, we briefly
describe Tolerace [10] and show an example to illustrate that it can violate
safety.

The left portion of Figure 4 gives the semantics of operations in Tolerace [10].
The Acquire and Release operations are very similar to that of Isolator,
and the Read and Write operations are exactly the same as that of Isolator.
However, the main difference is that memory protection is not used to detect
conflicts. Instead, during the Acquire operation, the original value of each
shared variable gj is stored in origj . During the Release operation, Tolerace
checks if some shared variable gj and shadow copy shadowj′ have been written
by comparing their values with the original values. If this is the case, it simply
declares that an unfixable race has been encountered. Otherwise, the Release
operation writes back the shadow copy back to the shared variables.

Tolerace does not ensure isolation in some situations where both shadow and
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Thread 1 Thread 2
L1 : Acquire(`1)

M1 : Write(x, 5)
M2 : Write(a, 10)

L2 : Acquire(`2)
L3 : r2 := Read(a);
L4 : Write(b, r2);
L5 : Release(`2)

L6 : r1 := Read(x);
L7 : Release(`1)

L8 : Acquire(`1)
L9 : Write(y, r1);
L10 : Release(`1)

Figure 5: Example showing how Tolerace violates safety

shared copies are updated. More surprisingly, in the presence of nested acquires
and releases, as the example below shows, it generates behaviors that are not
allowed by the standard semantics.

Consider the execution history in the right portion of Figure 4. Here the lock
`1 protects shared variables x and y, and the lock `2 protects shared variables
a and b. Thread 1 is well-behaved and Thread 2 is ill-behaved. Let the initial
value of all shared variables be 0. During Acquire(`1) at line L1, Tolerace
makes shadow copies of x and y. Then, Thread 2 updates x to 5 and a to 10
respectively. Then, Thread 1 acquires `2 at line L2, and makes shadow copies of
a and b. Note that at this point the shadow copy of x still has the old value 0,
but the shadow copy of a has the new value 10. Later, when Thread 1 executes
Release(`1) at line L7, the shadow copy of b contains 10, which is written back
to the shared copy, and the local variable r1 contains the old value of x, namely
0. Finally, the statements at lines L8 to L10 are executed, resulting in the value
0 written to y.

Under standard semantics, if b gets the value 10, then y necessarily will get
the value 5. Thus, the above execution is not allowed by the usual semantics,
but it is incorrectly allowed by Tolerace.

5 Isolator for C

While the concurrent programming language in Section 2 simplifies the descrip-
tion of Isolator, it also masks the complexities involved in applying Isola-
tor in the context of real world programming languages that support functions,
pointers, and dynamically allocated data. In this section, we address this con-
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cern by describing IsolatorC , a realization of Isolator for C.

5.1 The Input

In our earlier presentation, the input to Isolator consisted of a set of well-
behaved threads, represented by their code, and a specification of the locking
discipline. We now generalize this and allow the input to IsolatorC to consist
of any part P of a C program for which we wish to provide isolation guarantees,
as long as P satisfies the following conditions: (a) We require P to be closed
with respect to function calls: if P contains a call to some function f , we require
P to include the code for f . (However, this requirement can be relaxed if f is
guaranteed not to reference the shared data we are protecting and not to acquire
or release the corresponding locks. This is convenient for handling library calls.)
(b) We require the lock acquire/release operations in P to be well-matched : i.e.,
for any possible execution path (by a single thread) in the whole program, the
subpath from any point when execution enters P to the point when execution
subsequently leaves P must have well-matched lock acquire/release operations.

Unlike in the simplified language used earlier, there is no syntactic difference
between shared and thread-local data in a C program. The specification of the
locking discipline identifies the shared data, as well as the locks protecting the
shared data. Shared data may be either static (global) variables or dynamically
allocated memory. For shared static variables, an annotation attached to the
declaration of the variable (of the form “ guarded by (x) v”, where x is a
static variable of type lock) indicates the lock x protects variable v. For dynam-
ically allocated shared data, an annotation attached to the statement that allo-
cates the memory (of the form “malloc(...) guarded by (lock-expr)”)
indicates the lock that protects the allocated memory. The meaning of the above
annotation is that the memory allocated by an execution of the allocation state-
ment is protected by the lock that lock-expr evaluates to during the execution
of the statement. This allows for dynamic locks and fine-grained locking. These
annotations can be automatically inferred using tools such as Locksmith [16].
The inferred annotations can be checked and refined by the programmer and
then provided as input to IsolatorC .

5.2 Shared Data Protection and Duplication

As explained earlier, Isolator requires some form of memory protection mecha-
nism to prevent ill-behaved accesses to shared variables. Most modern operating
systems, including Windows [3] and Linux [2], support some form of memory
protection. In IsolatorC , we consider the Windows Virtual Memory API,
which enables a process to modify access protection at the granularity of virtual
memory pages. This API is commonly used by the OS to detect stack overflows
and guard critical data structures against corruption.

This approach requires that every lock be associated with a set of pages
used only for shared variables protected by that lock. As described in Section 4,
every shared variable is also associated with a shadow variable. In IsolatorC ,
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each shared variable protected by a lock ` is allocated on a shared memory
page specific to ` and the corresponding shadow variable is allocated on the
associated shadow memory page at a fixed offset from shared memory page.
The fixed offset between the two pages of shared data allows redirection of data
accesses by merely adding a fixed offset to the accessed address.

For statically allocated data, the allocation of the shared and shadow vari-
ables on appropriate memory pages can be statically achieved (with support
from the compiler). For dynamically allocated data, IsolatorC transforms ev-
ery call to malloc for allocating shared data into a request to a custom memory
allocator that takes the associated lock as an extra parameter and allocates
memory for both shared objects and shadow objects on appropriate memory
pages.

5.3 Code Instrumentation

We assume that the lock acquire and release operations Acquire and Release
are implemented as C functions with lock variables as parameters. IsolatorC

replaces all calls to these functions by calls to custom operations that realize
the isolator semantics as described in Section 4.

We now describe how data accesses are instrumented. We simplify the cur-
rent discussion by assuming that the instrumented code is well-behaved (i.e.,
that it accesses shared data only while holding the corresponding lock) and con-
sider the general case later. Unlike in our simple language, there is no syntactic
difference between references to local data and references to shared data in C.
However, direct references (to static data) can be easily classified as a reference
to local or shared data. We transform any access to a shared variable gi into a
reference to the corresponding shadow variable shadowi.

Pointers to shared variables, however, introduce some complications. If a
well-behaved thread contains a reference of the form “*p” involving pointer
indirection, then IsolatorC needs to determine if this reference is to a shared
variable to redirect the reference appropriately. We utilize a static analysis to
determine whether an indirect reference “*p” may be a reference to a shared
variable. Any points-to analysis can be adapted to compute this information,
as indicated below:

• If none of the targets that p may point-to is a shared variable, then *p is
not a reference to shared variable, and the access is left as is.

• If all of the targets that p may point-to are shared variables, then *p is
always a reference to a shared variable, and the access is redirected to the
shadow variable.

• If some, but not all, of the targets that p may point-to are shared variables,
then we cannot statically determine whether the reference *p will be to
a shared variable. We instrument the code to introduce a runtime check
that determines if p points to a shared variable. If the check passes, then

15



the access is redirected to the shadow variable; otherwise, the access is left
unchanged.

Note that we always allocate the shadow variable at the same offset from
the shared variable, as explained earlier. Thus, the redirection of *p is achieved
by transforming it into *(p+offset), even when we do not know which shared
variable p points-to. (Otherwise, the redirection will require another indirection
at runtime if the referenced variable is not known at instrumentation time.)

Also note that an access to a shared variable gi must be redirected to the
corresponding shadow variable only when the access occurs in a context where
the shared variable has been copied to the shadow variable. However, this
precondition may not hold for a particular access to gi in the program fragment
P if the code in P is not well-behaved (and accesses the shared variable without
acquiring its lock) or if the corresponding lock-acquire was done before the
instrumented code P starts executing. If such situations are possible, we can
handle them by using an analysis to identify accesses which may suffer from this
problem and adding a runtime check in the corresponding instrumented code to
determine if the access should be redirected.

5.4 Function Cloning

In general, we may have functions that are called from within critical sections in
the instrumented code as well as from outside critical sections. If these functions
may potentially access shared data, cloning these functions can greatly simplify
the analysis required by the instrumentation, reduce the need for runtime checks
added by instrumentation and reduce the runtime overhead of these checks.
Specifically, one can use the original, uninstrumented, function for all calls from
outside the instrumented code (which includes code in P that is guaranteed to
execute outside critical sections). We can use an instrumented version of the
function for all calls in the instrumented code that may execute inside a critical
section.

5.5 Atomic CopyAndProtect and UnprotectAndCopy.

In the description of the Isolator algorithm, we assumed that the
CopyAndProtect and UnprotectAndCopy operations can be implemented atom-
ically. We now describe atomic implementation of these operations.

• Atomic CopyAndProtect. A page level CopyAndProtect operation takes
the address of two virtual pages V1 and V2 as input, copies V1 to V2

and marks V1 as protected. In our implementation, CopyAndProtect
is performed atomically by first marking V1 as read-only, updating V2,
and finally marking V1 as protected with no access. This has the same
effect as performing the operation atomically. (Any concurrent read
by an ill-behaving thread is equivalent to one performed before the
CopyAndProtect operation began).
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Thread Twell Thread Till

Acquire(`1);
Acquire(`2);

g1 = ... ... = g2
g1 = ...

Acquire(`2);

Figure 6: Interleaving illustrating a potential deadlock under Isolator.

• Atomic UnprotectAndCopy. A page-level UnprotectAndCopy operation
takes two virtual pages V1 and V2 as input, copies V2 to V1 and marks
V1 as unprotected. An atomic implementation of UnprotectAndCopy is
harder to realize because the semantics involve writes to protected pages
and disabling protection is a pre-requisite for writing. However, disabling
protection before writing would leave a window of vulnerability in execu-
tion where an isolation violation from an ill-behaved thread would not be
detected. The implementation of UnprotectAndCopy relies to OS support
to ensure atomicity:

1. Allocate a temporary virtual page Vtmp mapped to a physical page
Ptmp.

2. Copy contents of V1 to the page Vtmp.

3. Change the virtual-physical page mapping so that the virtual page
V2 maps to the physical page Ptmp.

4. Disable protection on the virtual page V2.

The implementation guarantees that any other thread concurrently access-
ing either causes an access violation or observes V2 in a state consistent
with V1.

6 Limitations and Extensions

Deadlocks and Livelocks. While Isolator guarantees isolation, it has the
potential to introduce deadlocks and livelocks. Consider the example in Fig-
ure 6. Let us assume `1 protects g1 and `2 protects g2. For the interleaving
given in Figure 6 Isolator attempts to delay the access to g1 by the Till until
the thread Twell releases `1. However, thread Twell waits to acquire `2, which
is being held by Till. Thus, the delaying of the access to g1 in Till by Isolator
introduces a deadlock. Similar examples can be constructed where Isolator
introduces livelocks.

A simple back-off based solution to alleviate deadlocks and livelocks is
to remove the memory protection after a finite number of executions of the
yield()operations in the exception handler. Alternatively, an arbitrary thread
can be allowed to continue execution after a deadlock is dynamically detected
in Isolator’s exception handler. While these strategies would avoid deadlocks
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and livelocks, they would allow isolation violation (that can be reported to the
user).

Locking Granularity. Our current isolation implementation relies on
hardware and OS support for memory protection. On most existing operating
systems, the granularity of protection is tightly coupled with the page size.
This design, coupled with Isolator’s custom memory allocation scheme, may
cause memory fragmentation. The fragmentation will be more pronounced
if the program uses fine-grained locks. This drawback can be addressed if
hardware/OS implementations decouple memory protection from page size and
provide support for fine-grained memory protection. Researchers have already
proposed several hardware and software extensions [20, 22, 5] that support
memory protection at the granularity of individual cache lines. We note that
these extensions, if supported by future hardware implementations, will also
benefit several other techniques that rely on memory protection [4, 12].

Handling other synchronization primitives. Apart from locks, Iso-
lator is also capable of handling other synchronization primitives such as
reader/writer locks and condition variables. For critical sections that acquire
reader locks, we provide isolation by enabling read-only protection for data
protected by the lock and enabling full page protection only when a writer
lock is acquired. A wait on a condition variable is treated as a release of the
associated lock before the wait and an acquire of the lock after the wait.

Collocated locks and data. Consider the annotated declaration of tree
structure in Figure 7. The implementation uses one coarse-grained lock lock
that is part of the structure to protect fields root and items. If IsolatorC ’s
custom allocator allocates lock on the same page as the fields, accesses to the
` will raise access violation exceptions when memory protection is enabled. In
languages like Java that do not support pointer arithmetic, this problem can be
safely addressed by automatically splitting the object. However, such transfor-
mations can be unsafe in languages like C/C++. Hence, IsolatorC identifies
such cases and expects the programmer to manually perform the transformation.

Weak memory models. As described in this paper, Isolator assumes and
ensures sequentially consistent semantics. However, several hardware implemen-
tations only guarantee sequential consistency for correctly synchronized accesses
and provide weaker guarantees for unsynchronized accesses. Under weak mem-
ory models, isolation can be ensured if the MemProtect operation acts as a
memory barrier for the shared variables being protected (perhaps at a higher
performance cost). If the implementation of MemProtect does not enforce an
order on shared variables, Isolator’s implementation may have to introduce
additional barriers.
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typedef struct _cp_tree {

/* root node*/

__guarded_by(lock) cp_node *root;

/* item count */

__guarded_by(lock) int items;

/* lock protecting items and the tree */

cp_lock *lock;

} cp_tree;

Figure 7: Declaration of a structure in which the lock and data protected by
the lock are collocated.

7 Experimental Evaluation

We have implemented Isolator as a compiler phase using Microsoft’s Phoenix
compiler infrastructure (July 2007 SDK). However, due to limitations of the
Phoenix infrastructure, some aspects of our algorithm have been manually im-
plemented. For instance, since Phoenix does not support function cloning, we
preprocess our benchmark programs to identify functions called from critical
sections and duplicate the functions manually. Some manual transformations
were also required to overcome the lack of support for inter-procedural alias
analysis and the inability to split fields of structures that contain locks. How-
ever, we believe that these tasks can be easily automated using a more powerful
compiler infrastructure.

7.1 Benchmarks

We evaluate the runtime overheads of Isolator using several multi-threaded
microbenchmarks as well as real world programs.

• libcprops is a C prototyping library consisting of generic data structures
(heaps, lists, trees, hashtables etc.) and applications levels components
(thread pools, http sever/clients, etc). The library uses per-instance locks
to control access to data structures. We used Isolator to enforce this
locking discipline. These data structures are our microbenchmarks. For
each data structure, we implemented a stress testing client that creates
a specified number of threads and each thread randomly performs opera-
tions on the data structure until the total number of operations exceeds
a threshold (1 million). We classify the data structure operations as read
and write operations and parametrize the client by the fraction of write
operations to be performed. We also evaluated Isolator using the modi-
fied version of httpclient, an application that creates a specified number of
threads to fetch a set of URLs. httpclient uses a shared trie to store cook-
ies and a shared stack to store data transfer requests that are performed
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asynchronously.

• pfscan is a parallel file scanning utility that mimics the Unix grep util-
ity. pfscan consists of a shared queue that maintains a set of files to be
scanned for matching. The main thread creates several worker threads
that dequeue file names from the queue and process each file while the
main thread populates the queue with the names of files in the given
path. pfscan uses a course-grained lock to protect access to the queue; we
use Isolator to ensure isolation for critical sections in the queue API.
For our evaluation, we use pfscan to search for five keywords in 4800 files
of C/C++ source code.

• lkrhash is an industry strength concurrent hash table. The hash table
implementation uses a lock to protect a collection of sub-tables that are
created when entries are added or removed from the hash table, when the
hash table is searched, and when the tables expand or contract. We use a
set of inputs provided with the implementation to measure overheads of
Isolator.

7.2 Experimental platform and methodology

We performed our experiments on a system with the Intel Pentium Core 2 Duo
CPU (1.6Ghz) and 3 GB of RAM running Windows Vista. All our benchmarks
were compiled using Microsoft’s C/C++ compiler (version 15.00.21022) and use
the pthreads library. To ensure that our measurements are not biased by micro-
architectural effects such as cache warm-up, we estimate the execution time of
a benchmark (with or without Isolator) by running the benchmark 5 times,
ignoring the first run and computing the average of the other 4 runs.

7.3 Experiments with microbenchmarks

Runtime overheads. We conducted two sets of experiments to evaluate Iso-
lator’s runtime overheads for the microbenchmarks. In the first set of exper-
iments, we simulate a scenario where all threads are well-behaved. We achieve
this by instrumenting all critical sections in the data structure implementa-
tion. This represents Isolator’s best case scenario because it minimizes the
amount of copying between the shared variables and the shadow variables and
the number of memory protect/unprotect operations.

Figure 8 shows the execution time for the microbenchmarks for different
number of threads and fraction of write operations. We observe that Isolator
has extremely low overheads for most benchmarks. The average overheads of
Isolator is 1.42% with a minimum of -9.3% and a maximum of 11.2%. We also
note that the overheads of Isolator do not depend on the number of threads or
the fraction of write operations, which suggests that Isolator’s internal data
structures (used for tracking the mapping between locks and the shared pages
they protect) do not introduce any synchronization bottlenecks. We analyzed
cases in which enabling Isolator led to a speedup and found that the speedups
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can be attributed to our custom memory allocator, which improves locality by
allocating data protected by the same lock on the same set of pages.

In a second set of experiments, we introduce one additional thread in all the
microbenchmarks; this thread executes operations with uninstrumented critical
sections, simulating a scenario where the program consists of both well-behaved
and ill-behaved threads. The presence of this thread forces Isolator to copy
data between shared and shadow pages and enable/disable memory protection
on every ownership transfer between well-behaved threads and the additional
thread. For our experiment, we control this interaction by restricting the num-
ber of operations performed in the well-behaved threads.

7.4 Experiments with real-world applications

Figure 9 illustrates the overheads of Isolator for varying number of well-
behaved threads and fraction of operations in the additional thread. As
expected, we observe that the overheads of Isolator increase as the frac-
tion of operations performed in the additional thread increases. As long as
execution is dominated by well-behaved threads (< 10% operations from the
additional thread), Isolator has reasonable overheads (< 20% for most mi-
crobenchmarks), independent of the number of threads. Beyond this threshold,
Isolator’s overheads increase significantly, reaching about 100%. The linked
list is an exception with up to 8x overheads. We attribute these overheads to
small critical sections in the benchmark. As a result, Isolator’s acquire and
release operations dominate this benchmark’s execution time. We believe there
is scope for other interesting optimizations to reduce these overheads and leave
such optimizations for future work.

Effectiveness. During our experiments, Isolator detected real isolation vio-
lations in the microbenchmarks. Figure 10, which shows a simplified fragment
of code from the trie benchmark, illustrates one such isolation violation. The
function cp trie prefix match, reads the root object and the leaf field of
the root object (line 4 and 5) without acquiring the lock on the data structure.
The function cp trie remove, which removes keys from the trie, can poten-
tially write to both these fields (lines 27, 35 and 37) under certain conditions.
An isolation violation (a race condition) occurs when one these reads occurs
simultaneously with the write. Isolator detects and prevents this violation
by delaying the reads until cp trie remove has released the lock. We find that
isolation violations in these benchmarks are hard to reproduce and occur rarely
during execution. Consequently, detecting and tolerating these violations does
not add any noticeable overheads.

Figure 11 shows the execution times of the three real world applications,
pfscan, httpclient and lkrhash with and without Isolator. The overheads of
Isolator are consistently low for all these benchmarks (a maximum of 6% and
1% on average). In these benchmarks, Isolator did not detect any isolation
violations.
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8 Related Work

There has been a lot of prior work on detecting races using static tech-
niques [19, 7, 16, 14, 6, 9] and dynamic techniques [17, 15, 21, 1] Unlike race
detection, which is useful for testing and identifying bugs, Isolator is a fault
toleration technique that makes the execution of a buggy program more robust.
(However, our approach can also be used to identify a class of races and isolation
violations.)

The idea of tolerating race conditions was first proposed in Tolerace by Kri-
ovski et al [10, 13]. More recently, Krena et al [11] propose heuristic mechanisms
for dynamically detecting and fixing race conditions. Both these works do not
satisfy the semantic conditions (safety, isolation and permissiveness) satisfied
by Isolator.

Flanagan and Freund [8] proposed a static analysis to inject locks to fix
synchronization errors in programs with annotations capturing the locking dis-
cipline. More recently, Shpeisman et al [18] propose a technique to enforce
isolation for programs using STMs. Their technique statically analyses code to
identify instructions outside atomic sections that can conflict with other atomic
sections and inserts appropriate barriers to ensure strong atomicity. Both these
works require analysis of the whole program. In Shpeisman et al’s work [18],
instrumentation needs to be done after static analysis on the whole program.
In contrast, our work requires analysis and instrumentation of only parts of the
code, and can be used to prevent other parts of the program (that we have not
even seen) from violating isolation for the parts of the code we instrument.

Recently, we became aware of work by Baugh et al [5], where they propose
the use of fine-grained memory protection to guarantee strong atomicity in hy-
brid transactional memory (HTM) implementations, and ensure that hardware
TM does not access locations accessed by the STM. The idea behind Isolator
is similar to their work, with the main difference being that Isolator targets
legacy applications that use locks.
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1 /* return longest prefix match for key */

2 int cp_trie_prefix_match(cp_trie *grp ,

3 char *key , void **leaf) {

4 void *last = grp ->root ->leaf;

5 cp_trie_node *link = grp ->root;

6 ...

7 lock(grp);

8 while (( map_node = NODE_MATCH(link , key))

9 != NULL) {

10 ...

11 }

12 *leaf = last;

13 unlock(grp);

14 return match_count;

15 }

16 /* removing mappings */

17 int cp_trie_remove(cp_trie *grp , char *key ,

18 void **leaf) {

19 int rc = 0;

20 cp_trie_node *link = grp ->root;

21 cp_trie_node *prev = NULL;

22 ...

23 lock(grp);

24 /* NULL keys are stored on the root */

25 if (key == NULL) {

26 if (link ->leaf) {

27 link ->leaf = NULL;

28 }

29 goto DONE;

30 }

31 while (( map_node = NODE_MATCH(link , key))

32 != NULL) {

33 ...

34 if (node ->leaf) {

35 node ->leaf = NULL;

36 ...

37 cp_trie_node_delete(grp , link);

38 ...

39 break;

40 }

41 }

42 unlock(grp);

43 return rc;

44 }

Figure 10: An isolation violation in the trie benchmark. The prefix match
function reads the leaf field of the root object without acquiring a lock on
the trie. This read might occur while the remove function is removing an entry
from the trie.
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