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We consider the problem of monitoring road and traffic conditions in a city. Prior work in this
area has required the deployment of dedicated sensors on vehicles and/or on the roadside, or the
tracking of mobile phones by service providers. Furthermore, prior work has largely focused on
the developed world, with its relatively simple traffic flow patterns. In fact, traffic flow in cities of
the developing regions, which comprise much of the world, tends to be much more complex owing
to varied road conditions (e.g., potholed roads), chaotic traffic (e.g., a lot of braking and honking),
and a heterogeneous mix of vehicles (2-wheelers, 3-wheelers, cars, buses, etc.). To monitor road
and traffic conditions in such a setting, we present TrafficSense, a system that performs rich
sensing by piggybacking on smartphones that users carry around with them. In this paper, we
focus specifically on the sensing component, which uses the accelerometer, microphone, GSM
radio, and/or GPS sensors in these phones to detect potholes, bumps, braking, and honking.
TrafficSense addresses several challenges including virtually reorienting the accelerometer on a
phone that is at an arbitrary orientation, and performing honk detection and localization in an
energy efficient manner. We also touch upon the idea of triggered sensing, where dissimilar sensors
are used in tandem to conserve energy. We evaluate the effectiveness of the sensing functions in
TrafficSense based on experiments conducted on the roads of Bangalore, with promising results.
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1 Introduction

Roads and vehicular traffic are a key part of the day-to-day lives of people. Therefore, monitoring their
conditions has received a significant amount of attention. Prior work in this area has primarily focused
on the developed world, where good roads and orderly traffic mean that the traffic conditions on a stretch
of road can largely be characterized by the volume and speed of traffic flowing through it. To monitor
this information, intelligent transportation systems (ITS) [7] have been developed. Many of these involve
deploying dedicated sensors in vehicles (e.g., GPS-based tracking units [9]) and/or on roads (inductive
loop vehicle detectors, traffic cameras, doppler radar, etc.), which can be an expensive proposition and so
is typically restricted to the busiest stretches of road. See [3] for a good overview of traffic surveillance
technologies and Section 2 for related work.

In contrast, road and traffic conditions in the developing world tend to be more varied because of various
socio-economic reasons. Road quality tends to be variable, with bumpy roads and potholes being common-
place even in the heart of cities. The flow of traffic can be chaotic, with little or no adherence to right of
way protocols at some intersections and liberal use of honking.

Monitoring such varied road and traffic conditions is challenging but it holds the promise of enabling new
and useful functionality. For instance, information gathered via rich sensing could be used to annotate a
map, thereby allowing a user to search for driving directions that would minimize stress by avoiding chaotic
roads and intersections.

To address this challenge, we present TrafficSense, a system for rich monitoring of road and traffic
conditions that piggybacks on mobile smartphones. TrafficSense orchestrates the smartphones to perform
sensing and report data back to a server for aggregation. Indeed, smartphones include a range of sensing and
communication capabilities, in addition to computing. A phone might include any or all of a microphone,
camera, GPS, and accelerometer, each of which could be used for traffic sensing functions. In addition, the
phone would include a cellular radio (e.g., GSM), possibly with data communication capabilities (e.g., GPRS
or UMTS).

A mobile phone-based approach to traffic monitoring is a good match for developing regions because it
avoids the need for expensive and specialized traffic monitoring infrastructure. Moreover, it takes advantage
of the booming growth of mobile telephony in such regions. For example, as of late 2007, India had 209
million mobile telephony subscribers, growing at an estimated 7 million each month [12]. Although the
majority of users have basic mobile phones today, a large number of them, in fact more than the number of
PC Internet users in India, access the internet on their phones [8], suggesting that the prospects of greater
penetration of more capable phones are good. There are similar growth trends in many other parts of the
world, with the total number of mobile users worldwide estimated at 2.3 billion [13]. Note that despite being
mobile phone-based, our approach to traffic monitoring is distinct from prior work based on remote tracking
of mobile phones by cellular operators [1,2,34]. Our sensing and inferences goes beyond just monitoring
location and speed information, hence requiring a presence on the phones themselves.

Our focus in this paper is on the sensing component of TrafficSense; we defer a discussion of the larger
system, including the aggregation server, to future work. Several technical challenges arise from our design
choice to perform rich sensing and base the system on mobile smartphones. TrafficSense leverages sensors
besides GPS — accelerometer and microphone, in particular — to glean rich information, e.g., the quality
of the road or the noisiness of traffic. The use of an accelerometer introduces the challenge of wvirtually
reorienting it to compensate for the arbitrary orientation of the phone that it is embedded in. Once the
accelerometer is virtually reoriented, we need to design efficient and robust bump, brake and honk detectors
in order to infer road and traffic conditions.

Moreover, since a smartphone is battery powered and is primarily someone’s phone, energy-efficiency



is a key consideration in TrafficSense. To this end, we employ the concept of triggered sensing, wherein a
sensor that is relatively inexpensive from an energy viewpoint (e.g., cellular radio or accelerometer) is used to
trigger the operation of a more expensive sensor (e.g., GPS or microphone). For efficiency in communication
and energy usage, each node processes the sensed data locally before shipping the processed data back to
the server.

The main contributions of this work are: (1) algorithms to virtually reorient a disoriented accelerometer
along a canonical set of axes and then use simple threshold-based heuristics to detect bumps and potholes,
and braking (Section 5); (2) heuristics to identify honking by using audio samples sensed via the micro-
phone (Section 6); (3) evaluation of the use of cellular tower information in dense deployments in developing
countries to perform energy-efficient localization (Section 7); and (4) triggered sensing techniques, wherein
a low-energy sensor is used to trigger the operation of a high-energy sensor (Section 8). Finally, we have
implemented most of these techniques on smartphones running Windows Mobile 5.0 (Section 9).

There are two important issues that we do not address in this paper. One is the question of privacy of the
users whose phones participate in TrafficSense. It may be possible to achieve good enough privacy simply by
suppressing the identity of a participating phone (e.g., its phone number) when reporting and aggregating
the sensed data. A more sophisticated privacy-aware community sensing approach that incorporates formal
models of sharing preferences is presented in [28]. The second issue is of providing incentives for participation
in TrafficSense. Providing incentives for participation in such decentralized systems is an active area of
research (e.g., [15]) and we may be able to leverage this for TrafficSense.

2 Related work

Intelligent transportation systems [7] have been proposed and built to leverage computing and communication
technology for various purposes: traffic management, routing planning, safety of vehicles and roadways,
emergency services, etc. We focus here on work that is most relevant to TrafficSense.

There has been much work on systems for traffic monitoring, both in the research world and in the
commercial space. Many of these systems leverage vehicle-based GPS units (e.g., as in GM’s OnStar [9])
that track the movement of vehicles and report this information back to a server for aggregation and analysis.
For instance, CarTel [25] includes a special box installed in vehicles to monitor their movements using GPS
and report it back using opportunistic communication across a range of radios (WiFi, Bluetooth, cellular).
This information is then used for applications such as route planning.

Recent work on Surface Street Traffic Estimation [37] also uses GPS-derived location traces but goes
beyond just estimating speed to identifying anomalous traffic situations using both the temporal and spatial
distributions of speed. For instance, the authors are able to distinguish between traffic congestion and
vehicles halting at a traffic signal.

Operational services, both commercial and otherwise, have been built using GPS information as well as
information from other traffic sensors deployed in an area (inductive loop vehicle detectors, traffic cameras,
doppler radar, etc.). Examples include the Washington State SmartTrek system in the U.S. [20] (which
includes, among other things, the Busview service [10], to track the city buses in the Seattle area) and the
INRIX system [6] for predicting traffic based on historical data.

There has also been work on leveraging mobile phones carried by users as traffic probes. Smith et
al. [34] report on a trial conducted in Virginia in 2000, which was based on localizing mobile phones using
information gathered at the cellular towers. This study made a number of interesting observations, including
that the sample density (at the place and time of this study) was only sufficient for estimating speed with
moderate accuracy (within 10 mph = 16 kmph), and that there was a tendency to underestimate speed



because of samples from stationary phones located near the roadway. Regardless, the rapid growth in mobile
phone penetration has spurred the deployment of similar systems in other locations worldwide, including in
Bangalore [2].

Much of the work on ITS has used GPS-based localization and some of it has used localization performed
at cell towers. However, there has been separate work on enabling a mobile phone to locate itself, whether
based on GSM signals [18, 35], with a median accuracy under 100m in the outdoors measured in the Seattle
area, or based on WiFi [19], with a median accuracy of 13-40m in an area with dense WiFi coverage. It is
possible to use these localization techniques in the context of an ITS, either to complement GPS or as an
alternative.

Other forms of sensing, besides localization, have also been employed in ITS systems. Accelerometers
are used for automotive safety applications such as detecting crashes to deploy airbags and to possibly also
notify emergency services automatically (e.g., Veridian [26]). Accelerometers and strain gauges coupled with
cameras have been used for structural monitoring of the transportation infrastructure [17]. In recent work,
the Pothole Patrol (P?) system [22] performs road surface monitoring by using special-purpose devices with
3-axis accelerometers and GPS sensors mounted on the dashboard of cars. It tackles the challenging problem
of not only identifying potholes but also differentiating potholes from other road anomalies. The use of a
special-purpose device mounted in a known orientation, which simplifies the analysis, is a key distinction
of P? compared to our work on TrafficSense, which leverages smartphones that users happen to carry with
them.

To put it in context, our work on TrafficSense builds on prior work but is distinct from it in several ways.
We do not replicate the significant body of prior work on estimating the speed of traffic flow [34,37] and
driving patterns [29] based on location traces, and presenting this information to users in an appropriate
form [30]. Instead, TrafficSense focuses on novel aspects of sensing varied road and traffic conditions, such
as bumpy roads and noisy traffic. Furthermore, TrafficSense uses smartphones that users happen to carry
with them, depending only on capabilities that are already available in some phones and that are likely to be
available in many more in the coming years. By piggybacking on an existing platform, TrafficSense avoids
the need for specialized and potentially expensive monitoring equipment to be installed, whether on vehicles
as in [22,25] or as part of the infrastructure as in SmartTrek [20]. But building on top of a mobile phone
platform introduces challenges, for instance, with regard to accelerometer orientation, energy efficiency and
device localization, which we address in TrafficSense. Finally, TrafficSense falls under the active area of
research called Participatory Sensing [14] and can leverage solutions to common challenges in this area such
as data credibility and privacy.

3 Experimental Setup

We discuss the hardware and software setup used for our work and the measurement data that we gathered.

3.1 Smartphone Capabilities

A smartphone may include any or all of the following capabilities of relevance to TrafficSense:
e Computing: CPU, operating system, and storage that provides a programmable computing platform.
¢ Communication:

— Cellular: a radio for basic cellular voice communication (e.g., GSM), available in all phones.



— Cellular data: e.g., GPRS, EDGE, UMTS, provided by the cellular radio.

— Local-area wireless: radios for local-area wireless communication (e.g., Bluetooth, WiFi).
e Sensing:

— Audio: a microphone.

Localization: a GPS receiver.

— Motion: an accelerometer, sometimes included for functions such as gesture recognition.

— Visual: a camera, although TrafficSense does not make use of this at present.

These capabilities are not only within the realm of engineering possibility, but in fact there exist smart-
phones on the market that include most or all of the above capabilities in a single package. For example, the
Nokia N95 includes all whereas the HP iPAQ hw6965 includes all except an accelerometer and the Apple
iPhone includes all except GPS. We emphasize, however, that TrafficSense does not require all participating
phones to include each of these capabilities.

3.2 Hardware and Software Setup

Despite the availability of such capable smartphones, our experimental setup is complicated a little by
hardware and software constraints of the devices available to us. We describe here the devices that we use.

e HP iPAQ hw6965 [5]: This Pocket PC running Windows Mobile 5.0 includes a GSM/GPRS/EDGE
radio, Bluetooth 1.2, 802.11b, and a Global Locate GPS receiver.

e HTC Typhoon: For cellular localization, we use rebranded HTC Typhoon phones, specifically the
Audiovox SMT5600, iMate SP3, and Krome iQ700, which feature a tri-band GSM radio and run
Windows Mobile 2003. As noted in [18,32] the HT'C Typhoon is convenient to use for this purpose
because it makes available information about multiple cell towers in the vicinity. All phones (including
our HP iPAQs) have this tower information (which is needed to perform handoffs) but do not expose
it to user-level software, although there is no fundamental reason why they could not.

o Sparkfun WiTilt accelerometer [11]: The Sparkfun WiTilt combines a Freescale MMAT7260Q [4] 3-axis
accelerometer sensor with a Bluetooth radio to enable remote reading. The Freescale MMA7260Q ac-
celerometer sensor has a selectable sensitivity ranging from +/-1.5g to +/-6g and a sampling frequency
of up to 610 Hz.

While the HP iPAQ is the centerpiece of our setup, we use the WiTilt as the accelerometer sensor and
use the Typhoon for cellular localization.

3.3 Trace Collection

Much of our experimental work was set in Bangalore. We gathered GPS-tagged cellular tower measurements
during several drives over the course of 4 weeks. Separately, we gathered GPS-tagged accelerometer data
measurements on drives on some of the same routes over the course of 6 days. ! We also gathered cellular

IThe only reason that the accelerometer measurements were made separately from the cellular measurements was that we
procured the accelerometers later.



‘ Location ‘ Dates Duration ‘ Dist. | Information

(hours) (km) recorded

Bangalore | 09/03,/07-00/19/07 195 377 GPS, GSM
11/20/07-11/22/07

Seattle | 09/25/07-00/28/07 11 183 GPS, GSM

Bangalore 03/30/08 4.0 62 GPS, accel.
04/08/08-04/13/08

Table 1: Summary of data gathered on drives

tower measurements over the course of a few days in the Seattle area. Table 1 summarizes all of the data that
we gathered on drives through traffic. Figure 1 shows a map of Bangalore with the drive routes highlighted.

In addition to drive data, we gathered accelerometer data over specific sections of road (selected for their
bumps, potholes, etc.) at controlled speeds and using different kinds of vehicles (2-wheelers and 4-wheelers).
We also recorded the sound of several vehicles honking. Figure 2 shows a typical chaotic intersection with
different vehicle types, each approaching the intersection from different orientations with no adherence to
right of way protocols. These intersections are typically also characterized by significant amount of braking
and honking.

4 QOverview

The richness of sensing that TrafficSense encompasses is motivated by the wide applicability we envisage
for the system. The system could be used to annotate traditional traffic maps with information such as
the bumpiness, noisiness, and level of traffic chaos, for the benefit of the traffic police, the road works
department, and ordinary users. For instance, a user might search for a route that minimizes the number
of chaotic intersections to be traversed, thereby optimizing for “blood pressure” rather than for distance or
time. While these applications serve as the motivation, our focus in this paper is on the sensing component
of TrafficSense, specifically, how to efficiently use the accelerometer, microphone, GSM and GPS sensors in
mobile smartphones to detect bumps and potholes, braking, and honking, and to determine location in an
energy-efficient manner.

In Section 5, we focus on sensing using a 3-axis accelerometer. Given that a mobile smartphone and its
embedded accelerometer could be in any arbitrary orientation, we first discuss our algorithm for wvirtually
reorienting a disoriented accelerometer automatically. Using real drive data from reoriented as well as
well-oriented accelerometers, we evaluate the efficacy of our reorientation algorithm as well as our simple
heuristics to detect bumps and potholes, and braking. In Section 6, we describe how audio sensed using the
microphone can be used to detect honks. In Section 7, we discuss and evaluate the accuracy of energy-efficient
coarse-grain localization and traffic speed estimation using GSM cellular tower information.

Given the energy costs of the different sensors, as indicated in Table 2, TrafficSense only keeps its GSM
radio (which has to be turned on anyway for the phone to function) and the accelerometer on continually.
It uses input from these two devices to trigger the turning on of the other sensors, for instance, to obtain a
precise location fix using GPS. We discuss this and other examples of triggered sensing in Section 8.
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Figure 1: Map of Bangalore with drive routes Figure 2: A typical chaotic road intersection
highlighted with variety of vehicles at loggerheads

5 Acceleration

In this section, we discuss how TrafficSense uses the accelerometer on a phone to sense road and traffic
conditions.

5.1 Framework

As noted in Section 3.2, we use a 3-axis accelerometer for our work. The accelerometer has a 3-dimensional
Cartesian frame of reference with respect to itself, represented by the orthogonal z, y, and z axes. In
addition, we define a Cartesian frame of reference with respect to the vehicle that the accelerometer (or
rather the phone that it is part of) is in. The vehicle’s frame of reference is represented by the orthogonal
X, Y, and Z axes, with X pointing directly to the front, Y to the right, and Z into the ground. See Figure 3
for an illustration.

Note the distinction between the lower case letters (x, y, z) used to represent the accelerometer’s frame
of reference and the upper case letters (X, Y, Z) used to represent the vehicle’s frame of reference. If (z,
y, z) is aligned with (X, Y, Z), we say that the accelerometer is well-oriented. Otherwise, we say that it is
disoriented.

The accelerometer readings along the 3 axes are denoted by a,, ay, and a.. If the accelerometer is well-
oriented, these readings would also correspond to ax, ay, and az along the vehicle’s axes. All acceleration
values are expressed in terms of g, the acceleration due to gravity (9.8 m/s?). Also, we set the sampling



Mode Life Time | Power (mW)
Includes Phone Idle For given
mode only
Phone Idle 24h 18m 182.7
Bluetooth (BT) Idle 22h 13m 17.1
BT Device Inquiry 10h 46m 229.5
BT Service Discovery 7h 53m 380.0
WiFi Idle 4h 39m 771.8
WiFi Beacon (Sending) 4h 36m 782.0
WiFi Scan (Receiving) 2h 59m 1298.8
| GPS | 5h 32m | 617.3 |
| Microphone | 10h 54m | 223.2 |
Accelerometer (per spec.) 24h 5m 1.65
Accel. with Bluetooth 19h 56m 40

Table 2: Power usage for various activities

frequency of the accelerometer to 310 Hz, unless noted otherwise.

Finally, we note that ours is a DC accelerometer, which means that it is capable of measuring “static”
acceleration. For instance, even when a well-oriented accelerometer is stationary, it reports a, = 1g. In
essence, the measurement reported by the accelerometer is a function of the force exerted on its sensor
mechanism, not the textbook definition of acceleration as the rate of change of velocity. For the same
reason, when the vehicle accelerates (which would represent a positive acceleration along X according to the
textbook definition), our accelerometer would experience a force pressing it backwards and hence report a
negative acceleration along X.

5.2 Determining Accelerometer Orientation

In general, the phone (or, rather, the accelerometer embedded in it) and its (z,y,z) axes could be in an
arbitrary orientation with respect to the vehicle and its (X,Y,Z) axes. Furthermore, this orientation could
change over time as the phone is moved around. A phone that is disoriented in this manner makes it non-
trivial for its accelerometer measurements to be used to infer road and traffic conditions. For instance, if z
were aligned with X (i.e., it points to the front rather than down), episodes of sharp acceleration and decel-
eration (i.e., horizontal acceleration) might be mistaken for bumps on the road (i.e., vertical acceleration).
Thus, before the accelerometer measurements can be used, it is important for us to wvirtually reorient the
accelerometer to compensate for its disorientation. The need to address this challenge is a key distinction
of our approach based on phones from the prior work on Pothole Patrol [22] that leverages a dedicated
accelerometer mounted at a known orientation.

We define the canonical orientation of (z,y,z) to be the one that corresponds to (X,Y,Z). In general,
any arbitrary orientation of (z,y,z) can be arrived at by applying rotations about X, Y, and Z in sequence,
starting with the canonical orientation. Our goal is to infer the angles of rotation about each axis. While we
could work with such a framework, it yields multi-factor trigonometric equations that are complex to solve.



5.2.1 Euler Angles

An alternative but equivalent framework is based on Euler angles [23, 36], which, as it turns out, simplifies
our calculations significantly. There are a number of formulations of Euler angles, but we only describe the
formulation (termed Z —Y — Z) that we use in our work. Any orientation of the accelerometer can be
represented by a pre-rotation of ¢, about Z, followed by a tilt of 8 about Y, and then a post-rotation
of Ppost again about Z. All angles are measured counter-clockwise about the corresponding axis. (The
subscripts to ¢pre, 0rire, and P¥post are not needed, but we include these for clarity.)

That these three Euler angles are sufficient to represent any orientation might seem counter-intuitive
since there is no rotation about X and thus one might erroneously conclude that there is no impact on y.
However, because of the pre-rotation, the tilt would in fact affect both = and y in general. For example, if
the pre-rotation were by 90°, y would be in line with X, so the tilt about Y would in fact impact y.

5.2.2 Estimating Pre-rotation and Tilt

With this framework in place, we now describe our procedure for determining the orientation of the disori-
ented accelerometer. When the accelerometer is stationary or in steady motion, the only acceleration it will
experience is that due to gravity, along Z. (Recall that our accelerometers report the strength of the force
field, so az = 1g despite the accelerometer being stationary.) The tilt operation is the only one that changes
the orientation of z with respect to Z. So a, = azcos(0ii1). Since az = 1, we have

Ori1e = cos™ ' (a) (1)

Pre-rotation followed by tilt would also result in non-zero a, and a, due to the effect of gravity. As
explained in Appendix A, we have:

Gpre = tan” (1) (2)
Ay

To estimate 60:;;; and ¢y using Equations 1 and 2, we could identify periods when the phone is stationary
(e.g., at a traffic light) or in steady motion, say using GPS to estimate speed. However, a simpler approach
that we have found works well in practice is to just use the median values of a,, ay, and a. over a 10-second
window. The median value over a window of this length turns out to be remarkably stable, even during
a bumpy drive. Intuitively, any spike in acceleration would tend to be momentary and would settle back
around the median within a few seconds or less. For example, if the vehicle gets lifted up by a bump, thereby
causing a spike in the g-force, it would descend back soon enough, causing a spike in the reverse direction;
the median itself remains largely unaffected.

Thus by computing az, ay, and a. over short time windows, we are able to estimate 8;;;; and ¢pr. on
an ongoing basis. Any significant change in 6., and ¢pr. would indicate a significant change in the phone’s
orientation. However, the converse is not always true. If the phone were carefully rotated about Z, 6¢;;; and
¢pre would remain unaffected.

5.2.3 Estimating Post-rotation

Since post-rotation (like pre-rotation) is about Z, it has no impact with respect to the gravitational force
field, which runs parallel to Z. So we need a different force field with a known orientation that is not parallel
to Z, to be able to estimate the angle of post-rotation, ¥p.s:. In practice, we would need this force field to
have a significant component in a known direction orthogonal to Z.

The acceleration and braking of a vehicle travelling in a straight line produces a force field in a known
direction, X, in line with the direction of motion of the vehicle. However, these would have little impact on
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Figure 3: This figure illustrates the process of virtually reorienting a disoriented accelerometer.
(a) shows the measurements made at a disoriented accelerometer, which unsurprisingly do
not match with the measurements shown in (b), corresponding to a well-oriented accelerome-
ter. However, after the disoriented accelerometer has been virtually reoriented, its corrected
measurements shown in (c¢) match those in (b) quite well.

the orthogonal directions, in particular, on Y. In general, braking tends to be sharper than acceleration, so
we focus our attention on braking. For example, if a car travelling at 50 kmph = 31 mph brakes to a halt
in 10 seconds, ax would be be about 0.14g, a small but still noticeable level.

We use GPS to monitor the vehicle’s speed and thereby identify periods of sharp deceleration without
a significant curve in the path (i.e., the GPS track is roughly linear). During such a period, we know that
there will be a noticeable, even if transient, force field along X, with little impact on Y. Given the measured
accelerations (az, ay, a;), and the angles of pre-rotation (¢pre) and tilt (64:), we estimate the angle of
post-rotation (¢pes¢) as the one that mazimizes our estimate, a/X, of the acceleration along X, which is the
direction of braking. Note that a is an estimate and hence is not necessarily equal to the true ax-.

As explained in Appendix B, this maximization procedure yields:

Ypost = tan™! (3)

( —azsin(Ppre)taycos(Ppre) )
(azcos(Ppre)taysin(dpre))cos(0rire)—azsin(Orirr)

To estimate 1p0s¢, We first estimate ¢pr. and 4 using Equations 1 and 2. We then identify an instance
of sharp deceleration using GPS data and record the mean a,, a,, and a, during this period. In our
experiments, we use just the first few seconds (typically 2 seconds) of the deceleration to compensate for the
time lag in the speed estimate obtained from GPS. Note that we use the mean here, unlike the median used
in Section 5.2.2, because we want to record the transient surge because of the sharp deceleration.

Compared to estimating ¢, and 0y, estimating s is more elaborate and expensive, requiring GPS
to be turned on. So we monitor ¢,.. and 6 on an ongoing basis, and only if there is a significant change
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Figure 4: Estimating the orientation of a disoriented accelerometer based on sharp deceleration
starting at around 27 seconds: ¢p,. = —88°, Or1p = 49°, Ypost = —135°

in these or there is other evidence that the phone’s orientation may have changed (Section 5.3), do we turn
on GPS and run through the process of estimating 1,04+ afresh.

5.2.4 Validating Virtual Reorientation

To validate the virtual reorientation algorithm described above, we conduct an experiment that involves
measurements made with three accelerometers: ACL-1 and ACL-2, which are well-oriented, and ACL-3,
which is disoriented. We make these measurements during a drive, which includes episodes of acceleration
and braking, and use these to estimate ¢pre, Orirr, and pose for ACL-3, using Equations 1, 2, and 3,
respectively. Using these estimates and the measured az, a,, and a, for ACL-3, we estimate alX, a;,, and
a,Z. We then compare these estimates with the measured values of ax, ay, and az from the well-oriented
accelerometers, ACL-1 and ACL-2. A good match would suggest that the estimates of ¢pre, Orite, and Ypost

are accurate.
As an illustration, Figure 4 shows to a sharp deceleration during the period of 27-30 seconds, which
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Wi-Wa | ¢pre/Otitt/Ypost || D3-Wi | Rs-Wq || D3-Wa | Rs-Ws

1 0.90 7°/38°/106° 0.30 0.88 0.20 0.91
2 0.75 174°/34°/-107° 0.43 0.72 0.54 0.87
3 0.94 174°/34°/-107° 0.59 0.84 0.67 0.90
4 0.74 4°/42°0/12° 0.65 0.72 0.63 0.68
5 0.76 3°/44° /-1° 0.62 0.71 0.69 0.79
6

0.78 -80°/42°/121° 0.65 0.73 0.64 0.73

Table 3: Cross-correlation between the X components of the disoriented accelerometer (ACL-3)
and each of the well-oriented accelerometers (ACL-1 and ACL-2) across several episodes of
acceleration and braking. We report the cross-correlation numbers for before (D-W) and after
(R-W) virtual reorientation is performed, along with the reorientation angles. We also report
the W-W cross-correlation numbers between the two well-oriented accelerometers, to provide
a point of comparison.

generates a surge in ax alone, as recorded by ACL-1, one of the two well-oriented accelerometers (Fig-
ure 4(b)). The disoriented accelerometer, ACL-3, on the other hand, records surges or dips in its az, a,, and
a, (Figure 4(c)). However, after ACL-3’s orientation is estimated and compensated for, a/X, a/y, and a/Z are
estimated (Figure 4(d)). Figure 4(d) only shows a surge in ay, which is consistent with Figure 4(b).

To quantify the effectiveness of virtual reorientation, we compute the cross-correlation between the mea-
surements from the reoriented accelerometer and those from the well-oriented accelerometers. The cross-
correlation between two time series, z[i] and y[i], is defined as:

o Sl @) (vl - 9))
VEN, (ali) - )2+ /SY wli] - 9)?

Z and g correspond to the means of the two time series. When the two time series are perfectly correlated,
r = 1. When they are entirely uncorrelated, r = 0.

As is clear from Figure 4, measurements from an accelerometer are noisy, presumably because of artifacts
of its analog sensor mechanism. This has a two implications for our evaluation. First, the cross-correlation
between measurements from two accelerometers is low during periods when the measurements only comprise
(uncorrelated) noise, with little or no signal. However, since our interest is in periods when there is a
signal, say due to braking or a bump, we only consider the measurements during such periods of activity
in our computation of cross-correlation. In the experiment we conducted, this would correspond to the
X component during the episodes of acceleration and braking. Second, the presence of noise even during
such periods of interest means that two accelerometers may not agree perfectly, even if they are both well-
oriented. So, in addition to reporting the cross-correlation between the virtually reoriented accelerometer
(ACL-3) and each of the well-oriented ones (ACL-1 and ACL-2), we also report the cross-correlation between
the two well-oriented accelerometers (ACL-1 and ACL-2) to provide a point of comparison.

Table 3 shows the cross-correlation numbers between each pair of accelerometers across several episodes
of acceleration and braking. Each episode lasted 15-20 seconds and the accelerometer sampling frequency
was set to 25 Hz, yielding a time series comprising 375-450 samples. The accelerometers were placed on
the rear seat of a Toyota Qualis vehicle. The orientation of ACL-3 was held fixed across certain pairs of
episodes and was changed between others. We observe that, in general, the the cross-correlation improves
significantly when we go from having a disoriented accelerometer to one that has been virtually reoriented.
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For example, in episode 1, the cross-correlation between ACL-3 and ACL-1 improves from 0.30 to 0.88 after
virtual reorientation is performed. In some cases, the improvement is smaller, for example, going from 0.62
to 0.71 in episode 5. The reason for the smaller improvement in episode 5 is that the angles of pre-rotation
(¢pre) and post-rotation (pes:) are small (3° and -1°, respectively). So even with disorientation, braking
causes a surge in a,, albeit reduced in magnitude because of the tilt, 0.

We also observe that the cross-correlation numbers after virtual reorientation (the R-W columns) are
comparable to those between the two well-oriented accelerometers (the W-W column). Furthermore, these
cross-correlation numbers, while high, are significantly lower than the cross-correlation of 1.0 that perfect
correlation would yield. The lack of perfection comes from noise spikes, which motivates our insistence in
Section 5.4.3 and Section 5.4.1 on looking for sustained surges rather than momentary spikes to detect bumps
and braking, unless the spikes are much larger in magnitude than those due to noise.

To conclude, our results in this section suggest that with virtual reorientation, a disoriented accelerometer
has the potential to be almost as effective as a well-oriented accelerometer for the purpose of monitoring
road and traffic conditions.

5.3 Detecting User Interaction

When a phone is being interacted with by the user, it would experience extraneous accelerations. Thus,
we would like to neglect the accelerometer readings such periods. We use two techniques to detect user
interaction. To detect orientation changes, we use the technique described in Section 5.2.2, with the caveat
noted there. To detect other forms of user interaction, we look for one or more of the following: key presses
on the phone’s keypad, mouse movements, on-going or recently concluded phone calls.

5.4 Inferring Road and Traffic Conditions

We now present analyses of accelerometer measurements for detecting brakes and potholes in the road.

5.4.1 Braking Detection

We first consider the problem of detecting braking events. The frequency of braking on a section of road
is indicative of drive quality. A high incidence of braking could be because of poor road conditions (e.g.,
poor lighting) that make drivers tentative or because of heavy and chaotic traffic. While GPS could be
used to detect braking, doing so would incur a high energy cost, as indicated in Table 2. Furthermore,
GPS-based braking detection is challenging at low speeds because of the GPS localization error of 3-6 m.
So in TrafficSense, we focus on an alternative approach, namely, leveraging the accelerometer in a phone for
braking detection.

In general, braking would cause a surge in ax because the accelerometer would experience a force pushing
it to the front. The surge can be significant even when the brake is applied at low speed. If a vehicle travelling
at 10 kmph brakes to a halt in 1 second, that would result in an average surge of 0.28¢ in ax and possibly
much larger spikes. Figure 4(b) and (d) clearly show a sustained surge in ax corresponding to a braking
event.

The persistence of the surge over relatively long timeframes (a second or longer) makes brake detection
an easier problem than detecting potholes where the signal lasts only fractions of a second (see Section 5.4.3).
To detect the incidence of braking, we compute the mean of ax over a sliding window N seconds wide. If
the mean exceeds a threshold T', we declare that as a braking event.
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Accelerometer False Negative False Positive
(threshold T (g)) || Rate | Change in || Rate | Change in
speed speed
avg(max) avg(min)
ACL-1 (T=0.11) 4.4% 15(16) 22.2% 12(10)
ACL-1 (T=0.12) 11.1% 16(18) 15.5% 12(9)
ACL-3 (T=0.11) 4.4% 15(16) 31.1% 12(9)
ACL-3 (T=0.12) 11.1% 16(18) 17.7% 12(9)

Table 4: False Positives/Negatives of Brake detector

In order to evaluate our braking detector, we need to establish the ground truth. Ideally, we would
have liked to use data from the car’s CAN bus for obtaining accurate information on the ground truth, but
we did not have access to it. So for the evaluation presented in this section, we use GPS-based braking
detection to establish the ground truth. To minimize the impact of GPS’s localization error noted above,
we employ a conservative approach that only considers sustained braking events that last several seconds.
(See Section 5.4.2 for an evaluation of the same brake detector on sharp brakes at slow speeds with manually
established ground truth.) Using a trace of GPS location estimates, say ...loc;_1, loc;,lociy1, ..., we compute
instantaneous speed at time i as distance(loc;—1,loc;+1)/2. Once we have the instantaneous speed values,
we define a brake as deceleration of at least 1m/s? sustained over at least 4 seconds (i.e., a decrease in speed
of at least 14.4 kmph over 4 seconds).

We use a 75-minute long drive over 35 km of varied traffic conditions to evaluate our braking detection
heuristic. Using the GPS-derived ground truth described above, we detect a total of 45 braking events in
this trace. This drive also includes data from two accelerometers, one well-oriented (ACL-1) and the other
disoriented (ACL-3). The virtual reorientation procedure from Section 5.2 was applied to measurements
from ACL-3, before it was fed into our braking detection heuristic. We set the parameters of the braking
detection heuristic to correspond to the definition of a brake. We compute the mean of X-values over a
N = 4 second window and depict results for threshold values of T=0.11g and T=0.12¢g (i.e., 10-20% more
conservative than the 1m/s? deceleration threshold applied on the GPS trace to establish the ground truth).

The results of applying our braking detection heuristic are shown in Table 4. The percentage of false
positives/negatives and also the magnitude of the change in speed during the false positive/negative events
are shown. The first observation is that the results using accelerometer ACL-1 agree quite well with the
results using the reoriented accelerometer ACL-3. Thus, the virtual reorientation algorithm preserves the
characteristics of the accelerometer measurements sufficiently to allow the braking detector to work effectively.
Second, while the false positive rates seem high at 15-31%, when we examine the trace, we find that each
of these false positive events actually correspond to a deceleration event, albeit of lesser magnitude than
our earlier definition of a brake. Based on the GPS-derived ground truth, the average (minimum) speed
decrease over four seconds at these events was 12 kmph (9 kmph), just short of our target of 14.4 kmph
threshold. Note that a difference of 5kmph over 4 seconds corresponds to a location change of 5.6 m, which
is well-within the localization error of GPS. Even if the GPS estimates were accurate, the false positives
would simply correspond to less sharp brakes and are thus not problematic. In the case of false negatives,
the rate is lower overall at 4-11%. The few false negatives again correspond to borderline events, with an
average (maximum) speed decrease of 15 kmph (18 kmph), which when compared to the threshold of 14.4
kmph is again well within the localization error of GPS.
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Figure 5: X-axis accel. for a car in traffic and a pedestrian
5.4.2 Stop-and-Go Traffic vs. Pedestrians

Given that TrafficSense piggybacks on mobile phones, we have to be able to differentiate between phones that
are in vehicles stuck in-traffic from out-of-traffic phones that are in parked cars or are carried by pedestrians
walking alongside the road. Otherwise, the estimation of traffic conditions might be unnecessarily pessimistic,
as observed in [34].

We use accelerometer readings to differentiate pedestrian motion (and stationary phones) from vehicular
motion in stop-and-go traffic. The top curve in Figure 5 shows ax (offset by +1g for clarity) in the case of
a vehicle moving at 5-10 kmph in stop-and-go traffic, applying its brakes repeatedly. The braking episodes,
which are annotated manually to establish the ground truth, cause surges in ax that can be clearly seen and
are also picked out by our braking detection heuristic from Section 5.4.1, with no false positives or negatives.
Note that despite the low speed, and hence the surges due to the braking episodes lasting for a shorter
duration than those in the drive in Section 5.4.1, the same setting of N=4 seconds works well because the
surge, when averaged over a window of this duration, still exceeds the detection threshold of T=0.11g.

The bottom curve in Figure 5 shows ax (offset by —1g for clarity) for a pedestrian. The accelerometer
is placed in the subject’s trouser pocket, which results in larger spikes in ax than if it were placed in a shirt
pocket or in a belt clip. Despite the significant spikes in ax associated with pedestrian motion, there is no
surge that persists, unlike with the braking associated with stop-and-go traffic. When we applied our brake
detection heuristic to different pedestrian accelerometer traces (with the accelerometer placed in the trouser
pocket, shirt pocket, bag etc.), no false positives (i.e., brakes) were detected.

This limited evaluation suggests that our brake detection heuristic has significant potential to be used to
distinguish between vehicles in stop-and-go traffic and pedestrians.

5.4.3 Bump Detection

We now consider the problem of detecting a pothole or bump on the road. A bump could arise due to a
variety of reasons, both unintended (e.g., potholes), and intended (e.g., speed bumps to slow vehicles down).
We do not attempt to distinguish between these causes here as we believe that an external database of the
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intended bumps could be used to post-process the bump events reported by TrafficSense to filter out the
ones due to intended causes.

As discussed in [22], the problem of bump detection is challenging for a number of reasons. A major
challenge is establishing the ground truth. This is typically done only via manual annotation, which is
subjective and could be heavily influenced by how the vehicle approaches the bump and at what speed.
We also base our ground truth on manual annotation, but we ensure that the ground truth is decided by
consensus among two or three users. On some sections of the road, we also performed multiple drives to
compare the ground truth across drives and arrive at a consensus. The second major challenge with bump
detection is that the accelerometer signal is typically of very short duration, on the order of milliseconds.
Since a bump results in a significant vertical jerk, we expect it to register in the measurement of az. Also,
since the vehicle shifts both up and down, there would be both spikes and dips in az. However, the magnitude
of the signal spike can have different characteristics at different speeds.

These can be seen in Figures 6 and 7, which shows az for a car going over a speed bump at low and high
speeds, respectively. Note that, at low speeds, there is a distinct dip significantly below 1¢g that is sustained
over several samples. We hypothesize that this dip corresponds to the physical phenomenon from when the
car’s wheel goes over the pothole until the wheel meets the bottom of the pothole. When the wheel impacts
the ground, a sharp force is transferred to the vehicle, which is registered as a spike in az. At low speeds,
the upward spike is muted, as in Figure 6, while at high speeds, the upward spike can be significant, as in
Figure 7. While the sustained dip also occurs during bumps in many of our high speed traces, we also found
that it also caused a lot more false positives at high speeds. We suspect that small undulations in the road
could be the cause of such false-positive dips.

Motivated by the above observations, we utilize two bump detectors depending on the speed of the
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Detector | Accel. | Speed < 25kmph || Speed > 25kmph

FN | FP FN | FP

BUMPY road 40 bumps total 4 bumps total
2-8US ACL-1 25% 5% 50% 0%
ACL-2 30% 0% 25% 0%

ACL-3 23% 5% 0% 50%

z-peak ACL-1 28% 15% 0% 125%

(1.45) ACL-2 20% 5% 0% 125%

ACL-3 30% 10% 0% 200%

MIXED road 62 bumps total 39 bumps total
2-8US ACL-1 29% 8% 18% 80%

ACL-3 37% 14% 0% 136%

z-peak ACL-1 35% 6% 5% 197%
(1.45) ACL-3 65% 21% 3% 49%
z-peak ACL-1 90% 0% 51% 3%
(1.75) ACL-3 83% 0% 41% 8%

Table 5: False positives/negatives (FP/FN) for bump detectors, z-peak derived from [22] and
our new z-sus. The numbers in bold correspond to the hybrid approach of applying z-sus at
low speeds and z-peak at high speeds.

vehicle. At high speeds (> 25 kmph), we use the surge in az to detect bumps. This is identical to the z-peak
heuristic proposed in [22], where a spike along az greater than a threshold is classified as a suspect bump.
At low speeds, we propose a new bump detector called z-sus, which looks for a sustained dip in az, reaching
below a threshold T" and lasting at least 20 ms ( 7 samples at our sampling rate of 310 Hz). The choice
of the 20 ms duration is motivated by the fact that a car travelling at slow speeds, say 18 kmph or 5 m/s,
would travel, in 20 ms, a distance of 10 cm, which roughly corresponds to the radius of a typical pothole.
Finally, in order to identify the vehicle speed for applying the appropriate brake detector, we can rely on
GSM localization (Section 7) since we only need coarse-grain speed, i.e., whether the vehicle is travelling at
low speeds (< 25 kmph) or not.

The two bump detectors, z-peak from [22] and our new z-sus, were tested over two drives, one along
a short section of road approximately 5 km long with a total of 44 bumps or potholes (labeled “bumpy
road”), and another approximately 30km long with a total of 101 bumps or potholes from a mixture of
bumpy roads interspersed with stretches of smooth highways (labeled “mixed road”). In the case of z-sus,
a threshold of T' = 0.8g was chosen by training over the bumpy road trace and then the same threshold
was used over the longer mixed road trace for validation. In the case of z-peak, one could use techniques
presented in [22] to dynamically tune the threshold to different speeds. However, here we illustrate the
best-case scenario for z-peak by tuning the threshold parameter separately to its optimal values for low and
high speeds, respectively.

During each run, we obtained measurements from two well-oriented accelerometers, ACL-1 and ACL-2,
as well as a disoriented accelerometer, ACL-3, that was virtually reoriented. Our goal is to evaluate the
bump detectors, both across the different accelerometers and across the two drives. The results are shown
in Table 5. Note that, even though we show results for z-sus at both low and high speeds for completeness,
we wish to reiterate that z-sus is targeted as a detector only for low speeds.

We make several observations. First, while we have tuned both the detectors so that the false positive
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rate is kept low (< 10%), the false negative rate for both the detectors is still quite high (20-30%). This
can be explained partly by the difficulty of establishing the ground truth, as noted above. Second, the
false positive/negative rates show some variation across all three accelerometers (two well-oriented and one
virtually reoriented) for both z-peak and z-sus but the range of variation is limited for most of the cases.
For example, false negative (positive) rates varies between 20-30% (5-15%) for the bumpy road trace. This
shows that the virtual reorientation preserves the essential characteristics of the accelerometer signal. Third,
consider the case when speed is less than 25 kmph, where z-peak performs best with an optimal threshold of
1.45g. We note that z-sus outperforms z-peak, with lower false positive rates for attaining similar or better
false negative rates. Finally, we note that if z-peak is tuned with a threshold of 1.75¢, it performs best at
high speeds, achieving 3-8% false positive rates on the mixed road trace (z-sus suffers from unacceptably
high false positive rates at high speeds).

6 Audio

All phones have a microphone that can serve as a readily-available sensor. In this section, we discuss how
the audio sensed through the mobile’s microphone can be used for honk detection. Audio sensing does use
significant amount of power, though lower than WiFi or GPS (Table 2), and is performed only on an as
needed basis (see Section 8). Finally, note that the audio content never leaves the phone; only processed
information such as the number of honks detected is sent to the TrafficSense server, alleviating privacy
concerns to a large extent.

TrafficSense uses honk detection to identify noisy and chaotic traffic conditions like that at an unregu-
lated intersection. There is considerable work in the field of audio content classification [21,24,27] where
researchers have used various machine learning approaches to detect, among other things, the sound of a
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Phone Exposed vehicle || Enclosed vehicle

FP | FN FP | FN

KJAM (T=5) 38% 0% 8% 15%
KJAM (T=7) 0% 0% 0% 23%
KJAM (T=10) 0% 19% 0% 54%
iPAQ (T=5) 19% 4% 0% 19%
iPAQ (T=7) 0% 8% 0% 50%
iPAQ (T=10) 0% 27% 0% 81%

Table 6: False Positives/Negatives (FP/FN) of Honk detector

horn. Given our need to make detection lightweight so that it can run on a mobile device, we investigate
simpler, heuristic-based approaches.

An approach that simply looks for spikes in sound power levels performs quite poorly as it misses a lot
of horn sounds that are muted inside an enclosed vehicle and also mistakes any loud noise as a horn. To
motivate a more discriminating detector, Figure 8 depicts the spectrogram of a horn sound from 1.5s to 3s,
i.e., a frequency versus time plot, with higher sound power depicted by darker shades of grey. The frequency
harmonics are clearly visible (with a fundamental frequency under 500Hz) and there is considerable amount
of energy around the 3kHz band, the region of highest human ear sensitivity [21].

Thus, we implement a simple detector that performs a discrete Fourier transform on 100ms audio samples
and looks for energy spikes. We define a spike as an instantaneous sample that is at least 7" times the mean,
where T' ranges between 5 and 10. Based on empirical observations, we arrive at the following heuristic: as
long as there are at least two spikes, including at least one spike in the 2.5 kHz to 4 kHz region corresponding
to the region of highest human ear sensitivity, we classify the audio sample as corresponding to a honk.
Figure 9 plots the sound amplitude versus frequency based on a discrete Fourier transform performed on a
window of 1024 audio samples (with an audio sampling rate of 11025 Hz) at time 1.6s of the horn sample
depicted in Figure 8. The spikes match well with the darker shades in the spectrogram and would indicate
a honk per the heuristic noted above.

To evaluate the performance of our honk detector, we use audio traces collected using four phones
simultaneously at a chaotic and noisy traffic intersection. We use two HP iPAQs and two i-Mate KJAMs.
One phone of each type was placed inside an enclosed vehicle and one of each type placed outside the
vehicle (representing an exposed vehicle such as a motorbike). We establish the ground truth by listening
to the audio clip from the phone placed outside the vehicle and manually identifying the honk times, with a
granularity of 1 second. We then use the honk detector with different spike thresholds, T', to automatically
identify honks and compare it with the ground truth. The audio trace was about 100 seconds in duration
and had 26 honks from a variety of vehicles.?

The results are shown in Table 6. Assuming a null hypothesis of no horn, the detector suffers false
negatives, i.e. missed honk detection, mostly when the spikes in the 2.5-4kHz band are insignificant, while
it suffers false positives mostly when the spike threshold is low enough for other sounds to be mis-identified
as honks.

We make three observations based on these results. First, with a spike threshold that is large enough
to avoid false positives, the honk detector performs better (i.e., has fewer false negatives) in the exposed
vehicle scenario due to the higher sound power level. Second, the varying sensitivity of microphone in

2The need to manually establish the ground truth by listening limits the length of the trace that is feasible to evaluate.
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different phones can result in different number of honks being detected even on the same trace. These two
observations indicate that when comparing honk data at different locations, care must be taken to separate
out the data based on phone-type and ambient noise level before comparison. Third, a high spike threshold
can substantially guard against false positives (0% for T' > 7 in this trace), though, it cannot eliminate
it completely. In one of our audio traces, there was an instance of a spurious detection of a horn arising
from the sound of a bird chirping that displayed horn-like characteristics. In general, this detector will have
false positives whenever the audio content has honk-like spectrogram characteristics (e.g. alarms). If these
false-positives become significant in some settings, a more sophisticated honk detector would be necessary.
Finally, the honk detector is very efficient. Our implementation running on the iPAQ phone consumes
only about 58ms of CPU time to detect honks in 1 second worth of 16bit, 11025 Hz audio samples (i.e.,
CPU utilization of 5.8%). Note that the CPU utilization would be further reduced in practice because honk
detection would be triggered on-demand rather than be run continuously, as discussed in Section 8.

7 Localization

Localization is a key component of TrafficSense, as it is in any sensing application. Each phone participating
in TrafficSense would need to continuously localize its current position, so that sensed information such as
honking or braking can be tagged with the relevant location. Thus, an energy-efficient localization service
is a key requirement in TrafficSense.

As discussed in Section 2, there are a variety of approaches for outdoor localization including using
Global Positioning System (GPS), WiFi [19], and GSM [18, 31]. However, given the high energy consumption
characteristics of the WiFi and GPS radios (see Table 2), these are not suitable for continuous localization
in TrafficSense. Thus, we primarily rely on using GSM radios for energy-efficient coarse-grain localization
and, as discussed in Section 8, we trigger the use of fine-grain localization using GPS when necessary.

There has been some recent work on using GSM to perform localization in indoor [31] and outdoor
environments [18]. In [18], authors show that GSM signal strength-based localization algorithms can be
quite accurate, with median errors of 94m and 196m in downtown and residential areas, respectively, around
Seattle. When we tried to apply these techniques to the GSM tower signal data we collected in Bangalore,
we found that the characteristics of the data was significantly different (much more heterogeneity) that these
prior techniques were not applicable.

We use four HTC Typhoon phones, subscribed to two different GSM service providers (two phones per
provider), to collect GSM signal information. Each phone records the following six-tuple (M CC, MNC,
LACID, CELLID, ARFCN, RSSI) for the strongest seven GSM signals that it sees every second. The
MCC, MNC are the mobile country and network codes that identify a GSM operator, LACID,CELLID
are the location area and cell IDs that identify a cell tower, ARFCN identifies the GSM carrier frequency
of the signal, and RSST is the received signal strength value of the signal. Since the first five fields of the
six tuple are unique to a particular GSM signal, we call this five tuple® tower ID. Let a set of 1 < n < 7
tower IDs used for identifying a location be called a tower signature.
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7.1 GSM signal characteristics in Seattle and Bangalore

In Figure 10, we present the RSST variation, in a one hour trace, of four most dominant (in terms of number
of occurences) tower IDs of a static GSM phone in a Seattle neighborhood. Figure 11 presents the same
for another static GSM phone placed physically adjacent to the previous phone and subscribed to the same
wireless operator. From these graphs, we can see that (1) there is up to 10dbm variability of RSSI for a
single tower ID over time, and (2) there is up to 20dbm variability of RSSI between the same tower ID
of two phones subscribed to the same operator. The RSSI variability between the different phones is one
potential problem for the RSSI-based localization algorithms proposed in [18]. Specifically, maintaining a
tower signature database for each {mobile phone model, operator} pair would be expensive.

3Technically, the first four fields are sufficient to identify a particular GSM cell sector. However, we found that including the
ARFCN improved the accuracy of all our algorithms, implying possibly that different frequencies are transmitted at different
power levels.
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A second problem for RSSI-based localization approaches is apparent when we examine a similar trace,
collected in Bangalore. Figure 12 presents RSSI vs time for two static phones in Bangalore. While the RSSI
variability over time is similar to the Seattle trace, we find that one of the top four dominant tower IDs
in phone 1 does not even appear for the entire hour in phone 2. Looking at the trace of the second phone
in Figure 13, we find that one of the tower IDs ("D’) is not even seen by this phone and two tower IDs
('B’,’C’) are seen for much shorter durations. The primary reason for the difference between the Seattle and
Bangalore traces is the number of unique tower IDs seen in the respective traces over the one hour duration.
In the Seattle traces, we found 28 and 17 tower IDs, while, in the Bangalore traces, we found 93 and 62
tower IDs. We believe that the significantly higher number of unique tower signatures seen in the Bangalore
trace is due to the higher density of GSM users in India. For example, the inter-tower spacing in India is
estimated to be 100 meters compared to the typical international micro-cell inter-tower spacing of about 400
meters [33].

The high density of towers seen in the Bangalore trace creates significant difficulties for prior RSSI-based
localization algorithms. For example, the RADAR-based fingerprint algorithm, which outperformed other
algorithms considered in [18] when applied to the traces from Seattle, requires that the tower signature (a
set of, upto 7, tower IDs) seen by the phone at a given time exactly match the tower signature stored in
the database. The matched database entries that are the closest in signal strength space are then used for
localization. In the above Bangalore trace, given 93 available towers and a phone exposing only the strongest
7 tower IDs at any given time, the probability of an exact match of a current signature with that in the
database is quite small (a 4% probability of match, based on training data from 23 drives over 12 days in
Bangalore), making these algorithms ineffective.

7.2 Localization Algorithms

We now present two localization algorithms that cater to our observations of GSM signals for a setting like
Bangalore, namely, the high density and the varying set of visible tower IDs. The high density of towers
suggests that even simple localization algorithms, such as the strongest signal approach used for example
in indoor, dense WiFi settings [16], may be effective. Thus, our first localization algorithm, strongest
signal (SS), relies on a training database that maps the tower ID with the strongest-signal to an average
latitude/longitude position. During localization, the phone simply looks up its current strongest tower ID*
in the training database and returns the corresponding latitude/longitude position as its estimate. We also
evaluate a generalization of the SS algorithm, which includes all towers whose signal is stronger than a
threshold as part of the tower signature. Based on our traces, we find that the probability of finding a match
with SS is 96% compared to 4% for the exact match approach, as indicated above.

If the training database is sparse or out-of-date (i.e., it may not include most or all of the strongest signal
tower IDs at a given location), then the strongest signal tower-based localization will not be robust, i.e., the
given strongest signal tower ID may not have a match in the database. In order to increase robustness, we
would like to be able to match the (largest) subset of towers seen currently to the one in the database. Such
an approach will fail to localize only if the training database does not have even one of the seven tower IDs
in a given reading. This leads to our second localization algorithm, the Convex Hull Intersection (CHI).
During training, each visible tower ID is mapped to a convex hull of the latitude/longitude positions from
which the tower ID can be seen. During localization, the phone looks up each of the seven tower IDs in the
database, obtains their respective convex hulls if available, performs an intersection of the convex hulls®, and

4Note that the strongest tower ID is not necessarily the current attached tower, that most phones expose.
5There are 2" ways of intersecting n convex hulls, with potentially different results due to incomplete training data. We
execute a subset, n, of 2™ possibilities, and choose the one that results in an intersection with the smallest radius. In cases
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returns the centroid of the resulting intersection as its location estimate.

7.3 Evaluation

We compute the localization distance estimate error of the SS and CHI algorithms using a rich collection
of cellular traces from Bangalore. We use 23 drives over 12 days in Bangalore as training data for building
the tower ID database and use 10 drives over 5 days for validation (see Table 1). The training data covers a
significant portion of roads in the heart of Bangalore city (see Figure 1) while the validation drives comprises
a subset of these roads. We use GPS-based localization data, collected during the same drives, as the ground
truth for computing the error in our location estimates.

Figure 14 plots the cummulative distribution function (CDF) of the localization distance estimate error
of the SS and CHI algorithms using a rich collection of cellular traces from Bangalore (see Table 1). We

where the intersection of the full set of tower IDs result in a null intersection, we choose the smallest non-null intersection set.
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use GPS-based localization as the ground truth for computing our estimate errors. In addition to the SS
algorithm that only picks the single strongest tower as part of the signature, we also plot the performance
of generalized SS algorithm, by only including the set of all tower IDs with RSSI > —70dbm as part of
the tower signature. The CHI algorithm selects all visible tower IDs with RSSI > —80dbm as its tower
signature, thereby filtering out spurious tower sightings with very weak RSSI. From the figure, we can see
that (1) the simple SS algorithm with one tower performs well with median localization error of only 117m;
(2) Using more than one tower with SS significantly reduces the probability of localization to 73%; (3) CHI
is a little worse than SS with a median error of 155m but performs better at 90th percentile (626m vs 660m)
and higher. While our focus is on localization in areas covered by dense GSM networks, for comparison
Figure 15 plots the CDF of localization errors using our limited Seattle area trace. While the overall shape
of the curves is similar to Figure 14, we observe that (1) the median errors are generally higher (179m vs
117m for SS), and (2) using more towers does not reduce the localization probability as significantly as in
the Bangalore trace (88% vs 73%), thereby allowing the use of more sophisticated signal strength-based
algorithms.

In order to test the robustness of these algorithms, we gathered traces from a few drives again in November
2007 and tried to perform localization on these drives using training data based on traces collected in
September. Figure 16 plots the CDF of the localization distance errors. In this case, the CHI algorithm
significantly outperforms the SS algorithm as it is much more resilient to the mix of tower IDs visible at a
given time.

After analyzing the trace, we found that one of our two service providers had made significant changes
to their network in the preceding two months. In such a setting, collaboration with neighboring devices
can be quite effective. Figure 17 presents the CDF for the SS algorithm augmented with collaboration with
0, 1,and 2 neighboring phones, that simply transmit their visible cell tower information periodically using
Bluetooth or WiFi. When a neighboring phone using a different operator is available, the performance of
the SS algorithm is dramatically improved with probability of localization increasing from almost 40% to
90%.

7.4 Speed Estimation

Traffic speed monitoring is a direct application of localization. Using the SS algorithm, the median and 90"
percentile error in the speed estimate over 100 second travel segments in the Bangalore trace were 3.4 kmph
and 11.2 kmph, respectively. The median and 90" percentile relative error in the speed estimates were
21% and 70% respectively, thus providing a reasonable estimate of traffic speed in the fairly slow moving
peak-hour traffic in Bangalore. The accuracy in absolute terms (the 3.4 kmph and 11.2 kmph figures noted
above) is arguably more important for it would determine our ability to distinguish between traffic that is
crawling on a congested road and moving freely on a fast road. In comparison, the (median, 90*" percentile)
absolute and relative speed estimate errors were (6.6 kmph, 18.5 kmph) and (17%, 87%) in our Seattle trace.

7.5 Summary

In summary, given the density of cell tower locations in the cities of the developing world, a simple strongest
signal-based algorithm can provide accurate energy-efficient localization and speed estimates, provided the
training data is rich and recent. On the other hand, the convex hull intersection-based algorithm provides
better robustness if the training data is sparse/stale. These algorithms result in a median localization
distance error of 120 — 150m and median absolute and relative speed estimate errors of 3.4kmph and 21%,
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Item Median error | 90" percentile error
Localization Distance 117m 660m
Absolute speed 3.4 kmph 11.2 kmph
Relative speed 21% 70%

Table 7: Localization and Speed estimate errors for SS

respectively in our Bangalore traces. The results for the Bangalore validation traces are summarized in
Table 7.

8 Triggered Sensing

Besides making efficient use of individual sensors, there is the opportunity for energy savings by employing
sensors in tandem. A low-energy but possibly less accurate sensor could be used to trigger the operation of
a high-energy and possibly more accurate or complementary sensor only when needed. Of the sensors in our
current prototype, we deem the GSM radio and the accelerometer as low-energy sensors, and GPS and the
microphone as high-energy sensors (see Table 2).

The GSM radio and the accelerometer are always kept on. These are then used to trigger GPS and/or
the microphone when needed. Specific instances of triggered sensing in TrafficSense include the following:

Localization: GSM-based localization is used to trigger GPS to obtain an accurate location fix on
a feature of interest. Consider a phone that detects a major pothole in the road using its accelerometer
measurements (Section 5.4.3). Since it uses GSM-based localization by default, the phone has an approximate
idea of the location of this pothole. The next time the phone (or another participating phone, assuming
information is shared across phones) finds itself in the same vicinity based on GSM information, it triggers
GPS so that an accurate location fix is obtained on the pothole. The energy savings can be very significant,
depending on the specific setting. For example, if the GPS is triggered when the GSM location estimate is
within 500 m of the desired latitude/longitude and turned off when the desired location has been passed, on
a 20 km long drive, GPS would need to be turned on only 3.2% of the time (averaged over 10 runs).

Virtual reorientation: The accelerometer (Section 5.2.2) and also user activity detection (Section 5.3) is
used to determine that a phone’s orientation may have changed and hence the virtual reorientation procedure
needs to be repeated. GPS is then triggered at such a time to help detect the braking episodes needed for
reorientation (Section 5.2.3). We could optimize this further by using the GSM/accelerometer to determine
that the phone is likely in a moving vehicle (based on changes in the GSM/accelerometer measurements)
before triggering GPS.

Honk detection: Braking detection (Section 5.4.1) could be used to trigger honk detection. If significant
levels of braking as well as honking are detected, it might point to traffic chaos.

We defer an evaluation of these triggered sensing techniques to future work.

9 Implementation Status
We have implemented all of the algorithms described in the paper, most of these on the HP iPAQ smart-

phone running Windows Mobile 5. The virtual reorientation algorithm runs on the HP iPAQ by gathering
measurements from the Sparkfun WiTilt accelerometer via a serial port interface over its Bluetooth radio.
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The algorithm is implemented in Python and C#. The audio honk detection algorithm also runs on the HP
iPAQ. This is implemented in C# and invokes an FFT library for the discrete fourier transform and the
Windows Mobile 5 coredll library for capturing the microphone input.

The GSM-localization algorithms are the only ones that do not currently run on the iPAQ, since the
iPAQ does not expose the necessary cell tower information. The cell tower information used in our traces
is obtained on the rebranded HTC Typhoon phones based on reading a fixed memory location, that has
been obtained via reverse-engineering and is well-known [18]. The localization algorithms are currently
implemented in perl and can easily be ported to the iPAQ), if and when the necessary cell tower information
becomes accessible. At this time, we have implemented a simple C# program to obtain GPS information
from the GPS receiver on the iPAQ and use this for our localization needs.

Finally, we have also implemented the detectors for identifying user interactions, thereby invalidating
accelerometer and microphone-based sensing. This implementation is on Windows Mobile 5, which provides
the necessary hooks to intercept keypad and mouse events, and also access to call log information for both
incoming and outgoing calls.

10 Conclusion

TrafficSense is a system for rich monitoring of road and traffic conditions using mobile smartphones equipped
with an array of sensors (GPS, accelerometer, microphone) and communication radios. In this paper, we
have focused on the sensing component of TrafficSense, specifically on how these sensors and radios are
used to detect bumps and potholes, braking, and honking, and to localize the phone in an energy-efficient
manner. We have presented techniques to virtually reorient a disoriented accelerometer and to use multiple
sensors in tandem, with one triggering the other, to save energy. Our evaluation on extensive drive data
gathered in Bangalore has yielded promising results. We have a prototype of TrafficSense, minus GSM-based
localization, running on Windows Mobile 5.0 Pocket PCs.
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Appendix A: Estimating the Angle of Pre-rotation

Since the only acceleration experienced when stationary or in steady motion is along Z, ax = 0 and
ay = 0. For a well-oriented accelerometer, we would also have a, = 0 and a, = 0. However, for a disoriented
accelerometer, the pre-rotation followed by the tilt implies that z and y would, in general, no longer be
orthogonal to Z, so a, and a, would be equal to the projections of the 1g acceleration along Z onto = and y,
respectively. To calculate this, we first consider the pre-rotation and decompose each of a, and a, into their
components along X and Y, respectively. Then when the tilt (about Y) is applied, only the components of
a; and ay along X would be affected by gravity.
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Thus after the pre-rotation and the tilt, we have: a; = cos(Ppre)sin(Gpi) and ay = sin(Ppre)sin(Bui ).
So tan(¢pre) = Z—:, which yields Equation 2 for estimating ¢pre.

Appendix B: Estimating the Angle of Post-rotation

We can compute a/X by running through the steps of pre-rotation, tilt, and post-rotation in sequence,
at each step applying the decomposition method used in Appendix A. Starting with just pre-rotation,
we have a;’(we = a;co8(Ppre) + aysin(Ppre) and a;?m = —aysin(Ppre) + aycos(dpre). After tilt is also
applied, we have a;’(m*mt = a,pmcos(ﬁmt) — azsin(fy) and al}”e*mt = a;fm (a;fm*tilt remains un-
changed because the tilt is itself about V). Finally, after post-rotation is also applied, we have a/X =
a;;?m*tilt*p“t = a;z(we*tiltcos(d)post) + a;f’m*tiltsin(wpost). Expanding this, we have a,X = [(agcos(Ppre) +
aysin((bpm))cos(t?ti,lt) — a, 511041t )]cos(Ypost) + [—az5in(Dpre) + aycos(dpre)]sin(Ppost ).

To maximize ay consistent with a period of sharp deceleration, we set its derivative with respect to
Ypost, %, to zero. So —[(azcos(Ppre) + aysin(Ppre))cos(Orir) — az5in (O )|sin(Ypost) + [—azsin(dpre) +
ay o8 (Ppre)]cos(Ppost) = 0, which yields Equation 3 for estimating ¢post.
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