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Abstract
We present HML, a type inference system that supports full first-
class polymorphism where few annotations are needed: only func-
tion parameters with a polymorphic type need to be annotated.
HML is a simplification of MLF where only flexibly quantified
types are used. This makes the types easier to work with from a
programmers perspective, and we found that it simplifies the im-
plementation of the type inference algorithm. Still, HML retains
much of the expressiveness of MLF, it is robust with respect to
small program transformations, and has a simple specification of
the type rules with an effective type inference algorithm that infers
principal types. A reference implementation of the type system is
available at: http://research.microsoft.com/users/daan/
pubs.html.

1. Introduction
Most type inference systems used in practice are based on Hindley-
Milner type inference (Hindley 1969; Milner 1978; Damas and
Milner 1982). This is an attractive type system since it has a sim-
ple logical specification, and an effective type inference algorithm
that can automatically infer most general, or principal, types for
expressions without any further type annotations. Unfortunately,
Hindley-Milner inference does not support first-class polymorphic
values, and only allows a simple form of polymorphism on let-
bound values. This is a severe restriction in practice. Even though
uses of first-class polymorphism occur infrequently, there is usu-
ally no good alternative or work around (see (Peyton Jones et al.
2007) for a good overview).

The reference calculus for first-class polymorphism is System F
which is explicitly typed. As remarked by Rémy (2005) one would
like to have the expressiveness of System F combined with the con-
venience of Hindley-Milner type inference. Unfortunately, full type
inference for System F is undecidable (Wells 1999). Therefore, the
only way to achieve our goal is to augment Hindley-Milner type in-
ference with just enough programmer provided annotations to make
programming with first-class polymorphism practical.

There is a long list of research papers that propose type infer-
ence systems for System F (Peyton Jones et al. 2007; Rémy 2005;
Jones 1997; Le Botlan and Rémy 2003; Le Botlan 2004; Odersky
and Läufer 1996; Garrigue and Rémy 1999; Vytiniotis et al. 2006;
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Dijkstra 2005; Leijen 2007a). All of these systems mostly differ in
where type annotations are needed in the program, and how easy it
is for the programmer to determine where to put them in practice.

The MLF type inference system (Le Botlan and Rémy 2003;
Le Botlan 2004) is the most expressive inference system to date,
and requires type annotations on function parameters that are used
at two or more polymorphic types. Despite its good properties,
MLF has found little acceptance in practice, perhaps partly due to
the intricate type structure with both flexible and rigid quantifica-
tion, and a more involved type inference algorithm.

In this article, we present a simplification of MLF, called HML,
that uses only flexible types. This simplifies both the types and the
inference algorithm, while retaining many of the good properties of
MLF. In particular:

• HML is a simplification and restriction of MLF, and has exactly
the same expressiveness of Implicit MLF (Le Botlan and Rémy
2007b). A more conservative annotation rule leads to type rules
that only need flexible types and avoid rigidly quantified types
completely. This makes types easier to work with from a pro-
grammers perspective, and we show that it also simplifies the
type inference algorithm.

• It is important to have a clear rule where and when annotations
are needed. HML has a very simple annotation rule: only func-
tion parameters with a polymorphic type need to be annotated.

• As a consequence, HML is a conservative extension of Hindley-
Milner: every program that is well-typed in Hindley-Milner is
also a well-typed HML program and type annotations are never
required for such programs.

• The type rules of HML are very similar to MLF, where flexible
types enable principal derivations where every expression can
be assigned a most general type. This allows a programmer to
use modular reasoning about a program, and enables efficient
type inference.

• HML is very robust with respect to small program transforma-
tions. It has the property that whenever the application e1 e2

is well-typed, so is the abstraction apply e1 e2 and reverse
application revapp e2 e1. Moreover, we can always inline a
let-binding, or abstract a common expression into a shared let-
binding. We consider this an important property as it forms the
basis of equational reasoning where we expect to be able to re-
place equals by equals.

In the following section we give an overview of HML in practice.
Section 4 presents the formal logical type rules of HML. In Sec-
tion 7.2 we discuss a restriction where annotations only consist of
System F types. Finally, Section 8 and Section 9 describe the unifi-
cation and type inference algorithm.
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2. An overview
Flexible types gives us a powerful type inference system for pro-
grams with full first-class polymorphism where types can be of
higher-rank and impredicatively instantiated. Unfortunately, first-
class polymorphic inference is undecidable in general (Wells
1999), and some type annotations are always needed. Previously
proposed type inference systems that support first-class polymor-
phism mostly differ where such annotations are needed in the pro-
gram, and how easy it is for the programmer to apply the those
rules in practice. HML has a very simple annotation rule:

function parameters with a polymorphic type need an annotation

and that’s it! In practice this means that an annotation is only
needed when definining polymorphic parameters. Take for example
the following function:

poly = λ(f :: ∀α. α → α). (f 1, f True)

The parameter f of the poly function must be annotated with
a polymorphic type since it is applied to both an integer and a
boolean value. In general, one can never infer a type for such
parameter since there are many possible types for f : for example
∀α. α → α → α or ∀α. α → Int . Therefore HML simply requires
annotations on all parameters with a polymorphic type.

These are the only annotations that are ever required, and poly-
morphic functions and data structures can be used freely without
further annotations. Assuming the following definitions:

id :: ∀α. α → α
apply :: ∀αβ. (α → β) → α → β
revapp :: ∀αβ. α → (α → β) → β

HML can type poly id or poly (λx . x ) for example. Impred-
icative instantiations are also inferred automatically. For example
apply poly id , or revapp id poly , are accepted where the α quan-
tifier of apply and revapp is instantiated to the polymorphic type
∀α. α → α. In general, HML is not sensitive to the order of ap-
plications and whenever the application e1 e2 is accepted, so is
apply e1 e2 and revapp e2 e1. This is an important property in
practice since it allows us to apply the usual abstractions uniformly
over polymorphic values too.

2.1 Flexible types
Type inference works well with data structures with polymorphic
elements too. Assuming:

inc :: Int → Int
single :: ∀α. α → List α
append :: ∀α.List α → List α → List α
map :: ∀αβ. (α → β) → List α → List β

we can for example map the poly function over a list of polymor-
phic identity functions as map poly (single id), where single id
has type List (∀α. α → α). Of course, sometimes a monomor-
phic type is inferred the expression single id . Take for example
append (single inc) (single id) where single id must get the
type List (Int → Int). We can wonder now what happens when
we share the single id expression, as in the following program:

let ids = single id
in (map poly ids, append (single inc) ids)

Of course, according to our annotation rule, this program is ac-
cepted as is. This implies that we must be able to use ids both as
a list of polymorphic elements, List (∀α. α → α), and as a list of
integer functions, List (Int → Int), even though these types are
incomparable in System F.

To address this, HML uses flexible types to assign a most general
type to ids , namely ∀(β > ∀α. α → α).List β. We can read this

as “for any type β that is an instance of ∀α. α → α, this is a list of
β”, and we can instantiate this type to both of the above types, i.e.:

∀(β > ∀α. α → α).List β v List (∀α. α → α)
∀(β > ∀α. α → α).List β v ∀α.List (α → α)
∀(β > ∀α. α → α).List β v List (Int → Int)
...

Flexible types are key to enable modular type inference where
every expression can be assigned a most general, or principal, type.
By putting the bound on the quantifier, flexible types also neatly
keep track shared polymorphic types. Take for example the choose
function:

choose :: ∀α. α → α → α

The expression choose id can be assigned two incomparable types
in System F, namely ∀α. (α → α) → α → α or (∀α. α →
α) → (∀α. α → α). In HML, we can assign a principal type
to this expression, namely ∀(β > ∀α. α → α). β → β that can be
instantiated to both of the above System F types.

2.2 Robustness
Flexible types make the system very robust under rewrites. We
have seen for example the system is insensitive to the order of
arguments: whenever e1 e2 is accepted, so is apply e1 e2 and
revapp e2 e1. Also, we can always abstract or inline a shared ex-
pression: whenever let x = e1 in e2 is accepted, so is [x :=
e1 ]e2, and the other way around, where we share a common ex-
pression through a let-binding. We consider this an important prop-
erty as it stands at the basis of equational reasoning where equals
can be substituted for equals.

The system is not robust with regard to η-expansion though
since all polymophic parameters must be annotated. For example
we cannot η-expand poly to λf . poly f since f has a polymorphic
type, and we need to write λ(f :: ∀α. α → α). poly f .

In HML, we only allow flexible types on let-bindings and cannot
pass values of a flexible type as an argument. Therefore, we cannot
replace let-bindings with a flexible type by lambda abstractions.
This situation is similar in Hindley-Milner where only let-bindings
can have a quantified type scheme and where lambda bindings are
restricted to monomorphic types.

2.3 Implicit MLF
Implicit MLF is a restriction of MLF where flexible types cannot be
assigned to function parameters (Le Botlan and Rémy 2007b). This
restriction was introduced to make it possible to assign a semantic
meaning to flexible types in terms of System F types. Implicit MLF
has no type annotations at all though and type inference is unde-
cidable for this system. Le Botlan and Rémy describe a decidable
variant called Explicit MLF (XMLF) that needs annotations on all
function parameters that are used at two or more polymorphic in-
stances. Unfortunately, this annotation rule leads to the introduction
of rigidly quantified types that complicate the type system and its
inference algorithm (but does support η-expansion).

HML can be seen as another decidable variant of Implicit MLF,
and has exactly the same expressiveness. The key difference is
a slightly more conservative annotation rule than XMLF where
we require that all polymorphic function parameters must be an-
notated. Surprisingly, this simplifies the type system significantly
since we found that rigid bounds are now no longer required, and
as a result, we can also simplify the type inference algorithm where
we no longer need to compute polynomial weights over types.

In Section 7.2 we describe a restriction of HML, called Rigid
HML, which disallows flexible types on let-bindings too, and re-
quires annotations on let-bindings that have a flexible type. Even
though more annotations are needed, this could perhaps be a use-
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Types σ ::= ∀α. σ
| α
| c σ1 ... σn

Type schemes ϕ ::= ∀(α > ϕ̂1). ϕ2

| σ
| ⊥

Quantified types ϕ̂ ::= ∀(α > ϕ̂1). ϕ2 with α ∈ ftv(ϕ2)
| ⊥

Prefix Q ::= α1 > ϕ̂1, ..., αn > ϕ̂n

Mono types τ ::= α | c τ1 ... τn

Unquantified types ρ ::= α | c σ1 ... σn

Syntactic sugar ∀α = ∀(α > ⊥)
∀Q . ϕ = ∀(α1 > ϕ̂1). ... ∀(αn > ϕ̂n). ϕ

Figure 1. Types.

ful simplification in practice as it removes flexible types from the
realm of the programmer.

3. Types
The types of HML are essentially equivalent to those of Implicit
MLF and are defined formally in Figure 1. Basic types σ are
equivalent to regular System F types and are either a type variable
α, a constructor application c σ1 ... σn, or a quantified type ∀α. σ.
We do not need to treat the function constructor → specially and
assume it is part of the constructors c.

Lambda bound values always have a σ type. In contrast, let
bound values can have a flexible type or type scheme ϕ. Type
schemes are either a System F type σ, the most polymorphic type
bottom (⊥), or a flexible type ∀(α > ϕ̂1). ϕ2.

A quantifier with a flexible bound can be instantiated to any
instance of its bound. In particular, a quantifier ∀(α > ⊥) can be
instantiated to any type since ⊥ is the most polymorphic type. We
call such bound an unconstrained bound and usually shorten it to
∀α. As we see later, the ⊥ type is equivalent to ∀α. α. Note that in
System F, all quantifiers are always unconstrained, i.e. ϕ̂ can only
be ⊥.

Implicit MLF allows arbitrary types in bounds where we can
write types as ∀(α > Int). α → α or ∀(β > List (∀α. α →
α)). β where the bounds cannot be further instantiated. As it turns
out, allowing such ‘trivial’ bounds leads to some unnecessary tech-
nical complications, and in HML we consider such types mal-
formed, and the previous types should be written as Int → Int
or List (∀α. α → α) respectively.

In particular, HML restricts types in a bound to non-trivial
quantified types ϕ̂ (which we denote using a hat ˆ symbol). A ϕ̂
type is either bottom (⊥) or a quantified type ∀(α > ϕ̂1). ϕ2 where
α ∈ ftv(ϕ2). The side condition prevents the use of unbound
quantifiers to hide a trivial bound, as in ∀(α > ∀β. Int). α →
α for example, and ensures that a bound can always be further
instantiated.

A prefix Q is a list of quantifiers α1 > ϕ̂1, ..., αn > ϕ̂n,
where we assume that all the quantified type variables are dis-
tinct and form the domain of Q , written as dom(Q), e.g. the set
{α1, ..., αn}. If all quantifiers are unconstrained, we call Q an un-
constrained prefix.

VAR
x : ϕ ∈ Γ

Q , Γ ` x : ϕ

INST
Q , Γ ` e : ϕ1 Q ` ϕ1 v ϕ2

Q , Γ ` e : ϕ2

GEN
(Q , α > ϕ̂1), Γ ` e : ϕ2 α /∈ ftv(Γ)

Q , Γ ` e : ∀(α > ϕ̂1). ϕ2

APP
Q , Γ ` e1 : σ2 → σ Q , Γ ` e2 : σ2

Q , Γ ` e1 e2 : σ

LET
Q , Γ ` e1 : ϕ1 Q , (Γ, x : ϕ1) ` e2 : ϕ2

Q , Γ ` let x = e1 in e2 : ϕ2

FUN
Q , (Γ, x : τ) ` e : σ

Q , Γ ` λx . e : τ → σ

FUN-ANN
Q , (Γ, x : σ1) ` e : σ2

Q , Γ ` λ(x :: σ1). e : σ1 → σ2

Figure 2. Type rules.

We defined monomorphic types τ as equivalent to Hindley-
Milner monomorphic types, and unquantified types ρ as types with-
out outer quantifiers. The free type variables of a type are defined
in the usual way, where we take special care for types appearing in
a bound:

ftv(⊥) = ∅
ftv(α) = {α}
ftv(c σ1 ... σn) = ftv(σ1)∪ ... ∪ ftv(σn)
ftv(∀(α > ϕ̂1). ϕ2)

= ftv(ϕ̂1)∪ (ftv(ϕ2)− α) iff α ∈ ftv(ϕ2)
= ftv(ϕ2) otherwise

and this definition is extended in the natural way for sets, environ-
ments, and other structures containing types.

4. Type rules
The type rules of HML are defined in Figure 2. The expression
Q , Γ ` e : ϕ states that an expression e can be assigned a type
ϕ under a type environment Γ and prefix Q . The type environ-
ment Γ binds variables to types where we write Γ, x : σ to extend
the environment Γ with a new binding x with type σ (replacing
any previous binding for x ). The prefix Q contains all the (flexi-
ble) bounds of the free type variables in Γ, e , and ϕ, and we have
(ftv(Γ)∪ ftv(e)∪ ftv(ϕ)) ⊆ dom(Q). In the definition of the
Hindley-Milner type rules, the prefix Q always contains uncon-
strained bounds (α > ⊥) and is therefore usually left implicit. The
expression language is standard and defined as:

e ::= x (variable)
e1 e2 (application)
λx . e (lambda expression)
λ(x :: σ). e (annotated lambda expression)
let x = e1 in e2 (let-binding)

Most rules are almost equivalent to the usual Hindley-Milner rules,
except that all of them are stated under the prefix Q . The variable
rule VAR assigns the type that is found in the environment to a
variable. The instance rule INST states that we can always use
an instance of a derived type, where we write Q ` ϕ1 v ϕ2

to denote that ϕ2 is an instance of ϕ1 under a prefix Q . The
generalization rule GEN moves an assumed bounded type from the
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prefix to the type, effectively generalizing over that type variable.
The application rule APP requires the argument and parameter type
to be equivalent. Note that since the parameter type occurs under
the arrow, the types in an application are σ types (and not type
schemes). Dually, the rule for let-bindings binds a generalized type
scheme ϕ to the binding variable.

The rule for lambda expressions FUN is key to the HML sys-
tem. Like Hindley-Milner, it restricts the type of the parameter to
monomorphic types τ only. As we saw in the introduction, this is
essential to avoid guessing polymorphic types. In particular, the in-
variant that all bounds in Q are non-trivially quantified types ϕ̂,
ensures that we can never use the parameter x in a polymorphic
way.

In regular Implicit MLF, there is no such restriction on Q , and
one could ‘hide’ a polymorphic type in the prefix, like ∀(α >
List (∀α. α → α)), and assign α to the type of x . Since the type α
is equivalent to the type List (∀α. α → α) under such prefix, this
would allow us to derive a polymorphic type for x . Restricting the
bounds in Q prevents this from happening.

Note that it is still possible to derive a type for a parameter
that has free type variables with a flexible bound. For example, for
the abstraction λx . choose id x , we can derive the principal type
∀(β > ∀α. α → α). β → β without further annotations.

The restriction of Q to polymorphic bounds, and the restriction
of parameters types to monotypes are the only difference with the
type rules for Implicit MLF (and therefore, it follows that the rules
for HML are sound). Surprisingly, this restriction is enough to make
inference for HML decidable with principal derivations. In contrast
to (X)MLF, no rigidly quantified types are needed which simplifies
the structure of types, and the resulting type inference algorithm.

In order to pass polymorphic parameters, the rule FUN-ANN

must be used where the annotation is restricted to regular System F
types σ. In this rule, the annotated (polymorphic) type of the pa-
rameter is assumed in the environment. A nice property of HML is
that System F annotations on expressions e :: σ can be encoded as
an application to an annotated identity function (λ(x :: σ). x ) e .
General annotations on expressions would include flexible types
though, and in practice we can add the following rule for annota-
tions:

ANN
Q , Γ ` e : ϕ

Q , Γ ` (e :: ϕ) : ϕ

4.1 Some example derivations
As an example of a complete derivation using these type rules,
we derive the type for the expression single id under some initial
prefix Q0 and environment Γ. First, we show how we can directly
derive the type List (∀α. α → α) for single id , using σid as a
shorthand for ∀α. α → α:

Q0, Γ ` single : ∀α. α → List α
Q0 ` ∀α. α → List α v (σid → List σid)

Q0, Γ ` single : σid → List σid Q0, Γ ` id : σid

Q0, Γ ` single id : List (∀α. α → α)

Note that the instance relation includes the normal System F in-
stance relation and we can immediately instantiate the type of
single to (∀α. α → α → List (∀α. α → α). Of course, as shown
in the introduction, the most general type in HML for single id is
∀(β > ∀α. α → α).List β, and we can derive this type as follows,

using Q1 as a shorthand for (Q0, β > ∀α. α → α):

Q1, Γ ` single : ∀α. α → List α
Q1 ` ∀α. α → List α v β → List β

Q1, Γ ` single : β → List β

Q1, Γ ` id : ∀α. α → α
Q1 ` ∀α. α → α v β

Q1, Γ ` id : β

Q1, Γ ` single id : List β β /∈ ftv(Γ)

Q0, Γ ` single id : ∀(β > ∀α. α → α).List β

Since the prefix contains the assumption (β > ∀α. α → α),
we know that β will be instance of ∀α. α → α and therefore,
we can safely instantiate the type of id to β. It remains to make
this intuition precise, we define the type instance (v) and type
equivalence relation (≡) formally in the next section.

5. Type equivalence and type instance
Before definining the type instance (v) and equivalence relation
(≡), we first we establish some notation for substitutions.

5.1 Substitution
A substitution θ is a function that maps type variables to types.
The empty substitution is the identity function and written as [ ].
We write θx for the application of a substitution θ to x where
only the free type variables in x are substituted. We often write a
substitution as a finite map [α1 := σ1, ..., αn := σn ] (also written
as [α := σ ]) which maps αi to σi and all other type variables to
themselves. The domain of a substitution contains all type variables
that map to a different type: dom(θ) = {α | θα 6= α}. The
codomain is a set of types and defined as: codom(θ) = {θα |
α ∈ dom(θ)}. We write (α := σ) ∈ θ if α ∈ dom(θ) and
θα = σ. The expression (θ − α) removes α from the domain of θ,
i.e. (θ − α) = [α := σ | (α := σ) ∈ θ ∧ α /∈ α ]. Finally, we
only consider idempotent substitutions θ where θ(θx ) = θx (and
therefore ftv(codom(θ))# dom(θ)).

5.2 A semantic definition of type equivalence and instance
The equivalence relation defines when types are considered equal
and abstracts from syntactical artifacts like unbound quantifiers or
the order of quantifiers. The instance relation is an extension of the
System F instance relation that takes flexible bounds into account.
The standard System F instance relation (vF) is defined as:

β # ftv(∀α. σ1)

∀α. σ1 vF ∀β. [α := σ ]σ1

where we write (#) for disjoint sets. Note that only outer quanti-
fiers can be instantiated, for example:

∀α. α → α vF Int → Int
∀α. α → α vF ∀β.List (∀α. α → β) → List (∀α. α → β)

To extend this definition to flexible types, we are going to interpret
flexible types as sets of System F types. We can naturally interpret
a type ∀(α > σ1). σ2 as all instances of type σ2 where α is an
instance of σ1. We write JϕK for the semantics of ϕ as the set
of System F types that are instances of ϕ. For example, J∀(β >
∀α. α → α).List βK is the set of types:

{List (∀α. α → α),∀β.List (β → β),List (Int → Int), ...}
Following the approach in (Le Botlan and Rémy 2007b) we define
the semantics of types formally as:

Definition 1 (Semantics of types): The semantics of a type ϕ,
written as JϕK is defined as:

J⊥K = J∀α. αK
JσK = {σ′ | σ vF σ′}
J∀(α > ϕ̂1). ϕ2K = {σ′ | σ1 ∈ Jϕ̂1K, σ2 ∈ Jϕ2K,
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β # ftv(∀(α > ϕ̂1). ϕ2),

σ′ ∈ J∀β. [α := σ1 ]σ2K}

The semantics of ⊥ is equivalent to ∀α. α. The semantics of an
F type σ is the instance closure of all its instances in System F. Fi-
nally, the semantics of a quantified type scheme ∀(α > ϕ̂1). ϕ2)
is the union of the semantics of all possible System F instanti-
ations of ∀β. [α := σ1 ]σ2 where σ1 ∈ Jϕ1K, σ2 ∈ ϕ2 and
β # ftv(∀(α > ϕ̂1). ϕ2).

Types are considered equivalent whenever their semantics are
equal:

Definition 2 (Type equivalence): We write ϕ1 ≡ ϕ2 for equiva-
lence between types. It holds if and only if Jϕ1K = Jϕ2K.

In contrast to (Implicit) MLF we do not have to define equiva-
lence under a prefix since we have restricted bounds to quantified
types only. Besides simplifying the definition of equivalence, this
also makes it easier to define a type directed System F translation
as we’ll see later.

The definition of the instance relation must still be stated under a
prefix Q though. In particular, we would like to have the following
hypothesis rule to hold:

I-HYP
(α > ϕ̂) ∈ Q

Q ` ϕ̂ v α

This rule states that whenever we have the assumption that α is an
instance of ϕ̂ in the prefix Q , we can instantiate that type ϕ̂ to α.
The example type derivation of single id in the previous section
shows an example of the use of this rule.

Therefore, to define instantiation, we first give an interpretation
of prefixes. A prefix Q is meant to capture all the possible types
that may be substituted for the type variables in the domain of the
prefix, and we interpret a prefix as a set of substitutions.

Definition 3 (Semantics of prefixes): The semantics of a prefix Q
is written as JQK, and represents the set of System F substitutions
that capture all possible types that can be substituted for the type
variables in the domain of Q . We define this formally as:

J∅K = {[ ]}
JQ , α > ϕ̂K = {θ ◦ [α := σ ] | θ ∈ JQK, σ ∈ Jϕ̂K}

We can now define the instance relation simply as a subset relation
on the set of System F instances:

Definition 4 (Type instance): We write Q ` ϕ1 v ϕ2, if a type
ϕ2 is an instance of a type ϕ1 under a prefix Q . It holds if and only
if forall θ ∈ JQK, we have θJϕ2K ⊆ θJϕ1K.

Usually, we write ϕ1 v ϕ2 when ∅ ` ϕ1 v ϕ2.

5.3 A syntactic definition of equivalence and instantiation
In practice, a semantic definition is not always easy to work with,
and we discuss an equivalent formulation of equivalence and in-
stantiation based on syntactic rules that are inductive.

In particular, we can define equivalence as the smallest tran-
sitive, symmetric, and reflexive relation that satisfies the rules
of Figure 3. All the rules are unsurprising: the rules EQ-FREE,
EQ-RENAME, and EQ-COMM ensure that unbound quantifiers are ir-
relevant, that we can do α-renaming, and that quantifiers can be re-
arranged. The rules EQ-CONTEXT and EQ-PREFIX allows us to apply
equivalence aribrarily deep inside a type. Note that EQ-CONTEXT

is safe since it is never possible to make a (non-trivial) quantified
type ϕ̂ equal to an unquantified type.

Similarly, we defined the instance relation as the smallest transi-
tive relation that satisfies the rules of Figure 4. The rule I-EQUIV in-
cludes the equivalence relation. The rule I-BOTTOM shows that bot-

EQ-VAR ∀(α > ϕ̂). α ≡ ϕ̂

EQ-FREE
α /∈ ftv(ϕ2)

∀(α > ϕ̂1). ϕ2 ≡ ϕ2

EQ-RENAME
β /∈ ftv(ϕ2)

∀(α > ϕ̂1). ϕ2 ≡ ∀(β > ϕ̂1). [α := β ]ϕ2

EQ-CONTEXT
ϕ̂1 ≡ ϕ̂2

∀(α > ϕ̂1). ϕ ≡ ∀(α > ϕ̂2). ϕ

EQ-PREFIX
ϕ1 ≡ ϕ2

∀(α > ϕ̂). ϕ1 ≡ ∀(α > ϕ̂). ϕ2

EQ-COMM

α1 6= α2 α1 /∈ ftv(ϕ̂2) α2 /∈ ftv(ϕ̂1)

∀(α1 > ϕ̂1)(α2 > ϕ̂2). ϕ ≡ ∀(α2 > ϕ̂2)(α1 > ϕ̂1). ϕ

Figure 3. Syntactic type equivalence.

I-BOTTOM Q ` ⊥ v ϕ

I-EQUIV
Q ` ϕ1 ≡ ϕ2

Q ` ϕ1 v ϕ2

I-HYP
(α > ϕ̂) ∈ Q

Q ` ϕ̂ v α

I-SUBST
Q ` ϕ̂ v σ

Q ` ∀(α > ϕ̂). ϕ v [α := σ ]ϕ

I-CONTEXT
Q ` ϕ̂1 v ϕ̂2

Q ` ∀(α > ϕ̂1). ϕ v ∀(α > ϕ̂2). ϕ

I-PREFIX
(Q , α > ϕ̂) ` ϕ1 v ϕ2

Q ` ∀(α > ϕ̂). ϕ1 v ∀(α > ϕ̂). ϕ2

Figure 4. Syntactic type instance.

tom can be instantiated to any type. The substitution rule I-SUBST

allows us to inline an instantiated bound. This rule is essential since
a σ type can no longer occur as a flexible bound (which must
be quantified type ϕ̂). The I-CONTEXT and I-PREFIX rules ensure
that we can apply instantiation arbitrarily deep inside bounds. Note
that the rule I-CONTEXT only applies to instantiations that lead to a
quantified type ϕ̂2 (in other cases rule I-SUBST should be used).

Theorem 5 (Syntactic type equivalence and instance is sound):
The semantic definitions of type equivalence and type instance
satisfy all the rules in Figure 3 and Figure 4.

Conjecture 6 (Syntactic type equivalence and instance is com-
plete): Any type equivalence and instance relation can be derived
using the rules in Figure 3 and Figure 4.

The proof of soundness is straightforward induction on the equiv-
alence and instance rules and similar to the proof of soundness for
the IMLF instance relation in (Le Botlan and Rémy 2007b). In the
same work, Rémy and Le Botlan conjecture the completeness of
the IMLF relation based on a proof sketch based on an intermedi-
ate graphic representation of types (Rémy and Yakobowski 2007).
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nf (σ) = σ
nf (⊥) = ⊥
nf (∀(α > ϕ̂1). ϕ2) = nf (ϕ2) iff α /∈ ftv(ϕ2)
nf (∀(α > ϕ̂1). ϕ2) = nf (ϕ̂1) iff nf (ϕ2) = α

nf (∀(α > ϕ̂1). ϕ2) = ∀(α > nf (ϕ̂1)).nf (ϕ2)

Figure 5. Normal form.

FJxK = x
FJΛα · eK = FJeK
FJe σK = FJeK
FJe1 e2K = FJe1K FJe2K
FJλ(x : τ) · eK = λx .FJeK
FJλ(x : σ) · eK = λ(x :: σ).FJeK

Figure 6. Embedding of System F.

5.4 Normal form
For type inference, it is often useful to bring types into normal
form which makes it easier to compare them. Figure 5 defines the
function nf (ϕ) that returns the normal form of a type ϕ.

The first two cases state that F-types and ⊥ are already in
normal form. The next two cases deal with trivial bounds: unbound
quantifiers are discarded, and variable types are inlined (EQ-VAR).
We have the following useful properties for normal forms:

Properties 7
i. nf (ϕ) ≡ ϕ.
ii. nf (ϕ1) ≈ nf (ϕ2) if and only if ϕ1 ≡ ϕ2.

where we use ≈ for equal types up to the order of the quantifiers
(Le Botlan 2004).

6. Embedding of System F
It is straightforward to translate any System F program into a
well-typed HML program since we only require annotations on
polymorphic function parameters. Figure 6 defines the function
FJeK that translates a System F term e to a well-typed HML term.
Basically, all type abstractions and applications are removed, and
only annotations on lambda bindings with polymorphic types are
retained. Writing Γ `F e : σ for the standard System F type system,
we have the following theorem:

Theorem 8 (Embedding of System F): If Γ `F e : σ and ftv(Γ) ⊆
Q , we have Q , Γ ` FJeK : ϕ with Q ` ϕ v σ.

7. Alternative designs
In this section we discuss two restrictions of HML that can be
interesting in practice.

7.1 Restricting parameters
As shown in Section 4, the principal type of the expression
λx . choose id x is ∀(β > ∀α. α → α). β → β. This type can
be instantiated to either the Hindley-Milner type ∀α. (α → α) →
α → α, or the System F type (∀α. α → α) → (∀α. α → α). The
latter type is somewhat surprising – are we able to infer a polymor-
phic type for the parameter after all? Of course, the derivation is
sound since we are unable to use the parameter polymorphically in
the body of the lambda expression. In that sense, the instantiation
is equivalent to any other impredicative instantiation.

ftype(ϕ) = ft(nf (ϕ))
where

ft(σ) = σ
ft(⊥) = ∀α. α
ft(∀(α > ⊥). ϕ) = ∀α. ft(ϕ)
ft(∀(α > ∀Q . ρ). ϕ) = ft(∀Q . [α := ρ ]ϕ)

Figure 7. Force a flexible type to a System F type.

LET-F

Q , Γ ` e1 : ϕ1

∀ϕ0. if Q , Γ ` e1 : ϕ0 then Q ` ϕ1 v ϕ0

Q , (Γ, x : ftype(ϕ1)) ` e2 : ϕ2

Q , Γ ` let x = e1 in e2 : ϕ2

Figure 8. Environment restricted to System F types.

Nevertheless, one may want to disallow derivations where the
free type variables in a parameter type have a polymorphic bound.
The only change to the type rules would be in the FUN rule:

FUN-MONO
Q , (Γ, x : τ) ` e : σ ∀Q . τ ≡ ∀α. τ

Q , Γ ` λx . e : τ → σ

With this rule, the principal type of λx . choose id x becomes the
Hindley-Milner type ∀α. (α → α) → α → α. Personally, we feel
that this restriction is not very useful in practice though but may be
considered if one wants to hide flexible types from programmers.

7.2 Restricting let-bindings to System F types
As remarked in the introduction we can also restrict HML let-
bindings to System F types only. We call this system Rigid HML.
The advantage of such restriction is that programmers are no longer
exposed to flexible types and only need to give System F type
annotations. A drawback is of course that certain let-bindings now
require annotations.

In particular, HML will by default instantiate a let-binding to its
most general System F type that has the least inner polymorphism,
which ensures compatibility with standard Hindley-Milner. A nice
property of Rigid HML, is that we can give a clear (but conserva-
tive) annotation rule for let-bindings now: Only let bindings with
a higher-rank type may require an annotation. As a consequence,
Rigid HML is a conservative extension of Hindley-Milner. For ex-
ample, the following expression:

let ids = single id in append (single inc) ids

is accepted without annotations where ids gets the expected
Hindley-Milner type ∀α.List (α → α). To construct a list of
polymorphic elements though, we need to add an annotation:

let ids = (single id :: List (∀α. α → α)) in map poly ids

to accept this program in Rigid HML. The annotation rule is clear,
but a bit conservative. For example, no annotation is needed when
the most general type of a let-binding is a plain System F type, even
if it is impredicative or higher-rank. In particular, the following
bindings are accepted without further annotations:

ids = (single id :: List (∀α. α → α))
x = id ids (inferred List (∀α. α → α))
y = cons id ids (inferred List (∀α. α → α))
z = append ids (inf. List (∀α. α → α) → List (∀α. α → α))

All of the above bindings have a principal type that is a System F
type and there is never any ambiguity and therefore no annotations
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are needed. Only when the most-general type of a let-binding is
a flexible type, and we have a choice which System F types we
can assign, an annotation may be required. By default, Rigid HML
always disambiguates flexible types in a predefined way that leads
the System F instance with the least inner polymorphism.

It does this using the function ftype(·) defined in Figure 7
which instantiates a flexible type ϕ to an F type σ resulting in the
least inner polymorphism. For example, for the binding let ids =
single id it will instantiate the type ∀(β > ∀α. α → α).List β
to the expected Hindley-Milner type ∀α.List (α → α). In the
ftype(·) function, the last case in particular implements this strat-
egy where a type of the form ∀(α > ∀Q . ρ). ϕ is instantiated to
∀Q . [α := ρ ]ϕ 1.

Note that restricting let-bindings to System F types makes Rigid
HML less expressive than HML, since we can no longer share
an expression like ids at different polymorphic instances, i.e. in
contrast to HML, the program:

let ids = single id
in (map poly ids, append (single inc) ids)

is always rejected in Rigid HML as there exists no System F type
for ids to make this well typed.

Formally, Rigid HML consists of the normal HML type rules
given in Figure 2, where the LET rule is replaced by the rule LET-F
defined in Figure 8. The rule LET-F requires that the type ϕ1 derived
for e1 is the most general type possible, i.e. forall ϕ0 such that
Q , Γ ` e1 : ϕ0 holds, we have that Q ` ϕ1 v ϕ0. The restriction
to most general types is needed to ensure that we still have principle
type derivations. Finally, the derived type for e1 is instantiated to
a System F type using the function ftype(ϕ1) and bound in the
environment.

In practice, a language may choose to use rule LET-F if a let
binding is unannotated, while still allowing the programmer to an-
notate such bindings with flexible types, maintaining the expres-
siveness of original system.

8. Unification
Unification of flexible types is more involved than the usual uni-
fication used in Hindley-Milner, but is easier than standard MLF
unification since there are no rigid bounds, and we no longer have
to compute polynomial weights over types. The unification algo-
rithm uses two kinds of substitutions, namely a prefix Q and a nor-
mal substitution θ. In actual implementations both substitutions are
usually merged and implemented directly using updateable refer-
ences on type variables (see (Leijen 2008) for a reference imple-
mentation). We have as invariants that Q only contains bounds with
quantified types, i.e. (α > ϕ) ∈ Q implies nf (ϕ) 6= ρ for any ρ
(in other words, ϕ ∈ Q). Dually, the substitution θ contains only F
types: if ϕ ∈ codom(θ) then nf (ϕ) = σ for some σ. Before dis-
cussing the actual unification algorithm, we first look at two helper
functions over prefixes defined in Figure 11.

8.1 Split and update
The split function split(Q , α) splits a prefix in two parts Q1 and
Q2 such that Q1 is the only part useful to α, i.e. ∀Q . α1 → ... →
αn ≡ ∀Q1. α1 → ... → αn with α = {α1, ..., αn}. The split
function is used for example to generalize over types where the
prefix must be split in one part that can be generalized, and another
part that cannot. In an actual implementation, this operation can be
implemented efficiently using ranked type variables similar to the

1 Another strategy could be to keep types as polymorphic as possible,
tranforming ∀(α > ϕ1). ϕ2 to [α := ftype(ϕ1)]ftype(ϕ2) but we rather
stay compatible with the expected Hindley-Milner form.

unify :: (Q , σ1, σ2) → (Q , θ)
where σ1 and σ2 are in normal form
and (α > ϕ) ∈ Q ⇒ nf (ϕ) 6= ρ
and (α := ϕ) ∈ θ ⇒ nf (ϕ) = σ

unify(Q , α, α) =
return (Q , [ ])

unify(Q1, c σ1 ... σn, c σ′
1 ... σ′

n) =
let θ1 = [ ]
let θi+1 = θ′

i ◦ θi

let (Qi+1, θ
′
i) = unify(Qi, θiσi, θiσ

′
i)

return (Qn+1, θn+1)

unify(Q , α, σ) or
unify(Q , σ, α) with (α > ϕ) ∈ Q ∧ σ /∈ V

fail if (α ∈ dom(Q/σ)) (‘occurs’ check)
let (Q1, θ1) = subsume(Q , σ, ϕ)
let (Q2, θ2) = Q1 C (α := θ1σ)
return (Q2, θ2 ◦ θ1)

unify(Q , α1, α2) with (α1 > ϕ1) ∈ Q ∧ (α2 > ϕ2) ∈ Q
fail if (α1 ∈ dom(Q/ϕ2) ∨ α2 ∈ dom(Q/ϕ1))
let (Q1, θ1, ϕ) = unifyScheme(Q , ϕ1, ϕ2)
let (Q2, θ2) = Q1 C (α1 := α2)
let (Q3, θ3) = Q2 C (α2 > ϕ)
return (Q3, θ3 ◦ θ2 ◦ θ1)

unify(Q ,∀α. σ1,∀β. σ2) =
assume c is a fresh (skolem) constant
let (Q1, θ1) = unify(Q , [α := c ]σ1, [β := c ]σ2)
fail if (c ∈ (con(θ1)∪ con(Q1)))
return (Q1, θ1)

Figure 9. Unification.

usual optimization used for generalization over free variables in the
environment (Kuan and MacQueen 2007).

The update function Q C (α > ϕ) updates a prefix Q that
contains a binding for α with a new binding ϕ taking care to
maintain the invariants on Q . First the prefix is split according to
the free type variables in ϕ to ensure that these are properly scoped.
If the binding is updated with an unquantified type, we extend the
substitution with [α := ρ ], otherwise we update the prefix directly
with α > ϕ. Similarly, the expression Q C (α := σ) assigns the
type σ to α, and returns a substitution [α := σ ], updating the prefix
Q accordingly. In an actual implementation, the update operation
usually just updates a reference directly, and both split and update
are more or less artifacts of using explicit substitutions.

8.2 Unification
The unification algorithm is defined in Figure 9 and Figure 10. The
function unify(Q , σ1, σ2) takes a prefix Q and two F types σ1

and σ2 and returns a new prefix Q ′ and a substitution θ such that
Q ′ ` θσ1 ≡ θσ2. The cases for equal variables and constructors
are standard.

The next two cases deal with the unification of a variable α,
with a binding (α > ϕ) ∈ Q , and an F type σ. First, we ensure
that no infinite type is unified with the ‘occurrence check’ α /∈
dom(Q/ϕ), where dom(Q/ϕ) returns the useful domain of Q
with respect to ϕ. In usual ML type inference, this is always
equivalent to the free type variables of ϕ, but in our case some type
variables can be referenced indirectly. For example, dom((γ >
⊥, β > ∀δ. δ → γ)/(∀α. α → β)) is {β, γ} even though
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subsume :: (Q , σ, ϕ) → (Q , θ)

subsume(Q ,∀α. ρ1,∀Q2. ρ2)
assume dom(Q)# dom(Q2) and c are fresh constants
let (Q1, θ1) = unify(QQ2, [α := c ]ρ1, ρ2)
let (Q2,Q3) = split(Q1, dom(Q))
let θ2 = θ1 − dom(Q3)
fail if (c ∈ (con(θ2)∪ con(Q2)))
return (Q2, θ2)

unifyScheme :: (Q , ϕ1, ϕ2) → (Q , θ, ϕ)
where ϕ1 and ϕ2 are in normal form

unifyScheme(Q ,⊥, ϕ) or unifyScheme(Q , ϕ,⊥)
return (Q , [ ], ϕ)

unifyScheme(Q ,∀Q1. ρ1,∀Q2. ρ2)
assume the domains of Q ,Q1, and Q2 are disjoint
let (Q3, θ3) = unify(QQ1Q2, ρ1, ρ2)
let (Q4,Q5) = split(Q3, dom(Q))
return (Q4, θ3, ∀Q5. θ3ρ1)

Figure 10. Subsumption and type scheme unification.

(update the prefix)
Q C (α > ϕ2)

let (Q0, (Q1, α > ϕ1,Q2)) = split(Q , ftv(ϕ2))
if (nf (ϕ2) = ρ)

then return ((Q0,Q1, [α := ρ ]Q2), [α := ρ ])
else return ((Q0,Q1, α > ϕ2,Q2), [ ])

Q C (α := σ)
let (Q0, (Q1, α > ϕ,Q2)) = split(Q , ftv(σ))
return ((Q0,Q1, [α := σ ]Q2), [α := σ ])

(split a prefix)
split :: (Q , α) → (Q ,Q)

split(∅, α) =
return (∅, ∅)

split((Q , α > ϕ), α) = with α ∈ α
let (Q1,Q2) = split(Q , ((α− α)∪ ftv(ϕ)))
return ((Q1, α > ϕ), Q2)

split((Q , α > ϕ), α) = with α /∈ α
let (Q1,Q2) = split(Q , α)
return (Q1, (Q2, α > ϕ))

Figure 11. Helper functions.

γ /∈ ftv(∀α. α → β). Formally, we say that α ∈ dom(Q/ϕ)
if and only if Q = (Q1, α > ϕ1,Q2) and α ∈ ftv(∀Q2. ϕ).

After the occurrence check, we try to instantiate the type ϕ to
the F type σ using the subsume function. If that succeeds, we
update the prefix with the new substitution α := θ1σ.

The next case deals with two variables α1 and α2 bound to two
flexible types ϕ1 and ϕ2. Again, we first do an occurence check
for both variables, and if that succeeds, we call unifyScheme to
find the join of ϕ1 and ϕ2, i.e. the most general type ϕ that is an

infer :: (Q , Γ, e) → (Q , θ, ϕ)

infer(Q , Γ, x ) =
return (Q , [ ], Γ(x ))

infer(Q , Γ, let x = e1 in e2)
let (Q1, θ1, ϕ1) = infer(Q , Γ, e1)
let (Q2, θ2, ϕ2) = infer(Q1, (Γ, x : ϕ1), e2)
return (Q2, θ2 ◦ θ1, ϕ2)

infer(Q , Γ, λx . e) =
assume α, β are fresh
let (Q1, θ1, ϕ1) = infer((Q , α > ⊥), (Γ, x : α), e)
fail if not (θ1α = τ) for some τ
let (Q2,Q3) = split(Q1, dom(Q))
return (Q2, θ1, ∀Q3.∀(β > ϕ1). θ1α → β)

infer(Q , Γ, e1 e2) =
assume α1, α2, β are fresh
let (Q1, ϕ1, θ1) = infer(Q , Γ, e1)
let (Q2, ϕ2, θ2) = infer(Q1, Γ, e2)
let Q ′

2 = (Q2, α1 > θ2ϕ1, α2 > ϕ2, β > ⊥)
let (Q3, θ3) = unify(Q ′

2, α1, α2 → β)
let (Q4,Q5) = split(Q3, dom(Q))
return (Q4, θ3 ◦ θ2 ◦ θ1, ∀Q5. θ3β)

Figure 12. Type inference.

instance of both ϕ1 and ϕ2, and update the prefix afterwards with
α1 := α2, and α2 > ϕ.

Finally, we have the case of two quantified types ∀α. σ1 and
∀β. σ2. In this case we replace both quantifiers with a fresh
(skolem) constant c and unify the remaining types. For this to work,
we assume that we have ordered the quantifiers of the F types in
a canonical order, see (Leijen 2007b,a) for details. Moreover, we
need to ensure that the skolem constant does not escape into the
environment, and that no free type variables unify with such con-
stant. For example, it would be incorrect to unify ∀α. α → β with
∀α. α → α. The check c /∈ (con(θ1)∪ con(Q1)) ensures that this
is the case, where the function con(·) returns the type constants in
the codomain of the substitution θ1 or the prefix Q1. In an imple-
mentation based on updateable references, this check can be done
efficiently by checking if the original types ∀α. σ1 and ∀β. σ2 do
not contain a reference to c after the unification (Leijen 2008).

8.3 Subsumption and type scheme unification
The subsumption algorithm subsume(Q , σ, ϕ) in Figure 10 takes
a prefix Q , an F-type σ and a flexible type ϕ, and returns a new
prefix Q ′ and a substitution θ, such that Q ′ ` θϕ v θσ. The
algorithm is very similar to HMF subsumption (Leijen 2007a).
It first skolemizes the σ type and instantiates ϕ, and unifies the
remaining unquantified types. Next, we need to ensure that no
skolem constants escape into the environment which is done by
checking that the relevant parts of the prefix and substitution do not
contain any introduced skolem constant.

Finally, unifyScheme(Q , ϕ1, ϕ2) in Figure 10 unifies two flex-
ible types and returns a new prefix Q ′, a subsitution θ and a type
ϕ such that ϕ is the most general type where Q ′ ` θϕ1 v ϕ
and Q ′ ` θϕ2 v ϕ. Note how the split function is used here to
generalize over the result type ϕ.
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System Types Flexible types Annotations
HMF Regular F-types No On polymorphic parameters and ambiguous impredicative applications
Rigid HML Flexible F-types No On polymorphic parameters and let bindings with higher-rank types
HML Flexible F-types Let-bound only On polymorphic parameters
MLF Flexible and Rigid Let- and λ-bound On parameters that are used polymorphically

Figure 13. A high level comparision between different inference systems.

9. Type inference
The type inference algorithm for HML is defined in Figure 12 and
is very similar to MLF inference. It is surprisingly straightforward
since the unification algorithm is rather powerful. The rule for
variables just looks up the type in the environment. Inference for
let bindings is very simple and we only need to bind the inferred
type for the bound expression in the environment.

For a lambda expression, we assume a fresh type α for the
parameter x . After doing inference for the body, we check if the
inferred type for x is a monotype. This is to prevent inferring
polymorphic types for function parameters as required by the FUN

type rule. This check is sufficient because we also ensure that Q
only contains polymorphic bounds. Afterwards split is used to
generalize over the result type. The result type is flexibly quantified
using (β > ϕ1). For example, the most general type for the const
function is:

const :: ∀α. ∀(γ > ∀β. β → α). α → γ (inferred)
const = λx . λy . x

where its type can be instantiate to both of the usual System F types
that we can assign to the const function:

∀α. ∀(γ > ∀β. β → α). α → γ v ∀αβ. α → β → α
∀α. ∀(γ > ∀β. β → α). α → γ v ∀α. α → (∀β. β → α)

This means that we need no special rules for ‘deep instantiation’ or
prenex conversions on types (Peyton Jones et al. 2007).

The application case first infers the types ϕ1 and ϕ2 for the
expressions e1 and e2. It then unifies the types α1 and α2 → β
under a prefix that assumes (α1 > θ2ϕ1), (α2 > ϕ2), and an
unconstrained (β > ⊥). Finally, it generalizes the result using
split .

Theorem 9 (Soundness of inference): If infer(Q0, Γ, e) succeeds
with (Q , θ, ϕ), then Q , Γ ` θe : θϕ holds and Q0 v Q .

Theorem 10 (Completeness of inference): Assume a Q0 where
ftv(Γ) ⊆ dom(Q0) and Q0 v Q . If Q , Γ ` e : ϕ holds then
infer(Q0, Γ, e) succeeds too with a principal solution (Q ′, θ′, ϕ′),
such that Q ′ ` θ′ϕ′ v ϕ and Q ′ v Q .

9.1 Implementing alternatives
Implementing the FUN-MONO rule of Section 7.1 is straightforward.
In the case for lambda expressions, we simply instantiate the pa-
rameter type to its usual Hindley-Milner type, and ensure that the
result type is of rank 1:

infer(Q , Γ, λx . e) =
assume α, β are fresh
let (Q1, θ1, ϕ1) = infer((Q , α > ⊥), (Γ, x : α), e)
let τ1 = θ1α
let (Q2,Q3) = split(Q1, dom(Q))
let (Q4,Q5) = split(Q3, ftv(τ1))
fail if (ftype(∀Q4. τ1) 6= ∀α. τ) for some α, τ
return (Q2, θ1, ∀α.∀Q5.∀(β > ϕ1). τ → β)

We use the ftype function (see Figure 7) to instantiate to a type
with the least inner polymorphism which is the only instance that
can be a rank-1 type. Note how we first split the prefix Q3 with
respect to the free variables of τ1 such that the prefix Q5 stays as
polymorphic as possible.

The Rigid HML variant is even more straightforward to imple-
ment, since we just need to call the ftype function when binding
the value in the environment:

infer(Q , Γ, let x = e1 in e2)
let (Q1, θ1, ϕ1) = infer(Q , Γ, e1)
let (Q2, θ2, ϕ2) = infer(Q1, (Γ, x : ftype(ϕ1)), e2)
return (Q2, θ2 ◦ θ1, ϕ2)

and no further changes are needed.

10. Related work
MLF was first described by by Rémy and Le Botlan (2004; 2003;
2007a; 2007). The extension of MLF with qualified types is de-
scribed in (Leijen and Löh 2005). Leijen later gives a type directed
translation of MLF to System F and describes Rigid-MLF (Lei-
jen 2007b), a variant of MLF that does not assign polymorphically
bounded types to let-bound values but internally still needs the full
inference algorithm of MLF.

Rémy and Le Botlan introduce Implicit MLF (2007b) as a sim-
pler version of MLF where only let-bindings can have types with
flexible quantification. This simplification allows them to give a
semantics of flexible types in terms of sets of System F types. Un-
fortunately, inference for Implicit MLF is undecidable. The variant
with type annotations is introduced as XMLF and uses rigid quan-
tification to enable type inference.

Leijen describes HMF (Leijen 2007a): a type inference sys-
tem for first-class polymorphism that is based on regular Hindley-
Milner inference. Annotations are required on function parameters
with a polymorphic type and on all ambiguous impredicative ap-
plications. Even though the annotation rule is harder than that of
HML or MLF, it represents an interesting design point since the
specification and the type inference algorithm are very simple: the
declarative type rules use only regular System F types and the in-
ference algorithm is a small extension of algorithm W.

As a reference, Figure 13 gives a high-level comparison be-
tween these proposed type systems for first-class polymorphism.
Note that flexible types add true expressiveness to a type system
since it allows the sharing of values at different polymorphic in-
stances (as shown in Section 2.1 and Section 7.2).

Vytiniotis et al. (2006) describe boxy type inference which is
made principal by distinguishing between inferred ‘boxy’ types,
and checked annotated types. A critique of boxy type inference is
that its specification has a strong algorithmic flavor which can make
it fragile under small program transformations (Rémy 2005).

To the best of our knowledge, a type inference algorithm for the
simply typed lambda calculus was first described by Curry and Feys
(1958). Later, Hindley (1969) introduced the notion of principal
type, proving that the Curry and Feys algorithm inferred most gen-
eral types. Milner (1978) independently described a similar algo-
rithm, but also introduced the important notion of first-order poly-
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morphism where let-bound values can have a polymorphic type.
Damas and Milner (1982) later proved the completeness of Mil-
ner’s algorithm, extending the type inference system with poly-
morphic references (Damas 1985). Wells (1999) shows that general
type inference for unannotated System F is undecidable.

Jones (1997) extends Hindley-Milner with first class polymor-
phism by wrapping polymorphic values into type constructors. This
is a simple and effective technique that is widely used in Haskell but
one needs to define a special constructor and operations for every
polymorphic type. Garrigue and Rémy (1999) use a similar tech-
nique but can use a generic ‘box’ operation to wrap polymorphic
types. Odersky and Läufer (1996) describe a type system that has
higher-rank types but no impredicative instantiation. Peyton Jones
et al. (2007) extend this work with type annotation propagation.
Dijkstra (2005) extends this further with bidirectional annotation
propagation to support impredicative instantiation.

11. Conclusion
We presented HML, a type inference system that supports full first-
class polymorphism with few annotations: only function parame-
ters with a polymorphic type need to be annotated. It has logical
type rules with principal derivations where flexible types ensure
that every expression can be assigned a most general type. The type
inference algorithm is straightforward and we have implemented
a reference implementation that represents substitutions using up-
dateable references and uses ranked type variables to do efficient
generalization (Leijen 2008).

Given these good properties of HML, we think it can be an
excellent type system in practice for languages that support first-
class polymorphic values.
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Jacques Garrigue and Didier Rémy. Semi-explicit first-class poly-
morphism for ML. Journal of Information and Computation,
155:134–169, 1999.

J.R. Hindley. The principal type scheme of an object in combina-
tory logic. Transactions of the American Mathematical Society,
146:29–60, Dec. 1969.

Mark P. Jones. First-class polymorphism with type inference. In
24th ACM Symposium on Principles of Programming Languages
(POPL’97), January 1997.

George Kuan and David MacQueen. Efficient ML type inference
using ranked type variables. In The 2007 ACM SIGPLAN Work-
shop on ML (ML 2007), Freiburg, Germany, October 2007.

Didier Le Botlan. MLF: Une extension de ML avec polymorphisme
de second ordre et instanciation implicite. PhD thesis, INRIA
Rocquencourt, May 2004. Also in English.
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