
Horizon: Balancing TCP over multiple paths
in wireless mesh network

Božidar Radunović, Christos Gkantsidis, Dinan Gunawardena, Peter Key

ABSTRACT
There has been extensive work on network architectures that
support multi-path routing to improve performance in wire-
less mesh networks. However, previous work uses ad-hoc
design principles that cannot guarantee any network-wide
performance objectives such as conjointly maximizing re-
source utilization and improving fairness. In parallel, nu-
merous theoretical results have addressed the issue of opti-
mizing a combined metric of network utilization and fairness
using techniques based on back-pressure scheduling, routing
and flow control. However, the proposed theoretical algo-
rithms are extremely difficult to implement in practice, es-
pecially in the presence of 802.11 MAC and TCP.

We propose Horizon , 1 a novel system design for multi-
path forwarding in wireless meshes, based on the theoreti-
cal results on back-pressure. Our design works with an un-
modified TCP stack and on the top of the existing 802.11
MAC. We modified the back-pressure approach to obtain a
simple 802.11-compatible packet-forwarding heuristic and a
novel, light-weight path estimator, while maintaining global
optimality properties. We propose a delayed reordering al-
gorithm that eliminates TCP timeouts while keeping TCP
packet reordering at a minimum. We have evaluated our
implementation on a 22-node testbed. We have shown that
Horizon effectively utilizes available resources (disjoint paths).
In contrast to previous work our design can not only avoid
bottlenecks but also optimally load-balances traffic across
them when needed, improving fairness among competing
flows. To our knowledge, Horizon is the first practical sys-
tem based on back-pressure.

1. INTRODUCTION
Wireless networks are very easy to deploy, but difficult

to make work effectively. End-to-end performance can be
very poor due to variable link quality, caused by interfer-
ence and changes in the environment. This is especially true
for wireless mesh networks where packets traverse several
consecutive links. The main design challenge is to schedule
links and route packets in order to efficiently use network
resources while guaranteeing fairness among users. Wire-

1Horizon: from Greek – oριζω – to divide, separate.

less mesh networks typically provide several paths from a
source to a destination, and by using such paths efficiently
we can aggregate the available resources. This has the poten-
tial not only to increase multiplicatively the achieved end-to-
end rate, but also to provide robustness against performance
fluctuations of any single link in the system.

There is a large body of recent theoretical work that ex-
plores back-pressure scheduling [20] in context of utility
maximization [18]. The back-log is represented by the queue
sizes at nodes, and the main idea of back-pressure schedul-
ing is to give priority to links and paths that have higher
back-pressure, defined as the differential back-log at con-
secutive nodes. If we assign a ‘utility’ to each flow which is
a function of the flow’s rate, then utility maximization seeks
to design network protocols that will maximize the aggre-
gate utility.

Several algorithms based on back-pressure have been pro-
posed,which have been shown to solve the network-wide
utility maximization problem (c.f. [5, 6, 8, 12, 14]). These
algorithms comprise a routing algorithm that is able to ex-
ploit multiple-paths, a scheduling algorithm that prioritize
links’ access to the wireless medium, and a flow control al-
gorithm that prevents congestion collapse and guarantee fair-
ness among flows.

There are several benefits of the utility maximization ap-
proach. It enables us to allocate rates across paths optimally.
Furthermore, prioritized scheduling maximizes the achiev-
able link rates. Finally, utility maximization enables us to
address fairness issues. This is an important question, since
a mesh network can quickly saturate with a modest number
of flows, because adjacent links interfere. Once a network
is saturated, one cannot increase total throughput when new
flows are added. However, it is possible to ensure fairness. A
long flow that traverses several hops will be highly penalized
when competing for medium access with a short flow. Proto-
cols based on utility maximization enforce fairness by giving
long flows a higher chance of access the wireless medium as
well as offering the possibility of increasing their rate by us-
ing multiple paths.

However, all proposed algorithms [5, 6, 12, 14] are purely
theoretical. Although provably optimal, they are extremely
difficult to implement. Firstly, back-pressure scheduling is

1

NP-hard [8]; all proposed implementations incur prohibitively
large signaling overhead and require new MAC protocols.
Secondly, any routing and scheduling protocol for wireless
mesh will interact with TCP/IP and the rest of the network-
ing stack, and algorithms from [5,6,12,14] do not work well
with TCP.

Our focus is 802.11 mesh networks. We describe Hori-
zon , a novel network design based on utility maximization
approach, back-pressure scheduling and multi-path routing
that is interoperable with TCP. We identify critical problems
of previous approaches [5, 6, 12, 14] and propose specific
solutions. We set out to ensure that (a) our design works
with existing MAC protocols and TCP, (b) efficiently uses
the wireless resources, and (c) is fair between flows.

There are numerous other proposals for multi-path routing
in wireless multi-hop and mesh networks. Our architecture
is the first system that strives to maximize some network-
wide performance metric using multi-path routing as oppose
to each flow maximizing its own performance (e.g. [21]).
Horizon avoids congested areas when possible but can also
optimally balance load across congested area when needed,
in contrast to e.g. [17]. In summary, our system

• is implemented as a slim layer between the data link
layer and network (i.e. IP) layer,

• can be deployed in existing wireless mesh networks,
without changing 802.11 MAC or TCP/IP,

• implements multi-path routing using back-pressure based
heuristics for scheduling packets and flows,

• uses a light-weight (i.e. fast and requiring small num-
ber of packets queued in the network) path estimator
that accurately estimates path quality and calculates
back-pressure between nodes,

• employs an algorithm that delivers packets in-order and
with a smooth rate at the destination; this is necessary
to guarantee that TCP can take advantage of multipath
routing, without collapsing its congestion window.

We do not implement a routing protocol. Instead, Horizon
can be integrated with almost any routing protocol that pro-
vides us with multiple-disjoint paths, or providing us with
enough neighbor information to enable construction of such
paths (e.g. link-state routing protocols).

We have implemented our design, and conducted experi-
ments on an 22 node test-bed. When the number of flows is
lower than the number of available resources (disjoint paths)
we improve the total throughput of the network up to 100%
over single-path TCP. In some cases the performance drops.
This is due to our simplified, suboptimal scheduling, based
on 802.11 MAC that cannot successfully eliminate contention
between multiple paths. We identify and discuss such cases
and potential improvements. When the number of flow ex-
ceeds the number of disjoint paths, resources are typically
already fully utilized. In that case we verify empirically that

Horizon improves the fairness among competing flows, as
predicted by theoretical frameworks. In most instances we
see an increase in the system utility and in the rate of the
worst flow.

This paper is organized as follows. In Section 2 we give
a brief overview of the existing theoretical works on util-
ity maximization in wireless and discuss the open problems.
We present our novel path estimation and packet forward-
ing algorithms in Section 3 and delay-reordering algorithm
for interacting with TCP in Section 4. We present detailed
system architecture in Section 5 and we evaluate its perfor-
mance in Section 6. In Section 7 we discuss related work
and we conclude in Section 8.

2. UTILITY AND BACK-PRESSURE
There is a large area of research, both in wired and wire-

less networking, that pose network protocol design as a con-
vex optimization problem (c.f. [5,6,8,12,18]). Here we give
a brief outline of the topic, as our design is based on some
of these principles. We shall follow the exposition of [12].
After presenting the optimization problem in Sec. 2.1 and
a simple example in Sec. 2.2, Sec. 2.3 summarizes the dif-
ficulties implementing the standard frameworks in current
networks.

2.1 Utility Maximization Problem
Let N be the set of nodes and F ⊆ N 2 the set of flows

in the network, defined as pairs of ingress and egress nodes.
Let xf

ij be the packet rate from flow f on the wireless link
from node i to j and let yf be the rate of fresh packets in-
jected at the source node s(f) of flow f . Let us denote by
Uf (i),Df (i) ⊆ N the sets of upstream and downstream
neighbors of node i for flow f . These sets are predefined
by an exogenous routing protocol.

Traffic at node i is stable if the total ingress traffic is smaller
than the total egress traffic, which we write as∑

j∈Df (i)

xf
ij −

∑
j∈Uf (i)

xf
ji − yf 1{s(f)=i} ≥ 0 (1)

where 1{s(f)=i} = 1 if s(f) = i, or 0 otherwise. We call (1)
the flow conservation constraint. We also have

xf
ij ≥ 0. (2)

Let R = {(rij)ij} be the set of feasible average rates
on links (i, j) that can possibly be achieved by any MAC
protocol. The rates R are determined by network topology,
channel conditions, interference, etc. In this section we shall
assume that we have an ideal MAC that can achieve any rate
from this set. Then the MAC layer (scheduling) constraints
are ∑

f∈F

xf
ij


ij

∈ R. (3)

Equations (1)-(3) define the set of average flow rates a net-
work can support: the set of flow rates (yf)f∈F can be sup-

2

ported by the network (N ,F) if there exist rates (xf
ij)i,j,f

that satisfy constraints (1)-(3).
Let Uf (yf) be a convex function of a flow’s rate that de-

fines the flow’s utility. The total network utility is
∑

f Uf (yf).
The goal of utility maximization approach is to find the flow
rates (yf)f∈F that solve

maximize
∑

f

Uf (yf) subject to (1)− (3). (4)

The above optimization problem is convex, provided that
set R is convex. As explained in [12] the solution can be
obtained via the dual formulation using a gradient descent
algorithm. From there we can derive the optimal scheduling,
routing and flow control algorithms.
Flow control: The optimal rate of flow f at time t, y∗f (t) is
the solution of

y∗f (t) = argmax
yf >0

Uf (yf)− yfqs(f)(t), (5)

The source of flow f sets the rate of the flow yf as a func-
tion of number of packets in the queue qf

s(f) at the source of
flow f , s(f).
Queue Evolution: The evolution of qf

i (t) is given by

qf
i =

qf
i − ε

 ∑
j∈Df (i)

xf
ij −

∑
j∈Uf (i)

xf
ji − yf 1{s(f)=i}

+

where [x]+ = x if x ≥ 0, and otherwise 0. Variable qf
i is the

Lagrangian corresponding to the constraint (1). As shown in
e.g. [6], qf

i grows in proportion of the excess data arrived at
node f that is not forwarded; it has the same evolution as the
queue at node i for flow f .
Scheduling and Routing: The optimal routing and schedul-
ing is defined by equation

r∗(t) = argmax
r∈R

∑
i,j

rij max
f

(qf
i (t)− qf

j (t)), (6)

For example, if r∗ij = 0 this represents a routing decision
that no packet should be sent from i to j. The difference
qf
i (t) − qf

j (t) is called differential backlog. For every link
(i, j) we first select the flow with the maximum differential
backlog f∗(i, j) = argmaxf (qf

i (t)−qf
j (t)). Then we select

the rate vector r∗(t), maximizing (6), which defines which
links should be active and with what rates, and set xf∗

ij = rij

and xf
ij = 0 otherwise.

The scheduling defined in (6) is called the back-pressure
or max-weight scheduling, originally defined in [20]. It is
shown in [5, 6, 12] that in conjunction with (5) it also solves
the network-wide optimization problem defined in (4).

2.2 Example
To understand how this scheme works in practice, let us

turn to the example from Figure 1. Consider a flow f , going
from node 1 to node 6. For purpose of the example, suppose
the utility function Uf (yf) = −K/yf where K = 144. It
is easy to verify that the optimal y∗f = 6 and the average

3

1

2

6

5

Wallf

g

r24 = 2

4

r35 = 4

r12 = 100

r12 = 100

r12 = 100

r12 = 100

Figure 1: A network with 6 nodes. Flow f goes between nodes 1
and 6, flow g between nodes 2 and 4. Links r24 = 2 and r35 = 4
are bottlenecks and links r12 = r13 = r46 = r56 = 100 are
significantly faster.

queue sizes are qf
1 = qf

2 = qf
3 = 4, qf

4 = qf
5 = 0 (packets

accumulate before bottlenecks 2-4 and 3-5).
Let us suppose that at some time t = 0 queue sizes are in-

deed equal to the average values qf
1 (0) = qf

2 (0) = qf
3 (0) =

4, qf
4 (0) = qf

5 (0) = 0, and suppose 9 new packets of flow f

arrive at node 1. Because qf
2 (0) = qf

3 (0) node 1 will forward
3 packets to node 2 and 3 packets to node 3. At the next time
instant t = 1 we will have qf

1 (1) = qf
2 (1) = qf

3 (1) = 7. No
further packets can be sent because the differential backlogs
qf
1 (1) − qf

2 (1) and qf
1 (1) − qf

3 (1) are zero. However, link
3-5 is faster and will get rid of its backlog sooner, and will
be ready to receive new packet. This is how on a long term
we will have the rates xf

24 = 4 and xf
35 = 2.

Next, consider the previous scenario, and assume there is
another flow g from node 2 to node 4 that uses only the direct
path 2-4. Link 2-4 has lower capacity than link 3-5 hence
in this particular example flow f will not route its packet
through 1-2-4-6 to maintain fairness. The optimal rate allo-
cations and prices are y∗f = 4, y∗g = 2 and the average queue
sizes are qf

1 = qf
2 = qf

3 = 9, qf
4 = qf

5 = 0, qg
2 = 36. Notice

that flow f has to queue packets at node 2 only to estimate
its quality, although the rate of flow f over link 2-4, xf

24 = 0.
For a more elaborate numerical example, see e.g. [12].

2.3 Difficulties implementing standard frame-
work

The first problem with the back-pressure approach is that
the scheduling algorithm (6) is NP hard [8] and extremely
difficult to implement in a distributed system. Furthermore,
our goal is to implement multi-path routing in an existing
802.11 network without modifying the existing MAC.

The second problem with the back-pressure approach is
that it requires a large number of packets to estimate the path
quality. In the previous examples, the average total number
of queued packets in the network is 12 (in the first example)
and 63 (in the second example). Large queues imply large
delays. They also limit TCP performance. In the second ex-
ample, assume that there is only one TCP connection using
flow f . Then, we need a TCP window of at least 40kB to be
able to correctly estimate the path qualities and achieve the
optimal load balancing. This is impossible to achieve since

3

the window frequently decreases due to wireless losses and
reordering (see Section 4) and is above the maximum win-
dow size of many OS. In turn, there will be insufficient pack-
ets for probing, the source will not be able to correctly esti-
mate the quality of the paths, too many packets will be sent
over bad paths, and the system performance will degrade.

3. PATH ESTIMATES AND FORWARDING
In this section, we extend the ideas presented in Section 2

to build (a) a novel light-weight and 802.11-compatible path-
quality estimator that requires much few packet in the net-
work to estimate network congestion, and (b) a simple dis-
tributed forwarding algorithm.

The main benefits of our approach is the significant reduc-
tion in the queue lengths while still maintaining the global
properties of the utility-maximization approach. The total
number of packets queued in the network become indepen-
dent of the network size and the number of paths, unlike
queue sizes in the approach from Section 2 that increase
both with the network size and the number of paths (see Sec-
tion 3.5 for a numerical example).

These two proposed algorithms solve a variation of the op-
timization problem (4). They are simple to implement and,
as we shall demonstrate in Section 6, work with the existing
TCP and 802.11 implementations and improve performance.

We start by defining a simplified model of the optimiza-
tion problem (4) and then present our novel path estimation
and forwarding algorithms in Section 3.3.

3.1 802.11-compatible Scheduling
Instead of considering the most general form of schedul-

ing given by (6) we shall assume that the underlying 802.11
MAC informs node iwhenever it gets an opportunity to trans-
mit. The node should then decide what packet to transmit to
which destination. For example, it can monitor the packet
queue in the WiFi driver and, when the queue is empty,
schedules the next packet. We shall also assume that the
node knows which transmission rate 802.11 MAC will use
to transmit a packet to the selected destination (these rates
are typically decided by MAC layer through some rate con-
trol protocol).

We simplify the scheduling constrain (3) in the following
way. Suppose the total medium access time Ti for node i,
granted by 802.11 MAC, is given and constant. Node i has
to decide what and where to transmit during that time. Let
Rij be the transmission rate from i to j. Then the fraction
of time node i transmits packets from flow f to node j is
xf

ij/Rij and we have the following constraint for all nodes i∑
f,j∈Di(f)

xf
ij

Rij
≤ Ti. (7)

Obviously, the assumption that Ti is constant does not
hold in reality and Ti will depend on the load on i. For ex-
ample, if node i has no traffic, then it will attempt no trans-
missions and Ti = 0.

3.2 Simplified Model
We next consider the simplified version of (4):

maximize
∑

f

Uf (yf) subject to (1), (2), (7). (8)

where we replaced constraint (3) with (7). Let λf
i be the

Lagrangian multiplier associated with (1), δf
ij with (2), and

µi with (7). From the KKT optimality conditions [2] we
derive that xf

ij > 0 if and only if

Rij(λf
i − λ

f
j) = µi. (9)

Eq. (9) determines the pricing policy and the forwarding
decisions as follows. Node i will schedule a packet from
flow f and next-hop k that maximize the following:

max
f∈F,k∈Di(f)

Rik(λf
i − λ

f
k). (10)

The detailed algorithm is given below, in Section 3.3.
In practice, we use a similar dual optimization problem

as in Section 2 to design the algorithms for flow and next
hop selection, but we optimize the price calculation to avoid
excessive queueing; Section 3.5 demonstrates using a simple
example some of the inefficiencies of using the queue-based
back-pressure algorithm from Section 2.

3.3 Path Estimation and Forwarding
Let P f

i be the number of packets of flow f queued at i and
let Cf

i be the estimated minimal cost of any path for flow f
from node i to the destination of path f . Node i calculates
Cf

i using the following algorithm:

Path Estimation:

j(g) = argmin
j∈Di(g)

Cg
j , (11)

Si = max
g∈F

P g
i Ri,j(g), (12)

Cf
i = Si + min

j:j∈Di(f)
Cf

j . (13)

Whenever node i gets an opportunity to transmit a packet,
it first selects the flow f∗ to transmit packet from, and then
it selects the node j∗ to which it will transmit the packet
according to:

Packet Forwarding:

f∗ = argmax
g∈F,P g

i >0

P g
i (14)

j∗ = argmin
j∈Di(f∗)

Cf∗

j (15)

The interpretation of the algorithms is as follows: Each
neighbor j ∈ Di(f) announce its price Cf

j , for each flow
f , to i. Node i will use the flow with the minimal price
to decide where to forward packets. In addition, it will use
this minimal price to calculate its own price. To this price,
it will add Si (defined in (12)), which is proportional to the

4

maximum amount of packets queued at node i. Observe that
the nodes require information only from their neighbors (and
not from the entire network), and hence the algorithms can
be implemented in a distributed system.

It is easy to see that Si corresponds to µi and Cf
i to λf

i .
Also Cf

i corresponds to the queue size qf
i from Section 2 on

all nodes i used by flow f . However, in this case we do not
queue Cf

i packets per node and per flow, but only P f
i , which

is significantly smaller, as we will illustrate in the example
in Section 3.5.

3.4 Global Properties of Pricing
We next prove some global properties of the proposed

algorithm in a simplified setting (fluid model, as in [12])
whose goal is to illustrate that we indeed follow the utility-
maximization approach, as outlined below. More elaborate
analysis (queue dynamics, convergence) is outside the scope
of this paper.

PROPOSITION 1. Let us consider the fluid model of the
network described above and suppose that it is in the steady
state with λf

i = Cf
i and µi = Si. In that case the achieved

rates (yf)f , (x
f
ij)f,i,j maximize (8).

PROOF. Since the system is in a steady state, it means that
constraints (1) and (7) are satisfied with equalities (where
rates are positive). Therefore it is easy to verify that λf

i =
Cf

i and µi = Si satisfy KKT conditions for (8). Since
the problem (8) is convex, KKT conditions are sufficient to
prove the optimality.

3.5 Example
To illustrate how this scheme works in practice, we turn

again to the example from Figure 1, described in Section 2.2.
Again, it is easy to verify that the optimal y∗f = 8 and the
average prices are Cf

1 = Cf
2 = Cf

3 = 4, Cf
4 = Cf

5 = 0
and the queue sizes P f

1 = P f
4 = P f

5 = 0, P f
2 = P f

3 = 4.
The prices in this examples are exactly the same as in the
example from Section 2.2 (Cf

i = qf
i). Nevertheless, the

number of packets queued in the network is smaller: 8 in
this case, as opposed to 12 in the example from Section 2.2.
This is because we do not take queue length as the price
indicator but we calculate it implicitly.

In the classical back-pressure approach we need to queue
packets in each link before the bottleneck and the total num-
ber of queued packets grows with the network size. In our
case the number of queue packets is independent of the net-
work size as packets are queued only at the bottleneck links.

Next we consider the two flows scenario described in Sec-
tion 2.2. Again using the calculus from this section we can
calculate the average optimal values of rate allocations y∗f =
4, y∗g = 2, the average prices Cf

1 = Cf
3 = 9, Cf

4 = Cf
5 =

0, Cf
2 = Cg

2 = 36 and the average queue sizesP f
3 = 9, P g

2 =
36, P f

1 = P f
2 = P f

4 = P f
5 = 0. The prices in this exam-

ples as well are exactly the same as in the example from
Section 2.2 (Cf

i = qf
i).

Again, the savings are significant: we queue 45 packets,
instead of 90 as we did in Section 2.2. This example empha-
sizes another benefit of our approach over back-pressure: we
do not need to queue packets on a path we do not use. We do
not need to queue packets from flow f on node 2 (P f

2 = 0)
because the price of node 2, Cf

2 = Cg
2 = 36 is too high for

flow f , so it has no need to send packet that way to estimate
it further. Thus our approach does not grow queue sizes as a
function of number of paths we probe.

Finally, our pricing scheme also requires a certain amount
of packets in the network to be able to estimate path quali-
ties. This is more important if the flow contains a very small
number of TCP flows, which have low TCP window sizes.
In this case, the path estimation may be wrong and the load-
balancing suboptimal, like in Section 2.3. However, since
our pricing scheme requires much fewer packets, this is less
likely to happen.

3.6 When Horizon does not work
As already explained, our packet forwarding scheme is

only a heuristic intended to solve the global optimization
problem constrained to 802.11 scheduling, and there are cases
when this heuristic is suboptimal due to self-contention.

There is one obvious case of self-contention where things
will go wrong. In the example from Figure 1 consider a
single flow from 1 to 6 and suppose link 4-6 uses much
lower PHY transmission rate than link 5-6. Ideally, the back-
pressure scheduling as defined in (6) will never select link
4-6. However, 802.11 MAC will observe that link 4-6 has
a packet to send, and will eventually schedule it, taking the
time of the fast link 5-6 and decreasing the flow’s rate. No-
tice that we need to send at least one packet over the path
1-2-4-6 occasionally, as this is the only way to probe the
path. However, we will not be aware that we are creating ad-
ditional contention and decreasing performance. This prob-
lem will not exist if we use a single path only, although that
single path may traverse the bad link 4-6, should the rout-
ing algorithm decide so. One could construct other, more
complicated scenarios involving several links, where our ap-
proach can deteriorate performance. These scheduling prob-
lems are common to all of the multi-path routing protocols
in wireless, and are due to suboptimality of the MAC layer.

However, when the number of flows in the network in-
creases, contention among different flows increases substan-
tially, regardless of whether we use single or multi-path rout-
ing, and the self-contention effects become less visible. Also,
the self-contention effects are elliminated as we increase the
number of available wireless channels and network inter-
faces. We verify experimentally in Section 6 that in both
these cases Horizon outperforms the single-path TCP.

4. INTERACTION WITH TCP
Interaction of Horizon with TCP is twofold. Firstly, TCP

needs to react when a network is congested, decrease the
window in order to prevent congestion collapse and enforce

5

fairness. Horizon does flow control and sends congestion
indicator to TCP whenever it senses a congestion. Secondly,
TCP expects to receive packets in order and within some
time-frame, to avoid timeouts. It is widely known that this
assumption is violated with multi-path routing as each path
may incur arbitrary delays. Horizon delays packet delivery
to minimize reorderings and timeouts.

4.1 Congestion Control and Fairness
One of the goals of TCP is to detect and avoid network

congestion. Another goal is to guarantee fairness among
flows. TCP achieves both these goals by reacting to packet
losses. Each packet loss is treated as a congestion loss, and
the congestion window is halved. Faster flows see more con-
gestion losses which guarantee a certain form of fairness. It
has been shown in e.g. [18, Chapter 4.2.1] that TCP performs
an approximate utility maximization for utility function sat-
isfying U ′(yf) = 1

B2
f

where Bf = yf RTTf is the window

size and RTTf is the round-trip time of flow f .
Horizon communicates congestion to sources using the

pricing estimates. From KKT conditions for (8), almost
identically as (5) in Section 2, we can derive that the opti-
mal window size B∗f has to satisfy U ′(yf) = Cf

s(f), that is

B∗f = K/
√
Cf

s(f) where K is an arbitrary constant. The
choice ofK does not affect the optimization problem (8) but
does affect the system design. Also, we do not know Bf but
we can easily estimate it by estimating yf and RTTf . We
discuss these issues in Section 5.

We signal congestion by sending a congestion indicator
to TCP whenever the TCP window size reaches over the
optimal size B∗f . This way we avoid transmitting packets
through the network and wasting the wireless resources, only
to drop them at the congested queues further down the net-
work.

4.2 Delayed Reordering and Timeouts
It is well known (c.f. [9, 22]) that packet reordering ham-

pers the performance of multi-path TCP as it causes triple
duplicate ACKs, potentially keeps the TCP window small,
and degrades the performance of the path estimator. How-
ever, unlike [22], we are not allowed to change TCP to cope
with reordering. Since Horizon is positioned below TCP,
it can prevent reordering through delayed packet delivery.
When possible, it first waits to receive packets in sequence,
and then it delivers the whole ordered sequence.

However, if one of the paths has a delay sufficiently larger
than others, TCP may timeout waiting for the packets to be
delivered in sequence. This problem is especially empha-
sized in the case of wireless mesh networks, as opposed to
infrastructure networks (a client directly connected to sev-
eral access-points), since each of several hops on the route
can introduce an additional delay.

TCP estimates round-trip time using a simple exponen-
tially weighted moving average algorithm [19]. Let A(p) be

the estimated RTT at the reception of packet p and let D(p)
be the variance. Then the estimations are updated according
to the following rules

A(p+ 1) = (1− α)A(p) + αRTT (p+ 1), (16)
D(p+ 1) = (1− β)D(p) + β |A(p)−RTT (p+ 1)|

where RTT (p) is the round-trip time of packet p. Time out
is defined as RTO(p + 1) = A(p) + 4D(p) and it means
that TCP triggers timeout if the acknowledgement for packet
p+ 1 does not arrive RTO(p+ 1) after it has been sent.

To avoid TCP timeouts, we propose a delayed reorder-
ing algorithm. Horizon keeps receiving packets and delivers
them in sequence. At the same time, it keeps its own esti-
mates of one-way delays. Let ts(p) be the transmission time
of packet p from node s according to the clock at s, and let
td(p) be the reception time of packet p at destination d ac-
cording to the clock at d. The skewed one-way propagation
is tr(p) − ts(p) = Tsd(p) + ∆, where Tsd(p) is the ac-
tual one-way propagation and ∆ is an unknown clock skew.
We estimate the mean skewed one-way propagation delayed
Asd(p) and its variance Dsd(p) using the same algorithm as
in (16).

The delayed-packet reordering works as follows: Suppose
packet p1 is delayed and packets p2, p3, . . . have arrived. If
packet p1 does not arrive by ts(p2) + Asd(p2) + 4Dsd(p2),
we then deliver packet p2. This will cause a duplicate ACK,
but it will not decrease the TCP window, and will give more
time for the delayed packet to arrive. Next, if packet p1 does
not arrive by ts(p3) +Asd(p3) + 4Dsd(p3), we then deliver
packet p3. The procedure is repeated until packet p1 arrives,
or the buffer is depleted. After three packets (p2, p3, p4) are
delivered out of order triple duplicate ACKs will be sent,
and TCP sender will retransmit p1 and halve the congestion
window. However, this effect still has less performance im-
plications than the timeout itself.

There are a few potential problems with the delayed packet
reordering. Firstly, it may happen that all paths are delayed
and no packets after p1 are received. However, in this case
either there is a serious delay on all paths (in which case even
a single-flow TCP would suffer a timeout), or p1 is the last
packet in the window (which does not happen very often).

Secondly, packet p1 maybe lost due to a wireless error, in
which case we are unneccessary delaying other packets. To
that end we introduce an additional mechanism, explained
in Section 5, to detect packet losses when possible. Once
packet p1 is declared lost, we continue as if p1 has been cor-
rectly delivered.

The delayed reordering procedure cannot completely elim-
inate timeouts or triple duplicate ACKs when one path is sig-
nificantly delayed or lossy. However, it significantly reduces
the rate of these undesirable events to the point that we can
efficiently explore multiple paths and outperform single-path
TCP in many cases, as discussed in Section 6.

5. HORIZON ARCHITECTURE

6

R
f
ji C

f
j PathIDTimeStamp PLID

1B 1B 2B 1B 1B

PktID

1B

DstAddr

6B

SrcAddr

6B

Figure 2: Structure of Horizon packet header (B - byte, b - bit).
Its total length is 19 bytes. Different fields are explained in Sec-
tion 5.1.

We have implemented Horizon at the layer 2.5 as a user-
space daemon within VRR routing protocol [3] on Windows
XP (although the architecture is in no way tied to a par-
ticular OS). VRR is an NDIS driver between MAC and IP
layer which intercepts and can reinsert a packet to the MAC
and to the IP layer. It then forwards them to Horizon for
processing. Horizon also periodically queries VRR to ob-
tain the routing tables. When preparing a packet for trans-
mission, Horizon picks the best route according to its own
packet forwarding mechanism (discussed in Section 3) and
prepares the packet with a destination’s Ethernet MAC ad-
dress. It then transmits the packet directly to wireless MAC.
At a destination, packets are delivered to IP according to the
delayed-reordering mechanism, described in Section 4. All
state information in Horizon is soft, which enables it to react
to topology and traffic changes. Horizon does not provide
any guarantees on delivery; this is left to the upper layers.
It also doesn’t support packet fragmentation. As a common
wisdom, we turn off RTS/CTS for performance. We next
discuss different important implementation aspects of our
design.

5.1 Header Structure
Horizon adds its own packet header (illustrated in Fig-

ure 2) between Ethernet and IP headers. Fields SrcAddr and
DstAddr are packet’s flow source and destination MAC ad-
dresses. They are used to identify the flow. We do not per-
form deep packet inspection of TCP header to determine the
flow a packet belongs to. If there are several TCP flows be-
tween the same source and destination, they are treated as
the same Horizon flow to simplify the design. Each packet
in a flow is labelled sequentially with 1-byte PktID (wrapped
when neccessary), and the destination can rearrange the pack-
ets at the Horizon layer according to their PktIDs before
delivering them to the upper layers. Also, on each link, a
packet is labelled sequentially with 1-byte PLID. PLID is
packet sequence number per link and per flow. Link desti-
nation can detect packets losses in the MAC by detecting a
missing PLID. We also use TimeStamp header field to esti-
mate one-way delays (to signal ts(p), as explained in Sec-
tion 4).

Horizon also uses PathID header field to track paths pack-
ets have used. Upon initialization, each node picks an 1-byte
random ID. Initially, PathID of a packet is set to the random
ID of the source node. Each node that forwards a packet
XORs its random ID with the existing PathID value in the
packet header and stores it back in PathID. It is then highly

probable that the PathID of the packets traversing different
paths will differ, whereas packet traversing the same path
will always have the same PathID. Finally, Rf

ji and Cf
j are

used to determine prices; see Section 5.2.1.

5.2 Pricing and Forwarding

5.2.1 Packet Transmissions and Acknowledgements
Path qualities are estimated through queue sizes. Hori-

zon manages its own per-flow queues but it has no control
over the packets queued at the MAC level, since it is above
the MAC layer. Firstly, it is difficult to track the number of
packets in the MAC-layer queue without exploring 802.11
driver’s architecture and thus being attached to a specific
hardware. Also, it is not clear if we can assume that Hori-
zon is the only layer bound to the MAC layer (and count
the MAC egress packets). Finally, since Horizon is currently
implemented in the OS user space, frequently switching con-
text to query 802.11 driver’s queue decreases performance.

The main question is the rate of forwarding packets to the
MAC layer? If Horizon forwards all the packets immedi-
ately, its queue will be empty and it will have no means to es-
timate path quality. Also, excessive packets will be dropped
by the MAC, as may happen in the conventional network
stack. Clearly, it should try to keep packets in its own queue
and occasionally forward them to the MAC. However, hav-
ing no packet in the MAC queue when the MAC is ready to
transmit will drop the link utilization.

In order to determine when Horizon should forward pack-
ets to the MAC, we introduce a concept of responsibility
for packets. A node is responsible for a packet until some-
one else takes over the responsibility or until the packet is
dropped due to MAC loss. We divide the total packets in
the custody of node i in three groups: (I) the packets queued
at Horizon at node i, (II) packets queued at MAC level of
node i, and (III) packets already transmitted by node i but
not acknowledged.

Ideally, we would like to minimize the number of pack-
ets in group II. Instead, we will try to control the number of
packets in groups II and III. To that end, we shall use explicit
acknowledgments at Horizon level to transfer responsabili-
ties for packets. Node i keeps track of Sf

ij , the PLID of the
last packet of flow f sent from i to j. Node j acknowledges
to node i a successful reception by sending Rf

ji, the PLID
of the last packet of flow f received from i. That means
node j relieves node i responsability for all packets of flow
f transmitted from i to j with PLID lower or equal to Rf

ji.
Node i needs to determine the number of packets that are

in its custody, P f
i . Value P f

i can be interpreted as the num-
ber of locally queued packet of flow f and it is used to de-
termine the price, as explained in Section 3. Node i knows
Sf

ij and it also occasionally receives Rf
ji in a refreshment

packet (as described in Section 5.2.2). Then, the total num-
ber of packets in transition between Horizon layers at node
i and j (group II and III) is Sf

ij − Rf
ji. These packets are

7

still the responsibility of node i, and it counts them as not
yet delivered.

Let Qf
i be the total number of packets queued at node i at

Horizon level for flow f (group I). Then the total number of
packets in the custody of node i for flow f is P f

i = Qf
i +∑

j∈D(f)(S
f
ij − R

f
ji). This is the number of packets node i

reports to its upstream nodes (by definition we set P f
d(f) = 0

where d(f) is the destination of flow f).
Finally, in order to minimize the number of packets in

group II and III but avoid starving the MAC layer, we al-
low node i to transmit a packet from flow f to node j only
if Sf

ij − Rf
ji is less than a back-pressure threshold T . We

discuss the choice of T below.

5.2.2 Signalling Updates
Downstream nodes need to signal to their upstream peers

their queue status for each flow. This is done by either ap-
pending these information to a packet in the reverse direction
or sending a dedicated ‘refreshment’ packets. A refreshment
packet from node j to node i and flow f contains Cf

j and
Rf

ji. It is a short packet that contains no payload (fields Cf
j

and Rf
ji are already included in the header).

The values of Rf
ji and Cf

j are updates whenever a new
packet is received. However, the value of Cf

j changes more
often - it also changes when node j receives new refresh-
ments. It is important that node j signals updates to node i
frequently enough to reflect these changes, but not too fre-
quently to avoid creating extra contention in the wireless
medium.

The choice of refreshment frequency affects the choice of
back-pressure threshold T . The optimal value of T also de-
pends on the MAC layer characteristics. If T is too small, we
risk underutilizing the link by not supplying enough packet.
On the other hand, if T is too large, we may disrupt load-
balancing by sending extra packets on low-quality routes.

We experimentally find that the best performance is achieved
when node j sends refreshments about flow f to its upstream
neighbors approximately after every 5 consecutve changes
of Cf

j and when T = 10− 15. The study of this trade-off is
left for future work.

In the case when a direct and a reverse flow’s paths coin-
cide, Cf

j and Rf
ji are piggybacked in the header of a packet

from the same flow traveling in the reverse direction (e.g.
TCP ACK packets). Although a routing protocol does not
have to guarantee that the direct and the return path will co-
incide, we empirically verify that this significantly reduces
the Horizon signalling overhead.

5.3 Interaction with TCP
Other issues that affect TCP performance include: how to

detect wireless losses and thus avoid unneccessary delays in
delivery, how to correctly dimension the utility function and
how to signal congestion.

5.3.1 Detecting Wireless Losses
We can conclude that packet p1 of flow f is missing due

to a wireless loss is if we have received packets at the desti-
nation of sd with PktID greater than p1 on all of the learned
path from flow sd (paths are learned through PathID; see
Section 5.1). Since ordering on each path is guaranted, we
can undoubtedly conclude that packet p1 is lost, and con-
tinue delivering. Although this approach will not detect all
losses, we experimentally observe that it significantly de-
crease the unneccessary reordering.

Additionaly, if a packet is small (less than 60 B), we con-
clude that it consists of TCP ACK or a TCP window probe.
In that case we can deliver it immediately as a reception of
such a packet will not generate any further ACKs and there
are no triple duplicate ACK problems. This heuristics helps
us further decrease the reordering delays.

5.3.2 Dimensioning Utility Function
We next discuss the dimensioning of factor K in the util-

ity function, defined in Section 4.1. Large K results in small
Cf

s(f) which in turn implies smaller queues. However, if
there are very few packets in the queues, our path estimates
will not be accurate which will impact the performance. We
empirically select K = 90 such that Cf

s(f) ≈ 5 for window
size Bf = 40 packets (≈ 64kB). We do not signal con-
gestion if the window is smaller than 5 to avoid clogging a
fast flow. We also do not let Cf

s(f) grow over 100, regardless

of the window size, to avoid excessive delays (Cf
s(f) = 100

corresponds to Bf = 9).
The optimal choice of K is prone to a potential scaling

issues and there might be a need for a dynamic adaptation of
K as a function of path length. However, we do not forsee
mesh networks dramatically increase in size and we leave
this issue for a future work.

5.3.3 Signalling Congestion
We constantly estimate the window size Bf by estimating

yf and RTTf . Once we detect thatBf is larger than its opti-

mal value K/
√
Cf

s(f), we need to signal congestion to TCP.
There are several possible ways to do this. A universal way
is to drop excessive packet. In addition to TCP, this works
well with other transport protocols, such as UDP. However, it
may cause unneccessary packet losses. Instead, we propose
an explicit congestion notification for TCP. Since Windows
XP TCP stack does not support ECN, we send a congestion
indicator by sending a fake triple duplicate ACK. For that
purpose, we keep a track of the last packet delivered to the
IP at the source of flow f (a packet that carried an ACK for
flow f). Once a congestion is detected, we deliver the same
packet again three times. TCP will treat it as a triple dupli-
cate ACK and will halve the congestion window.

5.4 Simple Routing Protocol
Performance of Horizon depends to large extent on qual-

8

D1

S1

S2D2

Figure 3: Floorplan of the testbed. Dots represent nodes’ locations.
The area in the middle is an atrium. Only the nodes connected with
dashed lines can communicate across the atrium.

ity of routes. Our goal is to analyze Horizon and abstract the
routing issues. We use VRR to obtain link-state information.
We use static anchors, hand-picked for our test-bed (as ex-
plained in Section 6.1) to obtain satisfactory disjoint paths.
Due to topology constraints of the current test-bed, we use
only two paths per flow. We leave the questions on how to
derive the optimal routing protocol and how many paths to
use for the future work.

6. PERFORMANCE EVALUATION

6.1 Test-bed Topology
We evaluated the performance of Horizon on a wireless

mesh testbed, comprising 22 nodes on one floor of our build-
ing, shown in Figure 3. Each node is a PC with one or
two 802.11a cards equipped with omni-directional anten-
nas. There are 2 pairs of multi-homed nodes(connected by
dashed-lines in the figure), which act as bridges. The empty
area in the middle of the building is an atrium — only bridges
can talk accross the atrium as they have antennas mounted
on the outside of the office window (bridge communication
is denoted with the dashed lines). Each bridge is equipped
with 2 NICs each, one for the atrium and one inside. Bridges
also serve as static ‘anchors’ (Section 5.4). Each pair of
bridges uses a different frequency, and they do not interfere
with each other. All nodes in each half of the building use
one frequency (including the bridges’ interior NICs), with a
different frequency used in the two halves.

6.2 Performance Metrics
Our test-bed has a form of a ring, and offers two disjoint

paths between any node-pairs. When the number of flows
competing for scarse wireless resource is small, Horizon in-
creases the total throughput of the system by utilizing re-
sources more efficiently, exploiting multiple paths.

On a contrary, when a large number of flows are active in
the system, there is a high chance that each bridge-link is be-
ing used. By virtue of TCP’s behavior, the flows will attempt
to fully use the two bridge links, and we cannot further in-
crease the total throughput. The problem then becomes one

of fairness between flows.
There are several ways to quantify the trade-off between

the efficiency and fairness. With our utility maximization
framework, (Section 3) , the most natural one for us is the
total system utility

∑
f Uf (yf). However, utility is not an

intuitive performance measure. Therefore we also use four
other performance metrics: the rate of the maximum flow
maxf yf , the rate of the minimum flow minf yf , the mean
flow rate flow 1

|F|
∑

f yf and the Jain’s fairness index [16](∑
f yf

)2

/
(
n
∑

f y
2
f

)
.

6.3 Illustrative Examples
We first consider an example from Figure 3 with two flows:

S1−D1 and S2−D2. Flow S1−D1 can use two paths, one
that interferes with S2 − D2 and the other which does not.
We let flow S2 −D2 run for 20s and S1 −D1 for 40s. The
results are illustrated in Figure 4.

First consider what happens with normal single-path TCP.
Suppose that flow S1 − D1 uses a path that overlaps with
S2 − D2. During the first 20s, when both flows are active,
the average rate for S2−D2 is about 600 kB/s, and 190 kB/s
for flow S1−D1. Subsequently, when flow S1−D1 is alone,
its rate increases to about 340 kB/s.

0 10 20 30 40
0

0.5

1

1.5

Time [s]

R
at

es
 [M

B
/s

]

S
1
−D

1
, 2 paths

S
2
−D

2
, 2 paths

S
1
−D

1
, 1 path

S
2
−D

2
, 1 path

Figure 4: An example of load balancing with two flows: flows
S1 −D1 and S2 −D2 (see Figure 3) compete for resources. Flow
S2 − D2 finishes after approx 20s. The light gray area is the rate
of flow S1 −D1 over the path shared with S2 −D2, dark gray is
the rate over a disjoint path.

Now consider the same scenario using Horizon . Note that
Horizon uses the same routing protocol as for single-path
routing, hence the default path for S1 − D1 is also the one
that overlaps with S2 −D2. However, when two flows start
transferring data, Horizon is able to detect the congestion on
one of the paths and transfer almost all of the packets from
flow S1 −D1 over the non-congested path (the dark-shaded
area in Figure 4 showing the traffic over the non-congested
path). This approximately doubles the rates for both flows
because of a better resource utilization, achieveing 1.4 MB/s
for S2 − D2 and 330 kB/s for D1 − S1. In this example
Horizon effectively acts as an ideal routing protocol, select-
ing the best of the proposed paths in a dynamic and timely

9

manner.
When flow S2 − D2 finishes, Horizon detects the other

path is no longer congested, and starts using that as well. It
balances traffic over both paths in such way that the prices
of both paths are approximately the same. Again, the rate of
S1 − D1 is almost doubled compared to the previous case
(620 kB/s), since both paths are (fully) used.

6.4 Random Flows
We now describe the performance of randomly selected,

concurrent flows on our testbed. Each experimental run rep-
resents randomly selected pairs of flows (source-destination
pairs). For each set of source-destination pairs we repeated
the measurements 10 times. We ran sets of experiments with
1, 2, 4 and 8 flows. Our test-bed exhibited very poor perfor-
mance with more than 8 bandwidth-hungry concurrent flow,
with and without multi-path, due to interference, hidden-
terminal problems and TCP timeouts, and yielded no mean-
ingful conclusions.

The samples are not ergodic and do not follow any obvi-
ous distribution, hence it is difficult to calculate confidence
intervals. Instead, whenever we plot flow rates with error
bars (Figure 5 and Figure 6), the error bars depict the mini-
mal, maximal and mean values from the set of repeated mea-
surements.

6.4.1 Single Flow Case
Figure 5(a) shows the throughput of a single flow for dif-

ferent randomly selected source and destination pairs .
We can classify the resulting allocations into 5 groups.

The distinction among different groups is roughly shown in
Figure 5(a). In group I there are flows whose performance
drops due to Horizon scheduling inefficiencies, discussed in
Section 3.6. For all of these flows, both the source and the
destination contain a single NIC (but not all nodes with sin-
gle NIC experience this inefficiency; some are in group III).
Group II are short flows that do not use multiple paths. Hori-
zon exhibits slightly worse performance (around 5%) than
single-path TCP due to the protocol and CPU overheads.

Group III are flows in which both the source and the des-
tination contain a single NIC, but which do not suffer the
scheduling problems of group I. Observe that Horizon ap-
pears to slightly improves the average rate (by 10%-20%).
Group IV are flows in which either the source or the destina-
tion (but not both) contain two NICs. The average rate im-
proves by 20%-50%. Finally, group V are the flows in which
both the source and the destination are multi-homed. Here
we see the largest performance improvement of Horizon ,
which goes as high as 100%. Flows with at least a source or
a destination having two NICs are depicted in Figure 5(b).

We attribute the performance degradation of group I to
802.11 MAC scheduling, and verify it empirically. When
we introduce multi-homed nodes, we eliminate these prob-
lems. Horizon then significantly improves the performance
through using multi-path. This implies that the more a mesh

network is designed to exploit multi-channel capabilities, the
greater the performance improvement for a single flow. It
remains as future work to test this hypothesis with Horizon
in a test-bed with more multi-homed nodes. Furthermore, as
we shall see in the following sections, self-contention effects
become less important with multiple flows as the contention
among flows becomes substantial.

6.4.2 Two Flows Case
We now described experiments with two concurrent flows.

The achieved rates are depicted in Figure 6. The relative
improvements of different performance metrics are shown
in Figure 7.

0

0.5

1

1.5

2

2.5

R
at

es
 [M

B
/s

]

Runs

R
el

at
iv

e
im

pr
ov

em
en

t

0

0.5

1

1.5

2

Figure 6: Experiments with 2 flows. We plot the achieved rates of
the two flows for both Horizon and single-path TCP in different
experiments (runs). Solid line represents the relative improvement
and dashed line the improvement of the worst flow (points missing
from the graph represent 15-22 times improvements).

From Figure 7 we see that in about 70% of cases the total
utility has increased, the fairness index and the performance
of the worst flow is increased in about 50% of the runs and
the sum of the flows’ rates (i.e. mean rate) has increased in
approximately 30% of the cases. We again see the problems
of inefficient scheduling, which result in approximately 30%
of the flows having decreased utility.

From Figure 6 we see that in some cases fairness was im-
proved at the expense of total rate. However, in the runs on
the right side of Figure 6 we see that we have improved both
the total rate (mean rate) and the fairness (the rate of weakest
flow). As discussed in Section 6.2, this is possible since in
many cases the two flows will be obliged to share the same
paths with single-path TCP, whereas Horizon will balance
them on two paths and improve the resource utilization. In
summary, in most of the cases we improve fairness and in
some cases we improve both fairness and total throughput.

6.4.3 Cases with more than two flows
The results for experiments with 4 and 8 flows are de-

picted in Figure 7. Confidence intervals are of the same order
as for experiments with 1 and 2 flows, but omitted for clarity.
From Figure 7 we can conclude that Horizon in most of the

10

(a)

10 20 30 40 50 60
0

1

2

3

Runs

R
at

es
 [M

B
/s

]

I II III IV V

R
el

at
iv

e
im

pr
ov

em
en

t

0

0.5

1

1.5

2

(b)

5 10 15
0

0.2

0.4

0.6

0.8

Runs

R
at

es
 [M

B
/s

]

R
el

at
iv

e
im

pr
ov

em
en

t

0

0.5

1

1.5

2

Figure 5: Single-flow case: In (a) we randomly select flows source-destination pairs among all available nodes. In (b), subset of (a)with at
least a source or a destination that have two NICs (groups IV and V). Black crosses represent rates (in kB/s) achieved using Horizon , blue
circles using single-path TCP. Error bars are explained in Section 6.4. Black line is the relative improvement of Horizon over single-path
TCP (corresponding y axis is on the right).

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fraction of runs

R
el

at
iv

e
im

pr
ov

em
en

t

Min
Max
Mean
Fair

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fraction of runs

R
el

at
iv

e
im

pr
ov

em
en

t

Min
Max
Mean
Fair

(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fraction of runs

R
el

at
iv

e
im

pr
ov

em
en

t

Min
Max
Mean
Fair

Figure 7: CDF of the relative improvement of the minimum, mean, maximum rate and the fairness index of Horizon over the single-path
TCP for the experiments with 2 flows (a), 4 flows (b) and 8 flows (c). Confidence intervals are removed for clarity. Note that the points on
different curves with the same x-value do not correspond to the same experiment. The experiments on the left of the vertical red line have
lower utility in the case of Horizon than in the case of the single-path TCP. The experiments on the right improve the utility with Horizon .

cases improves the system utility, and the improvement is
more visible when the number of flows grow large. We also
see that the fairness is improved and that the fairness index
and the performance of the worst flow improve significantly.
As expected, this is traded-off against the sum of rates (mean
rate) and the performance of the best flow.

Notice the ‘flat’ part of the mean rates curves. This is
caused by most of the randomly selected flows being short
flow, which all experience similar performance. In many
cases the short flows contribute significantly to the overall
throughput. As the number of flows increases, the level of
the flat part decreases. This means as the number of flows,
and opportunities to trade increase, we tend to trade more
the performance of the short flows to improve that of the
long flows, hence we improve fairness.

6.4.4 Load-balancing
Finally, we investigate load-balancing properties. We want

to show that Horizon not only selects one optimal path per

0 5 10 15
0.6

0.7

0.8

0.9

1

Flows

B
al

an
ce

2 flows
4 flows
6 flows
8 flows

Figure 8: Fraction of the total traffic sent on one of the two paths

flow, but in many cases it actively balances traffic over all
available paths (sends more than 5% of traffic over both
paths). We verify that in at least 60% of all the experiments
with 2 flows at least one flow actively balances traffic. Simi-
larly, in at least 70% of the experiments with 4 flows at least
one flow actively balances traffic, and in at least 20% of the

11

experiments two flows actively balance traffic. The CDF of
the distribution of traffic over path for flows that use multiple
paths is given in the graph in Figure 8, and the traffic split
goes up to 60:40 for certain flows.

7. RELATED WORK
One of the first analysis of TCP over a single wireless link

is given in [1]. An experimental analysis of TCP perfor-
mance in wireless multi-hop networks is given in [10]. They
find that RTS/CTS should be switched off for performance
and that one should not increase retransmission counter too
large as bad links will get too much transmission opportu-
nities. Sender-side modification of single-path TCP is pro-
posed in [13]. It estimates bandwidth and adapts the window
to the estimated value upon triple ACK.

Some practical results on flow control and single-path rout-
ing in mesh networks are given in [7, 11, 15]. In [11], where
back-pressure is used in a different manner to prevent con-
gestion at MAC layer. It requires MAC-layer modifications
and is verified by simulations only. Similar results that pre-
vent MAC-layer contention using flow control are presented
in [7, 15].

Multi-path routing in sensor networks has been proposed
in [17]. It requires coordinates and provides disjoint paths
based on the topology. It has its own flow control scheme,
doesn’t use TCP. Multi-path routing with TCP has been pro-
posed in [21]. It measures RTT on each path and sends traf-
fic proportionally to RTT. Tested by simulations only and in
lightly-loaded network (no reordering).

There is a long history of multi-path routing and TCP
in wired networks. Some of the examples are [4, 9]. In
[9] a flowlet level balancing is proposed to avoid reorder-
ing effects. [4] proposes a multi-path load balancing scheme
under predefined weights that minimize average packet de-
lays. How to prevent reordering and timeouts in TCP using
DSACK is discussed in [22].

Originally, back-pressure scheduling has been proposed
in [20], where it is shown that this scheduling can stabilize
a network whenever possible. This paper generated a whole
new direction of research on the jointly optimal scheduling,
routing and flow control in wireless networking (c.f. [5,6,12,
14]); a comprehensive survey can be found in [8].

We did not compare Horizon numerically to the algo-
rithms from [7, 11, 15, 17, 21] because these algorithms ei-
ther do not satisfy all our design requirements or there is no
available implementation. To our knowledge, we are the first
one to implement back-pressure ideas in a system design.

8. CONCLUSIONS
We presented a novel system architecture Horizon for load-

balancing and multi-path routing in wireless mesh networks.
Our design guarantees efficient use of available resources,
fairness among cometeing flows, and it works with unmodi-
fied 802.11 MAC and TCP/IP.

We started from adopting the recent theoretical ideas about

back-pressure scheduling and utility maximization. We pro-
posed novel solutions to several problems that arise in prac-
tical applications of these algorithms and we demonstrated
that it is indeed possible to use these ideas in practice. Unlike
previously proposed system architectures in this space, Hori-
zon can guarantee some network-wide performance char-
acteristics, works with unmodified networking networking
stack and the claims are evaluated and confirmed in a real-
world test bed (and not by simulations).

Acknowledgment
The authors are grateful to Greg O’Shea and the rest of the
VRR crowd for the fully functional test-bed and all the help
and advices.

9. REFERENCES

[1] H. Balakrishnan, V. Padmanabhan, S. Seshan, and
R. Katz. A comparison of mechanisms for improving
TCP performance over wireless links. IEEE/ACM
Transactions on Networking, 5(6):756–769, 1997.

[2] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron. Virtual ring routing: network
routing inspired by DHTs. In ACM SIGCOMM, 2006.

[4] C. Cetinkaya and E. Knightly. Opportunistic traffic
scheduling over multiple network paths. In
Proceedings of INFOCOM, 2004.

[5] M. Chen, S. Low, M. Chiang, and J. Doyle.
Cross-layer congestion control, routing and
scheduling design in ad hoc wireless networks. In
INFOCOM, 2006.

[6] A. Eryilmaz and R. Srikant. Joint congestion control,
routing and mac for stability and fairness in wireless
networks. IEEE Journal on Selected Areas in
Communications, 24(8):1514–1524, August 2006.

[7] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and
M. Gerla. The impact of multihop wireless channel on
TCP throughput and loss. In INFOCOM, 2003.

[8] L. Georgiadis, M. Neely, and L. Tassiulas. Resource
allocation and cross-layer control in wireless
networks. Foundations and Trends in Networking,
1(1):1–144, 2006.

[9] S. Kandula, D. Katabi, S. Sinha, and A. Berger.
Dynamic load balancing without packet reordering.
ACM SIGCOMM Computer Communication Review,
37(2), April 2007.

[10] V. Kawadia and P. R. Kumar. Experimental
investigations into TCP performance over wireless
multihop networks. In Wksp on Exp. approaches to
wireless network design and analysis, 2005.

[11] C. Lim, H. Luo, and C.-H. Choi. RAIN: A reliable
wireless network architecture. In Proceedings of ICNP
’06, pages 228–237, 2006.

12

[12] X. Lin and N. Shroff. Joint rate control and scheduling
in multihop wireless networks. In 43rd IEEE CDC,
2004.

[13] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and
R. Wang. TCP Westwood: Bandwidth estimation for
enhanced transport over wireless links. In MCN’01,
pages 287–297, 2001.

[14] M. Neely, E. Modiano, and C. Rohrs. Dynamic power
allocation and routing for time-varying wireless
networks. IEEE Journal on Selected Areas in
Communications, 23(1):89–103, January 2005.

[15] C. Pazos, J. Sanchez-Agrelo, and M. Gerla. Using
back-pressure to improve TCP performance with
many flows. In Proceedings of INFOCOM, pages
431–438, 1999.

[16] L. Peterson and B. Davie. Computer Networks: A
Systems Approach. Academic Press, 2000.

[17] L. Popa, C. Raiciu, I. Stoica, and D. Rosenblum.
Reducing congestion effects by multipath routing in
wireless networks. In ICNP’06, pages 96–105. IEEE,
2006.

[18] R. Srikant. The Mathematics of Internet Congestion
Control. Birkhauser, 2004.

[19] R. Stevens. TCP/IP Illustrated: Protocols. Addison
Wesley, 1994.

[20] L. Tassiulas and A. Ephremides. Stability properties of
constrained queueing systems and scheduling policies
for maximum throughput in multihop radio networks.
IEEE Trans. on Automatic Control, 37(12), 1992.

[21] Z. Ye, S. V. Krishnamurthy, and T. S. K. Effects of
multipath routing on TCP performance in ad hoc
networks. In Proc. of IEEE GLOBECOM, 2004.

[22] M. Zhang, B. Karp, S. Floyd, and L. Peterson.
RR-TCP: a reordering-robust TCP with DSACK. In
IEEE ICNP, 2003.

13

	Introduction
	Utility and Back-pressure
	Utility Maximization Problem
	Example
	Difficulties implementing standard framework

	Path Estimates and Forwarding
	802.11-compatible Scheduling
	Simplified Model
	Path Estimation and Forwarding
	Global Properties of Pricing
	Example
	When Horizon does not work

	Interaction with TCP
	Congestion Control and Fairness
	Delayed Reordering and Timeouts

	Horizon Architecture
	Header Structure
	Pricing and Forwarding
	Packet Transmissions and Acknowledgements
	Signalling Updates

	Interaction with TCP
	Detecting Wireless Losses
	Dimensioning Utility Function
	Signalling Congestion

	Simple Routing Protocol

	Performance Evaluation
	Test-bed Topology
	Performance Metrics
	Illustrative Examples
	Random Flows
	Single Flow Case
	Two Flows Case
	Cases with more than two flows
	Load-balancing

	Related Work
	Conclusions
	References

