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1 Introduction

Internet Explorer cannot display the webpage
Most likely causes:

e You are not connected to the Internet.
o The website is encountering problems.

o There might be a typing error in the address.
— IE-7 error page

Despite the tremendous growth of the Web and our reliance on it, a surprisingly large number of attempts
to access websites still fail today [18]. The popularity of the Web is fueling an ever increasing number of users
which in turn places additional load on HTTP servers and other Web infrastructure. More complex Web
applications, such as social networking websites, require server resources beyond that of serving traditional
static web pages. The spread of the Internet to various corners of the World is increasing the complexity
of Internet infrastructure such as the routing, DNS and CDN systems. Users now expect Web access from
more diverse locations, such as mobile phones and the workplace, which typically employ infrastructure such
as firewalls and HTTP proxies to filter malicious content, restrict user access and adapt content to different
devices. As a result, users do see web failures and they are increasingly difficult to automatically diagnose.

When a failure does occur, users are typically presented with vague and generic information about the
cause. The less-than-helpful error message from Microsoft Internet Explorer 7 shown above is by no means
specific to that browser — Firefox 2’s error message is equally useless. Users may try to reload the page
repeatedly, modify their machine or browser configuration, or simply try again later. Yet, depending on the
cause, none of these actions may resolve the problem, leaving the user clueless and frustrated.

There are existing techniques for diagnosing Web failures. HT'TP server logs can be analyzed [16] by
website administrators to look for requests that generated HTTP errors. However, these logs do not contain
access attempts that did not even reach the website (e.g., due to DNS failures, HT TP proxy failures). HTTP
proxy or edge router logs can be analyzed by enterprise administrators — medium to large corporations
typically use HT'TP caching proxies to improve performance and filter harmful web content. These logs
include details such as the client IP address, server IP address, URL accessed and HTTP success/error code.
However, again, logs collected at the network edge do not include access attempts that failed to reach it (e.g.,
due to DNS failures, internal routing failures). Recently proposed techniques [9] for constructing inference
graphs of multi-level dependencies in enterprise networks use packet traces to probabilistically infer
the network components involved in a transaction and identify the culprit if a large number of requests
fail. Such systems rely on probabilistic techniques to separate out multiple simultaneous network flows into
transactions related to the same application-level action, and are impeded when end-to-end encryption such
as [PSec is used.

We present WebProfiler, which employs end-host cooperation to pool together observations of Web
access failures and successes from multiple vantage points. WebProfiler exploits clients that use different
network elements (e.g. DNS servers, HT'TP caches) in a collaborative blame attribution algorithm to identify
those network elements that are often involved in failures rather than successes. Our distributed system
relies on a lightweight Web browser plug-in on each client that monitors the success and failure of any web
transaction and shares this with the WebProfiler system. The use of a lightweight application layer plug-in
for monitoring results in a system that works even with IPSec encryption, detects all client failures, does not
require packet sniffing and can be incrementally deployed via software updates.

While the concepts behind WebProfiler are applicable to other networks such as residential access and
the Internet in general, we focus on enterprises in our implementation and evaluation. In doing so, we are



able to present the cooperative system design and collaborative diagnosis algorithm in detail without having
to address system scalability beyond large enterprises (e.g. 100,000 employees). In terms of privacy, even
though our approach detects more errors than in router or proxy logs, the type of data we collect is similar
to what enterprise administrators can see in such logs. Furthermore, users do not directly interact with the
data, but instead see the names of network components that our diagnosis tool blames for failures. We focus
on enterprises without loss of generality in diagnosis. In fact, typical enterprise networks increase diagnosis
complexity due to additional network components that can contribute to Web failures — internal vs. external
DNS servers, NetBios or WINS resolution, HTTP proxies, internal vs. external websites, etc.

Our novel contributions include an architecture for sharing Web success/failure observations across a di-
verse set of clients, a simple blame attribution algorithm that identifies the most likely suspect(s) responsible
for a failure, a working prototype and its experimental evaluation. Experiments with 25 clients over 13 days
on a controlled testbed demonstrate that WebProfiler can accurately diagnose 3.6 times as many failures
than from a single client’s perspective.

2 Motivation

2.1 Nature of Web failures

Visiting a website through a browser can involve a series of network transactions, depending on the network
configuration (§ 5.5 defines some of these protocols) :

e lookup HTTP proxy name via WPAD

e lookup proxy IP addr. via WINS or internal DNS server
e issue HTTP request to proxy

e proxy looks up website addr. via external DNS server

e proxy issues HTTP request to website IP address

e website’s or CDN replica’s HTTP server responds

e firewall or proxy parses, filters content for client

Some failures can be trivially diagnosed. For example, the Ethernet cable is unplugged; the local DNS
server has crashed and is not responding to any lookups. In such cases, the cause can be identified from a
single client’s perspective [7].

Failures that are not fail-stop are much harder to diagnose. For example, a client’s local subnet switch is
overloaded and is dropping 20% of packets or flows; one of the CDN servers has crashed and so only some
of the website accesses fail. Without additional information from beyond one client, such as the status of
accesses from other subnets or from clients with other DNS servers that point to different CDN replicas, the
failure is difficult to diagnose.

Failures that have multiple culprits are also much harder to diagnose. For example, a website denies
accesses from a particular IP address (for a corporate proxy or public library’s NAT router; because the
site’s IDS has mistaken it to be a bot due to the large number of requests from it). With respect to resolving
the client’s problem, the combination of this website and this proxy is to blame — the client can either
continue to use this proxy for other websites, or change the proxy and then access this website.

In our prior Web failure measurement study [18] involving a diverse set of 134 clients in academic and
corporate, broadband and dial-up networks, we observed a range of problems that impacted Web access.



Many failures could not be diagnosed from a single client’s vantage point, for example where a website was
accessible from some clients but not others.

2.2 Why collaborative diagnosis?

To overcome limited visibility, we can leverage multiple clients in the hope that they have different yet
overlapping views of the network. For example, a client that fails to establish an HTTP session with a web
server cannot reliably determine if the HTTP server is down, or is refusing connections from the client IP
address (or that of its proxy), or was pointed to a stale replica of the website by DNS. However, information
from another client on the same subnet that uses a different DNS server and gets a different but working
replica of the website can help diagnose and solve the problem.

Many networks have clients that have some network elements in common but differ on others. For
example, medium to large enterprise networks typically have multiple subnets, multiple internal DNS servers
and multiple HTTP proxies. Collaborative diagnosis across such diverse clients would provide an interwoven
mesh of observations on Web accesses, helping to identify the most likely suspects responsible for the observed
failures.

2.3 Why client cooperation?

Compared to approaches that analyze server logs or packet traces, client cooperation has several advantages.
By collecting information on Web successes and failures directly from the client, all types of errors are
captured, even those that are not recorded in proxy or server logs. User behavior can also be directly
captured — did the Web page not load because the user hit “stop” early in the transaction? Users pre-
maturely aborting transactions should not be mistaken for failures.

Capturing information directly from the client application has four main advantages that greatly reduce
complexity compared to prior techniques that rely on packet traces.

e Parsers for the various protocols in packet traces are not needed (HTTP, DNS, WINS, TCP, etc.) —
the application layer that issues the protocol commands can directly provide this information as well
as resulting error codes.

e The Web browser maintains state about individual network transactions associated with the same URL
access, which we can directly obtain. In contrast, packet traces will show multiple overlapping network
transactions and reconstructing the original application transaction is not trivial. For example, a single
attempt to access http://www.cnn.com/ can trigger several DNS lookups and HTTP transactions
(different servers for HTML, images, advertisements). If a user has multiple browser windows open, or
multiple applications, this can be even harder.

e Compared to packet traces, the amount of information that is needed from the application layer is
extremely small and hence places almost no load on the client.

e Application layer capture is agnostic to network layer encryption such as IPSec.

This approach allows incremental deployment via software updates. Furthermore, greater the number
and diversity of contributing clients, the more accurate the diagnosis is likely to be.



3 WebProfiler Architecture

Clients cooperating in WebProfiler collect fine-grained observations of individual Web transactions, and share
this with each other. A client joining WebProfiler performs a one-time software install, which includes a Web
browser plug-in and a network service. Fig. 1 shows WebProfiler’s main components.

PC PC
Browser Browser Browser Browser
WebProfiler WebProfiler WebProfiler WebProfiler
Plug-in Plug-in Plug-in Plug-in
WebProflIer SerV|ce WebProﬂIer Serwce
Local web Local Local web Local
transactlons conf|gurat|on transactlons conflguratlon

System-wide
Repositor

Figure 1: WebProfiler architecture

3.1 Browser plug-in

To perform fine-grained diagnosis of Web failures, we need: (a) information about user actions, such as when
the user attempts to access a Web page and when she hits “Stop”, and (b) details about the Web transaction,
such as what IP address the request went to, how long it took and what errors, if any, were returned (a
detailed list is in § 5). Popular browsers export rich APIs for extensibility [1, 5], which allows us to build a
plug-in that can perform this event monitoring.

Our plug-in automatically loads when the browser is launched and runs within the browser process. It
attaches a separate listener to each tab or window the user opens. The listener monitors browser events of
interest, including successful transactions and any failures that occur during browsing. This platform allows
broad definitions of failure — we consider Web page loads that take too long to be failures (see § 6.1.2).

3.2 WebProfiler service

Information about each Web transaction is sent over a local channel from the plug-in to the WebProfiler
service on the same machine. The daemon service aggregates information from multiple browser instances
on the same machine. It records Web transaction data in a local data store on the hard drive. When the
system-wide repository is available, the service periodically sends this data to it. The local store allows the
service to continue recording information during network partitions, when the system-wide repository is
unavailable.



The service also periodically collects Web browser and network configuration settings, such as HTTP
proxy settings and DNS server addresses. This is needed to correlate an observed failure with the network
configuration at the time.

3.3 System-wide repository

The system-wide repository collects information sent by WebProfiler services running on different clients. It
contains an aggregation of data from several clients: machine configurations, and the results of all attempted
Web transactions (although, with a large number of participating clients, this could be sampled). These
records are then looked up by our diagnosis algorithm which is described in the next section.

While our design and current prototype share the full complement of information on transactions with
the system-wide repository, this is not necessary. WebProfiler requires clients to only increment the aggre-
gate success/failure counts, maintained in the system-wide repository, for network elements involved in a
transaction (client, proxy, server, etc.) (see § 4.2). We implement full sharing for debugging our prototype
and more detailed analysis for this paper.

For corporate intranets, where there is typically some form of centralized control, the repository can be
a database server. While our diagnosis primarily targets end users, this single data store implementation is
simple and allows data inspection and analysis by system administrators as well !.

To share information across the wide area Internet, the repository can be implemented using a P2P DHT.
This does not require dedicated servers and allows ad-hoc collaboration between any subset of clients. For
example, there can be multiple, distinct DHT “rings”, e.g., for the subnet, campus, and Internet. Each client
would join the rings corresponding to its location and report relevant information into each ring.

Our prototype, described in § 5, targets failure diagnosis in an enterprise network and thus implements
the system-wide repository in a centralized fashion.

4 Web Failure Diagnosis

We now present our goals in diagnosing Web failures for users and then examine our simple, collaborative,
blame attribution algorithm.

4.1 Diagnosis scope

The primary customers of WebProfiler’s diagnosis are end users and we scope our diagnosis accordingly. The
network element(s) that we blame for a failure are those visible to the client and, in some cases, an alternate
can be used. Thus WebProfiler focuses on problems:

e solved by changing a setting on the client (e.g., switch to a good HTTP proxy)

e specific to the client’s location. E.g., if a subnet is blamed, the user can switch from the wireless network
to wired Ethernet or walk to a different access point.

e at the server end. Users can go to a different CDN replica or another website (e.g., if looking for generic
news), contact a help line (e.g., for a banking site), or, at the very least, avoid frustration knowing that
the Web site is just down.

1Basic connectivity failures (e.g. subnet gateway failure) can affect both Web transactions and access to a database server.
However, trivial connectivity issues can be directly diagnosed at the client without cooperation [7].



This indicates the type of diagnosis that is of primary interest to end users, and is therefore our goal
in WebProfiler. Nonetheless, such diagnosis can also be of tremendous value to network administrators who
cannot detect from server logs those failures that happen closer to clients. However, we cannot diagnose
problems not visible to clients, such as which router is to blame for poor performance on an end-to-end path.

4.2 Diagnosis procedure

Web proxy

=
L
=] subnet

local DNS
gateway

server | .

Figure 2: Some entities in typical Web transactions

Based on these goals, WebProfiler diagnoses failures at the granularity of client-visible network ele-
ments or entities such as those in Fig. 2. Let E = {Ei, Es, -+, E,} denote the set of entities associ-
ated with a page download. For example, E might be {clientIP,clientSubnet, DN SserverIP, proxzyl P,
CDN serverI P,URL}. If the download succeeds, we presume that each of these entities worked fine; if it
fails, any one client’s perspective may not be enough to finger the culprit (see § 2.2).

We use a simple blame attribution algorithm outlined in Fig. 3. For each entity, F;, there are two counts,
S; and Fj, of the successful and failed downloads, respectively, that involve entity E;. The entity’s blame
score is B; = F;/(S; + F;). Entities with an abnormally high blame score are suspects for a given failure.
This blame score is compared against the distribution of blame scores for all known entities of the same
functional type. For example, we would compare the blame score for proxy P1 against the distribution of
scores for proxies P1, P2, --- Pn (assuming there are n proxies in the network). We consider blame score
distributions within the same functional type under the intuition that the incidence of failure that is normal
for one type of entity may be abnormal for another type of entity. We recommend blame scores that are two
standard deviations above the mean to be abnormally high, but this may be deployment-dependent.

An entity’s blame score, while primarily reflecting its own failure rate, is also “polluted” by the failures
of other entities that it is coupled with as part of page downloads. The intuition behind blame attribution
is that, given a large and diverse set of observations, such incidental attribution of blame will be diminished
and the true culprit will stand out. For this to be true, more complex entity relations must be considered
as well. For example, Web server W1 might block requests from a particular subnet S1 . The blame score of
neither W1 nor S1 might stand out, but the score of the combination of [W1, S1] will. Thus we expand the



// find list of suspects for failed Web transaction F

DiagnoseFailure(F)

// find entities with abnormally high blame scores

1. create empty set of candidate suspects S

2. foreach entity (pair) E; involved in transaction F

3. retrieve success and failure counts S; and Fj

4 calculate blame score B; = F;/(S; + F;)

5 retrieve distribution of blame scores Bg;s: for
all entities of the same functional type as E;
if B; is abnormally high compared to Bg;st,

. add E; to S

// narrow down the list of candidate suspects S
8. foreach suspect s; in S
// identify the largest superset(s) of entities
// with abnormally high blame score(s)

N o

9. if s; is contained in another suspect s;
10. remove s; from S
11. return S

Figure 3: WebProfiler diagnosis pseudo-code

set of entities F associated with a page download to also include combinations of the base entities. To limit
combinatorial explosion, our prototype considers only individual entities and pairs of entities. We believe it
would be rare and rather unusual for failures to be caused by triplets or larger combinations of the base
entities. Our evaluation in § 6 shows that considering single entities and pairs captures most of the observed
failure scenarios.

Finally, in keeping with the principle of parsimony, we strive to find the simplest explanation that is
supported by the observations. That is, we lay the blame on the smallest entity with abnormally high blame
scores. For example, if [W1, S1] has a high blame score, and [W1] also has a high blame score, but [S1] has
a low blame score, then [W1] is the most likely suspect.

The timescale of diagnosis depends on the density of deployment. The larger the number of clients
participating in WebProfiler, the shorter the timescale at which we can meaningfully compute blame scores,
and the finer the time resolution of diagnosis. In our evaluation, we work with a timescale of 1000 minutes
given our limited deployment.

4.3 Communication overhead

Collaborative diagnosis comes at the cost of network communication overhead in pooling together obser-
vations from diverse clients. However, as previously mentioned above and in § 3.3, our blame attribution
algorithm needs to share only the success and failure counts for entities involved in Web transactions. Thus
once the list of entities is populated, each Web transaction only increments counters. This incrementing
can be done in batches to further reduce overhead. Also, clients can sample instead of reporting all their
transactions. Finally, some observations do not need to be shared beyond limited scopes. For instance, the
blame score of a subnet gateway is not relevant beyond that subnet.



5 Implementation

Component Lines of C# code
browser plug-in 737
network service 1351
browser /service shared library 1088
diagnosis algorithm 1967

Table 1: Implementation size (without code comments)
We have implemented a prototype of the WebProfiler architecture on the Microsoft Windows platform.

The source code size is in Table 1. In this section, we provide details on our implementations of the browser
plug-in, network service and system-wide repository, and point out the prototype’s limitations.

5.1 Browser plug-in

Browser

WebProfiler plug-in

e.g. enter URL, browser quitT

Web
e.g. HTTP404, HTTP200—»{ transaction

record

Frame | | Proxy error J
parsing parsing

user events

network events

to
WebProfiler
Service

Figure 4: Browser plug-in implementation

Figure 4 shows the major components of our plug-in, which is implemented as a Browser Helper Object [1]
in C#, and runs within Internet Explorer 7. The plug-in obtains several user and network events [2] from
IE-7. User events such as opening a new tab/window, navigating to a new URL and closing a tab are used
to delineate separate browsing sessions. Network events include completion of a Web page load, HTTP
redirections and any HTTP or transport-level errors.

The plug-in also parses the HTML of downloaded Web pages to understand the frame structure, and
extracts the frame URLs to distinguish between frame-level errors and top-level page errors. In addition, it
detects when the returned HTML is actually a formatted error message from an HTTP proxy, and extracts
information about the problem the proxy encountered in communicating with the Web site.



For every Web transaction, the plug-in constructs a record, which it then passes to the network service via
the .NET Remoting framework [6]. This provides convenient interprocess communication primitives, while
also taking care of data marshaling and unmarshaling. In particular, the following information for every
transaction is sent to the service:

e date & time; total download time; URL requested; URL received; success or HTTP error code; prema-
ture exit by user?; IP address of HTTP proxy used (if any); error code returned by HTTP proxy (if
any)

At any time, there can be multiple plug-ins running on the same client machine, either because the user
has launched multiple IE-7 windows or tabs, or due to IE-7 having been launched by multiple users on a
server OS. All these plug-ins communicate with a single WebProfiler service instance running on the client.

5.2 WebProfiler service

—from plug-in
| —«f — 1 WebProfiler
| & H Service
e — c—
e |
| DNS query | I —_——
2 System-wide
| con-rl;g(I:Dtion | | e Repository
Network El
| configuration |
l Proxy
| configuration I
T Local web
;* transactions

Figure 5: WebProfiler service implementation

Fig. 5 shows the major components of our service prototype. It is implemented as a Windows Service and
is automatically started and shut down by the OS at system boot and halt. It runs with the same privileges
as other network services on the client machine.

The service gets the client’s network settings via the System.Net.NetworkInformation.NetworkChange
.NET class which also alerts the service to any setting changes. The service determines the use of a socket-
level proxy by detecting the presence of configuration files for the Microsoft ISA firewall in the local filesystem.
It is alerted to any changes to these files via the System.IO. FileSystemWatcher .NET class.

For every Web transaction record it receives, the service also needs detailed information about the outcome
of DNS and TCP attempts that IE-7 made. Unfortunately, we have not yet been able to determine how to
grab DNS and TCP error codes from the application level Winlnet library that IE-7 uses to fetch Web
pages. As a workaround, our service re-issues DNS queries for the Web server name and the HTTP proxy



name for all Web transaction records. It is likely that these second attempts, performed immediately after
the primary ones by the browser, will suffer the same fate and will be served out of the DNS cache on the
client. Our service attempts a TCP connection for every failed transaction with a non-HTTP failure code
from IE-7. For sending DNS and TCP messages we use the Dns.GetHostEntry and Sockets.TcpClient classes
in System.Net.

5.3 Local database

For every Web transaction record the service attaches the following additional information:

e hostnames for {client, socket proxy}; IPv4 and IPv6 addresses for {client, gateway, WINS server, DNS
server}; DNS A-record and AAAA-record lookup results and error codes for {Web site, HTTP proxy,
socket proxy}; TCP connection error codes for {Web site, HTTP proxy}

This augmented Web transaction record is then stored locally in a database file using the .NET OLE
DB class. The service also submits the record to the system-wide repository. To avoid blocking the entire
service when interacting with the local database or the system-wide repository, we employ a combination
of queues, timers and threads shown in Fig 5. Thread-1 interacts with (multiple) plug-ins on the client and
adds each incoming Web transaction record to a local FIFO queue. Every 5 seconds, a timer wakes thread-2
to service this queue by adding DNS, TCP, network settings and socket proxy configuration to the record
and writing it to the local database file. It also adds the record to a queue for the system-wide repository.
Every 10 seconds, another timer wakes thread-3 to service that queue and upload records to the repository.
If the repository is unreachable, this thread backs off exponentially up to a maximum of 5000 seconds.
These settings of 5, 10 and 5000 seconds are engineering choices that worked well in our deployment and
evaluation in an enterprise network. Each record in the local database is flagged once it has been uploaded
to the system-wide repository. After a client reboot, only unflagged records are added to the queue for the
system-wide repository.

5.4 Central database

The system-wide repository is implemented on a server running Microsoft SQL Server 2005. This choice is
well-suited for the operating scenario our prototype targets, namely better Web failure diagnosis in enterprise
networks. The central database also allows administrators to manually troubleshoot problems, and yet does
not alter user privacy since router or proxy logs contain similar information for successful transactions.

Due to the limited size of our evaluation testbed and the need to produce detailed analysis for the purposes
of this paper, our implementation does not include the communication overhead reduction techniques from
§ 4.3 and instead shares the full complement of information.

5.5 Enterprise network complexities

Our implementation considers several aspects, specific to enterprise networks, that add to the complexity of
diagnosing web failures.

Corporate networks typically have firewalls at network edges to segregate intranet traffic from Internet
traffic. IPSec authentication and encryption can further protect intranet traffic from un-authorized hosts
and eavesdroppers. Hosts in the DMZ (de-militarized zone) between the firewalls and the public Internet,
may be used for various purposes, including application testing.
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In the intranet, which is segregated from the extranet, enterprise networks may use internal DNS servers.
These servers resolve hostnames of internal machines only. Some may use special dynamic DNS protocols or
WINS (Windows Internet Name Service) to allow internal machines with dynamic IP addresses to still have
hostnames that persist across IP address changes.

HTTP proxies are typically deployed at the network edges to allow employees to access public Web
content. These proxies provide performance advantages by caching popular content, and increase security
by filtering malicious Internet content. Web browsers such as IE-7 and Firefox 2 automatically detect a
proxy via the WPAD [8] protocol, and will tunnel all requests for external Web content to the proxy. Some
commercial products, such as Microsoft ISA (Internet Security and Acceleration), also provide socket proxy
functionality. This allows non-HTTP applications, such as SSH, to access hosts on the Internet.

Each proxy hostname may resolve via WINS to one of several IP addresses, each corresponding to
a separate proxy server. This provides load balancing and fault tolerance. Furthermore, large corporate
intranets can stretch across the globe over private or leased links or tunnels. There may be proxies at the
edge of the network in each location or city that the intranet covers. This provides users in New York to use
the New York proxy that peers locally with US ISPs to access the Internet, instead of traveling over leased
links to the London headquarters and then entering the Internet. These proxies can also be used to access
intranet websites and thereby take advantage of caching.

WebProfiler handles these aspects of enterprise networks. Our plug-in collects information at the appli-
cation layer so that we can operate even in IPSec environments. During URL resolution, it detects the use
of internal hostname resolution such as WINS and captures the result or any error codes. The plug-in is
able to detect which Web transactions went directly to the Web server or were tunneled through a proxy. It
captures the name of the HTTP proxy, and also the specific IP address of the proxy used in that transaction.
The WebProfiler service detects socket proxies, in case of tunneling underneath the browser.

5.6 Limitations

Although fully functional, our current prototype has certain limitations. If a Web server returns an error
page in HTML, but without setting the corresponding HTTP error code, then IE-7 does not register an
error, and, as a result, neither does our plug-in. Note that this is different from the case when a proxy
returns a formatted error message; our plug-in successfully parses that because it contains an HTTP error
code. In addition, certain Web pages use HTTP redirects in such a way that it appears as though the
original requested page did not load completely. For example, http://office.microsoft.com redirects
to http://office.microsoft.com/en-us/default.aspx, which then gets redirected again to itself. The
problem is that the two redirects cause IE-7 to think a generic error has occurred. We encountered 5 such
Web pages during our evaluation. The evaluation results we present in the next section do not include
transactions for these 5 URLs.

Even though our implementation is able to detect failures within sub-frames and for individual images,
for evaluation purposes we only consider failures for the top-level frames of a Web page.

The prototype detects the use of a socket-level proxy by looking for the Microsoft ISA Firewall Client
on the client machine. It can also parse HTML error pages returned from HTTP proxies that are running
Microsoft ISA Server. While we have chosen to interface our prototype with these particular commercial
proxy/firewall products, given the small amount of code that is specific to this choice, it is straightforward
to extend it to include other alternatives.

Lastly, our prototype currently only works with IE-7 on the Windows platform, including XP, Server
2003, Vista and Server 2008. However, we believe it would be straightforward to implement it for other

11



common browsers. For example, Firefox exposes several rich APIs for extensions [5], and there are known
ways to access browser events in Safari.

6 Evaluation

We now present the experimental evaluation of our WebProfiler prototype. We emulate users in different
parts of the network by placing clients in different locations and subnets, and using a wide variety of proxies.
We instrument each client to randomly browse to a pre-determined set of URLs. As noted in § 3.3, the clients
not only share the success and failure counts needed for WebProfiler’s diagnosis algorithm, but in fact share
full information about their Web accesses to facilitate more detailed analysis for the purposes of this paper.

12



6.1 Experimental methodology
6.1.1 Clients

Client | OS Location | Subnet | Proxy
client01 | Win2003 | Redmond | 172.31 Singapore
client02 | Win2003 | Redmond | 172.31 SouthAfrica
client03 | Win2003 | Redmond | 172.31 Redmond1
client04 | Win2003 | Redmond | 172.31 Redmond?2
client05 | Win2003 | Redmond | 172.31 Redmond3
client06 | Win2003 | Redmond | 172.31 Redmond3
client07 | Win2003 | Redmond | 172.31 Redmond?2
client08 | Win2003 | Redmond | 157.56 Singapore
client09 | Win2003 | Redmond | 157.56 SouthAfrica
client10 | Win2003 | Redmond | 157.56 Redmond?2
client1l | Win2003 | Redmond | 157.56 Redmond3
client12 | Win2003 | Redmond | 157.56 Europe
client13 | Win2003 | Redmond | 157.56 Redmond3
client14 | Win2003 | Redmond | 157.56 Redmond?2
client15 | Win2008 | Redmond | 172.31 Europe
client16 | Win2008 | Redmond | 172.31 Singapore
client17 | Win2003 | Redmond | 172.31 Redmond3
client18 | Win2003 | Bangalore | 65.52 SouthAfrica

client19 | Vista Bangalore | 65.52 Singapore
client20 | Vista Bangalore | 65.52 Redmond2
client21 | WinXP | Bangalore | 65.52 Redmond3
client22 | Vista Bangalore | 65.52 Europe
client23 | Vista Bangalore | 65.52 Singapore

client24 | WinXP Redmond | external
client25 | WinXP Redmond | external

Table 2: Clients used in experiments

Table 2 summarizes the configuration of 25 clients that we use in our evaluation. They run a variety
of Microsoft Windows operating systems and are dedicated for the purpose of the experiments. They are
spread across three different office buildings in Redmond, WA, and Bangalore, India. Each client is connected
via wired Ethernet to one of four subnets. They are part of the Microsoft corporate intranet that stretches
across the globe over private or leased links and tunnels. Client24 and Client25 are in the external DMZ
(de-militarized zone) and thus do not use proxies to access the Internet, but are unable to access internal
websites.

Each client on the three internal subnets was configured to use a specific HTTP proxy and socket proxy
to access the Internet. As shown in Table 2, we picked proxies in four different locations. Redmond offers
several proxy servers with different configurations and connections to the Internet, of which we use three
separate ones. While a typical client would automatically select the proxy closest to its network location,
we intentionally use a diverse set of proxies in an attempt to emulate the diversity that would be naturally
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present in a large-scale deployment of WebProfiler.

6.1.2 TUser emulation

Copy workload (list of URLS) into main memory
Seed random number generator

Randomly shuffle URLs using Fisher-Yates [3]
Launch TE-7 for next URL

Sleep for 20 seconds

Signal IE-7 to quit (also clears the cache)

Sleep for 60 seconds

Go back to step 4 unless there are no more URLs

Go back to step 1

© 2 NS g WD

Figure 6: Pseudo-code for browsing process

To emulate the Web browsing behavior of users, we automate the IE-7 browser using the InternetExplorer
APIT exposed by shDocVw.dll. The pseudo-code for our 148 lines of C# code is shown in Fig. 6. Each client
executes the browsing process indefinitely, until we terminate the experiment. We pick 20 seconds as an
extremely conservative estimate of how long a user would wait for a Web page to load. We allow roughly 80
seconds between successive Web page accesses by a client. Although this process may not necessarily model
how typical users browse the Web, we believe it is sufficient for evaluating our prototype.

Before starting an experiment, we pre-configure IE-7 on each client. As mentioned earlier, we specify a
proxy on our internal subnets. Furthermore, we disable Java, set the Home Page to blank and turn off most
user prompts. We also enable an IE-7 option called “Empty Temporary Internet Files folder when browser
is closed” to force each Web access to be served from the network.

6.1.3 URL workload

Type URLs | Rate
Nielsen 1-50 a0 1x
Nielsen 3858-3958 50 1x
Internal 25 1x
Other 5 1x
Control (internal) 4 12x
Control (external) 1 12x

Table 3: URL workload used in evaluation

The 135 unique URLs we use for the user emulation process are summarized in Table 3. The majority of
these come from the Nielsen/NetRatings subdomain list, a compilation of the Web server names that carry the
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most visited Web pages, for users in North America in February 2007. We pick the top 50 subdomains, which
include sites such as http://www.yahoo.com/, https://login.yahoo.com/, and http://www.myspace.
com. We also pick 50 entries from the bottom of the list, around rank 4000, which include sites such as
http://channels.isp.netscape.com/ and http://kevxml2adsl.verizon.net/. We intentionally avoid
Web sites with adult content to avoid violating corporate policies. As noted in § 5.6, we also do not include
5 URLs due to the problematic way they do HTTP redirects. Furthermore, we ignore extraneous accesses
generated by pop-up advertisements. We manually select 25 URLSs of internal corporate Web sites that are
located all across our corporate network, including those in Redmond, Mountain View, Canada, UK, Italy,
Middle East, India, and Australia. The workload also includes 5 more public URLs that the authors often
visit.

We pick this URL workload with two goals in mind. First, we wish to include popular Web sites that
most users visit. Second, some fraction of user Web activity occurs on sites that are not as universally known,
but rather reflect individual tastes. While we do not claim to accurately model the list of Web sites most
users visit, we believe this is a reasonable workload for evaluating Web failure diagnosis.

6.1.4 Control failures for validation

We also run one external and four internal Web servers that are accessed 12 times more frequently. We
manually induced specific failures to evaluate the veracity of our diagnosis algorithm. The four internal
servers are located in Bangalore. In addition to not being accessible by the external clients 24 and 25, these
four internal servers are configured to:

1. be highly available

2. drop 20% of internal requests 2.

3. drop all requests from Redmond2 proxy
4

. drop all requests from client18

We omit discussion and detailed results for the external control server due to experimental error in
manually inducing its faults.

6.1.5 Diagnosis parameters

We briefly discuss the parameter settings for WebProfiler in our evaluation. These settings are influenced
heavily by the modest scale of our experiment. During a 7-day period, each client would access each URL
about 39 times. So, for each entity, whether a base entity or a pair, we should have at least 39 observations.
Of course, many entities (e.g., individual URLs, pairs of [proxy,server]) would have many more observations.
In general, we insist on there being at least 20 observations (successes or failures) for an entity during the
period of interest, for us to be able to compute the blame score for that entity in a meaningful way.

This sparsity of the observations means that using too long a period for failure analysis (e.g., 7 days)
would only capture persistent failures, whereas too short a period (e.g., a few minutes) would leave us
with too few observations to be able to compute the blame score for most entities. In view of this, we use
an intermediate period of 1000 minutes, which would yield a sufficient number of observations, not only
for individual entities, such as URLs, but also for pairs such as [subnet,URL]. Of course, in a large-scale

2From incoming requests, it randomly picks a source IP address with 20% probability and drops all TCP SYN packets from
it for one minute, including all retries of the original connection attempt.
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deployment, there may well be sufficient density of observations to permit diagnosis even on a timescale of
minutes. Regardless of timescale, the same diagnosis procedure applies.

In terms of the entities for the purposes of diagnosis, we consider the URL, Web site hostname, client
hostname, and IP addresses for each of gateway, DNS server, and HTTP proxy, along with their pairs.

§ 4.2 recommends using two standard deviations above the mean when comparing a blame score for an
entity to the scores of other entities of the same type, to determine if it is abnormally high. Given the limited
deployment of our evaluation, some entity types (such as gateway or DNS server) are small in number, and
thus we cannot effectively employ this heuristic. We instead do a strict comparison of the blame scores across
all candidate suspects, and return the highest two.

6.2 Results

Start End Success Fail
2007-09-21 00:47 | 2007-09-26 19:37 99,152 | 50,799
2007-09-28 01:53 | 2007-10-04 22:18 139,722 | 44,839

Table 4: Measurement periods (UTC)
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Figure 7: Failures over time (aggregated by hour)

We now present our experimental results. Table 4 shows our measurement periods, as well as the total
number of Web transaction successes and failures, as recorded on all the clients. We present results only
from the second, more recent period (the results are similar). Note that the high failure rate is due to the
manually induced failures for the 5 websites we control.
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6.2.1 Web access failures

Fig. 7 shows the number of successful and failed client attempts over time. “Typical successes” means those
not including the 5 URLs accessed with 12x rate, and not those URLs that always fail for all clients. “Typical
failures” similarly indicates the amount of failures that users will typically see in our network. The failure
rate remains fairly constant, except for around the experiment’s tenth hour when a maintenance interval
caused some clients to reboot.

Fig. 8 shows the total number of attempted accesses for each client, broken down by successes and
failures. Two clients, “client20” and “client22” have a very low access count. Upon manual inspection of our
experiment logs, we discovered that both suffered a permanent failure as a result of the maintenance interval.

Fig. 9 shows the number of failures per unique URL visited. They are all quite similar, except for the
first 5 URLSs, which are those that have a 12x access rate. Lastly, Fig. 10 shows the cumulative number of
URLs ordered by failure rate. Very few URL accesses experience failure more than around 45% of the time.
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Figure 8: Web accesses per client

6.2.2 Blame entities

Table 5 shows the efficacy of failure diagnosis for different levels of collaboration. At one extreme is an
individual client performing diagnosis by itself (i.e., no collaboration). At the other extreme is collaboration
among the entire set of 25 clients. We also consider intermediate points — within a subnet, region, etc. Each
collaboration level offers a different degree of diversity in terms of vantage points. So, diagnosis within a
subnet has only one gateway to blame, but across all clients there are multiple gateways. More vantage points
can increase the number of entities, but not all combinations of entities are naturally exercised by the clients.
The “total” column shows the total number of blame entities, including their pairs at each collaboration
level. Note that the HTTP proxies column corresponds to the (multiple) IP addresses of the specific proxy,
which exceeds the number of proxies in Table 2.
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Figure 9: Failures per URL

6.2.3 Diagnosis accuracy for controlled failures

We check the accuracy of our diagnosis algorithm with the 4 types of controlled failures from Section 6.1.4.
In these specific cases we know the true cause (the client visible entities to blame for the failure), since we
manually introduced the failures. For example, for the first type of controlled failure, where external clients
cannot access the website, the blame should be laid on the combination of external clients and the website,
because accesses from other entities or combination of entities results in high success rates.

Table 6 presents our findings for each of these URLs, and for each level of collaboration. We see that
when using WebProfiler to collaborate across all 25 clients, the true cause is accurately identified as the top
suspect for 5852 failures (3379 + 2144 + 329). For 3652 failures, it is the second most likely suspect (923
+ 910 + 911 + 908). In contrast, when not using any collaborative diagnosis (client lines), the true cause
is identified as the top suspect for only 2639 failures, and not found for the remaining 6890 failures (908 +
1666 + 3076 4+ 1240). Note that we consider here only those failures caused by our manual intervention.

Thus, for the controlled failures where we can measure our prototype’s accuracy, our diagnosis system
accurately diagnoses 3.6 times as many failures as a single client could ((5852 + 3652) / 2639). WebProfiler
accurately diagnoses over 99% of these failures (for “all” lines : sum of first two columns divided by sum of
all three columns).

6.2.4 Diagnosis accuracy for all URLs

When all failures seen by our clients (for all URLs in Table 3) are diagnosed, we find that the average number
of suspects reported is quite low at 1.83. For most failures, our algorithm finds 1 or 2 suspects to blame.
This result is similar over a 1000 minute timescale and the entire 7 day duration.

When we attempt blame attribution with any single client alone, the algorithm tends to blame just the
URL or the Web site, since, from that client’s perspective, the Web site just seems to be down. The other
entities work for other Web sites, and have a lower blame score. It is only the information from other clients
that can tell us whether the Web site is indeed available. So, even though our algorithm still produces a
small number of suspects when diagnosing from any one client alone, it is often incorrect.
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Figure 10: Cumulative number of URLs by failure rate

7 Extending WebProfiler to the Internet

Certain characteristics of our current WebProfiler prototype, such as the centralized database server, make it
better suited for deployment in an enterprise setting, where I'T resources, which users have to trust anyway,
are available to host the shared database. In this section, we discuss the applicability of and the new demands
placed on our collaborative approach in a wide-area setting.

7.1 Decentralized Data Storage

If participating clients are spread across multiple ISPs, a dedicated data storage infrastructure may not be
available. A viable alternative is a decentralized, peer-to-peer design, where client hosts contribute storage and
bandwidth to cooperatively implement the system-wide repository and support failure diagnosis. WebProfiler
clients could utilize existing Distributed Hash Table (DHT) implementations to hold information (e.g., blame
score) indexed by the identity of the entities involved.

Several DHT implementations exist (e.g., Chord, Kademlia, Pastry, Tapestry), each with its strengths
and drawbacks. We particularly care about locality, for instance, to ensure that subnet-specific information
remains within the subnet. One possibility is to use SkipNet [15], which provides controlled data placement
to ensure locality. An alternative is to have multiple, distinct DHT “rings”, e.g., at the level of the subnet,
campus, and Internet. Each client would join the rings corresponding to its location and report relevant
information into each ring.

Of course, realizing the system-wide repository over a peer-to-peer system entails other complications,
such as dealing with nodes with relatively low availability, and with connectivity challenges due to NATSs
and firewalls. However, prior work on DHT replication and routing strategies in the face of high node churn
could be leveraged to address these issues.

19



View clnts | gwys | DNS | HTTP | Web | URLs | total
SIVI | proxy | srvr
1Ps 1Ps IPs
client(avg) 1 1 1 6| 141 194 | 30734
subnet 172 10 1 1 29 | 157 250 | 56754
subnet 157 7 1 1 27 | 164 273 | 61235
subnet 65 6 1 1 27 | 152 249 | 52548
Redmond 17 2 1 29 | 171 311 | 77963
internal 23 3 2 29 172 321 | 84796
external 2 1 2 0| 147 217 | 34096
all 25 4 4 29 | 173 334 | 90958

Table 5: Number of blame entities per view

7.2 Security, Privacy, and Incentives

Given our focus on enterprise networks, we have not described security and privacy issues. Corporations
already watch user activities, and there is less concern about untrusted users providing incorrect information
to WebProfiler. Such issues would have to be addressed in a wide-area scenario though. In particular, client
observations should be anonymized by the service before being sent to the system-wide repository. For
instance, for data shared within the campus ring, the client IP would be concealed, whereas for data shared
across the Internet-wide ring, even the subnet should not be revealed.

Furthermore, the system should be resilient to malicious services that might send falsified records of client
activity, attempting to throw off failure diagnosis. Given the volume of shared data, a voting scheme could
arguably be devised to weed out any non-consistent information. In addition, no incentives are currently
given to clients to contribute. As a result, a selfish client could just utilize the system for diagnosing its
own failures, yet never contribute any information itself. However, there already exist effective techniques to
enforce cooperation in a wide-area peer-to-peer storage system [11].

8 Related Work

8.1 Measurement studies

Many prior measurement studies of Internet performance and failures have considered either Web transac-
tions, or individual facets of the wide-area network, such as TCP performance, routing and DNS. Given the
large body of work, we provide only a brief overview.

WebProfiler builds on our prior measurement study [18], which characterized the nature of Web failures
based on accesses made from 134 diverse client hosts. The prior study uses these measurements to classify
the types of failures (e.g., specific types of TCP failures, correlations with BGP routing fluctuations, etc.)
and quantify the rate of failures at specific locations (e.g., are some servers worse than others?).

Dahlin et al. [12] analyze Web service availability using proxy logs and traceroutes. They report an
unavailability rate of 0.5-2.0%, with stub network and interior network failures contributing significantly.
Gummadi et al. [14] report that the majority (60%) of failures on paths to broadband hosts occur on the
last hop or the end host itself. Other work [24, 13] has considered the stability of end-to-end routes.
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Several studies have focused on DNS because of its importance. Pang et al. [19] report high availability
for a broad set of local and authoritative name servers encountered in Akamai logs. In addition, CoDNS [20]
studies the performance of DNS queries issued by a set of PlanetLab nodes for each other’s names, and
observes that many failures can be attributed to overload at the local DNS server.

8.2 Diagnosing web failures

Prior techniques for automatically diagnosing Web failures include local diagnosis of a client’s network
components, Web or proxy server log analysis and packet trace analysis.

The Network Diagnostics Framework [7] in Windows Vista troubleshoots simple network problems. It
comprises a collection of Helper Classes, each of which contains the logic required to evaluate the health of its
respective local network component (e.g. DNS, Ethernet interface), and repair it. For example, it can detect
and attempt to repair a Web access failure because the Ethernet interface does not have an IP address.

Kiciman et al. [16] present two algorithms that enable content providers to extract Web failure information
from logs at their CDN servers. However, log based analysis cannot capture failures that prevent a request
from even reaching a server.

More recently, Sherlock [9] targeted network performance problems in large enterprise networks. They
monitor packet flows and probabilistically construct dependency graphs for each application within the
enterprise. WebProfiler instead focuses specifically on web transactions, regardless of intranet or Internet
destinations. It uses lightweight monitoring of application events to detect failures and does not require
any packet inspection and is unaffected by end-to-end IPSec encryption. Due to application level support,
WebProfiler does not need to rely on large numbers of similar application transactions to cluster multiple
simultaneous network transactions into the related application transaction.

8.3 Multiple vantage points

The concept of using multiple vantage points to diagnose network faults has been previously explored in
other contexts.

SCORE [17] does fault localization based on a shared risk model, which groups together IP links with
a common underlying network component (e.g., an optical fiber). It uses bipartite matching to select the
risk group(s) that explains the greatest number of IP link failures. SCORE operates on a modest number
of (link) failure observations — iterative bipartite matching would be prohibitively expensive to handle
potentially millions of observations, especially when new observations accrue incrementally. In contrast, our
blame attribution algorithm updates the blame score for each entity independently, enabling it to scale well.

WiFiProfiler [10] uses collaborative diagnosis for wireless LAN failures and addresses challenges of ad-
hoc wireless communication. Unlike our generic blame attribution, WiFiProfiler uses a rule-based approach
specific to the 802.11 domain.

PeerPressure [23] uses a statistical metric based on empirical Bayesian estimation to automatically di-
agnose machine misconfigurations. However, it assumes there is only one misconfigured entry among all
suspects, and it is limited to local misconfigurations and does not handle network failures.

Several systems rely on multiple vantage points for purposes other than failure diagnosis, e.g., for predict-
ing the quality of connections (SPAND [22]), and network health monitoring (Keynote [4], NETI@home [21]).
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9 Conclusion

We have presented WebProfiler, a collaborative, client-based system for diagnosing Web access failures. The
key ideas are to leverage observations on the success or failure of individual accesses from multiple vantage
points, rely on client cooperation to obtain application level information, and use a simple blame attribution
algorithm to determine the cause of failures.

We have built a WebProfiler prototype on Microsoft Windows that monitors user activity at the browser
level, and relevant client configuration. It stores this information in a system-wide repository, which WebPro-
filer queries to diagnose specific failures. Our experimental results on a controlled enterprise testbed show
that WebProfiler can accurately diagnose 3.6 times as many failures than possible from a single client’s
perspective.

In future work, we plan to extend WebProfiler to the wider Internet, while addressing privacy concerns
via anonymized routing and scalability concerns via multiple overlapping DHT layers.
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# of failures where true cause is Control
View suspect#1 | suspect#2 | not found website
all 908
external 908
internal
Redmond 908 drop
subnet 65 all external
subnet 157 requests
subnet 172
client 908
all 3379 923 3
external 911 drop 20% of
internal 3379 12 3 internal
Redmond 3013 915 3 requests
subnet 65 374 | & all external
subnet 157 1341 requests
subnet 172 290
client 2639 1666
all 2144 910 22
external 910 drop all
internal 2144 22 Redmond2
Redmond 2144 22 | proxy requests
subnet 65 & all external
subnet 157 836 7 requests
subnet 172 440
client 3076
all 329 911
external 911 drop all
internal 329 client18
Redmond 911 requests
subnet 65 329 & all external
subnet 157 requests
subnet 172
client 1240

Table 6: Diagnosis of controlled failures for different levels of collaboration
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