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Abstract

We present a case study in which a team of test engineers at
Microsoft applied a feedback-directed random testing toolto a
critical component of the .NET architecture. Due to its complexity
and high reliability requirements, the component had already been
tested by 40 test engineers over five years, using manual testing and
many automated testing techniques.

Nevertheless, the feedback-directed random testing tool found
errors in the component that eluded previous testing, and did so two
orders of magnitude faster than a typical test engineer (including
time spent inspecting the results of the tool). The tool alsoled
the test team to discover errors in other testing and analysis tools,
and deficiencies in previous best-practice guidelines for manual
testing. Finally, we identify challenges that random testing faces
for continued effectiveness, including an observed decrease in the
technique’s error detection rate over time.

1. Introduction

Testing software is expensive. Estimates in the literatureput the
cost of testing at approximately half of the total development cost
of software [Bei90]. At Microsoft, for example, there is approxi-
mately one tester for every developer. In addition to being expen-
sive, testing software can be tedious and error-prone. A significant
portion of a test engineer’s work consists in constructing test in-
puts that run the software under different scenarios. Sinceit is im-
possible to exercise software under every possible scenario, test
engineers must craft a small number of test inputs that reveal as
many defects as possible. As the size and complexity of software
increases, it becomes more difficult to cover all possible scenarios,
and easier to miss test inputs that could have revealed an error.

Random testing [MFS90, Ham94, FM00, CH00, CS04, PLEB07,
GHJ07] helps a test engineer create error-revealing test inputs,
by mechanically and randomly sampling a program’s input space.
The effectiveness of random testing is an unresolved question in
the testing community. Some studies [FK96, MAD+03, VPP06,
CGP+06] suggest that random testing is not as effective as other
test generation techniques such as chaining, bounded exhaus-
tive testing, symbolic execution or model checking. Other stud-
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ies [HT90, Nta98, GHJ07, PLEB07] suggest the opposite: that
random testing’s speed, scalability, and unbiased search make it an
effective error-detection techniques and able to outperform many
of the above techniques. For example, in previous work we de-
scribed an experiment in which feedback-directed random test-
ing [PLEB07], a variant of random testing, finds errors in many
software libraries while model checking finds none, and achieves
higher coverage than model checking and symbolic execution.

However, the real assessment of a test generation technique’s
effectiveness is its performance in the real world. Do previous
evaluations of random testing measure the relevant variables? In an
industrial setting, testing techniques are used under a very different
set of constraints from a research setting. Practicing testengineers
have tight deadlines and large amounts of code to test. For an
automated test generation tool to succeed in this environment, it
must reveal errors important enough to be fixed and it must reveal
these errors in a cost-effective way, taking up less human time than
manual testing or existing automated techniques. These qualities
can be particularly difficult to measure in a research setting.

We present the results of a case study that sheds light on the
effectiveness of random testing when used by test engineersin an
industrial testing environment, and in comparison with theappli-
cation of other test generation techniques. Engineers froma test
team at Microsoft applied feedback-directed random test genera-
tion to a large component of the .NET Framework [dot] used by
thousands of developers and millions of end users. The component
under question sits low in the .NET framework stack, and many
.NET applications depend on it for their execution. For thisreason,
the component has had approximately 40 testers devoted to testing
it over a period of five years. It has undergone manual unit, system,
and partition testing, as well as automated testing including fuzz,
robustness, stress, and symbolic execution-based testing. Because
of proprietary concerns, we cannot identify the .NET component
analyzed. We will refer to it as “the .NET component” or “the com-
ponent” from here on.

The case study provides new evidence grounded in industrial
experience to the long-standing question about the effectiveness
of random testing as an error-detection technique. The testteam’s
knowledge of the average human effort required to manually find
an error in the component under test allowed us to quantify the
benefit of feedback-directed random testing compared to manual
testing. Since the team has applied many testing techniquesto the
component, we were also able to learn about the effectiveness of
feedback-directed random testing against these techniques.

Our main results are:

• Feedback-directed random test generation found more errors in
15 hours of human effort and 150 hours of CPU time than a test
engineer typically finds in one year on code of the quality of the
component under test. The technique found non-trivial errors,



including errors that arise from highly specific sequences of op-
erations. Moreover, these errors were missed by manual testing
and by all previously-applied automated test generation tech-
niques. Based on these results, the tool implementing feedback-
directed random testing was added to a list of tools that other
test teams at Microsoft are encouraged to use to improve the
quality of their testing efforts.

• As a result of applying feedback-directed random testing to
the component, the test team found and fixed errors in other
automated testing tools, performed further manual testingon
areas of the code that the technique showed to be insufficiently
tested, and implemented new best practices for future manual
testing efforts. In other words, the technique was used beyond
bug finding, as an assessment tool for the test team’s existing
testing methodologies, and spurred more testing activities.

• After a highly productive error detection period, feedback-
directed random testing plateaued and eventually stopped find-
ing new errors, despite using different random seeds. This ob-
servation mirrors the results of a recent, unrelated study of
random testing [GHJ07]. We provide a tentative explanation
of the plateau effect for the case of feedback-directed random
testing applied to the .NET component, and propose research
directions to address the effect.

The rest of the paper is organized as follows. Sections 2 and 3
give an overview of the .NET component under test and feedback-
directed random test generation. Section 4 describes the process
that the test team used in applying feedback-directed random test
generation to the component. Section 5 discusses the results, in-
cluding the number and type of errors revealed, the reason why
other techniques missed these errors, and the challenges that
feedback-directed random testing faces in finding more errors over
time. Section 6 surveys related work, and Section 7 concludes.

2. Overview of .NET Component

The software used in this study is a core component of the .NET
Framework [dot]. It implements part of the functionality that allows
managed code (code written in a high-level programming language
like C#) to execute under a virtual machine environment. The
component is required for any .NET application to execute. It is
more than 100KLOC in size, written in C# and C++, and it exports
its functionality in an API available to programmers both inside and
outside Microsoft. Many applications written at Microsoftuse the
component, including the BCL (a library for I/O, graphics, database
operations, XML manipulation, etc.), ASP.NET (web services and
web forms), Windows Forms, SQL, and Exchange.

The software component has undergone approximately 200 man
years of testing, not counting developer testing (most developers
write unit tests). The test team has large computational resources
for testing, including a cluster of several hundred machines.

The test team has tested the component using many techniques
and tools. In addition to manual (unit and system) testing, the
team has developed tools for performance, robustness, stress, and
fuzz [FM00] testing. They have created tools that automatically
test code for typical corner cases and values, such as uses ofnull,
empty containers or arrays, etc. Additionally, thousands of devel-
opers and testers inside Microsoft have used pre-release versions
of the component in their own projects and reported errors. To fa-
cilitate testing, the developers of the component make heavy use of
assertions.

At this point, the component is mature and highly reliable. A
dedicated test engineer working with existing methodologies and
tools finds on average about 20 new errorsper year. During the

earlier years of its development cycle, this figure was much higher.
One of the goals of this study was to determine if feedback-directed
random testing could find errors not found by previous testing
techniques, on software of the maturity level of the component.

3. Feedback-directed Random
Testing

Feedback-directed random testing [PLEB07] addresses the au-
tomated generation ofunit testsfor object-oriented software. A
unit test consists of a sequence of constructor and method calls
and code that checks for expected behavior of the sequence.
Feedback-directed random testing generates a set of test cases
exhibiting error-revealing behaviors in the software under test.
This section summarizes the technique presented in our previous
work [PLEB07] by describing the RANDOOP unit test generator.

RANDOOP(Random Tester forObject-OrientedPrograms) im-
plements feedback-directed random testing for .NET (another ver-
sion of the tool exists for Java [PE07]). The tool is fully automatic.
Figure 1 shows the architecture of RANDOOP. It takes as input the
location of an assembly, a time limit after which test generation
stops, and optionally a set of configuration files that let theuser
specify (via regular expressions) subsets of classes and methods in
the assembly that should be tested or avoided.

RANDOOPoutputs unit tests that can be compiled and executed
to produce error-revealing behavior in a method under test.The
error-revealing behaviors that RANDOOP checks for are assertion
violations, access violations, and unexpected program termination.
Figure 2 shows an example error-revealing unit test case generated
by RANDOOP. The test case shows a test input that leads to an as-
sertion violation (realized as anAssertionViolationException).
Lines 13—16 comprise the test input, and lines 17—30 comprise
the test oracle. Exit codes signal different execution outcomes (if
the code under test is non-deterministic, the outcome may differ in
different executions). The exit codes can be used by tools topost-
process RANDOOP-generated test cases.

RANDOOP creates method sequences incrementally by ran-
domly selecting a method call to apply, and selecting input ar-
guments to the method from among previously constructed se-
quences. As soon as it is created, a new sequence is executed and
checked against a set of error-revealing behaviors. RANDOOP uses
the result of the execution to determine if the sequence is error-
revealing, new, or illegal:

• Error-revealing: the execution exhibits an error-revealing be-
havior. Sequences that lead to error-revealing behavior are out-
put to the user. Figure 2 shows an example error-revealing
method sequence. Sequences classified as error-revealing are
not used to create new sequences (such an extension would
amount to exploring off an already-corrupted state, which
would lead to many false positives).

• New: the objects that the sequence constructs are not equiv-
alent to objects constructed by a previously created input.
RANDOOP considers two objectso1 and o2 to be equivalent
if o1.equals(o2) returnstrue. The tool maintains a cached set
of all the objects created during generation, and checks if anew
sequence creates new objects (This heuristic did not improve
performance for the .NET component under test, and we did
not use it in the case study.) Sequences that create new objects
and are not error-revealing are output to the user asnormal
behaviortest cases and can be used for regression testing.

• Illegal: execution of the sequence leads to an exception suggest-
ing that the input is illegal. For example, a sequence that throws
anArgumentException whennull is used as input to a method



Figure 1. RANDOOP’s architecture. The input to the tool is an assembly, a time limit, and optionally, a set of configuration files. RANDOOP
creates method sequences using the public methods and constructors exported by the assembly, executes the sequences, and based on their
execution, may output them as error-revealing or regression test cases.

1. // A Randoop-generated unit test for method
2. //

3. // ConfManager.LoadConfigFromFile(String,ConfigType).
4. //

5. // When executed, the test causes the method
6. // to raise an assertion violation.
7. public class RandoopTest4065

8. {
9. public static int Main()

10. {
11. try

12. {
13. int v1 = 2;
14. String v2 = Convert.ToString(v1);

15. ConfigType v3 = ConfigType.User;
16. Config v4 = ConfManager.LoadConfigFromFile(v2,v3);

17. }
18. catch (AssertionViolationException e)
19. {

20. Console.WriteLine("Test threw an");
21. Console.WriteLine("AssertionViolationException.");

22. Console.WriteLine("Will exit with code 1.");
23. return 1;

24. }
25. catch (Exception e)
26. {

27. Console.WriteLine("Unexpected behavior:");
28. Console.WriteLine("expected an");

29. Console.WriteLine("AssertionViolationException.");
30. return 2;

31. }
32. }
33. }

Figure 2. Example RANDOOP-generated unit test case. The test
case reveals an error in methodLoadConfigFromFile which leads
to an assertion violation when the method is executed.

is heuristically classified as illegal. Sequences classified as ille-
gal are discarded and are not used to create new sequences.

RANDOOPoutputs error-revealing sequences. Before outputting
an error-revealing sequence, RANDOOP attempts tominimizeit by
iteratively omitting method calls that can be removed from the
method sequence while preserving its error-revealing behavior.

Robustness. Before starting the case study, we modified RAN-
DOOP to make it more robust. The tool executes method sequences
in the same process where it executes its own code, using .NET’s
reflection infrastructure. This increases the speed of the tool by an
order of magnitude compared to compiling and executing eachse-
quence in a separate process. In early runs of RANDOOP on the
component under study, some method sequences caused the tool
to be forcefully terminated by the operating system, due to exe-

Figure 3. RandoopWrapper is a wrapper process around Randoop
that makes it more robust to crashes caused by arbitrary codeexe-
cution. First, RandoopSpawner spawns a Randoop process. IfRan-
doop crashes, RandoopSpawner spawns a new Randoop process
with a new random seed. This continues until the user-specified
time limit expires.

cution of sequences containing methods that attempted to perform
a low-level OS operation for which RANDOOP had no privileges.
Thus, RANDOOP sometimes terminated before the user-specified
time limit. To improve RANDOOP’s robustness, we wrapped RAN-
DOOP in another program, RandoopWrapper (Figure 3). Randoop-
Wrapper takes the user’s input, spawns a RANDOOP process on
the given input, and monitors the execution of the RANDOOP pro-
cess. If RANDOOP crashes before the user-specified time limit is
reached, RandoopWrapper spawn a new RANDOOP process, us-
ing a new random seed. Method sequences that lead to RANDOOP
crashes are also output as potentially error-revealing test cases.

4. Process

We gave a copy of RANDOOP to the test team, along with instruc-
tions on how to run the tool. Since the tool is fully automatic, works
directly on assemblies, and it outputs compilable, error-revealing
test cases, the test team had no trouble understanding the purpose of
the tool. The test team started using RANDOOPwith its default set-
tings: one minute generation time limit and no configurationfiles.

As they discovered errors, the test team created error reports
and assigned engineers to fix them. It was not always possibleto
fix the code immediately, so the test team altered RANDOOP’s con-
figuration files to instruct it not to explore methods that ledto error-
revealing behavior. This prevented RANDOOP from rediscovering
the same error in subsequent runs.

As they became more familiar with the tool, they used the tool
in more sophisticated ways, creating different configuration files
to focus on different parts of the component. An aspect that made
the tool easy to adopt was its scalability. The technique does not



total number of tests
generated 4,000,000
distinct errors revealed
by RANDOOP 30
total CPU time required to
reveal the errors 150 hours
total human time spent
interacting with RANDOOP 15 hours
average errors revealed by a
tester in 1 year of testing 20

Figure 4. Case study statistics.

analyze the code, but simply runs it, which makes it possibleto test
even code that executes deep into the operating system.

We met with the test team on a regular basis to discuss their
experience with the tool, including the time they had spent using
it and inspecting its results, as well as its effectiveness compared
with their existing manual test suites and testing tools. Based on
requests by the test team, we also implemented a number of new
configurable options, such as the ability to output all sequences
that RANDOOP generated, regardless of their classification (Sec-
tion 5.1.2 discusses the way that the test team used this option).

5. Results

Figure 4 summarizes the results of the test team’s effort. RANDOOP
revealed 30 serious, previously unknown errors in 15 hours of
human effort (spread among several days) and 150 hours of CPU
time. Each error was entered as a bug report; many have since been
fixed. The 15 hours of human effort included inspecting the error-
revealing tests output by RANDOOP. To place the results numbers
in context, recall that for a code base of the component’s level of
maturity, a test engineer will find approximately 20 errors per year.

The kinds of behaviors that the tool currently checks for (as-
sertion violations, access violations, and unexpected termination)
are almost always indicative of errors in the code, so false posi-
tives were not as much a problem asredundant tests:test that were
syntactically distinct but revealed the same error in the implemen-
tation. The hours reported include time spent inspecting and dis-
carding redundant tests.

In terms of human effort, a test engineer usingRAN-
DOOPrevealed more errors in 15 hours than he would
be expected to find in a year using previous testing
methodologies and tools.

5.1 Error characteristics

This section present the observed characteristics of the errors
that RANDOOP found, and representatives examples. Each section
presents an observation followed by examples.

5.1.1 Errors in well-tested code

RANDOOP revealed errors in code on which previous tests had
achieved full block and arc coverage. An example is an error deal-
ing with memory management and native code. The component
code base is a combination of memory-managed (garbage col-
lected) code as well as native code with explicit memory allocation.
When native code manipulates references from managed objects, it

must inform the garbage collector of any changes (new references,
references that can be garbage-collected, etc.).

RANDOOP created a test input that caused an internal portion
of the component to follow a previously untested path through a
method. This path caused the native code to erroneously report a
previously used local variable as containing a new reference to a
managed object. In this specific path, the address of the reference
was an illegal address for a managed object (less than 32k but
greater than 0). In a checked build (the version of the component
used during testing, which includes assertion-checking code), the
component checks for the legality of the addresses, and threw an
assertion violation stating that a bad value was given as a reference
into the garbage-collected heap.

The erroneous code was in a method for which existing tests
achieved 100% block coverage and 100% arc coverage. After fix-
ing the error, the test team added a new regression test and also
reviewed (and added test cases) for similar methods. This isan ex-
ample of an error discovered by RANDOOP that led to testing for
more errors of the same kind, reviewing existing code, and adding
new tests.

Feedback-directed test generation revealed errors in
code in which existing tests achieved 100% code cov-
erage.

5.1.2 Using RANDOOP’s output as input to other tools

At the beginning of the study, we expected RANDOOP to be used
as an end-to-end tool. However, the test team started using RAN-
DOOP’s test inputs (which are stand-alone executable files) as input
to other tools, getting more functionality from each generated test.
The test team requested that we add an execution to RANDOOP in
which it outputs all the test inputs it creates, even if they were not
error-revealing. Their goal was to use other tools to execute the in-
puts under different environments in order to discover new errors.

Among the tools that they used were stress and concurrency
testers. An example is a tool that invokes the component’s garbage
collector after every few instructions, or a tool that runs several
RANDOOP-generated test inputs in a stress tool that executes a sin-
gle tests input multiple times in parallel (with a separate thread ex-
ecuting the same input). This process led the test team to discover
more errors. Using the latter tool, the test team discovereda race
condition that was due to incorrect locking of a shared resource.
The error was revealed only after a specific sequence of actions by a
method, involving locking an object, performing an operation, and
finally calling another method that reset the state of the thread. The
team fixed the error in the method that reset the thread state,im-
plemented a tighter protocol around the specific behavior, and did
a review of similar constructs (the review found no other issues).

The test team usedRANDOOP’s generated tests as
input to other testing tools, increasing the scope of
the exploration and the types of errors revealed beyond
those thatRANDOOP could find.

5.1.3 Testing the test tools

In addition to finding errors directly in the component, RANDOOP
led the test team to discover errors in their existing testing and
program analysis tools. An example of this is an error in a static
analysis tool that involved a missing string resource. In the compo-
nent, most user-visible strings (for example, exception messages)
are stored in a text file called a resource file. The resource file is in-
cluded with the product binary at build time, and is accessedwhen



a string is needed during execution. This approach simplifies lan-
guage localization.

The test team had previously built a simple analysis tool to
detect unused or missing resource strings. The tool inspects the
component source code and checks that each resource is referenced
at least once in the code, and that the resource exists. However,
the tool had a bug and it failed to detect some missing strings.
RANDOOP generated a test input that caused an infrequently-used
exception type to be raised. When the virtual machine lookedup
the exception message string, it did not find the string and, in the
checked build, led to a fatal assertion violation. On a retail build
(the version of the component shipped to customers), the missing
string produced a meaningless exception message.

After adding back the missing resource, the test team fixed the
error in their resource checking tool and did further manualtesting
on the tool to verify that it worked properly.

In addition to revealing errors in the .NET component,
RANDOOP revealed errors in the test team’s testing
and program analysis tools.

5.1.4 Corner cases and further testing

For software of high complexity, it is difficult for a team of testers
to partition the input space in a way that ensures that all important
cases will be covered. While RANDOOPmakes no guarantees about
covering all relevant partitions, its randomization strategy led it to
create test cases for which no manual tests were written. As aresult,
feedback-directed random testing discovered many missed corner
cases.

The knowledge gained from the discovery of the corner cases
led the test team to consider new corner cases, write new tests, and
find more errors. In some cases, the discovery of a new error led
the test team to augment an exiting testing tool with new checks for
similar corner cases, and in other cases the discovery of an error led
the test team to adopt new practices for manual testing.

The first example is an error that uncovered a lack of testing for
empty arrays. The component has a container class that accepts
an array as input to initialize the contents of the container. The
initialization code checks the legality of the input data byiterating
over the array and checking that each element is a legal element
for the container. An empty array is legal. One of access methods
expected did not handle the case in which the input array is empty.
In this case, the method incorrectly assumed that it was an array
of bytes and started reading bytes starting from the base address of
the array. In most cases, this would quickly lead to a failuredue
to malformed data, and in other cases (one created by RANDOOP),
the method would fail with an access violation. The test teamfixed
the error, reviewed other access methods, and as a result fixed other
similar issues. As a result of this error, the team updated their “best
practices” to include empty arrays as an important input to test.

This area of the component contained a large number of tests for
different kinds of initialization arrays. However, the sheer size of
the state space made it impossible to test all possible combinations
of inputs, and the manual tests were incomplete.

The second example is an error that uncovered a lack of test-
ing for I/O streams that have been closed. When an I/O stream
is closed, subsequent operations on the stream should fail.A
RANDOOP-generated test showed that calling a successive set of
state-manipulating methods on a closed stream would lead toone
of the operations succeeding. In the specific case, RANDOOP gen-
erated a call sequence that would create a specific stream, dosome
operations and then close the underlying stream. The component
has many test cases that test for similar behaviors, i.e. testing that
operations on closed streams fail in specific ways. Again, due to

the size of the component, some important cases were missing.
In a checked build the test case caused an assertion violation, and
on a retail build it led to being able to access certain parts of the
stream after its closed. The error has been fixed, test cases have
been added, and reviews of similar code have been completed.

The errors thatRANDOOP revealed led to further test-
ing activities unrelated to the initial random testing ef-
fort, including writing new manual tests and adopting
new practices for manual testing.

5.2 Comparison with Other Test Generation Techniques

The errors that RANDOOP revealed were not revealed using the
team’s existing methodologies and tools, including a very large col-
lection of manually-written unit and system tests, partition testing,
fuzz testing, and program analysis tools like the one described in
Section 5.1.3. Conversely, there were many errors revealedby pre-
vious efforts not revealed by RANDOOP. In other words, RANDOOP
was not subsumed by, and did not subsume, other techniques.

According to the test team, a major disadvantage of RANDOOP
in comparison with manual and non-random automated techniques
is RANDOOP’s lack of a meaningful stopping criterion. After sev-
eral hours of running RANDOOP without the tool producing a new
error-revealing test case, they did not know whether RANDOOPhad
essentially exhausted its power and was “done” finding all the er-
rors that it would find, or whether more computer resources would
lead to new errors. For example, towards the end of the study,the
test team ran RANDOOP for many hours on several dedicated ma-
chines but the tool did not reveal any new errors. Other techniques
have more sensible stopping criteria. When writing manual tests,
a test team typically has a code coverage goal; a static analysis
tool terminates when the analysis is complete; symbolic execution
based techniques terminate when they have attempted to cover all
feasible paths, etc.

The experiences of the test team suggests that RANDOOP en-
joys two main benefits compared with non-random automated test
generation approaches. One is its scalability. For example, concur-
rently with using RANDOOP, the test team used a new test generator
that outputs tests similar to RANDOOP, but uses symbolic execu-
tion [Kin76], a technique that instruments the code under test to
collect path constraints, and attempts to solve the constraints in or-
der to yield test inputs that exercise specific branches. Thesymbolic
execution tool was not able to find any new errors in the component.
One of the reasons is that the tool depends on a constraint solver to
generate tests that cover specific code paths, and the solverslowed
down the tool and was not always powerful enough to generate test
cases. In the amount of time it took the symbolic execution tool to
generate a single test, RANDOOP was able to generate many test
cases.

The second main benefit is that RANDOOP’s (and more gener-
ally, random testing’s) randomized search strategy protects test en-
gineers against human bias. For example, in Section 5.1.4 wedis-
cuss that the test team had not previously considered testing a set
of methods using empty arrays, and RANDOOP revealed an error
elicited via an empty array. The test team had previously omitted
empty arrays from testing because the engineer that craftedthe test
cases for the method in question did not consider empty arrays an
interesting test case at the time.

Human bias is not limited to manual testing; automated tools
can suffer from the biases of their creators. For example, the test
team has created automated testing tools that test methods that
take multiple input parameters, using all possible combinations of
a small set of inputs for each parameter slot. RANDOOP revealed



errors that were not revealed using the inputs programmed into the
tool.

RANDOOP’s randomized search revealed errors that
manual and non-random automated techniques missed
because of human bias or lack of scalability. How-
ever,RANDOOPhas no clear stopping criterion, which
makes it difficult to gauge when the tool has exhausted
its effectiveness.

Randoop versus fuzz testing. Previous to RANDOOP, the compo-
nent had undergone extensive fuzz testing [FM00] on nearly ev-
ery format and protocol of the component. Like feedback-directed
random testing, fuzz testing is also unbiased, but previousfuzzing
efforts did not reveal the errors that RANDOOP revealed.

A reason for this is that fuzz testing has been traditionallybeen
done on data-intensive software that take as inputs files, network
packets, etc. Fuzzing is less frequently applied to domainsthat deal
with both data and control, such as method sequences in object-
oriented libraries. The errors that RANDOOP found turned out to
be about both data (the input to methods) and about control (the
specific sequence of methods). In order to discover data errors,
some amount of control structure was necessary (a sequence of
method calls), and in order to discover control errors, somedata
was necessary (inputs to methods). RANDOOP helped bridge the
divide between data and control.

Fuzzing is effective in generating test inputs that ex-
plore either data or control. When the structure of in-
puts includes both data and control, feedback-directed
method sequence generation can be more effective.

5.3 The Plateau Effect

The errors revealed by RANDOOPdid not emerge at a uniform rate
during the testing process. Instead, the rate of error discovery was
quick at first and then decreased. During the first two hours ofuse,
RANDOOP revealed 10 distinct errors (5 errors per hour). Then the
error-finding rate fell to 2 errors per hour for approximately 10
hours. After that, RANDOOP ceased to output error-revealing test
cases.

To make RANDOOP more effective, the test team tried different
strategies, such as creating different configuration files that targeted
specific portions of the component. These efforts revealed more er-
rors, but did not alter the trend towards diminishing returns for the
effort expended. Towards the end of the case study, the test team
switched from running RANDOOP on a desktop to running it on
parallel in a cluster of several hundred machines, using different
combinations of random seeds and configurations. These runsre-
vealed fewer errors than the initial runs on a single desktop.

Groce et al. [GHJ07] also observed this effect using a technique
similar to RANDOOP’s to generate tests consisting of sequences of
file system operations for flight software.

Understanding the plateau effect. Given a software artifact com-
posed of multiple components, a reasonable requirement fora test
generation tool is that it befair, meaning that it distribute its com-
putational resources fairly among the different components. When
analyzing RANDOOP’s output, we discovered that RANDOOP is not
fair. RANDOOPselects which method to test next uniformly at ran-
dom from among the set of all public methods in the assembly un-
der test (the same applies to constructors). This strategy can lead to
some classes being explored more than others. A class that defines
five constructors will be explored more heavily than a class that

defines one constructor. A class that defines a nullary constructor
(a constructor that requires no arguments) will be exploredmore
heavily than a class whose constructor requires an object ofa type
that is difficult to create.

RANDOOP focuses on classes that declare nullary constructors
or that define several constructors, at the expense of classes whose
constructors require more complex setup. Because RANDOOP is
incremental and creates new method sequences from previously
created sequences, the initial favoring of a few classes leads to a
feedback loop in which classes that were initially easier tocreate
are focused on more in later stages of generation, while classes that
are difficult to create become starved.

After an initial period of effectiveness, feedback-
directed random test generation yielded diminishing
results. Other exploration strategies may extend the
technique’s period of effectiveness.

Overcoming the plateau effect. We do not yet have a solution to
the fairness problem. Below, we sketch a possible approach,with
the caveat that we have not yet evaluated its effectiveness.The idea
is to use a distribution other than RANDOOP’s uniform random dis-
tribution. In fact, it may be desirable to use anadaptive distribution,
as follows. At the start of generation, RANDOOP could maintain a
mapping from each constructor and method to a “weight” number
indicating the relative probability that the given method or con-
structor will be selected for testing (members with higher weight
have a higher change of being selected). At the beginning, all meth-
ods and constructors would have equal weight. At regular intervals,
RANDOOP would update the weights: members for which more
tests have been created would be given lower weight, and mem-
bers for which fewer tests have been created would be given higher
weight. Thus for example, a class with several constructorsor with
a unary constructor, for which RANDOOP quickly generates many
inputs, would eventually receive a lower weight, which would in-
crease the chances that the tool explores other classes. Other tech-
niques for achieving fairness are possible; the one we have outlined
is one possibility.

6. Related Work

Random testing. Researchers have used random testing [Ham94]
to reveal errors in many applications, including Unix utilities [MFS90],
Windows GUI applications [FM00], Haskell programs [CH00],
and object-oriented code programs [CS04, PE05, Ori05]. Research
tools for random testing object-oriented code include JCrasher [CS04],
Jartege [Ori05], Autotest [CL05], Eclat [PE05], and RANDOOP[PLEB07];
commercial tools include Jtest [Par] and Agitator [Agi]. JCrasher [CS04]
creates test inputs by using a parameter graph to find method calls
whose return values can serve as input parameters. Jartege [Ori05]
and AutoTest [CL05] require a formal specification, and use it
to determine whether randomly-generated method calls are error-
revealing. Autotest lets the user vary a number of generation param-
eters and distributions. Eclat [PE05] generates random sequences
of method calls and classifies them as normal, illegal, or error re-
vealing based on an operational model derived from an existing
test suite. RANDOOP [PLEB07] focuses on generating a set of
behaviorally-diverse test inputs, including state matching to prune
redundant objects, repetition to generate low-likelihoodsequences,
oracles based on API contracts that can be extended by the user,
and regression oracles that capture the behavior of a program when
run on the generated input. Jtest [Par] is a commercial tool that also
uses specifications to determine if an input is error-revealing; its



input generation algorithm is not published. Agitator [Agi] creates
test inputs using a variety of techniques, including randomgen-
eration and data flow analysis, and proposes to the user program
invariants based on execution of the test inputs.

Other approaches combine random generation with more so-
phisticated techniques in an attempt to achieve higher coverage of
the code under test. Ferguson and Korel [FK96] proposed an input
generation technique that begins by executing the program under
test with a random input, and systematically modifies the input so
that it follows a different path. Recent work by Godefroid etal. and
Sen et al. [GKS05, SA06] explores DART and CUTE, two related
symbolic execution approaches that integrate random inputgener-
ation.

Evaluations of random testing. People tend to believe that ran-
dom testing is a poor testing methodology. Glenford Myers sums
up the feeling in hisArt of Software Testingbook: “In terms of
likelihood of detecting the most errors, a randomly selected collec-
tion of test cases has little chance of being an optimal, or close to
optimal, subset.” [MS04]. However, this intuition is not backed by
experimental evidence, and in fact theoretical studies have shown
that random testing can be as effective as more systematic tech-
niques such as partition testing [HT90, Nta98].

The literature contains relatively few empirical evaluations of
random testing. As mentioned in the introduction, previouseval-
uations have reported that random testing performs poorly com-
pared with other techniques. For example, Ferguson and Korel de-
scribe an experiment where randomly-generated inputs achieve less
code coverage than their chaining technique [FK96]. Marinov et
al. [MAD+03] describe an experiment where randomly-generated
test inputs kill fewer mutants than inputs generated using Korat.
Visser et al. [VPP06] describe the results of experiments where
random testing achieves less coverage than model checking and
symbolic execution.

In theoretical studies, Hamlet and Taylor [HT90] and Ntafos[Nta98]
conclude that random testing can be as effective as partition testing.
Groce et al. [GHJ07] describe a case study in which model check-
ing would not scale to testing code for complex flight systems,
while random testing scales and finds many errors in the code.
In previous work, we describe an experiment in which feedback-
directed random testing [PLEB07], a variant of random testing,
finds errors in many component libraries while model checking
finds none. The paper shows that when augmented with execution-
feedback heuristics, random testing outperforms the same bench-
marks used in [VPP06].

We know of few industrial case studies of random testing’s use
by an actual product group to test a real product. Recent workby
Groce et al. [GHJ07] describes a realistic application of random
testing to a file system used in flight software. Their experience
was similar to ours: random testing found a large number of errors
in a relatively short amount of time. Like RANDOOP, their tool
eventually reached a plateau. To find more errors, Groce et al.
suggest moving towards formal verification of the software;this
is a different, and complementary approach to our attack on the
plateau via techniques to increase fairness.

7. Conclusion

The goal of this case study was to determine the effectiveness of a
random testing technique when used by practicing test engineers in
an industrial setting. Our focus on a component that had already
undergone large amounts of testing allowed us to reach clearer
conclusions about the relative effectiveness of feedback-directed
random testing, by setting the bar high for the technique, and by

allowing us to compare with the many previous techniques applied
to the component.

The technique proved highly effective in testing even an ex-
tremely well-tested component, and led to a highly productive pe-
riod of error discovery. In addition, the technique revealed errors
in the test team’s existing testing and analysis tools, holes in their
manual testing, and even led them to improve their best practices.
These results provide evidence of the promise of feedback-directed
random testing in improving the quality of software, and thepro-
ductivity of the engineers that test it.

Random testing can greatly increase the effectiveness of the test
engineer by creating test cases that reveal not only errors,but alert
a test engineer to potential biases in the crafting of manualtests or
automated tools. This can have a positive impact on the quality of
testing beyond the errors found directly by random testing.RAN-
DOOPproved effective in uncovering these biases. Since the study
was conducted, other test teams at Microsoft have used RANDOOP
to find errors in software components and improve the qualityof
their testing efforts.
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