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Abstract ies [HT90, Nta98, GHJ07, PLEBO7] suggest the opposite: that
random testing’s speed, scalability, and unbiased seaaie ihan
tef‘fective error-detection techniques and able to outperfmany
of the above techniques. For example, in previous work we de-
scribed an experiment in which feedback-directed randosi+ te
ing [PLEBO7], a variant of random testing, finds errors in gnan
software libraries while model checking finds none, and exes
higher coverage than model checking and symbolic execution
However, the real assessment of a test generation tectsique
effectiveness is its performance in the real world. Do mesi
evaluations of random testing measure the relevant vasabh an
industrial setting, testing techniques are used underyadifferent
set of constraints from a research setting. Practicingetegineers
have tight deadlines and large amounts of code to test. For an
automated test generation tool to succeed in this enviratnite
must reveal errors important enough to be fixed and it mustalev
these errors in a cost-effective way, taking up less hunmae than
manual testing or existing automated techniques. Theslktigsa
can be particularly difficult to measure in a research sgttin
We present the results of a case study that sheds light on the
effectiveness of random testing when used by test engimeens
industrial testing environment, and in comparison with dipgli-
cation of other test generation techniques. Engineers fxamst
team at Microsoft applied feedback-directed random tesege
tion to a large component of the .NET Framework [dot] used by
thousands of developers and millions of end users. The coemo
under question sits low in the .NET framework stack, and many
.NET applications depend on it for their execution. For te&son,
the component has had approximately 40 testers devotedtioge
it over a period of five years. It has undergone manual urstesy,
and partition testing, as well as automated testing inoyduzz,

We present a case study in which a team of test engineers a
Microsoft applied a feedback-directed random testing took
critical component of the .NET architecture. Due to its ctarjpy
and high reliability requirements, the component had dlydzeen
tested by 40 test engineers over five years, using manuiagestd
many automated testing techniques.

Nevertheless, the feedback-directed random testing tamid
errors in the component that eluded previous testing, ahdaliwo
orders of magnitude faster than a typical test engineetuiig
time spent inspecting the results of the tool). The tool b
the test team to discover errors in other testing and arsatgsis,
and deficiencies in previous best-practice guidelines fanumal
testing. Finally, we identify challenges that random tegtiaces
for continued effectiveness, including an observed deeréathe
technique’s error detection rate over time.

1. Introduction

Testing software is expensive. Estimates in the literapurethe
cost of testing at approximately half of the total developtm=ost
of software [Bei90]. At Microsoft, for example, there is appi-
mately one tester for every developer. In addition to beixgea-
sive, testing software can be tedious and error-prone. diffignt
portion of a test engineer's work consists in constructiest {n-
puts that run the software under different scenarios. Sirisém-
possible to exercise software under every possible seenast
engineers must craft a small number of test inputs that fasa
many defects as possible. As the size and complexity of softw

increases, it becomes more difficult to cover all possibémados,
and easier to miss test inputs that could have revealed an err

robustness, stress, and symbolic execution-based teBenguse
of proprietary concerns, we cannot identify the .NET congrdn

Random testing [MFS90, Ham94, FM00, CHOO, CS04, PLEBO7, analyzed. We will refer to it as “the .NET component” or “trent-

GHJO07] helps a test engineer create error-revealing testtsn

by mechanically and randomly sampling a program'’s inputspa

The effectiveness of random testing is an unresolved cpregti
the testing community. Some studies [FK96, MAGB, VPPO6,

ponent” from here on.

The case study provides new evidence grounded in industrial

experience to the long-standing question about the effautiss
of random testing as an error-detection technique. Theadeast's

CGP'06] suggest that random testing is not as effective as other knowledge of the average human effort required to manuaily fi
test generation techniques such as chaining, bounded ®xhau an error in the component under test allowed us to quantidy th
tive testing, symbolic execution or model checking. Othteids benefit of feedback-directed random testing compared tauaian
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testing. Since the team has applied many testing techniquibe
component, we were also able to learn about the effectigeokes
feedback-directed random testing against these techmique

Our main results are:

o Feedback-directed random test generation found moresarror

15 hours of human effort and 150 hours of CPU time than a test

engineer typically finds in one year on code of the qualityhef t
component under test. The technique found non-trivialrerro



including errors that arise from highly specific sequendespeo
erations. Moreover, these errors were missed by manuaidest
and by all previously-applied automated test generatich-te
nigues. Based on these results, the tool implementing éexédb

earlier years of its development cycle, this figure was mughér.
One of the goals of this study was to determine if feedbaoketizd
random testing could find errors not found by previous testin
techniques, on software of the maturity level of the compbne

directed random testing was added to a list of tools thatrothe
test teams at Microsoft are encouraged to use to improve the 3 Feedback-directed Random
quality of their testing efforts. Testing

As a result of applying feedback-directed random testing to
the component, the test team found and fixed errors in other . .
automated testing tools, performed further manual tesiimng ~ Feedback-directed random testing [PLEBO7] addresses uhe a
areas of the code that the technique showed to be insufficient tomated generation afinit testsfor object-oriented software. A

tested, and implemented new best practices for future manua unit test consists of a sequence of constructor and methital ca

testing efforts. In other words, the technique was used rityo
bug finding, as an assessment tool for the test team’s existin
testing methodologies, and spurred more testing activitie

After a highly productive error detection period, feedback
directed random testing plateaued and eventually stoppdé fi
ing new errors, despite using different random seeds. Tiis o
servation mirrors the results of a recent, unrelated study o
random testing [GHJO7]. We provide a tentative explanation
of the plateau effect for the case of feedback-directedaand

and code that checks for expected behavior of the sequence.

Feedback-directed random testing generates a set of tess ca

exhibiting error-revealing behaviors in the software untkst.

This section summarizes the technique presented in ouiopiev

work [PLEBOQ7] by describing the RNDOOP unit test generator.
RANDOOP (Random Tester folObject-OrientedPrograms) im-

plements feedback-directed random testing for .NET (aeothr-

sion of the tool exists for Java [PEQ7]). The tool is fully amtatic.

Figure 1 shows the architecture oARDOOP. It takes as input the

location of an assembly, a time limit after which test getiera

testing applied to the .NET component, and propose researchsiops, and optionally a set of configuration files that let uker

directions to address the effect.

The rest of the paper is organized as follows. Sections 2 and
give an overview of the .NET component under test and feddbac
directed random test generation. Section 4 describes theegs
that the test team used in applying feedback-directed rartést
generation to the component. Section 5 discusses the gesult
cluding the number and type of errors revealed, the reasgn wh

other techniques missed these errors, and the challenggs th

feedback-directed random testing faces in finding moregoweer
time. Section 6 surveys related work, and Section 7 conslude

2. Overview of NET Component

The software used in this study is a core component of the .NET

Framework [dot]. It implements part of the functionalitytiallows
managed code (code written in a high-level programminglagg

like C#) to execute under a virtual machine environment. The

component is required for any .NET application to executés |
more than 100KLOC in size, written in C# and C++, and it export
its functionality in an API available to programmers botkide and
outside Microsoft. Many applications written at Microsafte the
component, including the BCL (a library for I/0, graphicatabase
operations, XML manipulation, etc.), ASP.NET (web sersiead
web forms), Windows Forms, SQL, and Exchange.

The software component has undergone approximately 200 man

years of testing, not counting developer testing (most ldpees
write unit tests). The test team has large computationaluress
for testing, including a cluster of several hundred machine

The test team has tested the component using many techniques *

and tools. In addition to manual (unit and system) testihg, t
team has developed tools for performance, robustnesssstand
fuzz [FMOO] testing. They have created tools that autoradyic
test code for typical corner cases and values, such as uses1of
empty containers or arrays, etc. Additionally, thousanfddevel-
opers and testers inside Microsoft have used pre-releaseons
of the component in their own projects and reported erraasaT
cilitate testing, the developers of the component makeyhes® of
assertions.
At this point, the component is mature and highly reliable. A

dedicated test engineer working with existing methoda@sgnd
tools finds on average about 20 new errpes year During the

specify (via regular expressions) subsets of classes atitbd®in

g the assembly that should be tested or avoided.

RANDOOP outputs unit tests that can be compiled and executed
to produce error-revealing behavior in a method under s
error-revealing behaviors thatARDOOP checks for are assertion
violations, access violations, and unexpected programitation.
Figure 2 shows an example error-revealing unit test caserged
by RANDOOP. The test case shows a test input that leads to an as-
sertion violation (realized as arssertionViolationException).
Lines 13—16 comprise the test input, and lines 17—30 corapris
the test oracle. Exit codes signal different execution auies (if
the code under test is non-deterministic, the outcome nféer dh
different executions). The exit codes can be used by togi®st-
process RNDOOP-generated test cases.

RANDOOP creates method sequences incrementally by ran-
domly selecting a method call to apply, and selecting input a
guments to the method from among previously constructed se-
guences. As soon as it is created, a hew sequence is exeadted a
checked against a set of error-revealing behaviorsiROOP uses
the result of the execution to determine if the sequenceri-er
revealing, new, or illegal:

e Error-revealing: the execution exhibits an error-revealing be-
havior. Sequences that lead to error-revealing behaviouat-
put to the user. Figure 2 shows an example error-revealing
method sequence. Sequences classified as error-reveading a
not used to create new sequences (such an extension would
amount to exploring off an already-corrupted state, which
would lead to many false positives).

New: the objects that the sequence constructs are not equiv-
alent to objects constructed by a previously created input.
RANDOOP considers two objectst and o2 to be equivalent

if o1.equals(o2) returnstrue. The tool maintains a cached set
of all the objects created during generation, and checkaéfa
sequence creates new objects (This heuristic did not ineprov
performance for the .NET component under test, and we did
not use it in the case study.) Sequences that create newtobjec
and are not error-revealing are output to the usenasnal
behaviortest cases and can be used for regression testing.

lllegal: execution of the sequence leads to an exception suggest-
ing that the input is illegal. For example, a sequence thatth
anArgumentException Whennull is used as input to a method



Randoop

sequences error-revealing
and test cases
rr_1ethod generate execute o
extract type | signatures sequences i
assembly - P > method > method |_output  ~examine
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A test cases
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configuration execution
files feedback

Figure 1. RANDOOP's architecture. The input to the tool is an assembly, a timé,land optionally, a set of configuration filesARDOOP
creates method sequences using the public methods andumost exported by the assembly, executes the sequemcebaged on their
execution, may output them as error-revealing or regradsist cases.

1. // A Randoop-generated unit test for method

o 7 Pg RandoopWrapper

3. ;; ConfManager.LoadConfigFromFile (String,ConfigType) . :':;‘;ri:gl"y't RandoopSpawner Randoop r:vre’::]:;‘g

4. _ (assembly,

t limit, and

6. // When executed, the test causes the method cor:zgeu:ﬁoni?les) Sﬁ:nﬂioirs]d iﬂ;eurt generates test cases

6. // to raise an assertion violation. Randoop tests

7. public class RandoopTest4065 process normal

8. { behavior

9. public static int Main() test cases

10. {

E ’{Sry Figure3. RandoopWrapper is a wrapper process around Randoop
13. int vi = 2; that makes it more robust to crashes caused by arbitrary ease
14. String v2 = Convert.ToString(vi); cution. First, RandoopSpawner spawns a Randoop procdsanif

15. ConfigType v3 = ConfigType.User; ) doop crashes, RandoopSpawner spawns a hew Randoop process
13 , Config v4 = ConfManager.LoadConfigFromFile(v2,v3); with a new random seed. This continues until the user-specifi
18. catch (AssertionViolationException e) time limit expires.

19. {

20. Console.WriteLine("Test threw an");

21. Console.WriteLine("AssertionViolationException. ");

22. Console.WriteLine("Will exit with code 1."); cution of sequences containing methods that attemptedrtorpe

;Z. . return 1; a low-level OS operation for which /&poop had no privileges.

25.  catch (Exception e) 'I.'hus,. @ND0.0P sometimes terminated before the user-specified
26. { time limit. To improve RANDOOP'S robustness, we wrappedR-

27. Console.lWriteLine("Unexpected behavior:"); DOOPIn another program, RandoopWrapper (Figure 3). Randoop-
2. Console.WriteLine ("expected an'); _ Wrapper takes the user’s input, spawns @aNROOP process on
29. Console.WriteLine( AssertionViolationException. ) the iven in ut and monitors the execution Oft ROOP Dro-
30. return 2; g p ! \pn . p .
31.  } cess. If RNDOOP crashes before the user-specified time limit is
32. } reached, RandoopWrapper spawn a nemNBROOP process, us-
33. }

ing a new random seed. Method sequences that leadkmBoP
crashes are also output as potentially error-revealingéses.

Figure 2. Example RRNDOOP-generated unit test case. The test
case reveals an error in methbéhdConfigFromFile Which leads

to an assertion violation when the method is executed. 4. Process

We gave a copy of RNDOOPto the test team, along with instruc-
tions on how to run the tool. Since the tool is fully automatiorks
directly on assemblies, and it outputs compilable, erevealing
test cases, the test team had no trouble understandingrihasgLof
the tool. The test team started usingMoopPwith its default set-
tings: one minute generation time limit and no configurafitas.

As they discovered errors, the test team created error teepor
and assigned engineers to fix them. It was not always possible
Robustness. Before starting the case study, we modifiedNR fix the code immediately, so the test team alter@shROOP's con-
DooPto make it more robust. The tool executes method sequencesfiguration files to instruct it not to explore methods thatteérror-
in the same process where it executes its own code, using’sNET revealing behavior. This preventedaRDOOP from rediscovering

is heuristically classified as illegal. Sequences claskitille-
gal are discarded and are not used to create new sequences.

RANDOOPoOutputs error-revealing sequences. Before outputting
an error-revealing sequenceARDOOP attempts taninimizeit by
iteratively omitting method calls that can be removed frdm t
method sequence while preserving its error-revealingyieha

reflection infrastructure. This increases the speed ofdbelty an
order of magnitude compared to compiling and executing esaeh
guence in a separate process. In early runs miBoOP on the

the same error in subsequent runs.
As they became more familiar with the tool, they used the tool
in more sophisticated ways, creating different configorafiiles

component under study, some method sequences caused lthe todo focus on different parts of the component. An aspect thaden

to be forcefully terminated by the operating system, duexs e

the tool easy to adopt was its scalability. The techniques dux



total number of tests must inform the garbage collector of any changes (new nefes
generated 4,000,000 references that can be garbage-collected, etc.).
distinct errors revealed RANDOOP created a test input that caused an internal portion
by RANDOOP 30 of the component to follow a previously untested path thioag
total CPU time required to method. This path caused the native code to erroneouslytrepo
reveal the errors 150 hours previously used local variable as containing a new referénca
total human time spent managed object. In this specific path, the address of theerefe
interacting with RRNDOOP 15 hours was an illegal address for a managed object (less than 32k but
average errors revealed by|a greater than 0). In a checked build (the version of the corapbn
tester in 1 year of testing 20 used during testing, which includes assertion-checkirdgyathe
component checks for the legality of the addresses, and tane
Figure4. Case study statistics. assertion violation stating that a bad value was given afeserece

into the garbage-collected heap.
The erroneous code was in a method for which existing tests

analyze the code, but simply runs it, which makes it possibtest achieved 100% block coverage and 100% arc coverage. After fix

even code that executes deep into the operating system. ing the error, the test team added a new regression test aad al
We met with the test team on a regular basis to discuss their reviewed (and added test cases) for similar methods. This éx-

experience with the tool, including the time they had spesing ample of an error discovered byARDooP that led to testing for

it and inspecting its results, as well as its effectivenesapared more errors of the same kind, reviewing existing code, antihad

with their existing manual test suites and testing toolssegiaon new tests.

requests by the test team, we also implemented a number of new

configurable options, such as the ability to output all seqas Feedback-directed test generation revealed errors in

that RaNDOOP generated, regardless of their classification (Sec- code in which existing tests achieved 100% code dov-

tion 5.1.2 discusses the way that the test team used thisndpti erage.

5. Results 5.1.2 Using RANDOOP’soutput asinput to other tools

At the beginning of the study, we expected¥booP to be used

as an end-to-end tool. However, the test team started using R

DOOPSs test inputs (which are stand-alone executable files)@sg in

to other tools, getting more functionality from each getestaest.

The test team requested that we add an executiomteOROP in

which it outputs all the test inputs it creates, even if therevnot

error-revealing. Their goal was to use other tools to exeths in-

puts under different environments in order to discover nears.
Among the tools that they used were stress and concurrency

testers. An example is a tool that invokes the componentisagg

collector after every few instructions, or a tool that ruevesal

RANDOOP-generated test inputs in a stress tool that executes a sin-

gle tests input multiple times in parallel (with a separaread ex-

ecuting the same input). This process led the test team ¢owdis

more errors. Using the latter tool, the test team discovareate

condition that was due to incorrect locking of a shared resmu

The error was revealed only after a specific sequence ofresdtipa

Figure 4 summarizes the results of the test team’s effatBoOOP
revealed 30 serious, previously unknown errors in 15 hotirs o
human effort (spread among several days) and 150 hours of CPU
time. Each error was entered as a bug report; many have ssece b
fixed. The 15 hours of human effort included inspecting therer
revealing tests output by RDOOP. To place the results numbers
in context, recall that for a code base of the componentsl lef/
maturity, a test engineer will find approximately 20 erroes pear.

The kinds of behaviors that the tool currently checks for (as
sertion violations, access violations, and unexpecteditetion)
are almost always indicative of errors in the code, so fatss-p
tives were not as much a problemradundant teststest that were
syntactically distinct but revealed the same error in thplé@men-
tation. The hours reported include time spent inspectind dig-
carding redundant tests.

In terms of human effort, a test engineer usRgN- method, involving locking an object, performing an opeamatiand
DooPrevealed more errors in 15 hours than he woyld finally calling another method that reset the state of thedtir The
be expected to find in a year using previous testjng team fixed the error in the method that reset the thread state,
methodologies and tools. plemented a tighter protocol around the specific behaviuat,did
a review of similar constructs (the review found no otheunésy.
5.1 Error characteristics The test team useRANDOOPS generated tests a
input to other testing tools, increasing the scope|of
This section present the observed characteristics of therser the exploration and the types of errors revealed beyond
that RanpDooOP found, and representatives examples. Each section those thaRANDOOP could find.

presents an observation followed by examples.
513 Testingthetest tools
51.1 Errorsin well-tested code
In addition to finding errors directly in the componentafboopP
RANDOOP revealed errors in code on which previous tests had led the test team to discover errors in their existing tgsénd
achieved full block and arc coverage. An example is an emat-d program analysis tools. An example of this is an error in #csta
ing with memory management and native code. The component analysis tool that involved a missing string resource. éndbmpo-
code base is a combination of memory-managed (garbage col-nent, most user-visible strings (for example, exceptioissages)
lected) code as well as native code with explicit memorycaitmn. are stored in a text file called a resource file. The resoureésfih-
When native code manipulates references from managedshifec  cluded with the product binary at build time, and is accesgeen



a string is needed during execution. This approach simpliéie-
guage localization.

The test team had previously built a simple analysis tool to
detect unused or missing resource strings. The tool inspbet
component source code and checks that each resource anetdr
at least once in the code, and that the resource exists. Howev
the tool had a bug and it failed to detect some missing strings
RANDOOP generated a test input that caused an infrequently-used
exception type to be raised. When the virtual machine loaked
the exception message string, it did not find the string amthe
checked build, led to a fatal assertion violation. On a fétaild
(the version of the component shipped to customers), theimgis
string produced a meaningless exception message.

After adding back the missing resource, the test team fixed th
error in their resource checking tool and did further manesting
on the tool to verify that it worked properly.

In addition to revealing errors in the .NET component,
RANDOOP revealed errors in the test team’s testing
and program analysis tools.

5.1.4 Corner casesand further testing

For software of high complexity, it is difficult for a team afdters
to partition the input space in a way that ensures that albitiamt
cases will be covered. WhileARiDooPmakes no guarantees about
covering all relevant partitions, its randomization gt led it to
create test cases for which no manual tests were writtenrésudt,
feedback-directed random testing discovered many missetwic
cases.

The knowledge gained from the discovery of the corner cases
led the test team to consider new corner cases, write nesy texd
find more errors. In some cases, the discovery of a new eror le
the test team to augment an exiting testing tool with new kchéar
similar corner cases, and in other cases the discovery afaned
the test team to adopt new practices for manual testing.

The first example is an error that uncovered a lack of tesbng f
empty arrays. The component has a container class thattaccep
an array as input to initialize the contents of the contaifitie
initialization code checks the legality of the input dataiteyating
over the array and checking that each element is a legal ateme
for the container. An empty array is legal. One of access austh
expected did not handle the case in which the input array Eyem
In this case, the method incorrectly assumed that it was &y ar
of bytes and started reading bytes starting from the basessidf
the array. In most cases, this would quickly lead to a faillme
to malformed data, and in other cases (one createdAypRoOP),
the method would fail with an access violation. The test téaed
the error, reviewed other access methods, and as a resdlbfixer
similar issues. As a result of this error, the team updaten thest
practices” to include empty arrays as an important inpueso. t

This area of the component contained a large number of tasts f
different kinds of initialization arrays. However, the shesize of
the state space made it impossible to test all possible catibns
of inputs, and the manual tests were incomplete.

The second example is an error that uncovered a lack of test-

ing for I/O streams that have been closed. When an 1/O stream
is closed, subsequent operations on the stream shouldAfail.

the size of the component, some important cases were missing
In a checked build the test case caused an assertion viglatial

on a retail build it led to being able to access certain pdrth®
stream after its closed. The error has been fixed, test cases h
been added, and reviews of similar code have been completed.

The errors thaRANDOOPrevealed led to further test
ing activities unrelated to the initial random testing e
fort, including writing new manual tests and adoptin
new practices for manual testing.

—
T

5.2 Comparison with Other Test Generation Techniques

The errors that RNDOOP revealed were not revealed using the
team’s existing methodologies and tools, including a varge col-
lection of manually-written unit and system tests, patittesting,
fuzz testing, and program analysis tools like the one desdrin
Section 5.1.3. Conversely, there were many errors revésigue-
vious efforts not revealed byAADOOP. In other words, RNDOOP
was not subsumed by, and did not subsume, other techniques.

According to the test team, a major disadvantage ailBoopP
in comparison with manual and non-random automated teabriq
is RANDOOP's lack of a meaningful stopping criterion. After sev-
eral hours of running RNDOOP without the tool producing a new
error-revealing test case, they did not know whethenRooprhad
essentially exhausted its power and was “done” finding alleth
rors that it would find, or whether more computer resourcegldvo
lead to new errors. For example, towards the end of the sthdy,
test team ran RNDoOOP for many hours on several dedicated ma-
chines but the tool did not reveal any new errors. Other tecias
have more sensible stopping criteria. When writing manestst
a test team typically has a code coverage goal; a static sisaly
tool terminates when the analysis is complete; symbolicetien
based techniques terminate when they have attempted to albve
feasible paths, etc.

The experiences of the test team suggests thattROP en-
joys two main benefits compared with non-random automat&d te
generation approaches. One is its scalability. For exanaplecur-
rently with using RANDOOP, the test team used a new test generator
that outputs tests similar toARIDOOP, but uses symbolic execu-
tion [Kin76], a technique that instruments the code undst te
collect path constraints, and attempts to solve the cansdria or-
der to yield test inputs that exercise specific branchessyimbolic
execution tool was not able to find any new errors in the corapbn
One of the reasons is that the tool depends on a constraietr ol
generate tests that cover specific code paths, and the stvwerd
down the tool and was not always powerful enough to geneeate t
cases. In the amount of time it took the symbolic executiah tim
generate a single test, ARDOOP was able to generate many test
cases.

The second main benefit is thanRDOOP's (and more gener-
ally, random testing’s) randomized search strategy ptetest en-
gineers against human bias. For example, in Section 5.1 diswe
cuss that the test team had not previously considered gestaet
of methods using empty arrays, and¥boOP revealed an error
elicited via an empty array. The test team had previouslyttechi
empty arrays from testing because the engineer that cridéete st

RANDOOP-generated test showed that calling a successive set of cases for the method in question did not consider empty suany

state-manipulating methods on a closed stream would leadgo
of the operations succeeding. In the specific cageyOOP gen-
erated a call sequence that would create a specific streasonoie
operations and then close the underlying stream. The coempon
has many test cases that test for similar behaviors, i.gngethat
operations on closed streams fail in specific ways. Agaie, tdu

interesting test case at the time.

Human bias is not limited to manual testing; automated tools
can suffer from the biases of their creators. For exampke tebt
team has created automated testing tools that test methats t
take multiple input parameters, using all possible contimna of
a small set of inputs for each parameter sloANROOP revealed



errors that were not revealed using the inputs programniedtfie
tool.

RANDOOP's randomized search revealed errors that

manual and non-random automated techniques migsed
because of human bias or lack of scalability. How-
ever,RANDOOPhas no clear stopping criterion, which
makes it difficult to gauge when the tool has exhausted
its effectiveness.

Randoop ver sus fuzz testing. Previous to RNDOOP, the compo-
nent had undergone extensive fuzz testing [FM0OO] on neary e
ery format and protocol of the component. Like feedbackatzd
random testing, fuzz testing is also unbiased, but previgzsing
efforts did not reveal the errors thanRDoOPrevealed.

A reason for this is that fuzz testing has been traditionadign
done on data-intensive software that take as inputs fildsanke
packets, etc. Fuzzing is less frequently applied to donthaisdeal
with both data and control, such as method sequences intobjec
oriented libraries. The errors thataARDooP found turned out to
be about both data (the input to methods) and about contrel (t
specific sequence of methods). In order to discover dataserro

defines one constructor. A class that defines a nullary agsistr
(a constructor that requires no arguments) will be explonede
heavily than a class whose constructor requires an objextyie
that is difficult to create.

RANDOOP focuses on classes that declare nullary constructors
or that define several constructors, at the expense of slagsese
constructors require more complex setup. Becaus®®OP is
incremental and creates new method sequences from prvious
created sequences, the initial favoring of a few classedslém a
feedback loop in which classes that were initially easiecreate
are focused on more in later stages of generation, whilsetahat
are difficult to create become starved.

After an initial period of effectiveness, feedbagk-
directed random test generation yielded diminishing
results. Other exploration strategies may extend the
technique’s period of effectiveness.

Overcoming the plateau effect. We do not yet have a solution to
the fairness problem. Below, we sketch a possible apprasith,
the caveat that we have not yet evaluated its effectiveiiéssidea

some amount of control structure was necessary (a Sequénce OiS to use a distribution other thamARDoOOP's uniform random dis-

method calls), and in order to discover control errors, sz
was necessary (inputs to methodspN®ooP helped bridge the
divide between data and control.

Fuzzing is effective in generating test inputs that ex-
plore either data or control. When the structure of in
puts includes both data and control, feedback-direc
method sequence generation can be more effective.

5.3 ThePlateau Effect

The errors revealed by/RiDoopP did not emerge at a uniform rate
during the testing process. Instead, the rate of error désgonas
quick at first and then decreased. During the first two hoursef
RaNDooOPrevealed 10 distinct errors (5 errors per hour). Then the
error-finding rate fell to 2 errors per hour for approximgt&
hours. After that, RNDOOP ceased to output error-revealing test
cases.

To make RRNDOOP more effective, the test team tried different
strategies, such as creating different configuration filastargeted
specific portions of the component. These efforts reveale rer-
rors, but did not alter the trend towards diminishing resuior the
effort expended. Towards the end of the case study, thedast t
switched from running RNDOOP on a desktop to running it on
parallel in a cluster of several hundred machines, usinigreift
combinations of random seeds and configurations. Theseredns
vealed fewer errors than the initial runs on a single desktop

Groce et al. [GHJ07] also observed this effect using a teghni
similar to RANDOOP's to generate tests consisting of sequences of
file system operations for flight software.

Under standing the plateau effect. Given a software artifact com-
posed of multiple components, a reasonable requiremerat test
generation tool is that it bfair, meaning that it distribute its com-
putational resources fairly among the different compasnieithen
analyzing RANDOOP's output, we discovered thatARIDOOPis not
fair. RANDOOP selects which method to test next uniformly at ran-
dom from among the set of all public methods in the assembly un
der test (the same applies to constructors). This strategjead to
some classes being explored more than others. A class tiira¢sle
five constructors will be explored more heavily than a cldeg t

tribution. In fact, it may be desirable to useadtaptive distribution,

as follows. At the start of generation ARDOOP could maintain a
mapping from each constructor and method to a “weight” numbe
indicating the relative probability that the given methadcon-
structor will be selected for testing (members with higheight
have a higher change of being selected). At the beginnihgneth-
ods and constructors would have equal weight. At regulervats,
RaNDoOP would update the weights: members for which more
tests have been created would be given lower weight, and mem-
bers for which fewer tests have been created would be gigrehi
weight. Thus for example, a class with several construaioveith

a unary constructor, for which /& Dboor quickly generates many
inputs, would eventually receive a lower weight, which wbiri-
crease the chances that the tool explores other classes. ©th-
nigues for achieving fairness are possible; the one we hatlieed

is one possibility.

6. Related Work

Random testing. Researchers have used random testing [Ham94]
to reveal errors in many applications, including Unix aigs [MFS90],
Windows GUI applications [FM0O0], Haskell programs [CHOO],
and object-oriented code programs [CS04, PEQ5, Ori0O5&teh
tools for random testing object-oriented code include 3Bea[CS04],
Jartege [Ori05], Autotest [CLO5], Eclat [PE05], andRoooP[PLEBOQ7];
commercial tools include Jtest [Par] and Agitator [Agi]rd€her [CS04]
creates test inputs by using a parameter graph to find metitsd ¢
whose return values can serve as input parameters. Ja@Qeg@8][

and AutoTest [CLO5] require a formal specification, and use i
to determine whether randomly-generated method callsrave- e
revealing. Autotest lets the user vary a number of genera@mam-
eters and distributions. Eclat [PEO5] generates randomesegs

of method calls and classifies them as normal, illegal, @rae-
vealing based on an operational model derived from an egisti
test suite. RNDOOP [PLEBO7] focuses on generating a set of
behaviorally-diverse test inputs, including state matghb prune
redundant objects, repetition to generate low-likeliheeduences,
oracles based on API contracts that can be extended by the use
and regression oracles that capture the behavior of a progten

run on the generated input. Jtest [Par] is a commercial haolalso
uses specifications to determine if an input is error-réwgaits



input generation algorithm is not published. Agitator [Agieates
test inputs using a variety of techniques, including randgen-
eration and data flow analysis, and proposes to the usergsmogr
invariants based on execution of the test inputs.

allowing us to compare with the many previous techniquedieghp
to the component.

The technique proved highly effective in testing even an ex-
tremely well-tested component, and led to a highly prodectie-

Other approaches combine random generation with more so-riod of error discovery. In addition, the technique reveadgrors

phisticated techniques in an attempt to achieve higherrageeof
the code under test. Ferguson and Korel [FK96] proposedpurt in
generation technique that begins by executing the prograaeru
test with a random input, and systematically modifies thetirgo
that it follows a different path. Recent work by Godefroichketand
Sen et al. [GKS05, SA06] explores DART and CUTE, two related
symbolic execution approaches that integrate random igeuer-
ation.

in the test team’s existing testing and analysis tools,higheir
manual testing, and even led them to improve their best ipesct
These results provide evidence of the promise of feedbaektdd
random testing in improving the quality of software, and pine-
ductivity of the engineers that test it.

Random testing can greatly increase the effectivenes® dégt
engineer by creating test cases that reveal not only etvatslert
a test engineer to potential biases in the crafting of marast$ or

automated tools. This can have a positive impact on the tguli

Evaluations of random testing. People tend to believe that ran-
dom testing is a poor testing methodology. Glenford Myemmsu
up the feeling in hisArt of Software Testindgpook: “In terms of
likelihood of detecting the most errors, a randomly seléctlec-
tion of test cases has little chance of being an optimal, @asecto
optimal, subset.” [MS04]. However, this intuition is notdkad by
experimental evidence, and in fact theoretical studieg lséaown
that random testing can be as effective as more systematie te

nigues such as partition testing [HT90, Nta98]. [Agl

The literature contains relatively few empirical evaloas of [Beio0]
random testing. As mentioned in the introduction, previeual-
uations have reported that random testing performs poary-c [CGPt06]

pared with other techniques. For example, Ferguson and Here

scribe an experiment where randomly-generated inputseehéss

code coverage than their chaining technique [FK96]. Mariab

al. [MAD *03] describe an experiment where randomly-generated [CHOO]
test inputs kill fewer mutants than inputs generated usingaK
Visser et al. [VPP06] describe the results of experimentereh
random testing achieves less coverage than model chechihg a
symbolic execution.

Intheoretical studies, Hamlet and Taylor [HT90] and Nt4fé&98]
conclude that random testing can be as effective as parté&iing.
Groce et al. [GHJO07] describe a case study in which modelkehec
ing would not scale to testing code for complex flight systems
while random testing scales and finds many errors in the code.
In previous work, we describe an experiment in which feeldlbac
directed random testing [PLEBO7], a variant of random iegti
finds errors in many component libraries while model chegkin
finds none. The paper shows that when augmented with exaeutio [dot]

[CLOS]

[CS04]

feedback heuristics, random testing outperforms the samehb [FK96]
marks used in [VPPO6].
We know of few industrial case studies of random testing&s us
by an actual product group to test a real product. Recent \wprk
Groce et al. [GHJO7] describes a realistic application ofdoam [FMOO0]

testing to a file system used in flight software. Their expere

was similar to ours: random testing found a large numberrofer

in a relatively short amount of time. Like ARDOOP, their tool

eventually reached a plateau. To find more errors, Groce.et al [GHJ07]
suggest moving towards formal verification of the softwdtes

is a different, and complementary approach to our attackhen t

plateau via techniques to increase fairness.

7. Conclusion [GKS03]
The goal of this case study was to determine the effectigcota

random testing technique when used by practicing test ergirin

an industrial setting. Our focus on a component that hachdyre =~ [Ham94]
undergone large amounts of testing allowed us to reachetlear
conclusions about the relative effectiveness of feedhacted [HT90]

random testing, by setting the bar high for the techniqué, an

testing beyond the errors found directly by random testiRwg -
poopproved effective in uncovering these biases. Since they/stud
was conducted, other test teams at Microsoft have ugsedoRoP

to find errors in software components and improve the quality
their testing efforts.
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